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Abstract. Upper and lower bounds for the maximum shear stress in a configu-

ration corresponding to a purely distortional deformation originating from a given

undistorted (ground) state are obtained in the framework of plane, isotropic, nonlin-

ear elasticity. The bounds are shown to be expressible in terms of the deformation

and the boundary traction that is required for maintaining the purely dilatational

deformation in the ground state.

1. Introduction. Consider a homogeneous, isotropic, elastic body which, in a ref-

erence configuration C(l), occupies the open subset Q. of the Euclidean space R .

In a typical deformation the particle X e £2 is displaced to x(X) e R . Given any

deformation gradient F = Vx with 7 = determinant F > 0, we can define (cf. [1,

2]) a unimodular tensor A by A = J~ l/2F so that F = \/7A is composed of an

isochoric deformation A and a pure dilatation \fj 1, where 1 denotes the identity

tensor.

In a recent paper [3] it was shown that in plane, isotropic elasticity, a certain

version of the Baker-Ericksen inequalities [4] implies that the stored energy corre-

sponding to any purely distortional deformation originating from a given undistorted

(ground) state C(%/7l) must be greater than the stored energy of the ground state.

If F denotes the transpose of F, this minimum property can be formally written

as

dW dW
0, , J) > 0 => W(I, J) > W{2J, 7) for 7^27, (1.1)

where W = W(I, 7) is the stored-energy function and I = trace(FFT). Trivial

modifications of the proof given in [3] for Eq. (1.1) show that we also have

d2W,T „ d2W,^T „ dW,r „ dW
2(/,/)#0, -^r(27,7)>0^— (/,/)>— (27,7) for/#27,

(1.2)
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and

d2W/r TS ,n d2W^„ _ „ dW ,w „ dW.
2-{I,J)? 0, _(27,7)<0=>—(7,7)<—(27,7) for 7/27.

(1.3)
In the next section we show that Eq. (1.2) leads to a lower bound for the maximum

shear stress in certain distorted configurations C(F) and that this bound is expressible

in terms of the deformation F and the boundary traction required for maintaining

the deformation \/71, 7 = determinant F. In Sec. 3 we make use of both Eqs. (1.2)

and (1.3) in order to obtain similar upper and lower bounds for the maximum shear

stress in the case when, under dead-load boundary tractions, branching of solutions

may occur from a bifurcation point on a deformation path corresponding to pure

dilatation (see [5]). In the last section we discuss the application of the theory to the

class of harmonic materials introduced in [6],

2. A lower bound for the maximum shear stress. For isotropic bodies there exists

a reference configuration such that the response function relating the Cauchy stress

tensor T to the deformation gradient F is given by

dW 2dW r
T= HI1 + 7TT <2"

From Eq. (2.1) we deduce that the principal stresses , / = 1,2,, which are defined

to be the eigenvalues of T, are delivered by

ow 2x]dw xtdw , „, .
'< = -dT + -f-dT = i-dXi> ' = 1 > 2 (no sum), (2.2)

where A(. are the eigenvalues of (FFT)'^2 (called principal stretches) and

W(Xl , X2) = W{k] + A2, X{X2). (2.3)

From Eq. (2.2), we find that when A, ^ A2

If A, = X2 = A, Eq. (2.2) gives

0 W dW 1 d W
tx=t2 = t = t(X) = —(27 , 7) + 2—(2.7, 7) = A). (2.5)

We note that, because IV is a symmetric function of its arguments, we have

daW daW
-^r(A,A) = ^-(A,A), a =1,2. (2.6)

Using Eqs. (1.2) and (2.4) we now infer that the assumptions

d2W d2W_(7,7)^0, (27, 7) >0 (2.7)
dl dl

imply
1 2 2 -1 dW
-\tx-t2\>\k]-X\\{Xlk2) X—{2XxX2,XxX2), Xx^X2. (2.8)
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The expression occurring in the left-hand side of Eq. (2.8) represents the maximum

shear stress according to orientation (see, e.g., [7, Chapter 4]). Since

dw ow j dw , „
ox ~ ' di + L dJ ' '-1-2' (2-9)

=4U^ + 2j(± + Xj\^+ j2 d2w

(2.10)
dipXj 1 J a/2 vA> xi) dldJ xixi djl

dW „ . nw . . , „

+ a/ + ^ a/ ' 1'J ~~ ' '
where 8j] denotes the Kronecker symbol, we have

4^(W'" = ^ ~ ̂ (V7' ^ + 77^' ^ <2'n)

We now appeal to the exclusion conditions (cf. [5; 8, Sec. 6.2]) which, under dead-

load boundary tractions, are necessary and sufficient for the infinitesimal stability of

homogeneous deformations:

di]

d2W
dkxdX2

dW

is positive definite, (2.12)

dW n■HT_ + "51_>0' (2.13)

(A.-A2)>0, (2.14)
\dXl

where Eq. (2.14) incorporates the case Xl = X2 by an appropriate limiting pro-

cedure. According to [9] nonhomogeneous conformal deformations VJQ (J /
T

constant, QQ = i) are possible in the absence of body forces if and only if the

corresponding (hydrostatic) stress field is independent of the stretch parameter \[j

in which case the classical pressure-compression condition (that requires that the vol-

ume of an isotropic elastic solid should be decreased by pressure but increased by

tension; see [10, Sec. 51]) is violated. For this reason we consider in the following

only deformations whose associated principal stretches A,, X2 satisfy the condition

X j X2 = constant. (2.15)

Besides homogeneous deformations (which possess constant principal stretches), this

class of deformations contains nonhomogeneous deformations with constant princi-

pal stretches (see [11], for instance) as well as other nonhomogeneous deformations

(for an example see [12]). We note, however, that in the absence of body forces

the only deformations possible in all unconstrained isotropic elastic solids are the

homogeneous deformations [13]. Nevertheless, nonhomogeneous deformations can

also be achieved subject to boundary tractions alone but only for special types of

these unconstrained materials (see [3], for instance, where a necessary and sufficient

condition for equilibrium in terms of the stored-energy function only is found for the
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deformation considered in [12]). Assuming that the homogeneous purely dilatational

deformation y/X{X2\ is infinitesimally stable under dead-load boundary tractions

(2-i6)

we find from Eqs. (2.6) and (2.12)-(2.14) that the following two conditions must be

satisfied:

<217)

and

dw

dXx

The inequalities (2.17) and (2.18) imply (see Eq. (2.11))

8W

(v^'\AS)>a (2-18)

di (2J, J) > 0. (2.19)

According to the stability criterion established in [14], the latter together with (see

Eq. (2.5))

Turn'0- (2-20)
which is slightly stronger than the classical pressure-compression inequality, are nec-

essary and sufficient for the (infinitesimal) stability of the configuration C(V7l) in

the case when the Cauchy stress is prescribed on the boundary. Thus, when Eq. (2.20)

holds, if C(V71) is stable for prescribed dead-load boundary tractions, it is stable

also in the framework of the Cauchy traction boundary-value problem.

Combining Eqs. (2.8), (2.11), (2.17), and (2.18) we arrive at the lower bound

\\h-h\ > ̂ ;-4(wsy2|^(v^. \/w >o- (2-2i)

Finally we remark here that in the case when the body is incompressible the depen-

dence of W upon J may be suppressed (as only volume-preserving deformations,

with J = 1 , are possible) and dW/dJ in Eq. (2.1) has to be replaced by an arbi-

trary function (to be determined from the equilibrium equations). Then, under the

assumptions (2.7), Eq. (2.8) still holds (with XxX2 = 1) and dW/dI(2, 1) is simply

one-half of the shear modulus of the linearized theory.

3. The case of branching. Following [5] we prescribe

dw dtv
dX{ dX2

= t > 0 (3.1)

and assume that bifurcation into configurations with A, ^ X2 occurs on the path

of deformation characterized by A, = X2 = X. Two (homogeneous) branches with

principal stretches A(,a), X^ , a = 1, 2, satisfying X^ / X^ and X^X^ = X2C, then
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originate from the bifurcation point A = Ac (which depends on the material), and

these are shown in [5] to be at best neutrally stable. Neutral stability occurs when [5]

dW
T>Tc=QI-(kc,Xc). (3.2)

Since [5]

d2W,, „ N d2W

Eq. (2.11) gives

dk\ dAxA2 c' O v >

dW 2 2 1 dW

so that, on making use of Eq. (2.4), we deduce from Eq. (1.2) that the assumptions

(2.7) imply

\\tf - 4a)| > « = 1> 2. (3.5)

On the other hand, making use of Eq. (1.3), we find from Eqs. (2.4) and (3.4) that

the assumptions

$V,/)#0, ^(27, 7) <0 (3.6)
dl dl

yield

,m , i a*a , i ,371
( i 2'/ U"' I'r'J ^,'V"1' (

The Baker-Ericksen inequality [4] is the requirement that in a deformation process the

greater principal stress should occur in the direction of the greater principal stretch:

(tl - t2)/(At - A2) > 0 forAj^A2. (3.8)

Assuming this we obtain from Eq. (3.7) that

|l'!Q) - 4Q)I < KW)2 " (4a))2Kc, o = 1, 2. (3.9)

4. Application to harmonic materials. Harmonic materials are elastic solids with a

stored-energy density function in plane strain given by

W(I, J) = 2/i[H(Q) - J], Q = (I + 2J)l/2 =A1+A2, (4.1)

where n is a constant and H is a twice continuously differentiable function of its

argument. From Eq. (2.1) we find

1 + ~TT7^ffT} (4-2)T = 2/i-
H'(Q)

Q QJ

and the requirement that both the stored energy and the stress vanish in the reference

configuration (i.e., for A, = X2 = 1) yields

H( 2) = H\2) = 1, (4.3)

where ' denotes differentiation with respect to the argument.
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We shall suppose that strong ellipticity holds for infinitesimal deformations of

harmonic materials. As shown in [15], this is the case if and only if

H>0, H"( 2)>0. (4.4)

It then follows [16] that the stored-energy function (4.1) is positive, except in the

undeformed state, if and only if

H(Q)>Q2/4, Q £ (0, oo) - {2}. (4.5)

The pressure-compression inequality (2.20) requires that

QH"{Q)-H\Q) > 0, Q e (0, oo), (4.6)

and we see from (4.1) that the latter is equivalent to

d2W
"(/,/)> 0. (4.7)
a I

When (4.6) is satisfied, the condition (2.18) holds (see Eqs. (2.5) and (2.20)) provided

sfij2> 1, (4.8)

whereas Eq. (4.4), ensures that Eq. (2.17) is fulfilled at all states of deformation. We

then deduce that for harmonic materials the estimate (2.21) holds at all deformations

that satisfy Eqs. (2.15) and (4.8). Thus, if in a laboratory experiment, it is found

that the inequality (2.21) is violated at a relevant deformation, it can be concluded

that the material involved in the experiment is not of harmonic type.

Additional material on harmonic elastic media is provided in [8] and [17-19], An

example of a harmonic stored-energy function which fulfills the above requirements

is given by [18]

"(2) = 5e2 + ^(|)" + jr£. (4.9,

where m is a material constant.
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