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Abstract. We study the large-time behavior of positive solutions of Burgers's equa-

tion ut = uxx + euux, 0 < x < 1, t > 0 (e > 0), subject to the nonlocal bound-

ary condition: -ux(0,t)- jeu2{0,t) = at/(0, t)(f0' u(x, t)dx)q , u(l, t) = 0

(0 < p, q < oo). The steady-state problem is analyzed in detail, and the result

about finite-time blow-up is proved.

1. Introduction. In this paper, we are concerned with the following initial nonlocal

boundary-value problem:

ut = Uxx + (/("))* ' 0 < x < 1, t > 0,

-u (0, t) = g(m(0, t),u) , t > 0,
(B)

m(1 , t) - 0, t > 0,

u(x, 0) = u0(x); 0 < x < l,

here / and g are continuously differentiable functions satisfying /(0) = 0 and

g(0, v) = 0, u = /J u(x, t)dx, and u0(x) is a nonnegative prescribed function.

We are primarily interested in the power law cases f{u) = jeu2 (e > 0), g(u, v) =

atf vq or g(u, v) = at/vQ+ f(u) (p, q > 0). We shall give the bifurcation diagrams

for the stationary solutions and present stability-instability results.

In an earlier paper [1], we consider a problem closely related to (B) as follows:

Ut = Uxx + (/("))* ' o < X < 1 , t > 0,

u(0, t) = 0, t > 0,
(A)

ux{\,t) = g(u{\,t),U) , t> 0,

u(x, 0) = u0(x), 0 < x < 1,

where the model problems are f{u) - \eu2 and g{u, v) = aupvq or g(u, v) =

at/vq - f(u).
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When e = 0, (A) and (B) are essentially the same. However, for positve e , notable

differences can be observed. From a physical point of view, the convective term,

jeu2, acts toward the left boundary and ~(ux + jeu2) represents the flux. Therefore,

for problem (A) the nonlocal forcing at the boundary is in the same direction as

the effects of convection, while for problem (B) the flow through the boundary is

in opposition to the effects of convection. Such physical contrast results in quite

different diagrams, and consequently, there exists a clear distinction in dynamical

analysis.

The plan of this paper will follow that of [1]. In the second section we establish

the characterization of positive solutions of Burgers's equation. In Sec. 3 we show

that some solutions blow up in finite time. Then we obtain the solution diagrams and

present the stability results for Burgers's equation in the last section. Because many

of the proofs bear much similarity to their counterparts in [1, 3], we shall mainly state

the theorems for problem (B) unless there is technical necessity. It should be pointed

out that some problems remain unsolved. For instance, in Burgers's equation with

g(u, v) — at/v" + jEU2, our results partly rely on numerical experiments. However,

all results for purely local boundary conditions with g(u) - at/ in [3] are covered.

Furthermore, it is worth noting that the solution diagrams for Burgers's equation

with g(u, v) = aupvq + jeu2 are opposite those with g(u, v) — aupv" .

2. Stationary solutions and their basic properties. In this section, we focus on the

stationary solutions of (B), which solve the problem:

w"(x) + = 0, 0 < x < 1,

-w'{0) = g (w(0), w) , w(l) = 0. 1

Here, w = f0' w(x)dx.

We first state

Lemma 2.1. Nontrivial solutions of (B,) are of one sign. Moreover, every positive

solution w(x) of (B,) satisfies w'(x) < 0 on [0, 1].

Placing an additional restriction on /, we then have

Lemma 2.2. If / is twice continuously differentiable, /'(«) is strictly increasing for

u > 0, and w{(x), w2(x) are two positive solutions of (B,) that satisfy w,(0) >

u;2(0); then w^x) > w2(x) on [0, 1).

Proof. Let w(x) = ^,(x) - w2(x); then w(x) satisfies

w" + f'(wl)w' + (/'(w,) - f'(w2)) w'2 = 0, 0 < x < 1,

w(0) > 0 and w(l) = 0.

Because f'(u) is strictly increasing and w'2 < 0, w cannot have a negative interior

minimum. If w had a zero at x0 in (0,1), the maximum principle would yield

w = 0 on [x0, 1], Hence, w" + f(wx)w' + f"(£)w'2w - 0 with w(x0) = w'(xQ) = 0

implies that w = 0 on (0, 1], which is impossible.
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By analogous reasoning as in [1], we obtain the following result:

Theorem 2.3. Let /' be strictly increasing for u > 0, and suppose that

g(ul,vl)/ul < g{u2,v2)/u2 or g(ul,vl)/vl < g{u2,v2)/v2 for w, > u2 > 0

and vx > v2 > 0. Then, at most, one positive solution of (BJ exists.

Finally we establish a relationship between solutions of (Bj) and those from in-

tegral equations.

Theorem 2.4. Let /' > 0 for u > 0. Suppose that w(x) is a positive solution of

(B^ € C2(0, l)nC'[0, 1], Then w(x) satisfies

rw{x) da
G(w ;«,/?) = / —  7r- -j—- = 1 - x

Jo g(a, P)-f(a) + f(o)

for 0 < x < 1 and #■(«, /?) - /(a) > 0. Here, a — w(0) and P = /J w(x)dx.
Conversely, if a > 0 satisfies G(a; a, /?) = 1, and if positive w(x) satisfies

G(w ; a, P) = 1 — jc with w(x)dx = P, and if g(a, P) - f(a) > 0, then w(x)

is a positive solution of (B,).

Proof. This result is proved much like the parallel proof in [1], However, we will

include a sketch of the proof indicating where the condition g(a, p) - f(a) > 0 is

involved.

Let w(x) be a solution of (B,). Then a quadrature yields

£(a, p) - f(a) = -w\x) - f{w(x))

on [0, 1]. In particular, g(a, P) - f(a) = ) which is positive by Lemma 2.1.

Conversely, if g(a, p) - f{a) > 0, then g(a, p) - /(a) + /(a) is positive for

a e [0, a]. Thus the proof can proceed in the same manner as thai in Theorem 2.4A

of [3],
Making use of Theorem 2.4, we characterize the set of positive solutions of Burg-

ers's equation. For problem (Bj) with g(u, v) = at/vq , as in [1], the change of

variables y = w(s) ds and h(y) = u2(x(y)) leads to

h(y) = C2(l-e~e(l)-y)) ,

w(x) = C^l-e-£fi+£fow(s^"j ,

and

/, s 1 ^-,2 -ep+e [* w{s)ds
w (x) = ~2 ee

Consequently, we find the following equation:

ap-2 = ^(eep-iyipq, (2.1)

which is the same as (2.3) in [1], We now need, however, an additional condition:

■^-a"~2pq> 1. (2.2)
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Taking this condition into account, we obtain
• 1

= ^ = »eo, (2.3)

For p = 2, let 0* = (j-a)xlq and set Q{0) = ^0", R{0) = (eefi - 1)_1 . We

wish to solve Q(0) = R{0) ■ We have Q(0*) — 1 , Q(+oo) = +00, and Q'{0) > 0

for 0 in (0*, 00); R(0) -> 0 as 0 —► +00, and if e < (2a)T+«(ln2)T+« , then

R{0*) > 1. Clearly, R'(0) < 0 on (0*, 00). Thus, when e < (2a)T+«(ln2)7+« , there

is a unique solution of (Bj) for p = 2 .

For p ± 2, substitution of (2.1) in (2.3) yields

/' ^ = £ (J-)7** (e*P _
Jo (eefi - l)'1 - I + a2 2V2a)/o (etp - 1)"' - 1 +

Let y2 - (e- 1)_1 - 1 . We then have

da .. ,j_r

/./0 2 2
y + <7

<5(y2+l)
P-2

In V2 + 2N

y+i
on (0, 00),

P+Q-1 1-P 1

where 8 = e "~2 2^1aTr? .

Set
^2

V(y)=(y2 +1)^ fin(4±^)]' f ^—2=s-
v ' V y + 1 / io y +u'o y + ct

We then find that

*F(y) = tan-1 -y_1 (y2 + l) In
y2 + 2'

y+i
(2.4)

If p > 2, set A = -K , n = irh ,
p-2 ' ^ _ p-2

4*(y) = tan-1 -y~'(y2 + l)_/l In
7

and

y+2'

y + i

T'(y) = tan 1 - (y2 + l)
1 W 2 . ^ "

In
y2 +

y2 + 1

J(V):
V

where

7(y) = -2/1 - y~2(y2 + 1) - y"1/tan"1 i - -^-/ln ■
7 y + 2 + V

Since /(y) <0 on (0, 00), it follows that ^'(y) < 0. We see that *F(y) —> +00 as

y —► 0+ and that *P(+oo) = 0. Hence, (B() has one and only one positive solution

for each e > 0, a > 0.

In the case of p < 2, let X = ^ and fi = ^ . We thus obtain

*F(y) = tan 1 -y 1 (y2 + l) In
j2 + 1

(2.5)
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and

-1 1 ( 2 . ,\A_1
¥'(y) = tan 1 - (j2 + l) In

'y2 + 2'

v2 + 1

-/<

J(Y),

2A-y 2(y2 + l)-y '/tan 1 - + 2^ /in (72 + 2
y y2 + 2/ vy +1,

J\y) = 2y 3 +

— 2y 3 + /,(y) + J2(y).

Using tan 1 x > with x = y 1, we find that J{(y) > 0. We have J2(y) > 0

since ln(l + x) < x with x = -jL- . Thus, J'(y) >0 on (0, oo).

Since 1 < P < 2 corresponds to 1 < A < oo, we observe that J(y) —► -oo as

y —► 0+ and that J(y) ~ 2(A+//+1) > 0 as y —► +oo . Hence J(y) changes sign only

once, and it follows that none, one, or two positive solutions of (B,) exist, according

to whether

2—p 1 —p 1 2—p 1 —p 1

e < i-p-i 2i-p-iap+*-' , e = (*F )2'-p-sa'+s-1}

or

e > (*Fm) [-p-" 2 ,

where = min0<),<oo ¥(y).

For 0 < p < 1 , 5 < A < 1 . If A + /z < 1 , i.e., if /? + <?< 1 , /(y) ~ 2(A + ̂ - 1) < 0

as y —► +oo; so *F'(y) < 0 for any y in (0, oo). In constrast, lim 0+ *F(y) = +oo

and lim +QO *F(y) = 0. Therefore, (Bj) has only one solution.

If A + n = 1 (P + Q = 1)» J{y) 0 as y —► +oo, it follows that *F'(y) < 0 for

y > 0. ¥(y) —► +oo as y —► 0+ and *F(y) —» 1 as y —> +oo, however. Thus, there is

no solution if S < 1 (a < 2l~p), and there is a unique solution if S > 1 (a > 2[~p).

If X+fi > 1 (p + q > 1), J{y) ~ 2(A + /x- 1) > 0 as y —► +oo, but J(y) —► -oo as

y —► 0+ . T'fy) thus has only one sign change, and *F(y) decreases before increasing

with lim},_(0+ *F(y) = +oo and lim +00 *¥(y) = +oo. For this reason, (B,) has

none, one, or two positive solutions according to whether e < ec, e = ec, or e > ec,
2—p 1-p 1

where ec = (4*^)'-*>-« 2ap+«-1 .

The solution diagrams then have the form indicated in Figs. 1.1 and 1.2.

Next, for (B,) with g{u, v) = at/vq + \eu , we have the equation

ap~2 = ±.(2-e'fi)(e'p - (2.6)
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Setting (2 - eefi)(eEfi - l)-1 = y2 leads to /? = j ln(^y). Define

T(y) = y7^ 1 tan 1 - In V + 2
y+1

= 8 on (0, oo). (2.7)

For p > 2, calculations show that ^'(y) < 0, *F(0+) = +oo, and lF(+oo) = 0.

There is thus a unique solution. The same result holds for p = 2 because the

equation Q{/1) = IfP9 = (2 — - l)-1 = /?(/?) has exactly one solution

«2' > 0, £>(0+) = 0, <2(oo) = +oo ; R' < 0, R(0+) = +oo , R(oo) = -1).

If 1 < p < 2, we have, with X - H >

> 2A—1 -l 1 ,
T(y) = y tan - In

'y2 + 2

y+K
(2.8)

and

where

y¥\y) = yU(y1 + 1) 'tan In
y

'y2 + 2s

f + 1

-p
J{7),

(2A - l)(y2 + 1) 1
J(y) = 2 7 rriT + 2/i

y (ytan IJ
,2 , (y2 + 2(y + 2) In

Note that 2A - 1 > 1 . From the inequality (y2 + l)tan 1 ± > y, we see that

J{y) > 0. It follows that ^'(y) > 0 on (0 , oo). Since ^I^(O) — 0 and ^'(■Hoo) — -Hoo,

there is exactly one positive solution.

y(y) 1.65

0.00
0.00 0.40 0.80 1.20 1.60 2.00

Fig. 0.1. I'(y) for g(u, v) = aupvQ+keu2 , a>0, p = 0.6, q = 0.8 .
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1.40

0.00
0.00 0.80 1.60 2.40

Fig. 0.2. *?(/) for g(u, v) = aupvq+\eu2 , a > 0, p = 0.1 ,q = 0.3 .

1.40

1.05 -

0.70 -

0.35 -

0.00
0.00 0.40 0.80 1.20

Fig. 0.3. ^(y) for g(u, v) = aupvQ+^eu2 , a>0, p = 0.4, q = 0.4 .

Although we cannot provide a rigorous analysis in case 0 < p < 1 , numerical

results (see Fig. 0.1 - Fig. 0.3) support the following conjectures:

i) When p + q > 1, VP(0) = 0, 4/(+oo) = +oo, one solution may be obtained.

ii) When p + q = 1, ¥(0) = 0, limJ,^+oo 4/(y) = 1, no solution may be

obtained if 3 > 1, and one solution may be obtained if d < 1 .

iii) When p + q < 1, 'I'(O) = 4'(+cxd) = 0 indicates that none, one, or two

solutions may be obtained.

Solution diagrams based, in part, on the numerical experiments are given in Figs.

2.1 and 2.2.
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Finally, for g(u, v) = aupv" or g(u, v) = at/v9 + jEU2, if a < 0, from the

condition g(a, /?) - f(a) > 0 in Theorem 2.4, we see that no positive solution can

exist. Hence w(x) must be trivial.

3. Comparison theorem and blow up of solutions. For simplicity, let DT - (0, 1) x

(0, T) and DT urr = [0, 1] x [0, T). We first define subsolution and supersolution

of (B).

Definition. A function u(x, t) is called a subsolution of (B) on DT if u e

C2'\dt) n C(Dt U rr), satisfying

ut < uxx + (f(u))x , 0 < x < 1, 0 < t < T,

-ux(0,t)<g{u,(0,t),u), 0 <t<T,

m(1 , /) < 0, 0 < t < T,

u(x, 0) < u0(x), 0 < x < 1.

(B')

A supersolution is defined by (B') with each "<" replaced by

By a similar argument as in [2], we then establish the comparison principle for

problem (B).

Theorem 3.1. Suppose that / is continuously differentiable, g^, t]) is continuous

for £ > 0, rj > 0, and gn(i, t]) > 0 for ^ > 0, rj > 0. Let u be a nonnegative

supersolution and v a nonnegative subsolution of (B). Then u > v in DT U Tt .

We also obtain the following monotonicity result:

Corollary 3.2. If uQ(x) > 0 and u(x, t) > mq(jc) (< u0(x)) in DT u Tt for (B),

then ut(x, t) > 0 (< 0) in DT.

Sometimes the condition above is not easy to check. By requiring another restric-

tion on the initial datum, we have the same conclusion.

Corollary 3.3. Suppose that the hypotheses for / and g in Theorem 3.1 are

satisfied. If u^ + (f(uQ))' >0 (< 0) on [0, 1], -Mq(0) = g(u0{0), S0), and

t/0(l) = 0, then ut(x, t) > 0 (< 0) in DT .

Following the same procedure as in [1], we can prove the local existence of so-

lutions of (B). However, for certain nonlinearities and initial data, solutions of (B)

blow up in finite time.

Lemma 3.4. Let u(x, t) be a nonnegative solution of (B) with ux(x, 0) < 0,

g(£, *7) > 0 for £ > *1 > 0 • Then ux(x, t) < 0 in DT .

Theorem 3.5. Suppose that all hypotheses in Theorem 3.1 are satisfied and that

g{Z,*l)> o for £, ti > 0. Define G(f, tj) = g(s ,tj)ds, F{£) = f(s) ds; and
assume that Q(£, rj) > 0 for some a > 0 and £>0, t] > k > 0, where

<2(£, r,) = Zg(Z, rj) - 2(a+ 1 )G(£, r,) + F(£) (3.1)
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Let u be a solution of (B) with u0(x) > v0(x) on [0, 1]. Here, v0(x) satisfies

v0(x)>0, Vq(x)<0, v0(1) = 0, Vg(x) + (f(v0))'> 0, (3.2)

and / v0(x) dx >k\
Jo

-v'o(0) = g{vo(0),vo) , (3.3)

^ JQ v'ldx <G(v0(0),v0) . (3.4)

Then, u will become unbounded in finite time.

Proof. Let v(x, t) be the solution of (B) with v(x, 0) = v0(x); it is clear that

vt > 0 and vx < 0 in DT. We still define the same function J(t) as in Theorem

3.7 of [1], but this time it leads to

J"(t) = -2v(0, t)f(v) + 2F(v) + 2v(0, t)g(y , v) - 2 J* v\ dx + 2p

= 2Q{v(Q, t),V)-4(a+ 1) J J vxv nf (v) dx drj

+ 4(a + !) \ jo Jo v*dxdr\ +

+2 [—2 ̂ ^(0, t])g(v, v)drj + G(v{0, t), v) - v'* dx

-2a [ [ vvrrdxdrj - (2a + 1) /?
Jo Jo n

>2Q{v(0, 0,O) + 4(a+l) ^ v^dxdrj + fi

+ 2(a+l) G(v0(0),V0)-l-j\'02dx-^^f}

Then, combining (3.1), (3.2), and (3.4) yields the desired result.

As an application, take /(£) = , g(£, rj) = a^prjQ (p > 2, q > 0), and

v0(x) = A(\ - x)r (A > 1, r> 3).

In view of the comparison theorem, we need to consider only the case p = 2.
I 1/(9+1)

Conditions (3.3) and (3.4) require that r > = 2 and A
a

EA = £
a

Additionally, we have to check Vq (x)+ev0(x)vg(x) > 0, which implies that (r-1) >

', that is, (r - 1)4+1 > e9+l r^r+a1^ . Since r > 3, it follows that

2(r- 1) > r+1; thus, it suffices to require (r- 1)9+1 > e9+12" . Consequently,

we find
a > (2e)q+l. (3.5)

1 1 1/(9+1)
Then let k = f0 vQ(x)dx = = a(r+i) ■ OI"der to check (3.1), we see
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that the following should be valid:

a(l-|(a+l)){V >0 for £>0,

which can be done if akq > e, that is, a ? > e, a > e9+l (1 + j)9 ; this

is automatically satisfied if (3.5) holds.

For problem (B) with g(£, t]) = a£prjq + and u0 > vQ, the solution blows

up because the solution of (B) with g(£, t]) = a£p if is a subsolution.

4. Stability and instability analysis. In this section, we shall study the large time

behavior of global solutions. We use two different approaches to build up the criteria

for stability and instability.

First, we state a lemma, whose proof is similar to that for Theorem 3.2A in [3]

and hence is omitted.

Lemma 4.1. Let u(x, t) be a bounded monotone solution of (B); then u(x, t) exists

for all time and tends to a stationary solution of (B).

Now with somewhat weak assumptions, we can show one stability result:

Theorem 4.2. Let all conditions in Theorem 2.3 be satisfied, and let w(x) be the

corresponding stationary solution of (B). Then w(x) is stable.

Proof. By Theorem 2.3, we know that w(x) is the unique positive solution of

(Bj). Setting v(x) = (1 + S0)w(x) (S0 > 0), we have

vxx + f(v)vx = (l+<50) [wxx + / ((1 + d0)w) wx

< (1 +<50) [wxx + f{w)wx

< 0.

Moreover, at x = 0,

-vx-g{v,v) = (1 + S0)g{w, w) - g ((1 +50)w, (1 +50)W)

= (1 + <*o)w [8(w ' w)/w ~ 8 ((1 + 50)w , (1 + d0)w) /(1 + d0)w]

> 0.

Hence, v(x) is a supersolution, and it follows that any solution us(x, t) of (B) with

us(x, 0) = (1 +<5)w(x) (0 < S < SQ) is bounded away from v(x) and monotonically

increasing as 8 —* . Therefore, the solution u(x, t) with u(x, 0) = (1 + d0)w(x)

satisfies w(x) < u(x, t) < v(x), and ut < 0 in DT as Corollary 3.2 is applied. The

preceding lemma shows that u(x, t) goes to w(x) as t —> oo, which implies that

w(x) is stable from above. Using u{x, t) with u(x, 0) = (1 - dl)w{x), we can

show that w(x) is stable from below.

Applying a few more conditions to / and g, we can present a more complete

result for stability. For this purpose, we replace / by ef and then denote the

stationary solution w(x) by w(x, e).

Theorem 4.3. Assume that f is twice continuously differentiable, /(£) > 0 and

/"(£) > 0 for £ > 0, g^iZ, r\) is continuous for ^ > 0, rj > 0, and g„(Z, D>0
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for £ , T] > 0. Let w(x, e) be a C1 (in e) positive stationary solution for a < e < b,

and let w0(e) = w(0, e). Then if w'0(e) < 0, the solutions are stable; whereas they

are unstable if w'0(e) >0 on [a, b].

The proof is actually the same as that for Theorem 3.6B in [3] and is therefore

omitted.

By means of the above theorem, we give criteria on stability and draw the solution

diagrams. For (BJ with g(£, rj) = a^p r\q , we first observe that

e = 2w0"1(e)y_1tan~1 y (4.1)

Substituting (4.1) into (2.1), we find that

i

\ 1+9 In
y+2^

y+i

1 +q

(4.2)
p+i-i flq\ 1+" -i 1 -i ?

3(fi)] = tan -y (y + 1)

If p + q ^ 1, (4.2) can be rewritten as

v+a-l /-)q\ >+»

[u>0(e)] 1+4 = y—J ¥(y).

Here, *F(y) is defined as in (2.5), with X — . Similarly,

(^TTT") K(fi)]^ ^o(£) = (j) ^(7)/(e)- (4.3)

Because ¥'(y) <0 for y > 0, then if p + q > 1, w'0(e) has the opposite sign to

/(e); but if p + q < 1, it has the same sign.

If p - 2, by (2.1), we obtain e1+<? = i//(y) = 2a{y2 + l)-1 Jin and find

/(e) < 0; hence, w'0(e) > 0.

For p > 2, the fact that *F'(y) < 0 leads to /(e) < 0. But for 1 < p < 2 or

0 < p < 1 (p + q > \ ), we can see that 'F'(y) changes sign once from negative to

positive. Therefore, there exist two branches: y'(e) > 0 for one, and y'(e) < 0 for

the other.

Then, for the case p + q < 1, the result y'(e) < 0 follows from T'(y) < 0.

At last, we discuss p + q = 1 . Obviously, y'(e) = 0. Noticing (4.1), we see that

Wg(e) < 0.

In summary, for p >2, w(x, e) is unstable; whereas it is stable for p + q < 1 .

For l</?<2or0</7<l (p + q > 1), there are two branches—one stable but

the other unstable.

Then, using (2.4) and (4.2), we can carry out a discussion on w0(e) graphically.

For p > 2 and p + q < 1, e—>0 if y —» oo and e —> +oo as y —* 0+ . Therefore,

w0(0) = ' for both cases. However, lim1!_++00 wQ(e) = +oo for p > 2;

whereas lim£_(+oo w0(e) = 0 if p + q < 1 . The case p = 2 needs to be treated

separately because now e is bounded by e2 = (2a) l+« (In 2) ̂ , and e1+9 = y/(y)
. .  L-j

implies that e —► e2 as y —+ 0+ . Thus, wo(°) = (t J and linW w0(e) = +oo.
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Wo (e)

Fig. 1.1. w0(e) for g(£, r\) = a£ptiQ , 0 < a < 21 p and wo(0) =

(2«/a)1/(P+«-i)

For 1 < p < 2 and 0 < p < 1 (/? 4- q > 1), e runs from 0 to eQ < oo, since

^ m on (0, oo). For this reason, the unstable branch of w(x, e) increases from

i w0{e0); whereas the stable one decreases from infinity to w0(e0).

Finally, for p + q = 1 , note that y'(e) = 0 and (4.1); so we find that lim£_>0+ wQ(e)

= +oo and lim£_>+oo u>0(e) = 0 if 21 p < a.

The solution diagrams are given in Figs. 1.1 and 1.2.

Next, for (B,) with g(£, tj) = at?r\q + ±e£2, we observe that the equation for e

is the same as (4.1). Substituting (4.1) into (2.6), we find that

In

y+2n

y+i,

p+q — 1 / 9 \ I 1 1 — q

[w0(e)] 1+* = (-) tan -y

If p + q ^ 1 , (4.1) can be rewritten as

c+a-l / 2q \

K(fi)] 1+4 = (^J

Here, *F(y) is defined as in (2.8), with I — , fi= -rf- . Similarly,

11 q 1) ^ wo(£) = (^") vI/'(7)7/(e)- (4.4)

Suppose O'(y) >0 for y > 0, an assumption supported by numerical computa-

tion; then if p + q < 1, w'0(e) has the opposite sign to /(e); but if p + q > 1, it

has the same sign.
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Fig. 1.2. w0(e) for g(£, t/) = a£pif , a > 21 p and w0(0) =

(2 «/a)1/(p+,_1)

If p - 2, by (2.6), we obtain e,x+q - y/{y) = 2ay~2 [in (jjrjjj)] and find /(e) <

0.
For p > 2, the fact that ^'(y) < 0 leads to /(e) < 0. The same holds for

1 < P < 2 and for p < 1 (p + q > 1) since ^'(7) > 0.

Then for the case p+q < 1, we can see that ^'(y) changes sign once from positive

to negative. Therefore, there exist two branches: /(e) > 0 for one, and /(e) < 0

for the other.

At last, we discuss p + q = 1. Obviously, /(e) = 0. Noticing (4.1), we see that

w'0{e) < 0.

In summary, for p > 1 and 0 < p < 1 (p + q > 1), w(x, e) is stable; whereas

for 0 < p + q < 1, there are two branches — one stable but the other unstable.

The solution diagrams are given in Figs. 2.1 and 2.2 (see p. 566).

Finally, we turn our attention to the steady-state problem for Burgers's equation

with a < 0. First, consider problem (B) with g(£, rj) = , whose solution and

stationary solution may be denoted without confusion by uB(x, t, e) and wB{x, e),

respectively. Then, the comparison theorem shows that the solution of (B) with

g(£, tj) = alfrf or g(£,, tj) = + ^e£2 is bounded by uB(x, t, e) if u(x, 0) <

uB{x, 0, e).

Set uB(x, 0, e) = wB(x, a) (a < e) to find

uBt(x, 0, e) -wB + ewBw'B

= wB + owBw'B + (e - <7)wBw'B

<0,

since w'B < 0. From this, we conclude as before, that uBt(x, t) < 0 in DT. Note
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«"<>(£)

0 < p + q < 1
(eo,u>o(£o))

Fig. 2.1. w0(«) for g(£, q) = at?i\q + , 0 < a < 21 p and

iu0(0) = (2Va)1/(p+?_1)

Fig. 2.2. w0(e) for tj) = a£,pr\q + je£2 , a > 2l p and

w0(0) = (2"/a)l/ip+''-l)

that wB(x, a) <wB(x, e) in a neighborhood of x = 0. Thus, uB(x, t), as well as

u(x, t), approaches zero as t tends to infinity. This indicates that the null solution

of (B,) is stable from above.
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