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Abstract. This paper deals with stability aspects of delay differential equations

with general distributed delays. The objective is to show that, frequently, general

distributed delays are not harder to handle than discrete delays. This is accomplished

by treating two-dimensional systems of differential delay equations with distributed

delays via several different approaches. All of these approaches are general, effective,

and easy to apply.

1. Introduction. Frequently, models of real life systems consist of linear or non-

linear delay differential equations. Most studies on these models, as in the case of

ordinary differential equations, start from the local stability analysis of some special

solutions (often steady state) in order to answer the question of how delays affect the

stability of these systems. For this purpose, the standard approach is to analyze the

stability of the linearized equations about the special solution. If the delay differential

equations are autonomous and the special solution is a constant, then the linearized

equations take the form of linear autonomous delay differential equations. The sta-

bility of the trivial solution of the linearized equations depends on the location of

the roots of the associated characteristic equations. General theory and applications

of delay differential equations can be found in [5],

Most of the existing results are established for systems of equations with discrete

delays (e.g., [1-4, 7]). These results do not seem to have any obvious analogues for

their more general distributed delay counterparts. However, a more careful second

examination of their proofs may reveal some natural generalizations of some kind.

This can be seen from our analysis of the following general two-dimensional system

of linear differential equations with (infinite) distributed delays:

/0 rOu(t 4- d)dt]l(9) + J v(t + 6)dr]2(9),

/0 rOu(t + d)dt]i{d) + J v(t + 9)drj4(d),
(1.1)
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where ajj are real, t < +00, and

/

0

\drij(d)\ < +00, i= 1,2,3,4,

i.e., t]j have finite total variations. System (1.1) has the following system as a special

case:

du(t)/dt = anu(t) + al2v(t) + J2biju^ ~ Tij) + J2b2v(l ~ r2j) >
7=1 j=1

m m

dv(t)/dt = a21m(0 + a22v(t) + ^cXju{t - fi;) + Y,c2jv(l ~ fy) >

7=1 7=1

(1.2)

where are real and t|; , r2j, ;, £2jj = 1, ... , m, are nonnegative constants.

System (1.2) is studied in Freedman and Gopalsamy [3], where sufficient conditions

of nonoccurrence of stability switching are established. This is also our objective

for system (1.1) in this paper. Our approaches in principle are similar to those

of Freedman and Gopalsamy [3], which exploit the fact that stability switching is

possible only when the corresponding characteristic equation has pure imaginary

roots. This important observation is rigorously proved in the following lemma.

Lemma 1.1. Let /(A, a) = A" + g(A, a), where g(A, a) is an analytic function with

respect to X and a, where a = (a(, ... , am) and Re/I > -/?, where ji is a positive

constant. Assume that

y = limsup|A "g(A,a)|<l. (1.3)
ReA>0

|A|—>00

Then, as a varies, the sum of the multiplicities of the roots of /(A, a) = 0 in the

open right half-plane can change only if a root appears on or crosses the imaginary

axis.

Proof. We note that since /(A, a) is analytic for Re A > -/?, it can have only a

finite number of zeros in any compact set of the open right half complex plane. If

/(A, a) has an infinite number of roots in the open right half-plane, then there is a

sequence } such that f(k-, a) = 0, |A .| —> 00, which in turn implies that

0 = ^ = 1 + ^,5). (1-4)
Aj Ai

Hence,

lim \rng(kf,a)\ = 1,
J—*C© J J

a contradiction to Eq. (1.3). Therefore, the total multiplicity M(a) of roots of

/(A, a) = 0 in the open right half-plane is finite.
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Let I — A(<5) be any root of f[X, ol) = 0. If we place a small disk around X{a),

then for a sufficient close to a, the total multiplicity of roots of f(X, a) = 0 in the

disk equals the multiplicity of A(a). Hence, from Rouche's theorem, we see that as

a changes, A(a) changes accordingly, and it will not suddenly disappear or appear

or change its multiplicity at a finite point in the complex plane.

Suppose that M(a) changes but that no roots appear on and cross the imaginary

axis. This can only occur due to the appearance of a root bifurcating from infinity.

That is, there exists an a* and a root X(a) such that |A(a)| —> oo as a —► a , with

ReA(c?) > 0. We thus have

0 = r"(a)/(A(a),a)= I + X~n(S)g{X(S), a). (1.5)

However, |1 + A-"(a)g(A(a), a)| > ^(1 — y) > 0 for a close enough to a*. This

contradicts Eq. (1.5) and proves the lemma. □

2. Main results. Throughout the rest of this paper, we assume that in system (1.1),

there is a positive constant ft such that

J e p6\dr]i(0)| <+oo, i = I,, 4. (2.1)

Hence, we must have

fo
^i= J \driAe)\ < +°°,

= J \6\\dVi{0)\ < +00,
(2.2)

i= I, ... ,4.

Denote

a = (a,, a2, a3, a4), (2.3)

&{X , Ot) — (flj | + ^22)-^ + 1^22 ^12^21

-a|J eXe d{alt]l{e) + a4rj4(d))^+alla4 J eW drj4

+ a22ai J eX6 drjl(6) + aia4 J dt]x{6) J eXe drj4{6) ^

,(»)

- a2a3 J e18 dt]2{d) J e16 dt]}(8) - al2a} J eW drj

~ a2ia2 J exedt]2(d),

(0)
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D(A,a) = A2 + g(A,a). (2.5)

From (2.1) we see that D{X, a) is analytic for Re A > -/?, a e R4; so Lemma 1.1

is applicable to D{X, a).

The characteristic equation associated with system (1.1) is

-Z)(A , (1 , 1, 1, 1)) — A (#j | -f- CL22)X (^11 <^22 ^12^21)

-l^J°/e 4(^(0)+ r,4(d))|

+ au J eW drj4{d) + a22 J eXe dr]x{6)

0 0 (2-6)
+ J eX9 drjx{6) J eXe drj4(6)

- j\Xedrj2(6) J°e**dti3(0)

~anj drh(e)-a2if dt]2(d) = 0.

By virtue of Lemma 1.1, we know that system (1.1) may change stability only if its

characteristic equation can have pure imaginary roots. In the following, we try to

find conditions that imply Eq. (2.6) has no pure imaginary roots. We let X = ico in

Eq. (2.6) and separate the real and imaginary parts of Eq. (2.6). We obtain

(0 — (#i 1^22 — ^12^21 )

/0 rOsinco0 d(rj{(0) + rj4(d)) + an J coscoB drj4(0)

/0 rO rOcos a>0 dt]l(0) + / cos co8dt]l(0) / coscod dt]4(0)

/0 rOsin coddrj^d) J sin cod drj4(d) ^ 7)

/0 rOcosa>8drj2(9) / cos cod dt]3(d)

/0 rOsincoddr]2(d) / sina>0dt]3(0)

/0 rOcoscod drj3(d) - a2l / coscoddr]2(d),
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r°
co(all+a22)= -co cos cod d(rj ^6) + rj4(6))

/0 rOsin cod drj4(d) + a22 sin cod dr]^(d)

/0 rOcos co(d) dt]l(6) J sincoddrj4(d)

/0 rOsin cod dr]x(d) J cos cod dt]4(d) (2.8)

/0 rOcos cod df]2{6) / sin coddrj3(d)

/0 rOsin cod dt]2(d) / cos coddri3(d)

/0 rOsin cod drj^d) - a2l sin coddrj2(d).

For convenience, we denote

f1 l=ail~^a22> ^2 = a\\a22 ~ a\2a2\ '

P = n\ + n*> y = Wu l^4 + + \a2i \n2»

d =^4+^3-

If we denote by f(co) the sum of the squares of the right sides of Eqs. (2.7) and

(2.8), then after some algebraic simplifications, we have

/(<«) < fi1™2 + 4fi(y + 8)co + 4yd + y2 + S2, (2.9)

where we make use of the observation

(^cos cod dm K cos2 coddri(d) /: dm,

(j^sm cod dV(d) \ < J sin2 cod dt](8) J dtj(d),

lab < a2 + b2.

Hence, we have

co4 + (/i2 - 2n2)co2 + < p2co2 + 2/3(y + S)co + (y + S)2 . (2.10)

A sufficient condition for there to be no stability switches is that Eq. (2.10) not be

satisfied for any real co. This is equivalent to

g{co) = co4 + in] - 2 n2 - p2)co2 - 2 P(y + S)co ~{y + 8)2 +n\> 0, (2.11)

for all real co. Note that Eq. (2.11) can be written as

w +(n\-2n2-p2)

for all real co.

P(y + S)
CO —

H2. - 2fi2 - p2

2

+^-(y+S)2- f {y + 5) >0, (2.12)
Hx -2n2-P
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Theorem 2.1. The trivial solution of system (1.1) has the same stability for all ,

where

>7, = J Idrii(d)\, i= 1, 2, 3, 4,

if

(i) /ij - 2/i2 - p1 > 0,

(ii) (/z22 - (y + 5)2){h] - 2h2 - p1) > p2(y + df .

Proof. Observe that if we replace >7,(0) by afl^Q), 0 < a. < 1, i = 1,2,3,4,
then P , y, and S are replaced by smaller or equal numbers and (i) and (ii) remain

true. In other words, D(A, a) has no pure imaginary roots for all a. £ [0,1],

1 = 1,2,3,4. By Lemma 1.1, we see that D(A, (1, 1, 1, 1)) has the same number

of roots with positive real parts as that of D(A, (0,0,0,0)). This is equivalent to

saying that the trivial solution of (1.1) has the same stability as that of

u{t) - anu(t) + al2v(t),

v(t) = anu{t) + a22v(t),

provided that (i) and (ii) hold. This proves the theorem. □

The above result generalizes the main theorem of Freedman and Gopalsamy [3].

Observe that the absolute value of the right-hand side of Eq. (2.8) is less than or

equal to

MO/i + V4 + K1K + \a22Wi +n 1^4 + + V2ai + Via2 + \an\a3 + \a2\ 1^2) • (2-13)

We thus have

Theorem 2.2. The trivial solution of system (1.1) has the same stability for all >1,(6)

satisfying Eqs. (2.2) if

Ki +a2i\ >nx + n, + \an\o, + \a22\ox + yla4 + rj4(jl ^

+ ^3^2 I^121"3 1^211'

Note that ai < x rjt. We have

Corollary 2.3. The trivial solution of system (1.1) has the same stability for all

i/f(0) such that rji = f°T |^,.(0)| if

0<T<^  \an+a22\-JJ{-rJ4 =^

2rjlrj4 + 2ri2t]3 + \au\tj4 + \a22\rjx + \al2\rj3 + \a2l\rj2
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Assume now that = rj4 = 0. Then from Eq. (2.7) we have

CO — (flj 1 ̂ 22 — ai2^2l)

/0 rOcos cod dr\2{d) / cos coddrj^d)

/0 rOsincod drj2(d) / sincoddrj^d)

/0 rOcos cod dt]3(d) - a2l cos cod dr]2{d)

i 3

2
i=2

coscod dy^d) J + j / sin<y0^^;(0)

- - Ifl2llf2

1
-2

and similarly,

Thus,

> - 2^2 +^)-|ai2^3- la211*2'

ft) (^11^22 ^12^2l) — ^*2*3 1^1211^211^2 *

w2 - (ana22 - ana2l) > max j-2?/2?/3, + ^) j - |a12|i/3 - |a21|f/2 (2.16)

and Eq. (2.8) reduces to

/0 rOcoscod dt]2(d) / sincoddrj3(d)

/0 /*0sincod dr\2{d) J coscoddri3(6) (2.17)

/0 rOsin cod drj^d) - a2l sin cod dr]2{0).

From Eq. (2.17), we have

/' 0 rOcoscod dt]2(6) / sin coddrj3(d)

/0 rOsin cod dr\2(d) / cos coddrj^d)

/0 rOsin cod drj^d) + a2X / sin coddri2(d)

(2.18)

+

1  2  2    
< 5(^/2+ '/3) + lfl12l'/3 + la211^2 •

2

Similarly, we have

jco(au +a22)| <2Tj2rj} + \al2\ri3 + \a2i\Tj2. (2.19)
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Also, we have

/0 rO\o ̂ 3(0)l + \edti2{d)\

+ \an\a)J \0dri3(d)\ + \a2{\w j \6dt]2{6)\

= u>[rj2(Ti + rj3cr2 + \an\a3 + \a2x\a2].

We can summarize the above arguments as:

Theorem 2.4. In system (1.1), assume that rjl = tj4 = 0 and aua22 - al2a21 > A,

where

A = min |2tf2rj3 + J + \al2\rf3 + \a2l\rj2.

If

(i) {au+a22)2{aua22-ana2X- A) > A2 or

(ii) |an +a22\ > rj2a3 + rj3a2 + |a12|<x3 + \a2l\a2,

then system (1.1) does not undergo stability switching; that is, it has the same stability

as when Jj2 = tfi = 0.

Proof, (i) is obvious from Eqs. (2.16), (2.18), and (2.19); (ii) is clear from Eq.

(2.20). □
An alternative approach in this case (JJl = tj4 = 0) is to make use of Eq. (2.11).

Now we have /? = 0, y — \an\r\3 + \a2\ 1^2 > anc* ^ = ^2^3 • Hence

g(co) = of + {n\ - 2[i2)co2 + n\ - (y + 5)2

a)2 + ^{n] - 2h2) + nl ~(y + S)2 - hji\- lfi2)2

Therefore, we obtain

Theorem 2.5. In system (1.1), assume that rjx = t]4 = 0 and

(i) Ml - (7 + ~ \{n\ ~ 2/^2)2 > 0 or

(ii) > 2h2 and n\> (y + S)2.

Then system (1.1) does not undergo stability switching.

Proof. In both cases, we have g(u>) > 0 for a> > 0. □

Remark. Theoretically speaking, the condition 7j{ = tj4 = 0 is not essential in the

considerations presented prior to Theorem 2.4. Without rj, = rjA = 0, Eq. (2.16) will

become an inequality of the form 0) + Aco + B > 0, where A and B are functions

of ajj and rji. In this case, we can still obtain a lower bound for co, which may be

more complicated.

3. Applications. Results obtained in the previous section may appear to be com-

plicated. Below we present two simple examples that illustrate their applications.

Consider first

x(t) + axx(t) + a0x(t) - J x(t + 0) dri(d), (3.1)
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where rf = f°_T \dtj(d)\ < oo and there is a v > 0 such that f°Te v6 \dt](6)\ < +00 .

Denote a = f°T \0 dtj(6)\. The following theorem generalizes Theorems 3.22 and

3.23 in [7], which deal only with discrete delay equations.

Theorem 3.1. The trivial solution of Eq. (3.1) is uniformly asymptotically stable if

a0>JJ and

(i) ax >rj{a0-rjri/2 or

(ii) ax > a .

Proof. Denote x(t) = u(t), x(t) = v(t). Equation (3.1) is equivalent to

j &(»="(')

\ ti(l) = -a0u(t) - atv(t) + f_z u(t + 8)dt}(6).

In the following, we apply Theorem 2.4 to system (3.2). We have

tZ|2— 1, #21 — a0' #22 ^1 '

^1=^2=^4 = °' Jl3=Ji-

Hence, A = rj, a3 = a, an + a22 - -a,, and aua22 - ana2, = a0 . a0>JJ implies

that ana22 - ana2l > A. Condition (i) of Theorem 2.4 reduces to

a2iia0-rj) >rf,

which coincides with (i) in the theorem. Condition (ii) of Theorem 2.4 becomes

|flj | > a, which is satisfied by (ii) of the theorem.

When rj = a = 0, both (i) and (ii) imply that ax > 0, and, clearly, the trivial

solution of

x(t) + a{x(t) + a0x(t) = 0

is uniformly asymptotically stable. The conclusion thus follows from Theorem 2.4.0

Our next example illustrates that the principle idea utilized in the previous section

can easily be applied to first-order equations. Consider

,°
x(t) + ax(t) = b x(t + 6) dt]{6), (3.3)

J —OO

where a > 0, b > 0 are constants and t](8) is a nonconstant and nonincreasing

function with bounded variation. The following theorem generalizes Theorem 3.28

in [7] and Theorem 1 in [6].

Theorem 3.2. The trivial solution of Eq. (3.3) is uniformly asymptotically stable if

,°
a > 0, b 6dri{d)< 1, (3.4)

J — OO

and there exists a constant v > 0 such that

r-O

f•J —OO

e "6 \dr](8)\ < +oo.



578 YANG KUANG

Proof. Assume first that a > 0. Clearly, when b = 0, Eq. (3.3) is uniformly

asymptotically stable. The characteristic equation of Eq. (3.3) is

/o eX0dr}{d) = 0. (3.5)
-OO

Clearly, D{k) is analytic. D(ia>) — 0 implies that

,o
a-b cos(cod) dt](6) = 0, (3.6)

J —OO

,0

co-b sin(w0) drj(d) = 0. (3.7)
J —OO

However, for a> > 0, we have from (3.4)

h: 9dt](d) \ >0.

Hence, for a > 0, (3.4) is uniformly asymptotically stable.

By continuity, when a = 0, Eq. (3.5) has no roots with positive real parts. The

same argument as above also shows that it cannot have pure imaginary roots. If

kj = pj + icoj, j — 1,2,..., are roots of Eq. (3.5) such that p}. 0 as j —> oo,

then

/o ep'e cos(u>jd) drj(6) - 0, (3.8)
-OO

/o ep'0 sm(cOjd) dr](d) — 0. (3.9)
-OO

Since f_ooe v \dt]{6)\ < +oo , there is a T > 0, v/2 > e > 0 such that \0e~

e~v0 for 6 < -T and

ddti(d) + J T e vei2edr]{e) j < 1.
ro „ r-T

/-/

Hence, for p} > —e, Eq. (3.9) fails to hold. This proves the theorem. □
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