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ENTROPY AND THE HEAT EQUATION

By

W. A. DAY

Hertford College, Oxford, England

t. Introduction. Until recent times there was little overlap between the disciplines
of heat conduction and thermodynamics. (For extensive comment on this state of
affairs, see Truesdell [1, pp. 47—137].) In two earlier papers [2, 3] I proved certain
theorems about the differential equations of heat conduction whose interest lies in
the fact that they draw upon ideas imported from thermodynamics and involve the
notion of entropy. The present paper examines how some of the conclusions of [3],
which is concerned exclusively with steady-state heat conduction, are modified when
the heat conduction is time-dependent.

Let us consider a rigid heat conductor that is homogeneous and isotropic and that
occupies a domain Q, of euclidean three-space R3. In Sec. 2 the domain Q is
required to be the whole of R3, while in Sec. 3 it is a half-space. For the sake of
simplicity we suppose the thermal conductivity and the heat capacity of unit volume
to be equal to unity. The temperature u{x, t), at the point x = (xl, x2, x3) e Q
and at time t, satisfies the inhomogeneous heat equation

ut=Au + f{x), (1.1)
where

A - — — —
~ dx] + dx] + dx3

is the Laplace operator and f(x) is the heat supply to unit volume in unit time.
It should be noted that we presume the heat supply / to be independent of time.

We presume, in addition, that we are given a nonempty, bounded domain D c Q,
and we require that / meet the following conditions:

f(x)> 0 for all .xe £2, (1.2)
supp/ C D, (1.3)

/ € C" , with a Holder exponent a in 0 < a < 1. (1.4)

These conditions place no restriction upon the size of the integral

Lfdx{=Lf dx
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616 W.A.DAY

which can be made arbitrarily large. We shall assume that we can vary / at will,
subject only to the requirements (1.2), (1.3), and (1.4). The collection, say, of all
such heat supplies / is a cone, that is,

A-f + P8 € ^ whenever f,ge^ and k, /u > 0. (1.5)
We shall write

o = / dx, (1.6)
Jd

S = sup{|x - y\ \ x, y e D), (1.7)
p = sup{|jv:|: x £ D}, (1.8)

respectively, for the volume of D, the diameter of D, and the maximum distance
of points of D from the origin.

If u is positive, as will be the case if the temperature is measured on an absolute
scale, we may divide Eq. (1.1) through by u and obtain the equation

^+div(«) = !^ + /, (1.9)
U \u) u u

in which
q = - grad u

is the heat-flux vector. Thus if P c Q is a bounded subdomain, with smooth bound-
ary dP, then on integrating both sides of Eq. (1.9) over P and appealing to the
divergence theorem, we arrive at the identity

[ — dx + [ ^-dS= f ^-dx+ f tdx, (1.10)
J P W J d P u J P U J p u

in which v is the outward unit normal to dP, dS is the element of surface area
on dP , and dx is the element of volume.

The terms that occur in the identity (1.10) have the following interpretations:

[ — dx = f log udx = rate of increase of entropy in P,Jp u dt Jp
/ ^- dS — flux of entropy out of P due to heat conduction across dP,

JdP u
2

dx = rate of generation of entropy within P due to internal heat conduction.
p u

f— dx - flux of entropy into P due to the heat supply /.
p u

L
L

With Eq. (1.10) in mind we set

EW,i) = J\dx, (1.11)
F(f, t) = J ~dx, (1.12)

2

G(f,t)= f^-dx, (1.13)
J u

H(f, t) = G(f, t) + F(f, t) - E(f, t), (1.14)
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the integrals being extended over all of Q, and we make the following interpretations:

E(f, t) = rate of increase of entropy at time t,
F(f, t) = inward flux of entropy at time t due to the heat supply,
G{f, t) = rate of generation of entropy at time t due to internal heat conduction,
//(/, t) = outward flux of entropy at time t due to heat conduction at infinity or

across the boundary of Q.

The interpretation of H(f, t) is made with the gloss that if Q. = R , then //(/, t)
is the outward flux of entropy at infinity but that if Q is the half-space x, > 0, then
//(/, t) is the sum of the outward flux of entropy at infinity and the outward flux
of entropy across the plane x, = 0.

Our objective is to study how large E, F , G, and H can be made, for a given t,
by varying the heat supply within the collection if.

2. Behaviour of E, F, G, H when Q = R3. We turn first to the case in which the
conductor occupies the whole of space. The results of this section are counterparts,
in the time-dependent case, to the results of Sec. 2 of [3].

Let Uq be a positive constant. We shall require that the temperature satisfy the
differential equation (1.1), together with the initial condition

u(x, 0) = u0 for all x e R3 (2.1)

and the condition
u(x, t) -+ uQ as |x| —>oo for t > 0. (2.2)

A standard argument assures us that the Cauchy problem consisting of Eqs. (1.1),
(2.1), and (2.2) has at most one solution and, indeed, that we can construct it explic-
itly as

f un + [ -—-—r erfc () f(y) dy fort>0,h(x,0={ 4nJD\x-y\ \ 2tl/2 J (2.3)
{ w0 for t = 0.

In fact, we can prove that if f € &, then Eq. (2.3) defines a function u that is
continuous for t > 0 and that satisfies the initial condition (2.1) and the condition
(2.2) and that also satisfies the differential equation (1.1) for t > 0 .

In order to verify these claims we note first that the continuity of u for t > 0 is
an immediate consequence of familiar results from integration theory. In order to
check that u is actually continuous when t = 0 we note that, as an integration by
parts shows,

2 f°° 2
erfc{fi) = \~p2 / exP(~^ ) dk

71 J u

1 exp(-/i2) exp(-A2) dk.
71 J u1/2 ^ / 1/2 / 12

71 fi 71 J n A
Thus, the complementary error function satisfies the inequalities

0 < erfc(/i) < -r^j- exp(-//) < —r^- for n > 0; (2.4)
n ' n n ' n



618 W.A.DAY

and, on combining these with Eq. (2.3), we see that

Mt>/2 r 1
0 <u{x,t)-un<—^ /  =dy for?>0,

0 2ni/2 Jd \x - y\2
where M is an upper bound on /. A known estimate for improper integrals
[4, p. 172] tells us that

/.
-—j ^ < (487r2t»)1/3 for all x 6 R3.

d \x -y\
and so

0 < u(x, t) - u0 < n~5/6M(6u)^3tl/2.

This last inequality confirms the continuity of u at the initial time t — 0. It is, of
course, clear from Eq. (2.3) that the initial condition (2.1) is satisfied.

To check that condition (2.2) is satisfied we need only note that 0 < erfc(ju) < 1
and, therefore, that if p is the maximum distance defined by Eq. (1.8), then

0 <u(x,,)-u,< for [jc| > p.

Finally, we rewrite u in the form

u{x, t) = uQ + v(x) - w(x, t),

in which v(x) is the Newtonian potential

4lni^7lAy)dy471

and
"I*-■" = I i "r /w *■

Since / is Holder continuous, v satisfies Poisson's equation Av = -/, while, as
differentiation under the integral sign reveals, w is a solution of the heat equation
wt = Aw for t > 0. We conclude that u must be a solution of the differential
equation (1.1) for t > 0 .

We turn now to showing that E, F, G, and H are well defined by Eqs. (1.11),
(1.12), (1.13), and (1.14), respectively, the integrals being extended over all of R3.
We shall show that for each / 6 ^ and each t > 0, E, F, and G exist as Lebesgue
integrals and are nonnegative\ moreover,

E = G + F (2.5)
and, hence,

H = 0. (2.6)
These conclusions should be contrasted with those of Lemma 1 of [3], which

deals with the corresponding steady-state case in which the temperature u(x) is the
solution of the problem

JAm + /(x) = 0 for all x,
u(x) —* Uq as |x| —► oo.
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In those circumstances E is of necessity equal to zero but H has the value

- f fdx.
"o Jd

In rough terms we might say that, in the time-dependent case, no finite time t,
however large, is sufficient for there to be a positive outward flux of entropy due to
heat conduction at infinity.

In order to verify our assertions we start by differentiating both sides of Eq. (2.3)
with respect to t and find that

"■ = ̂ Lav{J^r-)ny)dy>0- (2'7)
Thus, if p is the maximum distance defined by Eq. (1.8), we have

0 < - (4^71eX" (-(|Xl4/> ) //W'fr for 1^1 > />•

and it follows that ut is integrable over R . Since 0 < uju < ut/u0, we deduce
in addition that uju is integrable over R3 and, hence, that E is well defined as a
Lebesgue integral and is nonnegative.

Next, we note that

F = [ ldx= f £dx< — [ fdx,J u JD u u0 Jd

and from this it is clear that F too is well defined and nonnegative.
In order to show that G is well defined we return to Eq. (2.3) and calculate the

heat flux vector q = - grad u, which proves to be
i2v

-1 f4^ Jd
1 /k-yh ,1 If I x-y\erfc ~ Trr~ + : -r ■ . exp — {x-y)f{y)dy.

\x-y\3 \ 211'2 J |x — y]2 (nt)l/2 \ ^

Thus, if we use Eq. (2.4) to estimate the complementary error function, we have

2tl/2 1
M <^n h ^ +4ti3/2 Jd [\x - y\3 \x-y\tl

and, hence, we have

exp (~^4) f^dy

\q\ < 1
An"2

2t1/2 1
+

(|x| - p) (|x| - p)t
8)

2 3for \x\> p. This estimate shows that \q\ is integrable over R and, thus, that

,2
f ^\-dx < \ ( \q\2 dx

J u un J

is well defined. Clearly G is nonnegative.
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We turn to establishing Eqs. (2.5) and (2.6). Since E, F, and G exist as Lebesgue
integrals, the monotone convergence theorem ensures that

E =

F =

G =

lm
—>00

im

[ ^ dx,
Jb, w

f -dx,Jb u

im [ ^dx,
' Jb u

where Br is the ball |x| < r. On the other hand, if we set P = Br throughout the
identity (1.10), let r —> oo, and remember that H is defined as in Eq. (1.14), we
deduce that

H = lim f V— dS.
r~*°° JdB "

However, the estimate (2.8) enables us to conclude that if x e dBr, that is, if \x\ = r,
then

|q(x, 01 = O (j exp I -^ j asr-oo.

Hence, as r —> od .

f —dS * fJ dB, u Job,
dS

u

and this concludes the proof of both Eqs. (2.5) and (2.6).
Let us suppose that we are given an arbitrary positive t and that we can vary the

heat supply / at will within the collection . We ask how large it is possible for
E(f, t), F(f, t), and G(f, t) to be. When Q = R , the answer to this question is
that neither E nor G is bounded above on ^, but

F{f, t) < 47t<S/erfc (^72) forallfeff, (2.9)

where, it will be recalled, S is the diameter of D.
Thus, by controlling the heat supply, we can make both the rate of increase of

entropy at time t and the rate of generation of entropy at time t due to internal
heat conduction as large as we like. By contrast, though, we cannot make the inward
flux of entropy at time t due to the heat supply as large as we like. We conclude that,
whenever the rate of increase of entropy is large, the major contribution to that rate
of increase arises not directly from the heat supply that we control, even though the
heat supply may be large, but only indirectly by way of the mechanism of internal
heat conduction.

The main thrust of these conclusions is in line with the corresponding conclusions
in the static case [3, Theorem 1], and, indeed, as / —> 00, the upper bound (2.9)
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tends to the limiting value And , which is precisely the upper bound on F that was
found in [3].

In order to establish our assertions it is enough to verify that E is not bounded
above and that F satisfies the inequality (2.9), for then it will follow from Eq. (2.5)
that G cannot be bounded above.

The proof that E is not bounded above hinges upon the following estimate: for
all x with |x| > p and for all y £ D,

ex>> ("t) > \ (t)"2<W " erfc (l?#)' (2•'0,

This is a straightforward consequence of the estimate (2.4) on the complementary
error function, with ju — \x — y|/(2/1/2), for (2.4) tells us that

e-(-^)>^erfc(^)

and, since |x - y\ > |x| -p if |x| > p and y £ D, we see that (2.10) is correct.
If now we multiply both sides of (2.10) through by f(y) and integrate with respect

to y over the domain D, we arrive at the inequaltiy
,2 \Lexp (~*x 4~r )

> 5 (f) "2 (1*1 - pf Jd erfc (tJ) fly) dy for |x| > p.
Let n be any positive integer, and let / be any heat supply that belongs to the

collection & and that does not vanish identically. Then, by virtue of the cone
property (1.5), nf £ W; and if we calculate E(nf, t) with the aid of Eqs. (1.11),
(2.3), and (2.7), we see that

E[nf, t) = J Indx,
the integrand In (x, t) being the ratio

^J>xp {-^f)mdy
uo +1 Id wt\ erfc (y) fly) ^

For each t > 0, {In} is an increasing sequence of integrable functions of x on R
that converges to the limit

7nJD^p(-[^l)f(y)dy (2i^2n

Id 1^1erfc fly) dy
as n —> oo. If E were bounded above on W, we should conclude from the monotone
convergence theorem that the limit (2.12) must be an integrable function of x on
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R3. However, the estimate (2.11) tells us that this cannot be so since (|x| - p)2 is
not an integrable function of x for \x\> p. Thus E cannot be bounded above on

Finally, we prove Eq. (2.9) by noting that

F = [ f-dx = [ t dx. (2.13)
J u J D u

In view of the definition (1.7) of the diameter 5 and of the fact that pTx erfc(/z) is
a decreasing function of fi, it must be that

^ erfc (^——775-^ > 4 erfc (—-777^ for x, y e D.
\x-y| V 211'2 J s V 2?1/2

It now follows from Eqs. (2.3) that

u(x,t)> jj(y)dy for x&D,

and when we combine this estimate with (2.13) we arrive at (2.9).

3. Behaviour of E, F , G, H when Q is a half-space. If the conductor occupies a
domain Q / R3 and has a boundary that is maintained at constant temperature, then
FI need no longer be identically zero. We illustrate this by considering what happens
when Q is the half-space x, > 0 and its boundary dQ. is the plane x, = 0. The
advantage of this choice is that the solution to the appropriate initial-and-boundary
value problem for the inhomogeneous heat equation can be constructed explicitly
by the method of images [5, pp. 273-281]. In order to prove similar results for
domains of more complicated geometry it would be necessary to devise arguments
which do not depend upon having to find explicit solutions of initial-and-boundary
value problems for the inhomogeneous heat equation.

We presume once again that we are given a nonempty, bounded domain D c Q
and we presume, in addition, that the distance from D to is positive; that is,
we presume there to be a constant e such that

x, > e > 0 for all x = (Xj, x2 , x3) € Z). (3.1)

As before, W is the collection of all heat supplies / that meet the conditions (1.2),
(1.3), and (1.4), and, once again, W is a cone.

Now let uQ be a positive constant. We shall require the temperature u(x, t) to
satisfy the differential equation (1.1), together with the initial condition

u(x, 0) = u0 for all x € Q, (3.2)

the condition
u{x, t) —> m0 as |x| —► 00 for?>0, (3.3)

and the boundary condition

«(x, t) = u0 for all x e 3Q and t > 0. (3.4)
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The solution of the initial-and-boundary value problem consisting of Eqs. (1.1),
(3.2), (3.3), and (3.4) is

Mo + 4k/d []^V\ erfc

~ ^r\eTfc(^)]f(y)dy for f > 0, (3-5)
uQ for/ = 0,

u(x, t) =

where x = (-x,, x2, x3) is the image of the point x = (x,, x2, x3) under reflection
in the plane x, = 0.

In much the same way as we proved the corresponding result of Sec. 2 we can
prove that if f gW , Eq. (3.5) defines a function u that is continuous for t > 0, that
satisfies the initial condition (3.2) and the conditions (3.3) and (3.4), and that also
satisfies the differential equation (1.1) for t > 0.

For any pair of points x, y € Q,

\x-y\2 - |x -y\2 = Axxyx > 0 (3.6)

and, since ^-1erfc(/*) decreases as n increases, the explicit representation (3.5)
confirms that u(x, t) > u0 > 0 for x e Q and t > 0, as we should expect to be
the case. This means, in particular, that it is legitimate to divide by u whenever we
have occasion to do so.

Next, we define E, F, G, and H by way of Eqs. (1.11), (1.12), (1.13), and (1.14),
respectively, the integrals being extended over the half-space Q. In fact: for each
f e W and each t > 0, E, F, and G exist as Lebesgue integrals and, hence, H is
well defined by Eq. (1.14); moreover, each of E, F, G, and H is nonnegative.

The verification that E, F, and G exist can be carried out along similar lines to
those followed in Sec. 2. The fact that E, F, G, and H are all nonnegative will
emerge latter.

As we did in Sec. 2, we suppose that we are given an arbitrary positive t and that
we can vary the heat supply / at will within the collection W. We ask how large
E(f, t), F(f, t), G(f, t), and H(f, t) can possibly be. When Q is a half-space,
the answer to this question is provided by the following statement, which constitutes
the main result of this section: none of E, G, H is bounded above on %?, but F is
bounded above on .

In order to prove that E is not bounded above we need the following estimate:
for all x € Q with |x| > p and for all y e D ,

> 2 (?) (' ~exp(~T"))(M-rt2 ^ (3'7)

i^erfKl^)-i?^ierfc(!^
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This estimate is a counterpart to estimate (2.10). In order to prove it we start
from identity (3.6), which implies that

( ( |x-y|2>\exp(—

= (l_e,p(-^))expUzjf) (3.8,

> (l -exp (-^y1)) exp f- \x-yf
41

On the other hand, the estimate (2.4) on the complementary error function, with
H = \x - y\/(2t1^2), tells us that

exp erfc l'|x ' ^
41 ) 2t]/2 V 2t1'2

W\"2,„ 1 erfc (\x-5(f) ""'I \x-y I V 2t1/2
Since |jc - y| > |x| - p if |x| > p and y e D, it must be that

X-y|2\ 1 {71 \'/2/| I x2 1 r. (\x-y\

and a fortiori that

I \x -yf \ ^ 1 /Jr\1/2/i i ^2exP 4r ) 2(7) <|X|"',)

1 erfc (!i^!V=^ erfc
(3.9)

V 2tx'2 J \x-yI V 2/1/2
Combining (3.8) with (3.9) we arrive at (3.7).

If we multiply both sides of (3.7) through by f(y) and integrate with respect to
y over the domain D , we see that

Lexp f-fr-rH-exp (Jx-rf f(y) dyAt j r y 41

(3.10)>■(«)■"(,-e^-Hl)),*,-,,'

•/.[ i
1 erfcfl^lV ' erfc''lx->'l f(y) dy.\x-yI V 2tl/2 J \x-y| V 2rl/2

We can also complete the proof that E is not bounded above on ^ in much the
same way as we proved the same assertion when Q = R .To this end, let n be any
positive integer and let / be any heat supply that belongs to the collection & but
that does not vanish identically. Then nf eW, and if we calculate E(nf, t), we
see that

E{nf, t) = j I„dx, (3.11)
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the integrand I„(x, t) being the ratio

(4> to H ("V) - exp (-^)] dy
uo + £/d [j^T\ erfc (") - WT\ erfc (y)] f{-y) dy

(3.12)

For each t > 0, {/n} is an increasing sequence of integrable functions of x on fl
that converges to the limit

OT? So [exp (~^) - exp {-^)\ f_^}± (313)

Id [iJTfl erfc (Jf^) - 1xh\ erfc (a^)] dy

as n —» oo. If E were bounded above on W, we would conclude from the monotone
convergence theorem that the limit (3.13) must be an integrable function of x on
R3. However, the estimate (3.10) tells us that this cannot be the case since (1 -
exp(-ex,/r))(|x| - p)2 is not an integrable function of x for |x| > p and Xj > 0.
Thus E cannot be bounded above on &.

We remark in passing that, on setting n = 1 in (3.11) and (3.12), it becomes clear
that E is nonnegative.

We turn next to showing that H cannot be bounded above. Since E, F , and G
exist as Lebesgue integrals, the monotone convergence theorem ensures that

E = lim / — dx,
r_>°° J Bnsi u

F = lim [ — dx,
r^°°JB.na u

G = lim [
r_,0° JBB n£J U

the integrals being taken over the intersection of the ball Br with the half-space £2 .
Thus, if we set P = Brn£l throughout the identity (1.10), let r —> oo , and remember
that H is defined as in Eq. (1.14), we deduce that

H = lim I — dS.lim [
r^°° Ja <>d{BrnCl) "

The boundary d(Br n Q) can be expressed as the union of the plane base FIr =
{x: Xj =0 and |x| < r} with the curved surface Xr = {x: X[ > 0 and |x| — r} , and
so

If [ \ V • QH= lim ' ' ' ' 1 H
r—>00

By calculating the heat flux q = - grad u directly from the explicit solution (3.5) and
making appropriate estimates on the decay of q as |x| -> oo, it is not difficult to
show that

Qlim f ^r~"x> J-L u
dS = 0
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and, hence, that
H = lim [ dS.

r~*°° Jnr u

Thus, in view of the boundary condition (3.4),

H= — lim f vqdS. (3.14)
uo r^°° Jnr

It is clear from Eq. (3.14) that H has the property that

H{nf, t) = nH(f, t)
for every positive integer n and every / € ^ and so H cannot be bounded above
provided that there exists some / e W for which H(f, t) > 0. In order to show that
there is such an / and, in fact, that any / € W that does not vanish identically has
this property, we return to the differential equation (1.1), integrate both sides with
respect to x over the set Br flfi, and appeal to the divergence theorem to deduce
that

f v-qdS= [ f dx - f utdx, (3.15)
Jd(Br nil) JBnil J BnCl

[ v ■ q dS = ( f + [ J v • q dS.
Jd(Brnii) \Jnr JlJ

Once again it is not difficult to show that

v ■ qdS = 0;

so, on letting r -* oo in Eq. (3.15) we deduce the equation

lim [ v-qdS= [ f dx - f u.dx= [ f dx - f u.dx,
r^°°J nr J a J a Jd Jn

and when we combine this with (3.14) we see that

H'^XLfdx'Lu'dx)- <3-l6)
Next we calculate the derivative ut from Eq. (3.5) and find that it can be expressed

as the difference

ut(x, t) = <f)(x, t) - 4>{x, t) for x e Q and t > 0, (3.17)

where

= (3'18)

It is convenient to regard </> as being defined by Eq. (3.18) at all points x € R3.
Then, in view of Fubini's Theorem and the identity

lim [

L 1 exp - -—-—— \ dx = 1,
r3 (4k/)3/2 F V 4/
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we deduce from Eq. (3.18) that

[ <j)dx= [ f dx. (3.19)
J r3 J D

Thus, if we substitute from Eqs. (3.17) and (3.19) into Eq. (3.16), we see that

H = — ( f (j)(x, t)dx - [ <f>(x, t)dx + [ <t>(x, t) dx\
"o \Jr3 Jn hi /

= — [ [ 4>{x, t)dx + [ <f>(x, t) dx ]
uo \Jr3\o Jn J

-if
"o JR3

In summary, we have arrived at the expression

(j>(x, t)dx.
/ R3\a

(/Dexp II ^

which is clearly positive if / e ^ and / does not vanish identically. As we have
seen, it follows that H cannot be bounded above on W.

In order to deal with F we note that

F = f-dx= [ -dx,
J U JDU

from which equation it is clear that F is nonnegative. If we put

"(,) = inf {prbi ^erfc " wbi'erfc (i?^):y e ̂  ■
then m(t) > 0 and we deduce from Eq. (3.5) that

u{x, t) > f f(y) dy for x € D and t > 0,
4ft Jd

and, therefore, that
f j ^ 4n= [ — dx < "" for all / eJD u m(t)

Thus F is bounded above on & .
Finally, we note that G, as defined by Eq. (1.13), is clearly nonnegative, and since

E + H = G + F , where E and H are not bounded above while F is bounded above,
it must be that G is not bounded above.
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