OF

VOLUME LIII

JUNE · 1995

Number 2

JUNE 1995, PAGES 201-213

EXISTENCE OF CLASSICAL SOLUTIONS FOR SINGULAR PARABOLIC PROBLEMS

By

C. Y. CHAN AND BENEDICT M. WONG

University of Southwestern Louisiana

Abstract. Let $Lu \equiv u_{xx} + bu_x/x - u_t$ with b a constant less than 1. Its Green's function corresponding to first boundary conditions is constructed by eigenfunction expansion. With this, a representation formula is established to obtain existence of a classical solution for the linear first initial-boundary value problem. Uniqueness of a solution follows from the strong maximum principle. Properties of Green's function and of the solution are also investigated.

1. Introduction. Let

$$L \equiv \frac{\partial^2}{\partial x^2} + \frac{b}{x} \frac{\partial}{\partial x} - \frac{\partial}{\partial t}.$$

We are interested in studying existence and uniqueness of classical solutions for linear initial-boundary value problems involving L. This operator arises in many situations, such as degenerate elliptic-parabolic operators (cf. Brezis, Rosenkrantz, and Singer with an appendix by Lax [2]), stochastic processes (cf. Lamperti [14]), and phase change processes (cf. Solomon [18]). When b=0, it is the heat operator. For further discussions of the study and the significance of L, we refer to Chan and Chen [5, 6], Chan and Cobb [7], Chan and Kaper [8], and the references cited there.

Without loss of generality and for simplicity, we take the spatial interval to be [0,1]. Let $b\ (<1)$ and $\Gamma\ (>0)$ be constants, $\Omega_\Gamma \equiv (0,1)\times (0,\Gamma)$, $Q_\Gamma \equiv (0,1)\times (0,\Gamma]$, $Q_\Gamma^- \equiv (0,1)\times [0,\Gamma]$, and \overline{Q}_Γ denote the closure of Q_Γ . We study the linear singular problem,

$$Lu = -\Psi(x, t) \quad \text{in } Q_{\Gamma}, \tag{1.1}$$

$$u(x, 0) = g(x)$$
 for $0 \le x \le 1$, $u(0, t) = 0 = u(1, t)$ for $0 < t \le \Gamma$. (1.2)

More general linear problems with b a real constant were investigated by Alexiades [1]. Hence, an existence result for the above problem can be deduced from his work [1, Sec. 11]. For b < 1, he assumed that $x^{b-1}\Psi(x,t)$ is in $C(\overline{Q}_{\Gamma})$; we note that if the solution u were known, the function $x^{b-1}[1-u(x,t)]^{-1}$ would be discontinuous at x=0, and thus would not satisfy his assumption in the case b < 1. Hence, his

Received August 8, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35K20.

(linear) result cannot be used through methods of successive approximations to study semilinear singular problems of the type,

$$\begin{aligned} v_{xx} - v_t &= -(1-v)^{-1} & \text{in } \Omega_T, \\ v(x,0) &= g(x) & \text{for } 0 \leq x \leq 1, & v(0,t) = 0 = v(1,t) & \text{for } 0 < t < T \leq \infty. \end{aligned}$$

This problem with $g(x) \equiv 0$ was studied by Kawarada [12], through which he introduced the concept of quenching. Since then, many scientists have studied quenching problems (cf. Chan [4]).

In Sec. 2, we construct explicitly Green's function corresponding to the problem (1.1) and (1.2). Under appropriate conditions on g(x) and $\Psi(x,t)$ (without assuming $x^{b-1}\Psi(x,t)$ is in $C(\overline{Q}_{\Gamma})$), we prove existence of a unique classical solution by establishing its representation formula. We also establish properties of Green's function and of the solution. In Sec. 3, we extend existence of a unique classical solution to nonhomogeneous boundary conditions.

2. Linear problem. Using separation of variables on the homogeneous problem corresponding to the problem (1.1) and (1.2), we obtain the singular Sturm-Liouville problem,

$$(x^b X')' + \lambda x^b X = 0, \quad X(0) = 0 = X(1),$$

where λ is an eigenvalue. Let $\nu=(1-b)/2$. Since $\nu>0$, it follows from McLachlan [15, pp. 26 and 116] that the eigenvalues λ are positive and satisfy the equation $J_{\nu}(\lambda^{1/2})=0$, where $J_{\nu}(z)$ is the Bessel function of the first kind of order ν . For z>0, $J_{\nu}(z)$ has infinitely many countable zeros; hence, there are infinitely many countable eigenvalues λ_n , which can be arranged as $\lambda_1<\lambda_2<\lambda_3<\cdots$ with $\lambda_n\to\infty$ as $n\to\infty$ (cf. Watson [19, pp. 490-492]). The corresponding eigenfunctions,

$$\phi_n(x) = 2^{1/2} x^{\nu} J_{\nu}(\lambda_n^{1/2} x) / (|J_{\nu+1}(\lambda_n^{1/2})|),$$

form an orthonormal set with weight function x^b (cf. McLachlan [15, pp. 102–104]). In the sequel, we let k_j ($j=1,2,3,\ldots,8$) denote appropriate constants. For simplicity, we introduce the following notations:

$$E_n(y) \equiv \exp(-\lambda_n y),$$

$$I_n(h) \equiv \int_0^1 x^b h(x) \phi_n(x) \, dx.$$

If instead of h(x), we have h(x, t), then we use the notation $I_n(h)(t)$. Similarly, let

$$I(h) \equiv \int_0^1 x^{b/2} h(x) \, dx \,,$$
$$I^2(h) \equiv \int_0^1 x^b h^2(x) \, dx \,,$$

and define I(h)(t) and $I^{2}(h)(t)$ accordingly.

For convenience, we state the following results.

LEMMA 1.

- (a) $|\phi_n(x)| \le k_1 x^{-b/2}$ for x in (0, 1].
- (b) $|\phi_n(x)| \le k_2 \lambda_n^{1/4}$ for x in [0, 1].
- (c) If $I^2(h_1)(t) \le k_3$ for t in $[0, \Gamma_1]$, then for t in $[0, \Gamma_1]$,

$$\sum_{n=1}^{\infty} [I_n(h_1)(t)]^2 \le I^2(h_1)(t).$$

(d) $|\phi_n'(x)| \le k_4 \lambda_n^{1/2}$ for x in $[x_0, 1]$ where $x_0 > 0$ and k_4 depends on x_0 . (e) If $I(h_2)$ exists (and is absolutely convergent in case the integral is improper),

(e) If $I(h_2)$ exists (and is absolutely convergent in case the integral is improper), and if $h_2(x)$ is continuous and of bounded variation on $[x_1, x_2]$, where $0 < x_1 < x_2 < 1$, then $\sum_{n=1}^{\infty} I_n(h_2)\phi_n(x)$ converges uniformly to $h_2(x)$ on $(x_1 + \varepsilon, x_2 - \varepsilon)$ where ε is any positive number.

For the proofs of Lemma 1(a), (b), (d), and (e), we refer to Lemma 1(i) and (ii), (2.15), and Lemma 3 of Chan and Wong [9]. Lemma 1(c) follows directly from the Bessel inequality (cf. Weinberger [20, p. 73]).

Let us construct Green's function $G(x, t; \xi, \tau)$ corresponding to the problem (1.1) and (1.2). It is determined by the following system: for x and ξ in (0, 1), and t and τ in $(-\infty, \infty)$,

$$LG(x, t; \xi, \tau) = -\delta(x - \xi)\delta(t - \tau),$$

$$G(x, t; \xi, \tau) = 0, \quad t < \tau,$$

$$G(0, t; \xi, \tau) = 0 = G(1, t; \xi, \tau),$$

where $\delta(x)$ is the Dirac delta function. By the eigenfunction expansion,

$$G(x, t; \xi, \tau) = \sum_{n=1}^{\infty} a_n(t)\phi_n(x).$$

Since

$$\phi_n''(x) + \frac{b}{x}\phi_n'(x) + \lambda_n\phi_n(x) = 0,$$

it follows that

$$\sum_{n=1}^{\infty} [a'_n(t) + \lambda_n a_n(t)] \phi_n(x) = \delta(x - \xi) \delta(t - \tau).$$

Multiplying both sides by $x^b \phi_n(x)$, and integrating from 0 to 1 with respect to x, we obtain

$$\frac{d}{dt}\{[\exp(\lambda_n t)]a_n(t)\} = \xi^b \phi_n(\xi)[\exp(\lambda_n t)]\delta(t - \tau).$$

By integrating from τ^- to t,

$$[\exp(\lambda_n t)]a_n(t) - [\exp(\lambda_n \tau^-)]a_n(\tau^-) = \xi^b \phi_n(\xi) \exp(\lambda_n \tau).$$

Since $G(x, t; \xi, \tau) = 0$ for $t < \tau$, it follows that $a_n(\tau^-) = 0$ for all n. Thus,

$$a_n(t) = \xi^b \phi_n(\xi) E_n(t - \tau),$$

and hence

$$G(x, t; \xi, \tau) = \sum_{n=1}^{\infty} \xi^{b} \phi_{n}(\xi) \phi_{n}(x) E_{n}(t - \tau).$$
 (2.1)

Let $D = \{(x, t; \xi, \tau) : x \text{ and } \xi \text{ are in } (0, 1), \text{ and } t > \tau\}$. By Lemma 1(b) and the fact that $O(\lambda_n) = O(n^2)$ for large n (cf. Watson [19, p. 506]), it follows that the series in (2.1) converges in D. Hence, $G(x, t; \xi, \tau)$ exists.

A function u is said to be a classical solution of the problem (1.1) and (1.2) if

- (a) u is in $C(\overline{Q}_{\Gamma})$,
- (b) u_x , u_{xx} , and u_t are in $C(Q_{\Gamma})$,
- (c) u satisfies (1.1) and (1.2).

Throughout this paper, by a solution of the problem (1.1) and (1.2), we refer to its classical solution.

Let $\Psi(x, t)$ be defined in Q_{Γ}^{-} . We need the following conditions:

- (A) $I^{2}(\Psi)(t) \leq k_{5}$ for t in $[0, \Gamma]$,
- (B) $I(|\Psi_t|)(t) \leq k_6$ a.e. for t in $[0, \Gamma]$.

THEOREM 2. The problem (1.1) and (1.2) has at most one solution. Suppose $\Psi(x,t)$ is in $C(Q_{\Gamma}^-)$, absolutely continuous on the interval $0 \le t \le \Gamma$ for each x in (0,1), and of bounded variation with respect to x on every given closed subinterval of (0,1). If Conditions (A) and (B) hold, then the problem (1.1) and (1.2) with $g \equiv 0$ has a unique solution u given by

$$u(x, t) = \int_0^t \int_0^1 G(x, t; \xi, \tau) \Psi(\xi, \tau) \, d\xi \, d\tau. \tag{2.2}$$

Proof. Uniqueness of a solution follows from the strong maximum principle (cf. Protter and Weinberger [16, pp. 168–170]).

From (2.1) and (2.2),

$$u(x, t) = \int_0^t \int_0^1 \sum_{n=1}^{\infty} \xi^b \phi_n(\xi) \phi_n(x) E_n(t-\tau) \Psi(\xi, \tau) d\xi d\tau.$$

By Lemma 1(a) and (b), we have for x in [0, 1] and ξ in (0, 1],

$$|\xi^{b}\phi_{n}(\xi)\phi_{n}(x)\Psi(\xi\,,\,\tau)| \leq k_{1}k_{2}\lambda_{n}^{1/4}\xi^{b/2}|\Psi(\xi\,,\,\tau)|. \tag{2.3}$$

For any fixed (x, t) in \overline{Q}_{Γ} , let

$$G_m(\xi, \tau) = \begin{cases} \sum_{n=1}^m \xi^b \phi_n(\xi) \phi_n(x) E_n(t-\tau) & \text{for } t-\tau > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then, $G_m(\xi\,,\,\tau)\Psi(\xi\,,\,\tau)$ converges to $G(x\,,\,t\,;\,\xi\,,\,\tau)\Psi(\xi\,,\,\tau)$ a.e. on \overline{Q}_t . From (2.3), $|G_m(\xi\,,\,\tau)\Psi(\xi\,,\,\tau)| \leq \rho(\xi\,,\,\tau)$

for all positive integers m where

$$\rho(\xi, \tau) = \begin{cases} k_1 k_2 \xi^{b/2} |\Psi(\xi, \tau)| \sum_{n=1}^{\infty} \lambda_n^{1/4} E_n(t-\tau) & \text{for } t-\tau > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let $\rho_m(\xi, \tau)$ be the *m*th partial sum of $\rho(\xi, \tau)$. Then, $\{\rho_m\}$ is a sequence of nonnegative measurable functions that converge monotonically to ρ on \overline{Q}_t and $\rho_m \leq \rho$ for all positive integers m. By the Monotone Convergence Theorem and the Fubini Theorem (cf. Royden [17, pp. 84 and 269]),

$$\begin{split} \int_{\mathcal{Q}_t} \rho(\xi, \tau) \, d\xi \, d\tau &= \lim_{m \to \infty} \int_0^t \int_0^1 \rho_m(\xi, \tau) \, d\xi \, d\tau \\ &= \lim_{m \to \infty} k_1 k_2 \sum_{n=1}^m \left[\int_0^t I(|\Psi|)(\tau) \lambda_n^{1/4} E_n(t-\tau) \, d\tau \right]. \end{split}$$

By the Schwarz inequality and Condition (A),

$$\int_{Q_{t}} \rho(\xi, \tau) \, d\xi \, d\tau \le k_{1} k_{2} k_{5}^{1/2} \lim_{m \to \infty} \sum_{n=1}^{m} \lambda_{n}^{-3/4}.$$

Since $O(\lambda_n) = O(n^2)$ for large n, it follows that $\sum_{n=1}^m \lambda_n^{-3/4}$ converges. Hence, $\rho(\xi, \tau)$ is integrable, and for each fixed (x, t) in \overline{Q}_{Γ} , the integral in (2.2) exists. By the Lebesgue Convergence Theorem (cf. Royden [17, p. 88]) and the Fubini Theorem,

$$u(x, t) = \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi)(\tau) E_{n}(t-\tau) d\tau \phi_{n}(x).$$

By Lemma 1(c) and Condition (A),

$$\left| \int_0^t I_n(\Psi)(\tau) E_n(t-\tau) \, d\tau \right| \le k_5^{1/2} \lambda_n^{-1}.$$

It follows from Lemma 1(b) that the series representing u(x, t) converges absolutely and uniformly on \overline{Q}_{Γ} . Thus, u(x, t) is in $C(\overline{Q}_{\Gamma})$, and hence u(x, t) satisfies the homogeneous initial and boundary conditions.

Next, we would like to show the differentiability of the solution u(x, t). Let

$$\begin{split} S_m(x\,,\,t) &= \sum_{n=1}^m \int_0^t I_n(\Psi)(\tau) E_n(t-\tau)\,d\tau \phi_n(x) \\ &= \sum_{n=1}^m \int_0^1 \xi^b \phi_n(\xi) \left[\int_0^t \Psi(\xi\,,\,\tau) E_n(t-\tau)\,d\tau \right]\,d\xi \phi_n(x). \end{split}$$

Since $\Psi(\xi, \tau)$ is absolutely continuous on the interval $0 \le \tau \le \Gamma$ for each ξ in (0, 1), it follows from integration by parts with respect to τ (cf. Chae [3, pp. 227–228]) that

$$S_{m}(x,t) = \sum_{n=1}^{m} \lambda_{n}^{-1} \left[I_{n}(\Psi)(t) - I_{n}(\Psi)(0) E_{n}(t) - \int_{0}^{1} \xi^{b} \phi_{n}(\xi) \int_{0}^{t} \Psi_{\tau}(\xi,\tau) E_{n}(t-\tau) d\tau d\xi \right] \phi_{n}(x).$$
(2.4)

For x in $[x_0, 1]$ where x_0 is any positive number in (0, 1), it follows from Lemma 1(d) that for any positive integers p and m with p > m,

$$\left| \frac{\partial S_{p}}{\partial x} - \frac{\partial S_{m}}{\partial x} \right| \leq k_{4} \sum_{n=m+1}^{p} \lambda_{n}^{-1/2} |I_{n}(\Psi)(t)| + k_{4} \sum_{n=m+1}^{p} \lambda_{n}^{-1/2} |I_{n}(\Psi)(0)| + k_{4} \sum_{n=m+1}^{p} \lambda_{n}^{-1/2} \left| \int_{0}^{1} \xi^{b} \phi_{n}(\xi) \int_{0}^{t} \Psi_{\tau}(\xi, \tau) E_{n}(t - \tau) d\tau d\xi \right|.$$
(2.5)

From Condition (A) and Lemma 1(c),

$$\left(\sum_{n=m+1}^{p} |I_n(\Psi)(t)|^2\right)^{1/2} \le k_5^{1/2}.$$

By the Schwarz inequality, the first term on the right-hand side of the inequality (2.5) is bounded by

$$k_4 k_5^{1/2} \left(\sum_{n=m+1}^p \lambda_n^{-1} \right)^{1/2}$$
,

which converges to 0 as p and m tend to infinity since $O(\lambda_n) = O(n^2)$ for large n. Similarly, the second term converges to 0 as p and m tend to infinity. By Lemma 1(a) and Condition (B),

$$\left| \int_{0}^{t} I_{n}(\Psi_{\tau})(\tau) E_{n}(t-\tau) d\tau \right| \leq k_{1} \int_{0}^{t} I(|\Psi_{\tau}|)(\tau) E_{n}(t-\tau) d\tau$$

$$\leq k_{1} k_{6} \lambda_{n}^{-1} [1 - E_{n}(t)]$$

$$\leq k_{1} k_{6} \lambda_{n}^{-1}.$$
(2.6)

It follows from the Tonelli Theorem (cf. Royden [17, p. 270]) that

$$\xi^b \phi_n(\xi) \Psi_{\tau}(\xi, \tau) E_n(t-\tau)$$

is integrable on \overline{Q}_{Γ} . By the Fubini Theorem,

$$\left| \int_0^1 \xi^b \phi_n(\xi) \int_0^t \Psi_{\tau}(\xi, \tau) E_n(t - \tau) d\tau d\xi \right| = \left| \int_0^t I_n(\Psi_{\tau})(\tau) E_n(t - \tau) d\tau \right| \\ \leq k_1 k_6 \lambda_n^{-1}.$$

Thus, the third term on the right-hand side of (2.5) is bounded by

$$k_1 k_4 k_6 \sum_{n=m+1}^{p} \lambda_n^{-3/2},$$

which converges to 0 as p and m tend to infinity. Therefore on $[x_0, 1] \times [0, \Gamma]$, $|\partial S_p/\partial x - \partial S_m/\partial x|$ converges to 0 uniformly as p and m tend to infinity. Hence, $\partial S_m/\partial x$ converges uniformly. Since x_0 (> 0) is arbitrarily chosen and each term in the series representing $\partial S_m/\partial x$ is continuous, it follows that $\partial S_m/\partial x$ converges uniformly on every given closed subset of $(0, 1] \times [0, \Gamma]$ to

$$u_{x}(x, t) = \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi)(\tau) E_{n}(t-\tau) d\tau \phi'_{n}(x),$$

and $u_x(x, t)$ is in $C(\overline{Q}_{\Gamma} \backslash P_1)$ where $P_1 \equiv \{(0, t) : 0 \le t \le \Gamma\}$. Let the mth partial sum of $u_x(x, t)$ be denoted by $S_{xm}(x, t)$. Since

$$\phi_n''(x) + \frac{b}{x}\phi_n'(x) + \lambda_n\phi_n(x) = 0,$$

we have from (2.4) that

$$\begin{split} \partial S_{xm}(x\,,\,t)/\partial x &= -\frac{b}{x} S_{xm}(x\,,\,t) - \sum_{n=1}^{m} I_{n}(\Psi)(t) \phi_{n}(x) \\ &+ \sum_{n=1}^{m} I_{n}(\Psi)(0) E_{n}(t) \phi_{n}(x) + \sum_{n=1}^{m} \int_{0}^{t} I_{n}(\Psi_{\tau})(\tau) E_{n}(t-\tau) \, d\tau \phi_{n}(x). \end{split} \tag{2.7}$$

Since $S_{xm}(x,t)$ converges uniformly on $[x_0,1]\times[0,\Gamma]$ for arbitrarily fixed $x_0>0$, we have $(b/x)S_{xm}(x,t)$ converges uniformly there. For each fixed $t\geq 0$, it follows from Condition (A) and Lemma 1(e) that the second term on the right-hand side of (2.7) converges uniformly to $-\Psi(x,t)$ on every given closed subinterval of (0,1). By Lemma 1(e) and the Abel test (cf. Knopp [13, p. 346]), the third term converges uniformly on every given closed subset of Q_{Γ}^- ; because of the term $E_n(t)$, it converges absolutely and uniformly on every given closed subset of $[0,1]\times(0,\Gamma]$. Hence, the third term converges uniformly on every given closed subset of $\overline{Q}_{\Gamma}\backslash P_2$ where $P_2\equiv\{(0,0)\}\cup\{(1,0)\}$. From (2.6), the absolute value of the last term is bounded by $\sum_{n=1}^m k_1k_6\lambda_n^{-1}|\phi_n(x)|$, and hence converges absolutely and uniformly on \overline{Q}_{Γ} . Therefore, for each fixed $t\geq 0$, $\partial S_{xm}(x,t)/\partial x$ converges uniformly on every given closed subinterval of (0,1). Thus from (2.7),

$$\begin{split} u_{xx}(x\,,\,t) &= \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi)(\tau) E_{n}(t-\tau) \, d\tau \phi_{n}''(x) \\ &= -\frac{b}{x} u_{x}(x\,,\,t) - \Psi(x\,,\,t) + \sum_{n=1}^{\infty} I_{n}(\Psi)(0) E_{n}(t) \phi_{n}(x) \\ &+ \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi_{\tau})(\tau) E_{n}(t-\tau) \, d\tau \phi_{n}(x). \end{split} \tag{2.8}$$

Since each term on the right-hand side of (2.8) is continuous in Q_{Γ}^- , it follows that $u_{xx}(x, t)$ is in $C(Q_{\Gamma}^-)$.

To show that u(x, t) is differentiable with respect to t, it follows from the Leibnitz rule on differentiation that

$$\partial S_m(x,t)/\partial t = \sum_{n=1}^m I_n(\Psi)(t)\phi_n(x) - \sum_{n=1}^m \lambda_n \int_0^t I_n(\Psi)(\tau)E_n(t-\tau)\,d\tau\phi_n(x).$$

By using integration by parts on $\int_0^t \Psi(\xi, \tau) E_n(t-\tau) d\tau$ of the last term, we have

$$\begin{split} \partial S_m(x\,,\,t)/\partial t &= \sum_{n=1}^m I_n(\Psi)(0) E_n(t) \phi_n(x) \\ &+ \sum_{n=1}^m \int_0^t I_n(\Psi_\tau)(\tau) E_n(t-\tau) \, d\tau \phi_n(x) \,, \end{split}$$

which are equal to the last two terms on the right-hand side of (2.7). Thus, $\partial S_m(x, t)$ / ∂t converges uniformly on every given closed subset of $\overline{Q}_{\Gamma} \backslash P_2$. Hence,

$$u_{t}(x,t) = \sum_{n=1}^{\infty} I_{n}(\Psi)(0)E_{n}(t)\phi_{n}(x) + \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi_{\tau})(\tau)E_{n}(t-\tau) d\tau \phi_{n}(x); \qquad (2.9)$$

that is,

$$u_{t}(x, t) = \int_{0}^{1} G(x, t; \xi, 0) \Psi(\xi, 0) d\xi + \int_{0}^{t} \int_{0}^{1} G(x, t; \xi, \tau) \Psi_{\tau}(\xi, \tau) d\xi d\tau.$$
 (2.10)

Also, we have $u_t(x, t)$ is in $C(\overline{Q}_{\Gamma} \backslash P_2)$.

From (2.8) and (2.9), we have

$$Lu(x, t) = -\Psi(x, t)$$
 in Q_{Γ}^{-} .

Therefore, the theorem is proved.

We now use a transformation to deduce the representation formula for the linear problem with nontrivial initial data.

THEOREM 3. Suppose g(x) is in $C[0, 1] \cap C^2(0, 1)$ such that g(0) = 0 = g(1), and both $\Psi(x, t)$ and Lg(x) satisfy the conditions for $\Psi(x, t)$ in Theorem 2. Then, the problem (1.1) and (1.2) has a unique solution.

Proof. Let us consider the problem:

$$Lw = -(\Psi + Lg)$$
 in Q_{Γ}

subject to zero initial and boundary data. Since $\Psi(x, t) + Lg(x)$ satisfies the conditions for $\Psi(x, t)$ in Theorem 2, it follows that w(x, t) exists and is unique. Then, u given by u(x, t) = w(x, t) + g(x) is the unique solution of the problem (1.1) and (1.2).

By the representation formula (2.2) and the above theorem, the solution u of the problem (1.1) and (1.2) is given by

$$u(x,t) = \int_0^t \int_0^1 G(x,t;\xi,\tau) [\Psi(\xi,\tau) + Lg(\xi)] d\xi d\tau + g(x).$$
 (2.11)

Let

$$D_1 \equiv \{(x, t; \xi, \tau) : x \text{ and } \xi \text{ are in } (0, 1), t > \tau \ge 0\}.$$

LEMMA 4. (a) For $t > \tau$, $G(x, t; \xi, \tau)$ is continuous for $(x, t; \xi, \tau) \in ([0, 1] \times (0, \Gamma]) \times ((0, 1] \times [0, \Gamma))$.

- (b) For each fixed $(\xi, \tau) \in (0, 1] \times [0, \Gamma)$, $G(x, t; \xi, \tau) \in C^{\infty}((0, 1] \times (\tau, \Gamma])$.
- (c) $G(x, t; \xi, \tau)$ is positive in D_1 .

Proof. (a) By Lemma 1(b),

$$\sum_{n=1}^{\infty} |\xi^{b} \phi_{n}(\xi) \phi_{n}(x) E_{n}(t-\tau)| \leq \xi^{b} k_{2}^{2} \sum_{n=1}^{\infty} \lambda_{n}^{1/2} E_{n}(t-\tau).$$

Since $O(\lambda_n) = O(n^2)$ for large n, $\sum_{n=1}^{\infty} \lambda_n^{1/2} E_n(t-\tau)$ converges uniformly for $t-\tau \ge \varepsilon$ where ε is any positive number. Hence, $G(x, t; \xi, \tau)$ is continuous for $t-\tau \ge \varepsilon$. Since ε is arbitrarily chosen, our assertion follows.

(b) From Lemma 6 of Chan and Wong [10], the *m*th derivative of $\phi_n(x)$ satisfies the inequality,

$$|\phi_n^{(m)}(x)| \le K_m \lambda_n^{m/2} x^{\nu-m} / |J_{\nu+1}(\lambda_n^{1/2})|, \quad n = 1, 2, 3, \dots,$$

where K_m is a constant depending on m. From Lemma 1(a),

$$\sum_{n=1}^{\infty} |\xi^b \phi_n(\xi) \phi_n^{(m)}(x) E_n(t-\tau)| \leq k_1 K_m \xi^{b/2} x^{\nu-m} \sum_{n=1}^{\infty} \lambda_n^{m/2} E_n(t-\tau) / |J_{\nu+1}(\lambda_n^{1/2})|.$$

It follows from (2.10) of Chan and Wong [9], and $O(\lambda_n) = O(n^2)$ for large n that

$$\sum_{n=1}^{\infty} \lambda_n^{m/2} E_n(t-\tau) / |J_{\nu+1}(\lambda_n^{1/2})|$$

converges uniformly for $t - \tau \ge \varepsilon$, and hence $\partial^m G / \partial x^m$ is continuous for $t - \tau > 0$ since ε is arbitrarily chosen. Now,

$$\frac{\partial^m}{\partial t^m} E_n(t-\tau) = (-1)^m \lambda_n^m E_n(t-\tau).$$

An argument similar to the above shows that $\partial^m G/\partial t^m$ is continuous for $t-\tau>0$. Since m is any positive integer, our assertion follows.

(c) Suppose $G(x, t; \xi, \tau) < 0$ at some point $(x_1, t_1; \xi_1, \tau_1)$ in D_1 . Since $G(x, t; \xi, \tau)$ is continuous in D_1 , we may assume $\tau_1 > 0$. Hence, there exists a positive number ε such that $G(x, t; \xi, \tau) < 0$ in the set

$$W_0=(x_1-\varepsilon\,,\,x_1+\varepsilon)\times(t_1-\varepsilon\,,\,t_1+\varepsilon)\times(\xi_1-\varepsilon\,,\,\xi_1+\varepsilon)\times(\tau_1-\varepsilon\,,\,\tau_1+\varepsilon)$$
 contained in D_1 . Let

$$egin{aligned} W_1 &= (\xi_1 - arepsilon\,,\, \xi_1 + arepsilon) imes (au_1 - arepsilon\,,\, au_1 + arepsilon)\,, \ W_2 &= \left(\xi_1 - rac{arepsilon}{2}\,,\, \xi_1 + rac{arepsilon}{2}
ight) imes \left(au_1 - rac{arepsilon}{2}\,,\, au_1 + rac{arepsilon}{2}
ight)\,. \end{aligned}$$

There exists (cf. Dunford and Schwartz [11, pp. 1640-1641]) a function $h_3(x, t)$ in $C^{\infty}(\mathbb{R}^2)$ such that $h_3 \equiv 1$ on \overline{W}_2 , $h_3 \equiv 0$ outside W_1 , and $0 \le h_3 \le 1$ in $W_1 \setminus W_2$. It is clear that $h_3(x, t)$ satisfies the conditions for Ψ in Theorem 2. Hence, the solution of the problem,

$$Lw(x, t) = -h_3(x, t)$$
 in Q_{α} , $t_1 < \alpha$,

with w satisfying zero initial and boundary conditions, is given by

$$w(x, t) = \int_{\tau_1 - \varepsilon}^{\tau_1 + \varepsilon} \int_{\xi_1 - \varepsilon}^{\xi_1 + \varepsilon} G(x, t; \xi, \tau) h_3(\xi, \tau) d\xi d\tau.$$

Since $G(x, t; \xi, \tau) < 0$ in W_0 , $h_3(\xi, \tau) \ge 0$ in W_1 , and $h_3 \equiv 1$ on \overline{W}_2 , it follows that

$$w(x, t) < 0$$
 for (x, t) in $(x_1 - \varepsilon, x_1 + \varepsilon) \times (t_1 - \varepsilon, t_1 + \varepsilon)$.

On the other hand, $h_3(x, t) \ge 0$ in Q_{α} implies $w(x, t) \ge 0$ by the weak maximum principle. We have a contradiction. Therefore, $G(x, t; \xi, \tau) \ge 0$ in D_1 .

Suppose $G(x, t; \xi, \tau) = 0$ at some point $(x_2, t_2; \xi_2, \tau_2)$ in D_1 . Then by the strong maximum principle,

$$G(x, t; \xi_2, \tau_2) = 0$$
 in $D_1 \cap \{(x, t; \xi_2, \tau_2) : 0 < x < 1, t \le t_2\}.$

On the other hand,

$$G(\xi_2, t_2; \xi_2, \tau_2) = \sum_{n=1}^{\infty} \xi_2^b \phi_n^2(\xi_2) E_n(t_2 - \tau_2),$$

which is positive. This contradiction implies G > 0 in D_1 .

We would like to establish some properties of the solution u(x, t). Let

$$\ell \equiv \frac{\partial^2}{\partial x^2} + \frac{b}{x} \frac{\partial}{\partial x}.$$

THEOREM 5. Under the hypotheses of Theorem 3, if $I^2(g)$ exists, then the solution u(x, t) of the problem (1.1) and (1.2) has the following properties:

- (a) u_x is in $C(\overline{Q}_{\Gamma} \backslash P_1)$, u_{xx} is in $C(Q_{\Gamma}^-)$, and u_t is in $C(\overline{Q}_{\Gamma} \backslash P_2)$; (b) u(x, t) is absolutely continuous on the interval $0 \le t \le \Gamma$ for each x in [0, 1]; furthermore, $I^2(u)(t) \le k_7$ and $I^2(u_t)(t) \le k_8$ for t in [0, Γ];
 - (c) $I^2(\ell u)(t) < \infty$ for t in $[0, \Gamma]$.

Proof. (a) This property follows from the hypotheses on $\Psi(x, t)$ and g(x), and a proof as in that of Theorem 2 (with Ψ replaced by $\Psi + Lg$).

(b) It follows from Theorem 5(a) and u(0, t) = 0 = u(1, t) that u(x, t) is absolutely continuous on the interval $0 \le t \le \Gamma$ for each x in [0, 1].

By the Schwarz inequality,

$$I^{2}(u)(t) = I^{2}(u-g)(t) + I^{2}(g) + 2\int_{0}^{1} x^{b} [u(x,t) - g(x)]g(x) dx$$

$$\leq I^{2}(u-g)(t) + I^{2}(g) + 2[I^{2}(u-g)(t)]^{1/2}[I^{2}(g)]^{1/2}.$$
(2.12)

From (2.11),

$$u(x, t) = \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi + Lg)(\tau) E_{n}(t - \tau) d\tau \phi_{n}(x) + g(x).$$

From the proof of Theorem 2 (on u with Ψ replaced by $\Psi + Lg$), the above series (on the right-hand side) representing u(x, t) - g(x) is absolutely and uniformly convergent on \overline{Q}_{Γ} . By Lemma 1(a) and (c), this is also true for the series representing $x^{b/2}[u(x, t) - g(x)]$. Hence, the series representing $x^{b}[u(x, t) - g(x)]^{2}$ is also absolutely and uniformly convergent on \overline{Q}_{Γ} (cf. Knopp [13, pp. 146 and 337]). Since $\{\phi_n(x)\}\$ is an orthonormal set with weight function x^b , it follows that

$$I^{2}(u-g)(t) = \sum_{n=1}^{\infty} \left[\int_{0}^{t} I_{n}(\Psi + Lg)(\tau) E_{n}(t-\tau) d\tau \right]^{2}.$$

By Lemma 1(c),

$$\begin{split} I^{2}(u-g)(t) &\leq \left[\sup_{0 \leq \tau \leq \Gamma} I^{2}(\Psi + Lg)(\tau)\right] \sum_{n=1}^{\infty} \left[\int_{0}^{t} E_{n}(t-\tau) d\tau\right]^{2} \\ &\leq \left[\sup_{0 \leq \tau \leq \Gamma} I^{2}(\Psi + Lg)(\tau)\right] \sum_{n=1}^{\infty} \lambda_{n}^{-2}. \end{split}$$

From (2.12),

$$I^{2}(u)(t) \leq \left[\sup_{0 \leq \tau \leq \Gamma} I^{2}(\Psi + Lg)(\tau)\right] \sum_{n=1}^{\infty} \lambda_{n}^{-2} + I^{2}(g) + 2\left(\left[\sup_{0 \leq \tau \leq \Gamma} I^{2}(\Psi + Lg)(\tau)\right] \sum_{n=1}^{\infty} \lambda_{n}^{-2}\right)^{1/2} [I^{2}(g)]^{1/2}.$$
(2.13)

It follows from the hypotheses on Ψ and Lg that

$$\sup_{0<\tau<\Gamma}I^2(\Psi+Lg)(\tau)<\infty.$$

Because $O(\lambda_n) = O(n^2)$ for large n, we have from (2.13) that $I^2(u)(t) \le k_7$ for t in $[0, \Gamma]$.

By (2.9) (with $\Psi(x, t)$ replaced by $\Psi(x, t) + Lg(x)$),

$$u_{t}(x,t) = \sum_{n=1}^{\infty} I_{n}(\Psi + Lg)(0)E_{n}(t)\phi_{n}(x) + \sum_{n=1}^{\infty} \int_{0}^{t} I_{n}(\Psi_{\tau})(\tau)E_{n}(t-\tau) d\tau\phi_{n}(x).$$
 (2.14)

Let t_0 in $(0, \Gamma]$ be fixed. By Lemma 1(a) and (c), the right-hand side of (2.14) multiplied by $x^{b/2}$ converges absolutely and uniformly on [0, 1] to $x^{b/2}u_t(x, t_0)$. Hence, the series representing $x^bu_t^2(x, t_0)$ is absolutely and uniformly convergent on [0, 1]. Integrating this series representing $x^bu_t^2(x, t_0)$ with respect to x and using the orthonormality of the sequence $\{\phi_n(x)\}$ with weight function x^b , we have

$$\begin{split} I^2(u_t)(t_0) &= \sum_{n=1}^{\infty} [I_n(\Psi + Lg)(0)E_n(t_0)]^2 \\ &+ \sum_{n=1}^{\infty} \left[\int_0^{t_0} I_n(\Psi_\tau)(\tau)E_n(t_0 - \tau) \, d\tau \right]^2 \\ &+ 2 \sum_{n=1}^{\infty} \left[\int_0^{t_0} I_n(\Psi_\tau)(\tau)E_n(t_0 - \tau) \, d\tau \right] [I_n(\Psi + Lg)(0)E_n(t_0)]. \end{split}$$

From Lemma 1(c) and $E_n(t_0) \le 1$ for all positive integers n, the first term on the right-hand side is bounded by $I^2(\Psi + Lg)(0)$. From Lemma 1(a) and Condition (B),

the second term is bounded by

$$k_1 k_6 \sum_{n=1}^{\infty} \left[\int_0^{t_0} E_n(t_0 - \tau) d\tau \right]^2 \le k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2}.$$

By using the Schwarz inequality on the third term, we obtain

$$\begin{split} I^2(u_t)(t_0) &\leq I^2(\Psi + Lg)(0) + k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2} \\ &+ 2 [I^2(\Psi + Lg)(0)]^{1/2} \left[k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2} \right]^{1/2}. \end{split}$$

We note that the right-hand side is independent of t_0 . Hence, $I^2(u_t)(t)$ is bounded on $(0, \Gamma]$. As for $I^2(u_r)(0)$, it follows from Lemma 1(e) that for x in (0, 1),

$$u_t(x, 0) = \sum_{n=1}^{\infty} I_n(\Psi + Lg)(0)\phi_n(x)$$

= $\Psi(x, 0) + Lg(x)$,

from which,

$$I^{2}(u_{t})(0) = I^{2}(\Psi + Lg)(0).$$

Thus, $I^2(u_t)(t) \le k_8$ on $[0, \Gamma]$ for some constant k_8 . (c) Since $\ell u = u_t - \Psi$, it follows from the Schwarz inequality that

$$\begin{split} I^{2}(\ell u)(t) &= I^{2}(u_{t} - \Psi)(t) \\ &= I^{2}(u_{t})(t) + I^{2}(\Psi)(t) - 2 \int_{0}^{1} x^{b} u_{t}(x, t) \Psi(x, t) dx \\ &\leq I^{2}(u_{t})(t) + I^{2}(\Psi)(t) + 2[I^{2}(u_{t})(t)I^{2}(\Psi)(t)]^{1/2}. \end{split}$$

Then from Theorem 5(b) and Condition (A), $I^2(\ell u)(t) < \infty$ on $[0, \Gamma]$.

3. Nonhomogeneous boundary conditions. In this section, we assume |b| < 1; we also assume as in Sec. 2 that g(x), Lg(x), and $\Psi(x, t)$ satisfy the hypotheses of Theorem 3, except that g(0) = 0 = g(1). Let us consider the linear problem, (1.1), subject to

$$u(x, 0) = g(x)$$
 for $0 \le x \le 1$,
 $u(0, t) = r_1(t)$ and $u(1, t) = r_2(t)$ for $0 < t \le \Gamma < \infty$,

where $r_1(t)$ and $r_2(t)$ are in $C^2[0,\infty)$ such that $r_1(0)=g(0)$ and $r_2(0)=g(1)$.

THEOREM 6. The problem (1.1) and (3.1) has a unique solution.

Proof. Let us consider the problem,

$$Lw(x\,,\,t) = -[\Psi(x\,,\,t) + Ls(x\,,\,t)] \quad \text{in } Q_{\Gamma}\,,$$

$$w(x\,,\,0) = g(x) - s(x\,,\,0) \text{ for } 0 \leq x \leq 1\,, \qquad w(0\,,\,t) = 0 = w(1\,,\,t) \text{ for } 0 < t \leq \Gamma\,,$$
 where

$$s(x, t) = (1 - x^{2\nu})r_1(t) + x^{2\nu}r_2(t).$$

It follows from the assumptions on $\Psi(x, t)$, g(x), $r_1(t)$, and $r_2(t)$ that $\Psi(x, t) + Ls(x, t)$ and g(x) - s(x, 0) satisfy the conditions for $\Psi(x, t)$ and g(x), respectively, in Theorem 3. Hence, w(x, t) exists and is unique. It follows that u given by u = w + s is the unique solution of the problem (1.1) and (3.1).

We note that the solution u in Theorem 6 has the properties stated in Theorem 5.

REFERENCES

- [1] V. Alexiades, Generalized axially symmetric heat potentials and singular parabolic initial boundary value problems, Arch. Rational Mech. Anal. 79, 325-350 (1982)
- [2] H. Brezis, W. Rosenkrantz, and B. Singer, with an appendix by P. D. Lax, On a degenerate elliptic-parabolic equation occurring in the theory of probability, Comm. Pure Appl. Math. 24, 395-416 (1971)
- [3] S. B. Chae, Lebesgue Integration, Marcel Dekker, New York, 1980, pp. 227-228
- [4] C. Y. Chan, New results in quenching, Proceedings of the First World Congress of Nonlinear Analysts, Walter de Gruyter & Co. (to appear)
- [5] C. Y. Chan and C. S. Chen, A numerical method for semilinear singular parabolic quenching problems, Quart. Appl. Math. 47, 45-57 (1989)
- [6] C. Y. Chan and C. S. Chen, Critical lengths for global existence of solutions for coupled semilinear singular parabolic problems, Quart. Appl. Math. 47, 661-671 (1989)
- [7] C. Y. Chan and S. S. Cobb, Critical lengths for semilinear singular parabolic mixed boundary-value problems, Quart. Appl. Math. 49, 497-506 (1991)
- [8] C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal. 20, 558-566 (1989)
- [9] C. Y. Chan and B. M. Wong, *Periodic solutions of singular linear and semilinear parabolic problems*, Ouart. Appl. Math. 47, 405-428 (1989)
- [10] C. Y. Chan and B. M. Wong, Computational methods for time-periodic solutions of singular semilinear parabolic problems, Appl. Math. Comput. 42, 287-312 (1991)
- [11] N. Dunford and J. T. Schwartz, Linear Operators, Part II: Spectral Theory, Selfadjoint Operators in Hilbert Space, Interscience Publishers, New York, 1963, pp. 1640-1641
- [12] H. Kawarada, On solutions of initial boundary problem for $u_t = u_{xx} + 1/(1-u)$, Publ. Res. Inst. Math. Sci. 10, 729-736 (1975)
- [13] K. Knopp, Theory and Application of Infinite Series, Hafner Publishing Company, New York, 1928, pp. 146, 337, and 346
- [14] J. Lamperti, A new class of probability theorems, J. Math. Mech. 11, 749-772 (1962)
- [15] N. W. McLachlan, Bessel Functions for Engineers, 2nd ed., Oxford University Press, London, 1955, pp. 26, 102-104, and 116
- [16] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, pp. 168-170
- [17] H. L. Royden, Real Analysis, 2nd ed., Macmillan Publishing Co., New York, 1968, pp. 84, 88, and 269-270
- [18] A. D. Solomon, Melt time and heat flux for a simple PCM body, Solar Energy 22, 251-257 (1979)
- [19] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., The Macmillan Company, New York, 1944, pp. 490-492, and 506
- [20] H. F. Weinberger, A First Course in Partial Differential Equations, Xerox College Publishing, Lexington, 1965, p. 73