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Abstract. Let Lu = u, +bu /x —u, with b a constant less than 1. Its Green’s
function corresponding to first boundary conditions is constructed by eigenfunction
expansion. With this, a representation formula is established to obtain existence of a
classical solution for the linear first initial-boundary value problem. Uniqueness of a
solution follows from the strong maximum principle. Properties of Green’s function
and of the solution are also investigated.

1. Introduction. Let
> bao 8
ax2  xdx ot
We are interested in studying existence and uniqueness of classical solutions for
linear initial-boundary value problems involving L. This operator arises in many
situations, such as degenerate elliptic-parabolic operators (cf. Brezis, Rosenkrantz,
and Singer with an appendix by Lax [2]), stochastic processes (cf. Lamperti [14]),
and phase change processes (cf. Solomon [18]). When b = 0, it is the heat operator.
For further discussions of the study and the significance of L, we refer to Chan and
Chen [$5, 6], Chan and Cobb [7], Chan and Kaper [8], and the references cited there.
Without loss of generality and for simplicity, we take the spatial interval to be
[0,1]. Let b (< 1) and ' (> 0) be constants, Q. = (0, 1) x (0,I'), Op =
(0, 1)x(0,T1, @ =(0,1)x[0,I7], and @r denote the closure of Q.. We study
the linear singular problem,

L=

Lu=-¥(x,t) inQ, (1.1)
u(x,0)=g(x) for0<x<1, u0,t)=0=u(l,t) forO<t<T.(1.2)

More general linear problems with b a real constant were investigated by Alexiades
[1]. Hence, an existence result for the above problem can be deduced from his work
[1, Sec. 11]. For b < 1, he assumed that xb_"{’(x, t) isin C(@r) ; we note that if

the solution u were known, the function xb_'[l —u(x, t)]—l would be discontinuous
at x = 0, and thus would not satisfy his assumption in the case b < 1. Hence, his
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(linear) result cannot be used through methods of successive approximations to study
semilinear singular problems of the type,

v, —v,=—(1-v) in Q,,

v(x,0)=g(x) for0<x<1, v(0,1)=0=v(1,¢t) forO<t<T < oo.

This problem with g(x) = 0 was studied by Kawarada [12], through which he intro-
duced the concept of quenching. Since then, many scientists have studied quenching
problems (cf. Chan [4]).

In Sec. 2, we construct explicitly Green’s function corresponding to the problem
(1.1) and (1.2). Under appropriate conditions on g(x) and W(x, ¢) (without as-
suming xb_l‘l’(x , 1) isin C (QF)) , we prove existence of a unique classical solution
by establishing its representation formula. We also establish properties of Green’s
function and of the solution. In Sec. 3, we extend existence of a unique classical
solution to nonhomogeneous boundary conditions.

2. Linear problem. Using separation of variables on the homogeneous problem
corresponding to the problem (1.1) and (1.2), we obtain the singular Sturm-Liouville
problem,

"Xy +ax"Xx =0, X(0)=0=X(1),
where A is an eigenvalue. Let v = (1-5)/2. Since v > 0, it follows from McLachlan

[15, pp. 26 and 116] that the eigenvalues A are positive and satisfy the equation
J (/1'/ 2) = 0, where J (z) is the Bessel function of the first kind of order v. For

v
z > 0, J, (z) has infinitely many countable zeros; hence, there are infinitely many

countable eigenvalues A, , which can be arranged as 4, <4, <A, <--- with 4, — o0
as n — oo (cf. Watson [19, pp. 490-492]). The corresponding eigenfunctions,

¢, (x) = 22" g (A2 00, L, AP,

form an orthonormal set with weight function xb (cf. McLachlan [15, pp. 102-104]).
In the sequel, we let kj (j=1,2,3,...,8) denote appropriate constants. For
simplicity, we introduce the following notations:

E, (y) = exp(-4,»),
|
In(h)z/o x"h(x)e, (x) dx.

If instead of A(x), we have h(x, t), then we use the notation /, (h)(¢). Similarly,
let

1
I(h)z/ x"h(x)dx,
0
Iz(h) = /behz(x)dx,
0

and define I(h)(t) and I’(h)(1) accordingly.
For convenience, we state the following results.
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LEMMA 1.
(a) |9, (x)| < k,x™%? for x in (0, 1].
(b) |6, (x)| < k,A/* for x in [0, 1].
(¢) If I*(h,)(2) < k; for ¢ in [0, T,], then for ¢ in [0, T,],

Z[I 2< P(h)(0).

(d) |¢;(x)| < k4/l,l,/2 for x in [x,, 1] where x;, >0 and k, depends on x,.

(e) If I(h,) exists (and is absolutely convergent in case the integral is improper ),
and if h,(x) is continuous and of bounded variation on [x,, x,], where 0 < x; <
x, < 1,then Y77 I (h,)¢,(x) converges uniformly to h,(x) on (x, +¢&,x, —¢)
where ¢ is any positive number.

For the proofs of Lemma 1(a), (b), (d), and (e), we refer to Lemma 1(i) and (ii),
(2.15), and Lemma 3 of Chan and Wong [9]. Lemma 1(c) follows directly from the
Bessel inequality (cf. Weinberger [20, p. 73]).

Let us construct Green’s function G(x, ¢; &, 1) corresponding to the problem
(1.1) and (1.2). It is determined by the following system: for x and & in (0, 1),
and ¢t and 7 in (—o0, 00),

LG(x,t;é,r)——é(x—é)é(t—t),
Gx,t;¢,1)=0, t<r1,
G0,1;8,1)=0=0G(1,¢;¢, 1),

where J(x) is the Dirac delta function. By the eigenfunction expansion,

G(x,1;¢, 1) =) a,(0)¢,(x)
n=1
Since A
¢, (x) + ;d);(x) +2,0,(x)=0
it follows that
Z[a 1) +4,a, ()¢, (x) =6(x — &St — 1).

Multiplying both sides by x an(x) , and integrating from O to 1 with respect to x,
we obtain

{[exp (A,0)]a,(6)} = E°¢,(&)lexp(A,1)16(¢ - 7).
By integrating from 7~ to ¢,
lexp(4,1)]a,(t) — [exp(4,T )la,(t ) = &9,(&) exp(2,1).

Since G(x, t;¢&, 1) =0 for t < 1, it follows that a,(t") =0 for all n. Thus,

a,(t)=&"¢, (E)E,(t 1),
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and hence

Gix,t;¢, 1 Zfd)(é x)E, (1 —1). (2.1)

Let D={(x,t;¢,1):x and & arein (0, 1), and ¢ > 7}. By Lemma 1(b) and
the fact that O(4,) = O(nz) for large n (cf. Watson [19, p. 506]), it follows that the
series in (2.1) converges in D. Hence, G(x, t; &, ) exists.

A function u is said to be a classical solution of the problem (1.1) and (1.2) if

(@) u isin C(Qp),
(b) u,,u, ,and u, arein C(Qp),
(c) u satlsﬁes (1.1) and (1.2).

Throughout this paper, by a solution of the problem (1.1) and (1.2), we refer to its
classical solution.
Let ¥(x, t) be defined in Q. . We need the following conditions:

(A) I*(¥)(1) < kg for ¢ in [0, IT,
(B) I(|¥,)(t) <k a.e. for ¢ in [0, T].

THEOREM 2. The problem (1.1) and (1.2) has at most one solution. Suppose ¥(x, ¢)
isin C(Qr ), absolutely continuous on the interval 0 <t <T foreach x in (0, 1),
and of bounded variation with respect to x on every given closed subinterval of
(0, 1). If Conditions (A) and (B) hold, then the problem (1.1) and (1.2) with g =0
has a unique solution u given by

t ol
u(x,t)=/0/0 G(x,t; &, )Y, 1)dédr. (2.2)

Proof. Uniqueness of a solution follows from the strong maximum principle (cf.
Protter and Weinberger [16, pp. 168-170]).
From (2.1) and (2.2),

t 1 oo
u(x, 1) = /0 /0 ;é%,,(é)qs,,(x)E,,(t _OW(E, 1) dedn.

By Lemma 1(a) and (b), we have for x in [0, 1] and ¢ in (O, 1],
|§b¢,,(é)¢,,(X)‘i’(é, )| < k koA, P E, o)l (2.3)
For any fixed (x, ) in Qf, le
éqﬁ E (t—1) fort—1>0,

G,¢&,1)= Z
0, otherwise.

Then, G, (¢, 1)¥(¢, 7) converges to G(x, t;¢, 1)¥(£, 1) ae. on Q . From (2.3),
G, (&, DY, 1)l < p(E, 1)

for all positive integers m where

k&P (&, OIS AE (t—1) fort—1>0,
P&, 1) = 2 Z,

0, otherwise.
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Let p,, (£, ) be the mth partial sum of p(, 7). Then, {p,} is a sequence of
nonnegative measurable functions that converge monotonically to p on Q and
p,, < p for all positive integers m . By the Monotone Convergence Theorem and
the Fubini Theorem (cf. Royden [17, pp. 84 and 269]),

/p dédt—'il_r’r;o/l/lpm(f,t)dédr

_Jgrgokkz[/ulm LE t—r)dr]

By the Schwarz inequality and Condition (A),

m
0 p(&,1)dédr < klkzksl/z 'Ji—r&zl;s/‘z.
‘ =1

Since O(4,) = 0(n2) for large n, it follows that E;’;I ,1;3/4 converges. Hence,
p(&, 7) is integrable, and for each fixed (x, ¢) in @r , the integral in (2.2) exists. By
the Lebesgue Convergence Theorem (cf. Royden [17, p. 88]) and the Fubini Theorem,

u(x, t) 2/1 E (t-1)dt$,(x).
By Lemma 1(c) and Condition (A),

E,(t—1)dt| < k2.

It follows from Lemma l(b) that the series representing u(x, t) converges absolutely
and uniformly on @r . Thus, u(x,t) isin C (@r) , and hence u(x, t) satisfies the
homogeneous initial and boundary conditions.

Next, we would like to show the differentiability of the solution u(x, t). Let

S, 0= /0 I (¥)(D)E, (1 - 1)d1é (%)
n=1

— b ~
= g/{; 6 ¢n(é) l:/o \P(f, T)En(t ‘[) dt déd’,,(x)

Since W(&, 1) is absolutely continuous on the interval 0 < 7 < I" for each ¢ in
(0, 1), it follows from integration by parts with respect to t (cf. Chae [3, pp. 227-
228]) that

S, (x,1)= ija; : [1,,(\1')(:) —I(P)(0)E, (1)
n=l (2.4)

/é(b(é)/‘l’(é (1 - 1)drdE | (x).
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For x in [x,, 1] where X, is any positive number in (0, 1), it follows from Lemma
1(d) that for any positive integers p and m with p > m,

as, _9S, oL L ip
T~ | Ska 2o A TIOR3 4TI E)(0)
n=m+1 n=m+1 (2 5)

s z“”/:(p /'1' E,(t - 1)drd].

n=m+1

From Condition (A) and Lemma 1(c),

p 1/2
(Z |w’><z>|2> <k’

n=m+1

By the Schwarz inequality, the first term on the right-hand side of the inequality (2.5)

is bounded by
» 12
1/2 -1
k4k5 < Z )'n ) ’

n=m+1
which converges to 0 as p and m tend to infinity since O(4,) = O(nz) for large n .
Similarly, the second term converges to 0 as p and m tend to infinity. By Lemma
1(a) and Condition (B),

E (t-1)dt <k/1|‘P| )T)E, (t—1)dT

< klk6ln [ -E, (1]
<k, k!
It follows from the Tonelli Theorem (cf. Royden [17, p. 270]) that
&4, (&, 1)E,(t - 1)
is integrable on Q.. By the Fubini Theorem,

/w (é)/‘l’(é E, (t—r)drdé\ V E,(t—1)dt

< klkﬁln
Thus, the third term on the right-hand side of (2.5) is bounded by

p
kkg 32 2,7,
n=m+1
which converges to 0 as p and m tend to infinity. Therefore on [x,, 1] x [0, I,
|6Sp /0x —dS,,/0x| converges to 0 uniformly as p and m tend to infinity. Hence,
dS,,/0x converges uniformly. Since x; (> 0) is arbitrarily chosen and each term
in the series representing 4, /dx is continuous, it follows that 9§, /0x converges
uniformly on every given closed subset of (0, 1] x [0, I'] to

w6, 0= Y [ LOROE, (- 1) ded(x),
n=1 0
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and u (x,t) isin C(Qp\P,) where P, ={(0,1):0<t<T}.
Let the mth partial sum of u (x, t) be denoted by S, (x, ?). Since

$10) + 2,0) 4 Ay ) =

we have from (2.4) that

8S,, (x, 1)/dx = —

b
< 5x Zl(‘}’
E +Z/ E (t—1)d19,(x).

(2.7)
Since S, (x, t) converges uniformly on [x,, 1] x [0, I'] for arbitrarily fixed x, >
0, we have (b/x)S,,(x,t) converges uniformly there. For each fixed ¢ > 0, it
follows from Condition (A) and Lemma 1(e) that the second term on the right-hand
side of (2.7) converges uniformly to —‘¥(x, ¢) on every given closed subinterval of
(0, 1). By Lemma 1(e) and the Abel test (cf. Knopp [13, p. 346]), the third term
converges uniformly on every given closed subset of Q- ; because of the term E, (¢),
it converges absolutely and uniformly on every given closed subset of [0, 1]x (0, I'].
Hence, the third term converges uniformly on every given closed subset of @r\P2
where P, = {(0, 0)} U {(1, 0)}. From (2.6), the absolute value of the last term is
bounded by " k, ke /’L_' |#,(x)|, and hence converges absolutely and uniformly on
Qr Therefore, for each fixed 1 >0, 0S,,,(x, t)/0x converges uniformly on every
given closed subinterval of (0, 1). Thus from (2.7),

ot t
w0 = 3 [ LOOOE, @ - ) deg(x)
n=1

= —gux(x ) =Y(x, )+ Zln(‘P)(O)E"(t)qﬁn(x) (2.8)

n=1

4 ; /0 I(¥)(0)E,(t — 1) dto, (x).

Since each term on the right-hand side of (2.8) is continuous in Q. , it follows that

u,(x, 1) isin C(Qr).
To show that u(x, ¢) is differentiable with respect to ¢, it follows from the Leib-
nitz rule on differentiation that

as, (x, t)/c’?t—ZI(‘l’) e, (x) - Z,l / L(¥)(0)E, (1 — 1) d7o, (X).
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By using integration by parts on f(; Y(¢, 1)E, (t — t)dt of the last term, we have

S, (x, /0t =Y 1(¥)0)E, (1), (x)
n=1

+ Z/O (Y )(DE,(t - 1)dtd,(x),
n=1

which are equal to the last two terms on the right-hand side of (2.7). Thus, 95,,(x, ?)
/0t converges uniformly on every given closed subset of Q—\P2 . Hence,

u(x, = ZI,,(‘I’)(O)E,,(I)¢,,(X) + Z/O I,(Y)(DE, (1 -1)dtg,(x);  (2.9)
n=1 n=1
that is,

1 t 1
w0 = [ G, 1:6,0%¢, 0de+ [ [ Gx 8 0¥,E ndEdr. (210
0 0 JO

Also, we have u,(x, t) isin C(Qp\P,).
From (2.8) and (2.9), we have

Lu(x,t)=-Y¥(x,t) in Q.

Therefore, the theorem is proved.
We now use a transformation to deduce the representation formula for the linear
problem with nontrivial initial data.

THEOREM 3. Suppose g(x) isin C[0, l]nCZ(O, 1) such that g(0) =0= g(1), and
both W(x, t) and Lg(x) satisfy the conditions for W(x, ¢) in Theorem 2. Then,
the problem (1.1) and (1.2) has a unique solution.

Proof. Let us consider the problem:

Lw=—-(¥+Lg)in Qp

subject to zero initial and boundary data. Since W(x, ¢) + Lg(x) satisfies the condi-
tions for ¥(x, ¢) in Theorem 2, it follows that w(x, ) exists and is unique. Then,
u given by u(x, t) =w(x, t)+ g(x) is the unique solution of the problem (1.1) and
(1.2).

By the representation formula (2.2) and the above theorem, the solution u of the
problem (1.1) and (1.2) is given by

t 1
u(x,t) =/0 /0 G(x,t; &, DY, 1)+ Lg(é)]dédT + g(x). (2.11)

Let
D ={(x,t;¢,7):xand { arein (0, 1), > 7> 0}.

LeEmMA 4. (a) For ¢t > 1, G(x,t;¢&, 1) is continuous for (x, ¢; ¢, 1) € ([0, 1] x
(0, T7) x ((0, 11x [0, T')).
(b) For each fixed (¢, 1) € (0, 1]x[0, ), G(x,t;&,1)e C((0, 1] x (r,T]).
(c) G(x, t;¢&, 1) is positive in D, .
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Proof. (a) By Lemma 1(b),

3 1E°6,(E)b,(XE,(t — )| < Ek2 ST AVE, (1 - 2.

n=1 n=1

Since O(4,) = O(n2 ) for large n, Z;";l l,l,/ 2En(t—r) converges uniformly for t—7 >
¢ where ¢ is any positive number. Hence, G(x, ¢; £, 7) is continuous for t—7 > ¢.
Since ¢ is arbitrarily chosen, our assertion follows.

(b) From Lemma 6 of Chan and Wong [10], the mth derivative of ¢, (x) satisfies

the inequality,
2 v— 2
6™ (x) < K, AT LAY n=1,2,3, ..,

n

where K, is a constant depending on m . From Lemma 1(a),

S I8, @B XVE, (1 - 1] < kK, &S A E (1 - 0\, ()

n=1 n=1
It follows from (2.10) of Chan and Wong [9], and O(4,) = O(nz) for large n that

oo
m/2 1/2
S APE, (=11, (2,
n=1
converges uniformly for ¢t — 7 > ¢, and hence 8" G/dx™ is continuous for 1 —1 > 0
since ¢ is arbitrarily chosen. Now,
3m ma.m
a—tﬁEn(t - T) = (—l) /1" En([ - T).
An argument similar to the above shows that 8" G/dt™ is continuous for t—1> 0.
Since m is any positive integer, our assertion follows.
(c) Suppose G(x,t;¢, 1) < 0 at some point (x,,?,;¢,,7,) in D,. Since
G(x, t;&, 1) is continuous in D,, we may assume 7, > 0. Hence, there exists
a positive number ¢ such that G(x, t; ¢, 1) <0 in the set

Wo=(x;,—¢€,x +&)x(t,—¢,t, +e)x({ —¢,& +&)x(1,—¢&, 7, +¢)
contained in D, . Let
W= —¢,¢ +e)x(t,—¢,1, +¢),
€ € £ €
W= (656 3) < (n-5m+3)
There exists (cf. Dunford and Schwartz [11, pp. 1640-1641]) a function A,(x, ) in
C®(R’) such that &, =1 on W,, h, =0 outside W,,and 0< h, <1 in W,\W,.

It is clear that h,(x, t) satisfies the conditions for ¥ in Theorem 2. Hence, the
solution of the problem,

Lw(x,t)=~hy(x,t) inQ , 1 <a,

with w satisfying zero initial and boundary conditions, is given by

T+ G +e
w(x,t)=/ G(x, t;&, 1)hy(&, 1)dld.

€ 1~ ¢
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Since G(x,;¢,1) <0 in W, hy(&,7)>0in W, ,and h; =1 on Wz, it follows
that
w(x,t) <0 for(x,?)in (x, —¢&,x +¢&)x(f —¢,1 +¢).
On the other hand, A,4(x, ) >0 in Q_ implies w(x, t) > 0 by the weak maximum
principle. We have a contradiction. Therefore, G(x, t;&, 1) >0 in D,.
Suppose G(x, ¢;¢, 1) = 0 at some point (x,, ,;¢,, T,) in D, . Then by the
strong maximum principle,

G(x,t;8,,7,)=0 inD N{(x,1;¢,17,):0<x<1,1<0,}

On the other hand,

G, 156, 1) = Zézqs (E)E, (1, — 1),
n=1
which is positive. This contradiction implies G >0 in D, .
We would like to establish some properties of the solution u(x, ). Let

=9 b0
T ox?  x0x
THEOREM 5. Under the hypotheses of Theorem 3, if 2 (g) exists, then the solution
u(x, t) of the problem (1.1) and (1.2) has the following properties:

(@) u, isin C(Qp\P,)), u,, isin C(Qr), and u, isin C(Qp\P,);

(b) u(x, t) is absolutely continuous on the interval 0 < ¢t < I' for each x in
[0, 1]; furthermore, Iz(u)(t) <k, and Iz(u,)(t) < kg for ¢t in [0, I7];

(¢) I*(¢u)(t) < oo for ¢ in [0, T7].

Proof. (a) This property follows from the hypotheses on ¥(x, ¢) and g(x), and
a proof as in that of Theorem 2 (with ¥ replaced by ¥ + Lg).

(b) It follows from Theorem S5(a) and u(0,¢) = 0 = u(l,¢) that u(x,t?) is
absolutely continuous on the interval 0 <¢ <T for each x in [0, 1].

By the Schwarz inequality,

Fu)) = I'(u—g)(t) + I'( +2/ Plulx, 1) — g(x))g(x)dx

V2 gn'?

(2.12)
< P(u-g)(t)+ I'(g) + 2l (u - £)(1)]
From (2.11),

u(x, t) = Z/O I(Y+Lg)(t)E,(t —1)dté,(x) + g(x).
n=1

From the proof of Theorem 2 (on u with ¥ replaced by ¥ + Lg), the above series
(on the right-hand side) representing u(x, t)— g(x) is absolutely and uniformly con-
vergent on -Qr- By Lemma 1(a) and (c), this is also true for the series representing

b/z[u(x t) — g(x)]. Hence, the series representing xb[u(x , 1) — g(x)]2 is also ab-
solutely and uniformly convergent on ér (cf. Knopp [13, pp. 146 and 337]). Since
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{¢,(x)} is an orthonormal set with weight function x?, it follows that

Pu-gn=3 [/t [(¥+ Lg)(D)E. (1 - 1) a’r]z.
| Jo n n

By Lemma 1(c),

2 2 [/ 2
I'(u—g)(t) < L?tlsprl (¥ + Lg)(t)] > [/0 E (t- ‘r)dr]

< [ sup I*(¥ + Lg)(r)J ix;z.

0<1<T =1
From (2.12),
P(u)(t) < sup 1 <~P+Lg><r>]21 +1(g)
n=! i (2.13)
2 1/2
+2([021:£r1 (¥+ Lg)(t }Zz ) [I°(g)'".

It follows from the hypotheses on ¥ and Lg that

sup 12(‘P+ Lg)(1) < o0.
0<t<I’

Because O(4,) = O(nz) for large n, we have from (2.13) that Iz(u)(t) < k, for t

in [0, .
By (2.9) (with W(x, t) replaced by ¥(x, ¢) + Lg(x)),

ZI (¥ + Lg)(0) +Z/ I(Y)(DE,(t—1)dtg,(x). (2.14)

n=1
Let ¢, in (0, T] be fixed. By Lemma 1(a) and (c), the right-hand side of (2.14)
b2 converges absolutely and uniformly on [0, 1] to x”/ 2u,()c, ty) -
Hence, the series representing xbut2 (x,ty) is absolutely and uniformly convergent
on [0, 1]. Integrating this series representing xbuf(x, t,) with respect to x and
using the orthonormality of the sequence {¢,(x)} with weight function x%, we have

multiplied by x

2

Pu)(t,) = Z[w’ + Lg)(0)E, (1,)1’

i::[/ I( (1 —1’)d1’]2

[/ I( T)E, (1, — ‘r)a"t] [,(¥Y+ Lg)O)E, ()]

From Lemma 1(c) and En( t,) < 1 for all positive integers 7, the first term on the
right-hand side is bounded by / 2(‘l’+ Lg)(0). From Lemma 1(a) and Condition (B),
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the second term is bounded by

o0 L, 2 o
k,k6z[/0 En(to—r)dr] <k S A2
n=1 n=1

By using the Schwarz inequality on the third term, we obtain

P(u)(ty) < (¥ + Lg)(0) + kK, iz;z

o 1/2
+2[IA(¥ + Lg)(0)] ‘/2[ 2_: ] .

We note that the right-hand side is independent of ¢,. Hence, I’ (u,)(t) is bounded
n (0,I7. As for Iz(ul)(O), it follows from Lemma 1(e) that for x in (0, 1),

u,(x,0)=> 1,(¥+Lg)0)4,(x)

n=1
=W¥(x,0)+ Lg(x),
from which,
I*(u,)(0) = I'(¥ + Lg)(0).

Thus, Iz(ut)(t) < kg on [0, T'] for some constant kg .
(c) Since fu = u, — ¥, it follows from the Schwarz inequality that

I (eu)(t) = I*(u, - ¥)(1)
= PP(u)(t) + I (P)(1) - 2/1 xu(x, ¥(x, 1) dx

< P(u)(@0) + T (¥)(0) + 20 () () I () ()]

Then from Theorem 5(b) and Condition (A), 12(€u)(t) < oo on [0,T7].

3. Nonhomogeneous boundary conditions. In this section, we assume |b| < 1; we
also assume as in Sec. 2 that g(x), Lg(x), and ¥(x, t) satisfy the hypotheses of
Theorem 3, except that g(0) =0 = g(1). Let us consider the linear problem, (1.1),
subject to

ux,0)=gx) for0<x<1,

3.1
u0,6)=r () and u(l,t)=r(t) for0<t<TI <oo, (3-1)

where r,(f) and r,(¢) are in CZ[O, oo) such that r (0) = g(0) and r,(0) = g(1).
THEOREM 6. The problem (1.1) and (3.1) has a unique solution.
Proof. Let us consider the problem,
Lw(x, t)=—[¥(x, )+ Ls(x, )] inQr,
w(x,0)=gx)—s(x,0)for0<x <1, w0,))=0=w(l,t)for0<t<T,

where
s(x, t)—(l—x “)r (t)+x rz(t)
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It follows from the assumptions on ¥(x, t), g(x), r,(t), and ry(¢) that ¥(x, 1) +
Ls(x,t) and g(x)— s(x, 0) satisfy the conditions for ¥(x, t) and g(x), respec-
tively, in Theorem 3. Hence, w(x, ¢) exists and is unique. It follows that u given
by u =w + s is the unique solution of the problem (1.1) and (3.1).

We note that the solution # in Theorem 6 has the properties stated in Theorem

5.
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