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Abstract. This paper investigates all possible geometric instabilities, such as buck-
ling, barrelling, surface wrinkling, and orange-peel mode instabilities, for a finite
length transversely isotropic circular cylinder under axisymmetric tension or com-
pression. The constitutive responses of the cylinder can, in general, be transversely
isotropic, compressible, and elastic-plastic; and no existence of rate potential is as-
sumed. A general procedure is given to calculate the smallest critical ratio of radius
to length, (a/L)cr, of a circular cylinder that separates the buckling (antisymmetric)
and the barrelling (axisymmetric) instabilities. Numerical results show that (a/L)CI
is very sensitive to the constitutive model used. The stress at the maximum load
point is obtained as the first term of the axisymmetric long wavelength limit; the Eu-
ler buckling formula is obtained as the first term of the antisymmetric long wavelength
limit. Three different types of surface instabilities are considered. The eigenstress for
the longitudinal short wavelength limit corresponds to that for the wrinkling insta-
bility of a halfspace under plane deformations; the circumferential short wavelength
limit is always possible; and the longitudinal and circumferential short wavelength
limit, which corresponds to the surface instability with an "orange-peel" appearance,
is available along the tensile elliptic-parabolic boundary. Numerical results show
that eigenmodes of n > 2 (where n is the circumferential wave number) can be the
first bifurcation encountered under tension depending on the geometric ratio, a/L.
However, such eigenmodes will not be the first possible bifurcation under compres-
sion unless the ratio of the incremental transverse shear modulus to the incremental
longitudinal shear modulus drops below, approximately, 0.25.

1. Introduction. It is well known that localization of deformation in solids can be
understood as a result of material instability (Rudnicki and Rice [21]; Rice [17]).
In particular, the bifurcation analysis by Rudnicki and Rice [21] suggests that strain
localization in rocks under axisymmetric compression appears relatively late in the
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post-peak applied stress regime; however, Santarelli and Brown [22] reported that
localization is often observed preceding the peak applied stress.

Recently, Chau [7] argued that geometric diffuse modes, such as bulging, necking,
and surface rumpling, may trigger nonhomogeneous deformation and, eventually,
lead to pre-peak localization of deformation reported by Santarelli and Brown [22].
In order to further understand this possibility, Chau [8] examined the antisymmetric
diffuse modes, such as buckling, of a finite circular cylinder under axisymmetric
tension and compression. However, so far only the axisymmetric (Chau [7]) and the
antisymmetric (Chau [8]) diffuse bifurcation modes have been investigated.

In this study, we consider a bifurcation analysis to obtain all the possible diffuse
mode bifurcations for a finite circular cylinder which is characterized by the most
general transversely isotropic model. The special cases of the general results of this
analysis include both the axisymmetric and the antisymmetric solutions obtained
previously by Chau [7, 8].

In an attempt to predict whether buckling or barrelling occurs first under com-
pression, Davies [11] compared the bifurcation conditions for the barrelling and the
buckling instabilities of a finite cylinder. Davies' work [ 11 ] is a continuation of the
theoretical works obtained by Simpson and Spector [24, 25], and by Davies [10],
However, due to mathematical difficulties, Davies [11] compared only the critical
stretch for the barrelling of a circular cylinder to that for the buckling of a square
cylinder. The present bifurcation analysis may be used to predict whether the first
bifurcation of a finite circular cylinder under compression is buckling or barrelling.
The experimental observations by Beatty [3] for rubber seem to suggest that there is
a critical geometrical ratio that separates the barrelling bifurcation from the buckling
bifurcation for a cylinder. However, this conjecture has not been proved conclusively.
Furthermore, Levinson [15] and Davies [10] argued that Beatty's experimental results
may be due to end friction appearing between the end of the cylinder and the testing
apparatus. Nevertheless, we attempt, in this study, to obtain such a critical geomet-
ric ratio by solving the axisymmetric and the antisymmetric eigenvalue equations
simultaneously.

Another motivation of the present analysis is to provide the bifurcation conditions
for surface instabilities, including the parallel wrinkle mode and the "orange-peel"
mode, of a circular cylinder observed experimentally by Rittel et al. [ 19] under ten-
sion and by Rittel [18] under compression. Such surface instabilities of a circular
cylinder are obtained from the short wavelength limits of the general eigenvalue
equation. Three different short wavelength limits are considered: (1) the longitudi-
nal short wavelength limit; (2) the circumferential short wavelength limit; and (3)
the longitudinal and circumferential short wavelength limit.

2. Mathematical formulation. We consider a circular cylinder of radius a and
length L under initial axisymmetric deformations. The current configuration is
adopted as reference and the subsequent deformation of the material is characterized
by the following time- and rate-independent incrementally linear solid:
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°rr = ^11 Drr + + C{iDzz, ggg = Cl2Drr 4- CuDee + C^Dzz,

°» = C3l(Drr + Dg$) + C33D„, °re = {Cn-Cn)Dre, (2.1)

ha = 2C44Dza (a = r, 6)

where (r, 6, z) are the cylindrical polar coordinates, rr is the Cauchy stress tensor,
the superposed V denotes the Jaumann or co-rotational rate (Prager [16]), and D
is the rate of deformation tensor.

The constitutive law, (2.1), is motivated by its possible application to frictional and
dilatant (i.e., compressible) solids, such as brittle rocks. In general, the constitutive
response of the materials described by (2.1) can be transversely isotropic, compress-
ible, and elastic-plastic. Furthermore, plastic normality (or associate flow rule) does
not hold for this class of materials since C13 ̂  C31 . An important consequence of
this "non-normality" in (2.1) is that the variational structure of the governing in-
cremental field equations is lost, that is, rate potential does not exist in the solids.
Consequently, as discussed by Chau and Rudnicki [9] and by Chau [7], Hill's [12-14]
theory of bifurcation and uniqueness cannot be applied. Furthermore, note that the
incremental material parameters in (2.1) can, in general, change with the varying
applied stress. That is, the material described by (2.1) is only incrementally linear.

The number of incremental constitutive parameters may be reduced to five if
the constitutive response of the transversely isotropic elastic-plastic solids admits a
rate potential, that is, C13 = C31 . Rudnicki's model [20], for pressure-sensitive
dilatant materials, can be recovered as a special case of (2.1) by using the following
identifications:

Cu = Gt + 9K/4, C12 = 9K/4 - Gt, Cn = 9Kv/2,
C3l = 9Kr*/4, C33 — E + 9Kr*v/2, C44 = G/;

where E, Gt, Gt, K, r*, and v are the incremental Young's modulus, the longitu-
dinal shear modulus, the transverse shear modulus, the in-plane bulk modulus, the
pressure-sensitive factor, and the effective Poisson's ratio, respectively. For the phys-
ical meanings of these parameters, we refer to Rudnicki [20] or Chau [7]; they also
discuss the limitations of the constitutive models having the form of (2.1).

It will be helpful to use the definitions of the instantaneous tangent modulus (£tan)
and the stress at maximum load point (<7m_ax) in later discussions for the axisymmet-
ric and antisymmetric long wavelength limits. Hence, we will derive £tan and a™ax
next before our discussion on the equilibrium equations and the boundary conditions
for the incremental velocity field.

If we set the Jaumann rates of arr and agg to zero in (2.1), the following instan-
taneous tangent modulus relating the Jaumann rate of a,, and Dzz is obtained:

P ^33(^"l2 + ^n) ~ 2^31 ^13 ,y ,,
tan f I f ' (2-3)

Hi "1~ 12

Under an axisymmetric homogeneous state with nonzero axial stress aand con-
stant lateral stresses a = offf), the condition for the maximum load point is (Chau
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[7]):
Kz = he = Kr = (2-4)

(where t is the nominal stress rate tensor). This condition yields three equations for
Dn, Dgg , and Z)rT. A nontrivial solution for D yields the stress at maximum load
point as

max £*33(£*12 ^1 1) ~ ^^31 ^13 arr^33 ~ ^31) (J
2 (C13 + 0 * (°

Note that the instantaneous tangential modulus equals the stress at maximum load
point (i.e., Etan — a™ax) only if orr = 0 and 2C,3 = Cn + C|2 . The requirement
corresponds to v = 1/2 in terms of Rudnicki's model [20] and this is consistent with
the observation by Chau and Rudnicki [9]. More specifically, E{an — er™ax is true
only for incompressible materials.

A cylindrical polar coordinate system (r, 6, z) with the origin resting on the
bottom of the cylinder and with the axis of symmetry as the z-axis is used. The
ends (z = 0, L) are loaded by a prescribed uniform velocity field in the z-direction
with no shear traction; and a constant lateral stress is applied in the r-direction with
no shear traction on the curved boundary (r = a). We assume that the circular
cylinder deforms homogeneously up to the current state and further homogeneous
deformation is always possible for the next increment of deformation. We look for
an alternative inhomogeneous solution that satisfies the continued equilibrium and
the boundary conditions.

Note that, for hyperelastic solids, the existence of an initial homogeneous state is
only guaranteed for materials satisfying some particular constitutive hypotheses; for
example, see Sec. 3 of Simpson and Spector [24], However, for the class of material
considered here, we do not attempt to prove the existence of this homogeneous state
of deformation.

Rewriting (2.1) in terms of the rate of nominal stress and substituting the result
into the equilibrium rate equations, V • t* = 0 , yields

c„§7 + <c„ - + C«C + [Cl3-C„ + C44(l-s)]|i = o,

C + (C -C )d^V + (i+s)d ve + _q +£ (1-J)]1 d vz _ q
nrdd 1 11 n> dr Oz^ <-u + l44u s>irdedz u>

(C„ + 2C44)g + [C,J- C„ - 2+ c„(l-i) I?fk + IA(r£i
r 86 rdry z

= 0,

(2.6)
where

_ 1 d(rv*) 1dvl dvl* = ,„)K2CU), + + (2.7)

and Q. = (L - LT)/2 is the antisymmetric part of the velocity gradient tensor. The
superscript * denotes the difference between the nonuniform and the homogeneous
solutions.
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The boundary conditions governing the difference in the incremental solutions are

.* dv* dv* .* 1 dv* dVn
tZr ~ ^*4~(Trr^~dr~ + *~''i4~dz~ = tzS ~ ^44~°rr^~r~dd^~^^44~dz~ = ^

on z = 0, L; and

.* dv* v* 1 dv*a dv*
trr = Cll-Qf + (Cn + (7rr) f + +(C13 + 0-5f = 0'

(2.8)

lr0 ~ ,(C,1 ^12) °n c12)^ = 0, (2-9)

= (^-0-5^ + ^44-^=0,dvr
~dz ' ~44 dr

on r = a. Note that boundary conditions are written in terms of the incremental
velocity field v*, the constitutive tensor C, and the current stress state. Then the
bifurcation analysis requires solving the three coupled partial differential equations
(2.6) and boundary conditions (2.8) and (2.9) for v* .

3. Method of solution. The method of solution for the continued equilibrium
equations for a transversely isotropic solid, characterized by Rudnicki's model [20],
has been discussed by Chau [8]. The method is generalized here to the bifurcation
analysis for the most general transversely isotropic solids described by (2.1). Two
velocity potentials O and 4* are introduced such that

S20 1 * 1 <92<D d¥
H 5 Vp — —drdz r dd 6 r dddz dr

vz = - Cu
Ci3 + c44(l - s)_

V,4>- C44(l+s)

LC13 + C44(1-S)J
«92<D (3.1)

where
1 d ( d \ \ d2V, = -— [r— . (3.2)

1 r dr \ dr J r2 qq2
In order to satisfy the equilibrium equations, (2.6), we have the following governing
equations for O and 4*:

<3-3»

and v. and u2 satisfy

Av* + Bv] + C = 0 (a = 1,2), (3.4)

where A, B , and C are defined as
A = CnC44(l - s), B = C„C33 - C13C31 - C44(C13 + C31) + C44(C31 - C13)s,

C = C33C44(1 + s),
(3.5)

and ^3 is defined as
^3 = [2C44(1 + s)/(Cn — C12)]'/2 . (3.6)
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As remarked by Chau [8], there exists a close resemblance between (3.4) and the
characteristic shear band equation. More specifically, va satisfies the same charac-
teristic equation for the normal to the shear band (see Chau [7, 8]). The solutions of
(3.3) can, therefore, be classified into three different regimes: elliptic (consisting of
the elliptic imaginary and the elliptic complex subregimes), hyperbolic, or parabolic.
The classification of regimes for Rudnicki's model [20] has been given by Chau [7],
Briefly, the different regimes are

(1) Elliptic Imaginary: B2 -4AC > 0; AC > 0; B > 0;
(2) Elliptic Complex: B2 - 4AC < 0; AC > 0;
(3) Hyperbolic: B2 - 4AC > 0; AC > 0; B < 0; and
(4) Parabolic: AC < 0, or simply |s| > 1 .

The boundary conditions, (2.9), become (in terms of <J> and VF)

' d2 \ dO
r.v' + y>i?aF + y'

d3q> d_ / l
dzdr2 + dr\r 86

= 0,

d _ „ d3 \ ^ .,1 d2xV
l^v' + ywj®+y'^ = 0' <">

a (i a'®\ , v fi"
3dr \r dddz I 1 \r dr r2 qq1 I 8 gr2

on r = a \ and, where

^11 (^13 + °rr) v _ ^44^13 + °rr>^ + S)V = C 4- n L!-  rj^— Y — 
1 12 + - C13 + C44(l -s)' 2 C)3 + C44(l -5) '

Y-C -C -a Y =-—ii^44iLliI_
- 12 4 C13 + C44(l-5)' (3.8)

Y = 44 — ^3 zz—_ _ a Y = C (1 -s)-ar* C13 + C44(l - s) ^ ^

Yj = 2^11 ~ ^12 ~~ ̂ °rr) ' *8 = 3(^11 ~~ ̂ 12) •

4. Diffuse bifurcation modes. We consider the following eigenmodes for the veloc-
ity potentials:

<I> = <p{r) sin(^z) cos(nd), = y/(r) cos(fyz) sin(«0), (4.1)

where t] = mii/L, with m, n = 1,2, ... . Note that the axisymmetric modes
correspond to n = 0; and the antisymmetric modes correspond to n = 1 . The
end boundary condition, (2.8), is satisfied exactly by the bifurcation modes (4.1).
Substitution of (4.1) into (3.3) gives

where

(V2 + r,2v2)(V2 + r,2v2)(p = 0, (V2 - if2i/3V = 0, (4.2)

= (43)
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The general solutions for <p and y/ are the Bessel function and the modified Bessel
function of order n , respectively. Thus, the general solution for (p is

<P=AlJn{^[r) + A2Jn{r]P2r), (4.4)

where Jn(x) is the Bessel function of order n , and the constants Al and A2 are,
in general, complex. Substitution of (4.4) into the first of (4.2) leads to (3.4) again;
hence, the classification of the parameter regime remarked earlier also applies here.
For i/j > 0, the general solution form for yj is

V = A3 (4-5)

where In{x) is the modified Bessel function of order n , and A} is a real constant.
As expected, substitution of (4.5) into the second of (4.2) gives (3.6) again.

Thus, the boundary conditions, (2.9), in terms of (p and y/ , become

tl{Y.V2-ti2Y2)q> + Y,
d2 <p dt]—y + n-j-
dr2 dr (?)

= 0,

Y&2-*2ri£)v- ni»7 = °. (4-6>

.. d (<p\ v ( 1 dyj n2 \ v d2y/ .-1"Y'Tr I?) + " 7") " r'77 = °'

on r = a, where the F , /' = 1, ... , 8, are given in (3.8) and V2 is defined in
(4.3). Since the calculation for the eigenvalue equations is similar to that for the
axisymmetric diffuse modes considered by Chau [7], only the results are summarized
briefly. The long wavelength limit and the short wavelength limits will be considered
separately in later sections.

As mentioned earlier, the elliptic regime can further be subdivided into the elliptic
complex (EC) subregime, where the roots for (3.4) are complex conjugate pairs, and
the elliptic imaginary (EI) subregime, where the roots for (3.4) are pure imaginary.
In the elliptic complex subregime, the solution forms for tp and y are

<p = A{Jn(tivr) + AxJn{r}ur), y/ = A3In{rfu3r), (4.7)

where the superposed bar denotes the complex conjugate. The complex conjugate
pairs of va are v = p + iq and V — p - iq \ p and q are defined as

p2-q2 = -B/(2A), p2 + q2 = (C/A)1'2 , (4.8)

where A, B , and C are given in (3.5). The eigenvalue equation, obtained by satis-
fying (4.6), is

Wt Im[7(i/)Z(i/)] + W2 \m\Z{y)X{v)] + W3 lm[X(i/)Y{v)] = 0, (4.9)

where Im(- • •) denotes the imaginary part of (•■■)• The real functions, W{, W2,
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and W}, are defined as

2 2y

(v3y)

I (/Ay)W. = 2nv,Y, nK ,2 3 6

IV, = v] 2Jl
v3y

(4.10)
'„_,(f3y) + l*,r) -2

-^MtW + Uvll).
with y = rja \ and Y3, Ye, Y1, and Yg are given in (3.8). The complex functions
X(v), Y(v), and Z(u) are defined as follows:

X{y) = 2[2Y2 + u2(2Yx + Y3)]Ja(vy) - v2Y3[Jn_2{vy) + Jn+2{uy)\,

Y(u) = y{y2YA + Yi)[Jn_\{vy) - Jn+X{vy)], ^

Z(v) = 2nY3is2 12^^~ + ~ J-W\
3 I (vy)2 J

where Y, , Y2 , Y3 , Y4 , and 75 are, again, given in (3.8).
For the elliptic imaginary subregime, the roots of i>a are ±ip and ±iq and the

solution forms for (4.2) are

f> ̂ AlIn('1Pr) +A2In(tWr)> V = AiIn^Uir)' (4'12)
where p and q are defined as

p2-q2 = (B2-AAC)l/2/A, p2 + q2 = B/A. (4.13)

The parameters A, B, and C are, again, given in (3.5). The eigenvalue equation
for the (EI) subregime is

Wx[Q{p)R{q)-Q{q)R{p)]+W2[P{q)R{p)-P{p)R{q)]+W3[P(p)Q{q)-P{q)Q{p)] = Q,
(4.14)

where Wx , W2 ,and W3 have been defined in (4.10). The functions P($), Q(g), and
R(£) are

P(Z) = 2[(27, + 73)<f - 2Y2]In(Zy) + £2Y3[In_2(Zy) + In+2{(y)],
fi(0 = C(r4t2 - t5)[/„_,(^) + /K+I((y)h (4 ,5)

R(0 = 2rt£2Y3 i„-i(Zv) + in+iiG7) 2in{iv)
& ~ (ir)2

In addition, geometric diffuse modes can be formulated in both the hyperbolic and
parabolic regimes, in which shear band bifurcation also becomes possible, as shown
by Chau [7, 8], However, since shear band mode is expected to be the dominant
mode of failure and we are motivated by the possibility of diffuse mode triggering
localization, only the elliptic diffuse modes (which occur preceding the shear band
modes) are emphasized in this study.
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5. Barrelling and buckling modes. Although there is no rigorous proof to the con-
jecture that a critical aspect ratio (a/L)a , which separates the barrelling and buckling
bifurcations, exists, we attempt in this section to calculate (a/L)cr for some specific
material parameters. The term "barrelling" is used here to represent all the axisym-
metric bifurcations (n = 0) while "buckling" is used to signify all the antisymmetric
ones (n = 1). That is, the longitudinal wave number, m, defined in (4.1), is not
necessarily equal to one. More specifically, for a/L> (a/L)a barrelling will be the
first geometric bifurcation, while for a/L < (a/L)CT buckling becomes first avail-
able. We assume in this section that GJGl is close to 1 to exclude the possibilities
of bifurcations with n > 2. As shown in the next section, higher circumferential
bifurcation modes (n > 2) also become possible under compression if GJGl is not
close to 1. Setting n = 0 into (4.9) or (4.14) gives, symbolically,

Elm(a/L,a,C) = 0 (5.1)
as the eigenvalue equation for barrelling for either the EC or the EI subregime. Evi-
dently, this condition is a function of the geometrical ratio (a/L), the Cauchy stress
tensor (or), and the constitutive tensor (C). Similarly, for n — 1 , (4.9) or (4.14)
provides the following eigenvalue equation,

2?buck(a/L,a,C) = 0, (5.2)
as the buckling criterion for either the EC or the EI subregime. If the constitu-
tive constants are known, we can solve (5.1) and (5.2) simultaneously to yield the
bifurcation stress and the critical geometrical ratio (a/L)a. This procedure has
been used by Chau [8] to obtain the range of (a/L)cr for Rudnicki's model [20]:
1.8 < mn(a/L)cr < 2.3. His numerical results also show that (a/L)CT increases
slightly with the values of the instantaneous tangent modulus (E/G/), the ratio of
transverse shear modulus to longitudinal shear modulus (GJG^ , and the magnitude
of the compressive confining stress (—^) at the instant of bifurcation (see Fig.
1 of Chau [8]).

Furthermore, due to the nonlinearity between (crrz — crrr)/(2Gl) and y involved
in the eigenvalue equations, there may exist more than one root for (a/L) that
satisfies both (5.1) and (5.2) simultaneously. Such a situation was observed in Fig.
1(c) of Chau [8] for decreasing Gt/Gl. Further effects of the decrease of Gt/Gl on
the general eigenmodes will be discussed in the next section.

More generally, this approach can be applied to evaluate the critical geometrical
ratio for other materials by specifying (2.1) appropriately. For example, if we as-
sume that rubber is incompressible, pressure-insensitive, isotropic, and highly linear
elastic (all the constitutive parameters keep their elastic value), we have, in terms of
Rudnicki's model [20], K —* oo, r* = 2v = 1 , and Gt — Gt = G; thus E — 3G. For
these particular values, the solution for (5.1) and (5.2) is in the elliptic imaginary
subregime, and it is azz/(2Gl) = -0.8482 and mn(a/L)cr « 26. Figures 2 and 7
of Beatty [3] suggest that both the observed buckling and barrelling modes appear as
the longitudinal mode with m = 2 (note that vr is proportional to cos(mnz/L)).
Probably, the bifurcation mode with m = 2 occurs (instead of m — 1) because of
the unavoidable end friction. Therefore, for highly linear elastic materials we have
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(L/a)cl « 0.2417 for m = 2; but it appears to be too small comparing to the exper-
imental observations for natural rubber: 4.39 < (L/a)cr < 4.62 (Beatty and Hook
[5]); and 3.01 < (L/a)CT < 3.88 (Beatty and Dadras [4]). Details about the evo-
lution of the constitutive parameters under external loads are required before more
elaborate comparison can be made. However, we should note that the numerical
results of Chau [8] give 2.732 < (L/a)CT < 3.49 for m = 2; surprisingly, this result
is about the same as those values reported by Beatty and Dadras [4] for gray natural
rubber. It seems to suggest that Rudnicki's model [20] may be useful in describing
the behavior of rubber. Nevertheless, (L/a)cr appears to be quite sensitive to the
constitutive model used.

The analytic forms of the axisymmetric (n = 0) and the antisymmetric (n — 1)
long wavelength limits (y —► 0) are considered here. For small argument, the Bessel
and the modified Bessel functions can be expanded into series form (Abramowitz
and Stegun [1]):

J(x) = f{-l)k{x/2r2k 7(x) = f {x/2)"+2k (53)
nK ' ^ k\T(n + k+ 1) ' »W ^k\T(n + k + 1) ' [ 'k=0 v ' k=0 v '

The axisymmetric long wavelength limit (y —> 0 and n = 0) for the eigenvalue
equation of the EC subregime can be obtained by substitution of (5.3) into (4.9) as

CY4(2Y, + y3) + 2Y2(AY5 - BY,) = 0. (5.4)

Substitution of (3.5) and (3.8) into (5.4) gives two roots:

= CX + °(y2) > °zz = 2(C13 + C44) + arr + 0{y2). (5.5)

However, the second of (5.5) gives s > 1 for positive C13/C44; thus, the second
solution is in the tensile parabolic regime. Therefore, the only root for the axisym-
metric long wavelength limit in the elliptic regime is the first of (5.5). Note that
the first term of this solution is equal to the stress at maximum load point given in
(2.5). A special case of the first of (5.5) has been obtained previously by Chau [7]
for Rudnicki's model [20] although a different method of solution was used. More
specifically, instead of the velocity potentials, (3.1), Chau [7] used the method of
stress rate potentials.

Substitution of (5.3) into (4.14) again yields (5.4) as the axisymmetric long wave-
length limit for the EI subregime. We should also remark, without showing the detail,
that (5.4) continues to be valid in the hyperbolic regime as the axisymmetric long
wavelength limit.

Similarly, setting n = 1 and substituting (5.3) into (4.9) gives the antisymmetric
long wavelength limit for the EC subregime for small y :

2
AL, + Z^L2 + 0(y2) = 0, (5.6)

where L, and L2 depend only on the stress state and constitutive parameters. By
setting an = 0 in (5.6), we found that the only root for L, = 0 is a,, = 0. This
suggests that azl is of the order y2. Using this information and reconsidering the
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root for (5.6), we have

+ (">

Note that the first term on the right side of (5.7) equals Euler's buckling formula if
the elastic Young's modulus is replaced by the tangent modulus; this result was first
remarked by Chau [8] using Rudnicki's model [20],

In general, for nonzero on , a finite solution (i.e., independent of y) exists for the
antisymmetric long wavelength limit, (5.6) (e.g., see Chau [8]). Due to the nonlin-
earity of (5.6) in s when arr ^ 0, we are unable to obtain a general explicit form
for the bifurcation stress. However, a special form of such a finite antisymmetric
solution had been reported by Chau [8] for Rudnicki's model [20] when K —► oo;
and the finite solution of Chau [8] is the same as the corresponding solution obtained
by Chau and Rudnicki [9] for plane strain deformations.

A similar expansion for (4.14) gives (5.6) again; therefore, the antisymmetric long
wavelength limit continues in the EI subregime. Furthermore, one can also show that
(5.6) is valid in the hyperbolic regime.

The physical meaning for the long wavelength limit for n > 2 is not obvious.
Actually, the numerical results (given in Sec. 7) suggest that no long wavelength limit
exists for n > 2.

6. Surface instabilities. Three different short wavelength limits are considered in
this section, namely (1) surface wrinkling with short longitudinal wavelength (y —► oo
with n fixed); (2) surface undulation with short circumferential wavelength (n —> oo
with y fixed); and (3) surface rumpling with both short longitudinal and circum-
ferential wavelength (n —► oo and y —► oo). The first case has been considered
previously by Chau [7, 8] for the axisymmetric case (n — 0) and for the antisym-
metric case (n — 1) (see also Simpson and Spector [26]). For the second case, only
the circumferential wave number approaches infinity; this short wavelength bifurca-
tion can be visualized by the appearance of the Devil's Tower National Monument
in Wyoming (e.g., see Shimer [23]). For the third case, both the longitudinal and
circumferential wave numbers approach infinity; this type of instability has been
observed experimentally and is called "orange-peel" mode (Rittel [18]; Rittel et al.
[19]).

6.1. Longitudinal short wavelength limit (y —► oo). To consider the short wave-
length limit (y —> oo with n fixed), we can use the following asymptotic form of
J„(x) and In{x) as x -+ oo (Abramowitz and Stegun [1]):

^.(jc) » [2/(ttjc)]1/2 cos(x - «tt/2 - 71/4), In(x) ~ ex/{2nx)l/2. (6.1)

Note that the asymptotic form of In{x) is independent of the order as x —► oo . In
addition, for x —► oo, the following relations:

Jn-2(x) ~ Jn+2(x) ~ (6-2)

can be shown by using (6.1). Substitution of (6.1) and (6.2) into (4.9) gives the short
longitudinal wavelength mode for the EC subregime

(^C)1/2[75(71 + y3) - Y2Y4] + Y2y5A + Y4[C(Yt + Y3) - Y2B] = 0. (6.3)
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Substitution of (3.5) and (3.8) into (6.3) gives

[CnC13(l - 52)]1/2{(C31 + 2sC44 + arr)(Cl3 + aj - CUC33}

-2CnC3A(l-s)[C44s + arr]-£-)=0.
(6.4)

2 C44

For orr = 0, (6.4) further reduces to

C,
CTZ2

'13

c c - c c^ 11 *^33 13 31
1 + cr

(C C )'/2
v- n^'33'1

r c - c c11 33 13 31
zz

44 1 ^zz

2C44 - gzz
2 C., + a.

1/2
. (6.5)

For an incompressible solid obeying normality subjected to zero confining stress,
Chau [7, 8] remarked that (6.5) can be simplified to the bifurcation condition for an
incompressible half-space satisfying normality (Biot [6]; Bassani et al. [2]). Actually,
(6.4) can be shown analytically to be equal to the condition for surface bifurcation of
a half-space regardless of the detail of its constitutive response; however, the proof
will not be given here for the sake of conciseness. Employing the framework of
hyperelasticity, Simpson and Spector [26] have shown that the reason is that this bi-
furcation corresponds to failure of the Complementing Condition for the appropriate
half-space boundary value problem. This result has also been described and used by
Davies [11].

As expected, (6.4) is independent of the circumferential wave number, n , because
for very short wavelength the curvature of the curved surface plays no role. Neverthe-
less, this provides an elegant proof of the conjecture that the short wavelength limits
for the axisymmetric (n = 0) and the antisymmetric (n = 1) modes are indeed the
same as suspected by Chau [8]. In terms of Rudnicki's model [20], the dependence
of the eigenstress for this short wavelength limit on the transverse isotropy, the com-
pressive confining stress, and the in-plane compressibility were examined in detail by
Chau [8],

To obtain the same short wavelength limit (m —> oo , with a/L and n fixed) for
the EI subregime, we can substitute (6.1) into (4.14). Again, (6.4) is obtained. Note
that similar kinds of longitudinal short wavelength limits have been shown available
in both the hyperbolic and the parabolic regimes by Chau [7] for the axisymmetric
mode (n = 0) and by Chau [8] for the antisymmetric one (n — 1).

6.2. Circumferential short wavelength limit (n —> oo). The appearance of this
kind of surface instability is similar to the parallel wrinkles observed by Rittel [ 18]
for "extruded aluminum 1100" circular cylinders under compression. To obtain the
asymptotic form for Jn{x) and In{x) as n —► oo, we can retain only the first term
in (5.3), then apply Stirling's formula for the gamma function for large argument.
The result is

7«(x) ~ ~ (27inri/2[xe/{2n)]" (6.6)

if higher-order terms of order \/n are neglected. Note that all the Bessel functions
involved in the eigenvalue equations can be converted to Jn(x), In(x), J'n{x), and
i' (x) (the superposed prime denotes the first derivative with respect to the argument).
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Following the same procedure used in obtaining (6.6), we find

fn(x) « l'n(x) « (2nn)-ll2[xe/(2n)]"(n/x). (6.7)

Substitution of (6.6) and (6.7) into (4.9) leads to the following condition:

r3-(y7 + y8) = o, (6.8)

for the short circumferential wavelength limit for the EC subregime. Similarly, sub-
stitution of (6.6) and (6.7) into (4.14) leads again to (6.8) for the EI subregime.
Note that the same bifurcation condition is also obtained for both the hyperbolic
and the parabolic regimes for this particular limit. However, this condition is satis-
fied identically regardless of the stress level, that is, this kind of surface instability
is always possible if the end surfaces sustain no shear traction. This result seems
unable to explain the inception of the parallel wrinkles observed by Rittel [ 18] under
compression.

It is plausible that the parallel wrinkles observed are due to the end friction which
promotes bulging and tensile hoop stress. Such tensile hoop stress may eventually
lead to the type of surface undulation described in Sec. 6.1. Another possibility is that
the wrinkle instability parallel to the cylinder axis is the consequence of slipping that
may occur at the end surfaces. When slipping occurs, end friction is released. Thus,
the kind of instability considered in this section may be triggered. Furthermore, note
that (6.8) is only valid for n —► oo; however, in reality the wave number (or the
wavelength) is likely to be controlled by the grain size of the materials. Thus, for
some large but finite n a nontrivial solution different from (6.8) may exist to give a
meaningful eigenvalue equation. Nevertheless, further studies, both theoretical and
experimental, are required to clarify these possibilities.

6.3. Longitudinal and circumferential short wavelength limit (n « y —> oo). The
"orange-peel" mode of surface instability for circular metal cylinders has been ob-
served by Rittel [18] under compression and by Rittel et al. [19] under tension.
We assumed that this "orange-peel" mode corresponds to the case that both the
longitudinal and the circumferential wave number become unbounded simultane-
ously (y « n —> oo), although, as remarked by Rittel [18], the observed wavelength
should actually depend on the grain size. The evaluation of the asymptotic form
for Jn+J(nx) (similarly for In+i(nx), ... etc.) as n —> oo is not straightforward;
however, as mentioned in the previous section, we can first rewrite (4.9) and (4.14)
in terms of the modified Bessel functions of order n and their derivatives (i.e.,
Jn{nx), In(nx), J'n(nx), and l'n(nx)). Therefore, the eigenvalue equation for the
type of surface undulation in the EC subregime can be obtained by using the follow-
ing uniform asymptotic forms of Jn{nx) and J'n(nx) (Abramowitz and Stegun [1])
as n —> oo:

Jn(nx) « [4C/(1 -x2)]'/4Ai(n2,3t)n-{/\

r't \ 2r/1 2W/.r,,l/4 . ./, 2/3 -2/3J„(nx) ~ -U1 )/(40] Ai (n On

where Ai(x) and Ai'(x) are the Airy function and its first derivative, respectively;
and (2/3)C3/2 = ln.{[ 1 + (1 -x2)I//2]/x} - (1 -x2)l/2 or, equivalently, (2/3)(-£)3/2 =
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2 j /o  j
(x - 1) - cos (1/x). The variable £ should be chosen from either one of these
two definitions such that £ is real when x is positive. The asymptotic forms of
Ai(x) and Ai'(x) are (Abramowitz and Stegun [1]):

Ai(x) « j7r I/2x 1/4 exp(-|x3//2), Ai'(x) al/2x'^4 exp(-|x3/'2) (6.10)

as x —> oo . Substitution of (6.10) into (6.9) yields

J„(nx) « 5[4/(1 -x2)]1/4(^«)_1/2exp(-|«C3/2), ^

/>*) « i[(l -x2)/4]1/4(7r«)"1/2exp(-§«C3/2).

The uniform asymptotic expansions for In{nx) and l'n{nx) as n —> oo are (Abramo-
witz and Stegun [1]):

In(nx) « (27i«)_1/2(l+x2) 1/4exp(«/l), l'n(nx) « (2nn) 1/2(l+x2)1/4x 'exp(«A),
(6.12)

where X = (1 + x2)1/2 + ln{x/[l + (1 + x2)1^2]}. Substitution of (6.11) and (6.12)
into (4.9) gives the following condition:

Y^Y,[2(4AC - B2)( 1 + v])]Xll[(A + B + C)/^]1/4

+ [(4AC - b2){ 1 + Z))]1/2{r3r6(y, + y3)

+ [^8(1 + "3 ) + - *3) - W + ^3)]}

+ (1 - D)X'2{Y^Y(1[2A{Y2 - y3) -B(Yl + y3)]
- [Y,(i + V2) + r7][2y4c(y, + y3) - b[y5{yx + y3) + y4(y2 - y3)]

+ 2y5a(y1 - y3)]} = o,
(6.13)

where D — (2A + B)/[2AlI2{A + B + C)1/2] for the EC subregime. For the same
kind of short wavelength limit in the EI subregime, (6.12) is substituted into (4.14);
the resulting eigenvalue equation for the EI subregime is found equal to (6.13) if
(4AC - B2) and (1 - D) are replaced by |4AC - B21 and |1 - D\ respectively.

Numerical results suggest that the root of (6.13) only appears near the tensile
elliptic-parabolic (E/P) boundary as 5 approaches 1. If we set (1 - s) —> 0 for
nonzero a, we find that the first-order term of (6.13) is satisfied identically in the
EI subregime. This result can only be applied to explain the observation by Rittel et
al. [19] under tension but not the orange-peel mode observed by Rittel [18] for cast
aluminum under compression.

The observed orange-peel mode under compression may be the result of the end
frictional effect. In particular, if bulging occurs due to the end friction, tensile hoop
stress may be developed such that (6.13) is satisfied near the tensile E/P bound-
ary. Further studies including the end frictional effects should give insight to such a
possibility.

7. Numerical results for the elliptic diffuse modes. The numerical results for the
general eigenvalue equation, (4.9), in the EC subregime are considered in this section.
Rudnicki's model [20] is used; r* and v are related to the friction coefficient, n,
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a
<N
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-1.0

Fig. 1. Eigenvalue surfaces in the elliptic complex subregime for 0 <
n< 5 with n = p = 0.4, GJG, = 0.75, G,/K = 0.2, arr = 0, and
E/G[ = 0 (at peak stress).

and the dilatancy factor, /?, of the Rudnicki-Rice model [21] as given by (3) of
Chau [7]. Only the first six circumferential waves, i.e., 0 < n < 5, are evaluated
here, although calculations involving higher bifurcation modes (n > 5) present no
additional difficulty.

Figure 1 is a typical plot to illustrate the eigenvalue surfaces for n < 5. Under
tension (s > 0), the lowest possible eigenmode is no longer restricted to either the
axisymmetric (n = 0) or the antisymmetric (n = 1) one as concluded by Chau [8].
Instead, higher circumferential bifurcation modes (n > 2) may become the first pos-
sible instability as y increases. More specifically, if a/L increases such that mna/L
is larger than 5, the first possible bifurcation mode will be of wave number n >2.
However, under compression (s < 0), the first possible bifurcation remains either the
axisymmetric (« = 0) or the antisymmetric (n = 1) because the bifurcation modes
with n >2 require a higher compressive stress level. The eigenvalue surfaces, which
only combine the lowest eigenstress of modes with n = 0 and n = 1, given in Fig.
1 (a-d) of Chau [8] have been recalculated to include bifurcation modes of higher n .
However, conclusions similar to those of Fig. 1 are arrived at if G(/Gl remains close
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a

-1.0 —

Fig. 2. Same as Fig. 1 with Gt/Gl = 0.5 .

to 1. That is, only the tensile eigenvalue envelope for the lowest bifurcation stress
is affected; the compressive eigenvalue envelope for the lowest bifurcation stress re-
mains unchanged. Consequently, the new plots including bifurcation modes of higher
n will not be given here.

However, if the effect of varying GJGl is included, the prediction of the lowest
possible bifurcation stress under compression is much more complicated. Figure
2 shows an eigenvalue plot similar to Fig. 1 but with smaller value of GtjGl (=
1/2). Contrary to expectation, the antisymmetric buckling mode (n = 1), instead
of the axisymmetric bulging (n = 0), becomes the first possible bifurcation even for
short cylinders (say for y > 5). As GJGl further decreases, Fig. 3 shows that if
mna/L « 2, the first bifurcation under compression is the eigenmode with n = 2.
In addition, there are five roots for (a/L)a for y < 10; consequently, both buckling
and barrelling are equally possible as the first bifurcation depending on the exact
value of mna/L. A similar eigenvalue plot for GJGl = 1/10 is given in Fig. 4 (see
p. 242). Bifurcation modes with n = 0,1,2,3 all become possible (for y < 10)
depending on the actual dimension ratio a/L . Note, however, that all the eigenvalue
surfaces with n > 2 do not intercept at 7 = 0; thus, no long wavelength limit (y —> 0)
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Fig. 3. Same as Fig. 1 with GJG[ = 0.25 .

exists for the circumferential modes with n > 2.
In short, the ratio of the transverse shear modulus to the longitudinal shear modu-

lus (GJGj) appears to be the most crucial factor in determining the earliest possible
type of geometric diffuse mode under compression. As discussed by Rudnicki [20]
and Chau [7], Gt/G, may drop significantly from its elastic value due to the yield
vertex effect. Therefore, it is possible that bifurcation modes with n > 2 may ac-
tually become the first bifurcation but, of course, this depends on the current value
of GJGf. However, how such higher circumferential diffuse mode bifurcation may
trigger pre-peak localization merits further studies.

8. Conclusion. We have considered a general bifurcation analysis for all the geo-
metric diffuse modes for a finite transversely isotropic circular cylinder under initial
axisymmetric deformation. This study is a generalization of the previous bifurcation
analyses given by Chau [7, 8]. Both the long wavelength and the short wavelength
limits of the general eigenvalue equation are considered. The first term of the axisym-
metric long wavelength limit is found equal to the stress at maximum load point; the
Euler buckling formula is recovered as the antisymmetric long wavelength limit. In
general, a procedure to evaluate the critical geometric ratio, (a/L) , that separates
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Fig. 4. Same as Fig. 1 with GJG, = 0.1 .

the buckling mode from the bulging mode, is discussed; numerical results show that
(a/L)cT is very sensitive to the constitutive model used. The bifurcation condition of
the longitudinal short wavelength limit (y —* oo with n fixed) is the same as that for
a surface wrinkling mode of a half-space; the circumferential short wavelength limit
(n —> oo with y fixed) is always a possible bifurcation if no end friction exists; and,
finally, the longitudinal and circumferential short wavelength limit (n « y —► oo),
which is assumed corresponding to the "orange-peel" mode observed experimentally,
is always satisfied along the tensile E/P boundary.

Neither the circumferential short wavelength limit nor the orange-peel mode short
wavelength limit seems able to explain the experimental observations by Rittel [18]
under compression if the effect of the end friction is neglected. However, if bulging
due to the end friction occurs, tensile hoop stress may develop. Then, if the bifur-
cation condition for wrinkling instability of half-space is satisfied, parallel wrinkles
described by Rittel [ 18] may appear; if the bifurcation condition for orange-peel mode
along the tensile E/P boundary is satisfied, the orange-peel instability observed by
Rittel [18] may develop.
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The eigenvalue surfaces including bifurcation modes with 5 > n > 0 are evaluated
numerically for Rudnicki's model [20] to determine the lowest possible bifurcation
stress. If the effect of GJGl is not significant, the lowest bifurcation mode may be
an eigenmode with n >2 depending on the actual dimension, a/L, under tension;
while the lowest bifurcation remains either the axisymmetric (n = 0) or the anti-
symmetric (n = 1) mode under compression (in this case (a/L)a can be obtained).
Conversely, if the ratio of the transverse shear modulus to the longitudinal shear
modulus, Gt/Gt, decreases rapidly under deformation, eigenmodes with n >2 may
also become the first possible bifurcation, again, depending on the cylinder geometry.

Acknowledgments. The work in this study was carried out while the author held
a post-doctoral fellowship at Northwestern University. The author is grateful to
Professor John W. Rudnicki for helpful discussion. This work was supported by
National Science Foundation Grants No. MSM-8612876 and No. MSS-8915607 to
Northwestern University.

[i

[2

[3

[4

[5

[6
[7

[8

[9

[10
[11

[12

[13

[14
[15

[16
[17

[18

[19

References

M. Abramowitz and I. A. Stegun (eds.). Handbook of Mathematical Functions, Dover, New York,
1965
J. L. Bassani, D. Durban, and J. W. Hutchinson, Bifurcations at a spherical hole in an infinite-
elastoplastic medium, Math. Proc. Camb. Phil. Soc. 87, 339-356 (1980)
M. F. Beatty, Elastic stability of rubber bodies in compression, Finite Elasticity, 27, ASME, AMD,
1977, pp. 125-150 (R. S. Rivlin, ed.)
M. F. Beatty and P. Dadras, Some experiments on the elastic stability of some highly elastic bodies,
Internat. J. Engrg. Sci. 14, 233-238 (1976)
M. F. Beatty and D. E. Hook, Some experiments on the stability of circular rubber bars under end
thrust, Internat. J. Solids Struct. 4, 623-635 (1968)
M. A. Biot, Mechanics of Incremental Deformations, Wiley, New York, 1965
K. T. Chau, Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under
axisymmetric tension and compression, Internat. J. Solids Struct. 29, 801-824 (1992)
K. T. Chau, Anti-symmetric bifurcations in a compressible pressure-sensitive circular cylinder under
axisymmetric tension and compression, ASME J. Appl. Mech. 60, 282-289 (1993)
K. T. Chau and J. W. Rudnicki, Bifurcations of compressible pressure-sensitive materials in plane
strain tension and compression, J. Mech. Phys. Solids 38, 875-898 (1990)
P. J. Davies, Buckling and barrelling instabilities in finite elasticity, J. Elast. 21, 147-192 (1989)
P. J. Davies, Buckling and barrelling instabilities of nonlinearly elastic columns, Quart. Appl. Math.
49, 407-426 (1991)
R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids 6,
236-249 (1958)
R. Hill, Bifurcation and uniqueness in non-linear mechanics of continua, Problems of Continuum
Mechanics, contributions in Honor of the Seventieth Birthday of Academician N. I. Muskhelishvili
(Ed. by M. A. Lavrent'ev et al.; English edition edited by J. R. M. Radok), Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1961, pp. 155-164
R. Hill, Aspects of invariance in solid mechanics, Adv. Appl. Mech. 18, 1-75 (1978) (C. S. Yih, ed.)
M. Levinson, Stability of a compressed neo-Hookean rectangular parallelepiped, J. Mech. Phys. Solids
16, 403-415 (1968) '
W. Prager, Introduction to the Mechanics of Continua, Dover, New York, 1973
R. Rice, The localization of plastic deformation, Proc. 14th Internat. Congr. Theoretical and Appl.
Mech. (W. T. Koiter, ed.), Delft, North-Holland, Amsterdam, Vol. 1, 1976, pp. 207-220
D. Rittel, The influence of microstructure on the macroscopic patterns of surface instabilities in metals,
Scripta Metallurgica et Materialia 24, 1759-1764 (1990)
D. Rittel, R. Aharonov, G. Feigin, and I. Roman, Experimental investigation of surface instabilities
in cylindrical tensile metallic specimens. Acta Metall. Mater. 39, 719-724 (1991)



244 K. T. CHAU

[20] J. W. Rudnicki, The effect of stress-induced anisotropy on a model of brittle rock failure as localization
of deformation, Energy Resources and Excavation Technology, Proc. 18th U. S. Symposium on Rock
Mechanics, Keystone, Colorado, June 22-24, 1977, pp. 3B4-1-3B4-8

[21] J. W. Rudnicki and J. R. Rice, Conditions for the localization of pressure-sensitive dilatant materials,
J. Mech. Phys. Solids 23, 371-394 (1975)

[22] F. J. Santarelli and E. T. Brown, Failure of three sedimentary rocks in triaxial and hollow cylinder
compression tests, Internat. J. Rock Mech. Min. Sci. & Geomech. Abstr. 26, 401-413 (1989)

[23] J. A. Shimer, This Sculptured Earth: The Landscape of America, Columbia University Press, New
York, 1960

[24] H. C. Simpson and S. J. Spector, On barrelling instabilities in finite elasticity, J. Elast. 14, 103-125
(1984)

[25] H. C. Simpson and S. J. Spector, On barrelling for a special material in finite elasticity. Quart. Appl.
Math. 42, 99-111 (1984)

[26] H. C. Simpson and S. J. Spector, On the positivity of the second variation in finite elasticity, Arch.
Rat. Mech. Anal. 98, 1-30 (1987)


