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Abstract. In this paper, we will compute asymptotically the eigenfrequencies for
the in-plane vibrations of an Euler-Bernoulli beam system with dissipative joints,
which allow the beams to be curved into an arc of a circle. This enhances the au-
thor's previous result for structures involving straight beams, given in his preprint
"Eigenfrequencies of the non-collinearly coupled Euler-Bernoulli beam system with
dissipative joints". Matrix techniques are used to combine asymptotic analysis with
a form of the wave propagation method.

1. Introduction. In [14], a new method was introduced to find the in-plane vibra-
tions of a general Euler-Bernoulli beam structure. For a straight beam, the beam
equation is given by my n + EIyxxxx = 0, with 0 < x < L and / > 0. Here m
denotes mass density per unit length, and EI is the flexural rigidity of the beam. For
each element of the structure, whether it be a bend, a length of beam, or a dissipative
joint, a corresponding 20 by 20 matrix was given. These matrices were multiplied
together, along with a 1 by 20 matrix and a 20 by 1 matrix, to form a single equation.
The eigenfrequencies could easily be computed asymptotically using this equation,
and it was shown that, if the lengths of the beams were rational, there would be a
finite number of "streams" of eigenfrequencies lying asymptotically close to a vertical
line.

In this paper we want to extend this result to allow beams in the shape of a circular
arc. Because much of the setup of the problem was done in [13] and [14], the main
new result will be to complete the 20 by 20 matrix corresponding to a curved beam.
Once this matrix is computed, the eigenfrequencies of beam structures such as Figure
1 (see p. 260) could be computed easily.

2. Fundamental ideas. As in [13], we will use superscripts to number the elements
of the structure. If the yth element of the structure is a straight beam of length /,
we let yJ (x, t) (0 < x < / , t > 0) denote the transverse displacement function of
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Fig. 1.

this beam. Since this is an Euler-Bernoulli beam, we have that

82 B4
m—~yJ(x,t) + EI—jy\x,t) = 0 for 0 < x < / , />0. (2.1)

dt dx '
As in [13], we will make three simplifying assumptions for this model:
(HI) The frame can vibrate only in the plane of the frame.
(H2) The beams are essentially noncompressible, that is, the change of length of

the beams due to the forces exerted at the ends is negligible.
(H3) Forces exerted on a beam in the direction parallel to the length of the beam

are propagated in a negligible amount of time.
Because of assumption (H2), the longitudinal displacement is independent of the

position within a given beam. We let zJ(t) denote the longitudinal displacement of
the yth beam. Also, because of assumption (H3), the longitudinal force of a given
beam depends only on time; so we let HJ(t) denote the longitudinal force of the jth
beam.

To simplify the calculations, we will use the basis of [13], given in terms of the
following four functions:

IT , . cosh(x) + cos(x) ex + e,x + e~x + e~'x
Hya(x) = ^ =   .

TT , , . sinh(x) - sin(x) ex + ie'x - e~x - ie~,x
Hyb(x) =   =   ,

TI . . cosh(x) - cos(x) ex - eix + e~x - e~'x
Hyc(x) =   =   ,

TI , sinh(x) + sin(x) ex - ie'x - e~x + ie~lx
Hyd(x) = ^= 4  •

We call these functions the "hybrid exponential functions". We can express the
wave propagation in terms of the new functions:

y[{x , t) = (Aj Hya(?/x) + B} Hyb(^x)

+ C, Hyc{r]x) + D, Hyd(tix))e*'^7J™ ,
/—— (2.2)

H[{t) = FjEIrfe
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Fig. 2.

Here, rj = ^\/X, so that it/2 = X.
The use of the hybrid exponentials deviates from the standard wave propagation

method (WPM) approach to the beam equation, as described in [8], Here, y[{x, t)
was expressed as a linear combination of four "wave functions", namely, an incoming
wave e('x+A'\/£//m) traveling to the right, another wave e^~lx+u\/EIlm^ traveling to

the left, and two evanescent waves e(x+x,y/E'/m'> an(j e(-x+ity/Ei/m) jast twQ
waves decay exponentially fast in the x direction away from one of the endpoints.
Thus, for each boundary condition encountered, one of the evanescent terms can
safely be discarded.

In (2.2), we are expressing the wave as a sum of four "hybrid waves". Each hybrid
wave is a linear combination of a wave traveling to the right, a wave traveling to
the left, and the two evanescent waves. At first this may seem like a disadvantage,
since all four of the hybrid waves will be important at each juncture. However, the
reflection and transmission relations will be greatly simplified. For example, if the
beginning end of the beam is clamped, as in the examples of [3] and [5], we can
express the reflection relationships simply as AJ = D}. = 0. That is, two of the four
hybrid waves will not exist on that beam.

The price for using the hybrid wave functions is that the asymptotic estimations
cannot immediately be employed by tossing out the evanescent waves. However, in
the case of a curved beam, it is not completely clear that such estimations could be
made anyway, since an evanescent wave may evolve into a different type of wave as it
transverses the curve. Thus, we must forgo all asymptotic analysis until we have the
exact equation for the eigenfrequencies. Fortunately, the asymmetrical properties of
the hybrid functions allow the results to be displayed.

The boundary conditions at each joint with a damper will depend on the type of
damper involved. In [14], six different types of dampers are discussed, but we will
only need to understand the type III damper. Figure 2 demonstrates this type of
damper. A single dashpot with a damping coefficient of K} is attached to the joint
at a distance of r. from the center of the joint. The angle from the next beam to the
dashpot is given by y.. If we draw a line from the point of contact of the dashpot
to the center of the joint, the angle from the dashpot to this line is given by 5..

The boundary conditions for this joint are computed using linear approximations
to the angle displacement. For brevity, we will let v. = , Bj, C;, Dj, Ej, Fj) =
the components of the wave in terms of the new basis after the y'th line in the
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description. Then the six equations can be written succinctly as

V1=V^i?v,+1=v,-<\ (2.3)

where

JY111Mj =

ft] -ia ict] 0 0 ib \
0 t] 0 0 0 0

o ° f 2 ° o ° • (2-4)0 -icq ijt] t] 0 let]
0 —ib iet] 0 t] id

V0 0 0 0 0 rf )
Here,

a = Kj sin y.fVmEI, b = K} cos y ■ sin y J VmEI

c = Kj r sin Sj sin y./VmEI, d = K. cos2 y}/VmEI,

e = Kj r sin SJ cos y./ VmEI, f — K] r sin2 8./ VmEI.

For a general type III damper with more than one dashpot, the boundary conditions
will still be the same, except that the constants a, b, ... , / will be the sum of the
corresponding constants for each dashpot.

The advantages of using the hybrid wave equations become apparent when one
compares (2.4) with equations (2.12)—(2.15) of [5], Although that paper only consid-
ers vibrations in one direction, the in-span conditions of the type III joint in terms
of the standard WPM wavefunctions require almost half a page. The simplifications
here, and in the other matrices, will allow us to use exponential matrix techniques
later.

We call the matrix M™ the transfer matrix for the type III joint, since it indicates
how the wave given by v propagates through the joint. The extra tj in (2.3) can be
ignored, since t) 0 .

We can also find the transfer matrices which indicate how the wave functions are
transmitted across an angle, or along a straight beam of a certain length. The matrix
for turning an angle (f) is given by

( cos <j> 0 0 0 sin 0 0 \
0 cos (f> 0 0 0 - sin q
0 0 10 0 0
0 0 0 10 0

-sin 4> 0 0 0 cos 4> 0
V 0 sin</> 0 0 0 cos (j> )

The transfer matrix for a single straight beam of length / is given by
/Hya(/?/) Hyd (It]) Hyc (It]) Hyb (It]) 0 0\

Hyb(//?) Hya (Irj) Hyd (It]) Hyc(lt]) 0 0
Hyc(lt]) Hyb (It]) Hya (It]) Hyd (It]) 0 0
Hyd(/?;) Hyc (It]) Hyb (It]) Hya (It]) 0 0

0 0 0 0 10
V 0 0 0 0 0 1J

Mangle

A/lcngth
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By multiplying the transfer matrices together, we find how the wave functions are
propagated throughout the structure.

Finally, we need to consider the two ends of the structure. If the final end of the
structure is either clamped or free, the relationships between the reflected waves can
be expressed as

y„-M= o,
where

, ^clamp

(\ o o\
0 0 0
0 0 0
0 1 0
0 0 1

V0 0 0 J

, ,free
or Mn =

/0 0 0\
1 0 0
0 1 0
0 0 0
0 0 0

V0 0 1J
Other types of end boundary conditions can be obtained by combining a damper
with one of the above matrices. For example, the boundary control used in [11] can
be obtained by considering a type III damper immediately followed by a free end.

By combining the information from the transfer matrices, we get the equation

v, • (A/, • M2 - M3 - ■ ■ Mn) = 0.

This gives us three equations with six unknowns. To find three other equations,
we consider that the vibrations of certain frequencies will induce resonance in the
structure. The beginning end of the structure will be clamped, which we can express
as v1-M„clamp = 0 . Resonance will occur if A{ = D{ = = 0 at the beginning of the
structure. Thus, only the second, third, and sixth columns of (A/, • M2 ■ M3 ■ ■ ■ Mn)
will be important. We can express this by letting

(0 1 0 0 0 0'^clamp = o o j 000
yo o o o o 1

Then there will be a nontrivial solution to the wave equations if and only if

det(A/0 -A/, ■ M2 ■■■ Mn) = 0. (2.5)

Let us denote G = M0- ■ M2 - ■ ■ Mn . Then whenever t] is a solution to |G| = 0,
A = irj will be an eigenfrequency of the structure.

To find the transfer matrix for a curved beam, we will divide the beam into in-
finitesimal beam segments. That is, we will approximate the curve with a sequence
of beam structures involving straight beams, and take the limit as the lengths of the
beams go to zero. For a circular arc of length / and curvature k , we can approxi-
mate the arc by a sequence of //A/ beams of length Al, with an angle of A</> = kAI
between them. When k > 0, we will be turning counterclockwise as we transverse
the length of the beam. Turning clockwise is indicated by choosing k < 0 with
the same magnitude. It is easy to describe the matrix using the matrix exponential
function, described in [2, p. 147], We can describe the matrices for an angle and a
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beam length as

, .-lengthMj = exp

, wangleMj — exp

To first order in A/, we have that

/ 0 It] 0 0 0 0^
0 0/^000
0 0 0 /1] 0 0
h] 0 0 0 0 0
0 0 0 0 0 0

V 0 0 0 0 0 o7
( 0 0 0 0 (f) 0 \

0 0 0 0 0 -0
0 0 0 0 0 0
0 0 0 0 0 0

-0 0 0 0 0 0
V0 0000 0 7

= exp A/

Vength(A/) • M^(kAI)

( 0 //00k 0 \
0 0 t] 0 0 —k
0 0 0 ^0 0
rj 0 0 0 0 0

—k 0 0 0 0 0
Vo k 0 0 0 oy.

Including l/Al such beams amounts to raising this expression to the l/Al power,
giving us

/ 0 It] 0 0 Ik 0 \
0 0 It] 0 0 -Ik
0 0 0 It] 0 0
It] 0 0 0 0 0

-Ik 0 0 0 0 0
V0 Ik 0 0 0 07

Before we can do any asymptotic estimates on this matrix, we need to expand the
matrix exponential. Fortunately, the eigenvalues of the matrix A are simple: 0, 0,

, and ±il\Jt]2 + k2 . Because of the double eigenvalue, this matrix is
nondiagonalizable, but we can put this into Jordan canonical form. If we let

(0 Ik 0 0 0 0 \
0 0 0 0 0 0

, ^curveMj = exp = exp(.4)

D
0 0 l\/t]2-K2 0 0 0

0 0 0 -l\Jt]2 -k2 0 0

0 0 0 0 ily/t]2 + K2 0

[o 0 0 0 0 t]2 + K2
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/ n n 2 2 2 2 2 2 2 2f 0 0 t] - k rj —k -rj -k -rj -k

0 t]2 t]\Jt]2 - k2 -r]\Jr}2 - K2 -it]\Jr\2 + k2 irj\f t]2 + k2
a 2 2 2 2Kt] 0 t] t] t] t]

0 K2 t]\JT]2 - k2 -rj\Jt]2 - k2 it]\Jt]2 + k2 -ir]\Jrj2 + k
0 -rj3/k -k\Jrj2 - k2 k\Jt]2 - k2 -iK\jt]2 + k2 iK\Jrj2 + k2
2 r,\ r] 0 Kt] KT] -KT] —Kt]

then A — P ■ D ■ P 1 . We can compute P 1 to be

4w(14-k4)

(-AKt]2pq 0 -4K^pq 0 0 4r?pq ^
0 0 0 -4K2t]pq -AKt]2pq 0
3 32 3 23 3 3VP q P Q VP Q VP Kt]p -KP q
3 323 23 3 3vp q -p q vp q -v p ~kvp -*p q

~vpq3 ip2q3 vpq3 ->v2q3 i*vq3 -*pq
3 -23 3 -23 - 3 3,

~VPq ~ip q VPq 'V q -iKvq ~Kpq J

where p = \jt]2 + k2 and q — \jt]2 - k2 . Then

M;urve^p.

/1 Ik 0 0 0 0
0 1 0 0 0 0
o o 0 0 0
0 0 0 ^-/vA/2-*2 p  0

0 0 0 0 o

P 1

Vo 0 0 0 0 e-''vV+K

Although multiplying this out would produce a mess, we can use this with asymptotic
approximations to produce a 20 by 20 matrix as in [ 13].

3. Asymptotic estimates. In [13], we found a way to convert the 6 by 6 matrices
into 20 by 20 matrices, in such a way that the product of the large matrices is the
determinant of the product of the small ones. The advantage of this conversion is
that no cancellations occur as we multiply these matrices, so estimates to the second
order in t] can be found by considering just the second order in each of the large
matrices.
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Given a 6 by 6 matrix, there are 20 ways to choose 3 rows in it, and 20 ways of
choosing 3 columns. We can consider all 400 ways of forming a 3 by 3 submatrix
from the original, and take the determinants of all 400 matrices, forming a 20 by 20
matrix TV . The 3x6 and 6x3 matrices convert into 1 x 20 and 20 x 1 matrices.
Using some tensor algebra, we find that the determinant of the product of the M. s
is equal to the product of the Nj s. Because the proof of this statement involves the
exterior forms over the vector field, the 20 by 20 matrix TV. is called the exterior
matrix corresponding to A/. .

In [13] we computed 7Vjngle, jV""1, and Arjcngth. To display the matrix A'J"8'0, we
let x = cos <f> and a — sin (f>. Then

^y-angle _

( x1 0 0 0 0 0 0 *<7 0 0 0 *<r 0 0 0 0 0 0 -a1 0 ^
0 X1 000000 *<r 0 0 0 x° 0 0 0 0 0 0 -a1
0 0 *00000 0 <t 0 0 000000 0 0
0 0 0/0000 0000 OOO-ctOO 0 0
0 0 00*000 0000 OOOOctO 0 0
0 0 000100 0000 000000 0 0
0 0 000010 0000 000000 0 0

-X" o 0 0 0 0 0 X2 o 00 -a1 0 00000 -*a 0
0 -xa 00000 0 X1 0 0 0 -a2 0 0 0 0 0 0 -*<r
0 0 -a 0 0 0 0 0 0*00 000000 0 0
0 0 000000 00*0 00000 -a 0 0

-Xa 0 0 0 0 0 0 -tr2 0 0 0 *2 0 00000 -*cr 0
0 -xa 0 0 0 0 0 0 -a2 00 0 *2 00000 0 -*ct
0 0 000000 0000 010000 0 0
0 0 000000 0000 001000 0 0
0 0 0 <t 0 0 0 0 0000 000*00 0 0
0 0 OO-uOOO 0000 0000*0 0 0
0 0 000000 OOctO 00000* 0 0

-a2 0 00000 *17 0 0 0 *cr 000000 *2 0
000000 xa 0 0 0 0 0 0 0 0 0 *2

To display TV111, we need to introduce some new variables. Let

t — be - cd,

r = ad - b2,

u = be - ae,

g = af -e1,

s = ce - bf,

v =df-e2,

w = adf + 2bee - c2d - e2a - b2 f.

/
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Then N™ =

/ 2 \n 0 o 0 0000 000 0 0 ibt] 0 0 0 0 00
if I3 I2 o -icq2 0 0 0 0 0 0 iet]2 0 0 if/2 ibt] 0 0 0 0 0
icr/2 0 t]1 —iat] 0 0 0 0 0 0 0 iet]2 0 —ut] 0 ibt] 0 0 0 0

000 t]2 0 000 000 00 iet]2 0 0 0 0 0 0
iet]2 0 0 0 t]2 0 0 -iet]2 0 0 idt] 0 0 — tr] 0 0 0 ibr] 0 0
ibt] 0 0 0 0 r/2 0 —iat] 0 0 0 idt] 0 r 0 0 0 0 ibt] 0

2 2 23222 2 2 2st] ibt] -iet] ut] -iet] iff] t] gt] -iar] iet] -tr] -vt] idr] iwt] r tr] -iet] ut] st] ibi]
000 0 0 0 0 t]2 0 0 0 0 0 idt] 0 0 0 0 00
0 0 0 — iet]2 0 0 0 ifr? t]2 0 0 0 0 —vrf idt] 0 0 —iet]2 0 0
0 0 0 -ibr] 0 0 0 ictf 0 t]2 0 0 0 tr] 0 idt] 0 0 -iet]2 0
000 0 0 000 00 t]2 00 -iet]2 0 0 0 0 0 0
000 0 0 000 00 0 t]2 0 -iar] 0 0 0 0 0 0
000 0 0 000 00 —iet]2 ift]3 r]2 gt]2 -iat] iet]2 0 0 0 0
000 0 0 000 000 00 t]2 0 0 0 0 00
000 0 0 000 000 0 0 if r/3 t]2 0 0 0 00
000 0 0 000 000 00 icri2 0 t]2 0 0 0 0
000 0 0 000 00 —ibr] iet]2 0 —ut] 0 0 t]2 -iat] ictf 0
000 0 0 000 000 00 iet]2 0 0 0 t]2 0 0
000 0 0000 000 0 0 ibt] 0 0 0 0 t]2 0
000 0 0 000 000 00 st]2 ibt] -iet]2 0 — iet]2 iftf t]2

\ J

Finally, the end matrices are converted to

7V0clamp = (0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0),

jVclamp = (0, 0, 0, 0, 0, 0,1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,

7Vnfree = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)T.

Rather than displaying the exterior matrix Afjength here, we will first make some
asymptotic approximations on it by assuming, without loss of generality, that the
argument of t] is between 0 and n/A . The result, after multiplying by ''', is

Nj

(A
length 0

0
vo

0
B
0
0

0
0
B
0

oA
o
o
a)

where

A

(2x 2xl 2xl 2xl \
2xl 2xl 2x' 2xl
2xl 2xl 2xl 2xl

V 2x' 2x 2xl 2xl)
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and

f x21 + \ ((1+1+f) -ix2' + i -ix2' + i -x21 - \ }

((+i-f) 2x2' + 2 («;[£) ((1+7if) -2ix21 + 2i ^f)
ix2' -1 (C+'lf) x2, + l x2l+l (""'if) -ix21 + i
c2/-/ ((1++;lf) x2/ + i x2/ + i ((1;;}f) -/x2/ + i

B =

2«2'-2/ (»«»',) CiA) 2.v%2 ("-'11 )
V-JC2/-I C'-'lf) /jc2' - (' ijc2' — / ("^f) x2/+l 7

Here, x = e'n .
We want to also find approximations for the exterior matrix of AfJurve. To ease

the task of displaying the results, we will use the notation introduced in [12], For any
m by n matrix A, let AF
i.e., for an m by n matrix,

pm by n matrix A, let A be the m by n matrix formed by "flipping" A over,

(Aj = (A)(m—i+l), (n—j+i) '

For example,

TThis differs from the standard transpose, denoted A . Using MATHEMATICA, we
find that, to second order in q,

/

^curve

rjA
kC

kE

\ o

PFT-kF
riB

-k2IB
£FT-kE

^FT-kD

riB
-kC"

0 X
kD

kF

where A and B were given above,

r -2x' 1 — 2x' + x2' 1 + / - 2x1 + (1 - ;)x2' i — 2x1 — ix21 ^
-2x' 1 - i - 2x' + (1 + i)x2' 2 - 2x + 2x11 1 + i - 2x' + (1 - i)x21

c =

D

0 -/ + ix21 (1 - 0 + (1 + i)x2' 1 + x2'
—2x —i - 2x' + ix21 1 — i — 2xl + (1 + i)x21 1 - 2xl + x21

0 (-1 -/') + (-1 + i)x2' -2 i + 2 ix2' (1 -;) + (1 + i)x2'
V 0 -1-x2' (-1 -/) + (-! +i)x2' -i + ix2' 7

(1 + /) + (1 - i)x21 i - ix21 0 1 + x21 ^
2 — 2x1 + 2x21 1 + i — 2xl + (1 - i)x2' —2xl I — / — 2xl + (1 + i)x21

(1 - i) + (1 + i)x2' \+x2' 0 - i + ix21
1 - i - 2x + (1 + i)x21 1 - 2x' + x2' -2x' —/' - 2x' + ix21

-2/ + 2/X2' (1-/) + (!+;)x2/ 0 (-1 - ;) + (-1 + i)x11
V — 1 — / + 2x' + (-1 + ; )x2/ + 2x' + ix21 2xl -1 + 2x' - x2'
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-i + ix2' (1 - i) + (1 + i)x21 1 + x2' 0 ^

(-1-

E =

(—1 - i) + (-1 + i)x21 —2i + 2ix21 (1 —/) + (1 +i)x21 0
-l-x21 (— 1 - i) + (-1 + i)x21 —i+ix21 0

-1 + 2x' — x21 — 1 — i + 2xl + (/ — 1 )x21 -i + 2xl + ix21 2xl
i - \ + 2x +{ - \ - i)x2' -2 + 2x'-2x21 -1 - i + 2x' + (< -\)x2' 2xl

i + 2x1 - ix2' i - 1 + 2x' + (-1 - i)x21 -1 + 2x - 2x21 2x1 J

1 — 2x + x21 -2x —i — 2xl + ix21 1 — i — 2x' + (1 + i)x21 ^
(1 - i) + (l + i)x2' 0 (-1 -/') + (-1 +i)x21 -2i + 2ix1'

—i + ix21 0 -1 - x21 (— 1 — i) + (— 1 + i)x21
-i + 2x' + ix21 2x1 -1 + 2x' - x21 — 1 — i + 2x' + (/ — 1 )x21

— 1 - i + 2xl + (i - \)x2' 2x' i — 1 + 2xl + (-1 - i)x21 -2 + 2xl - 2x21
-l-x21 0 i - ix21 (-1 + i) + (-1 — i)x21 )

Notice that if the curvature k — 0, then this reduces to t] Vength for a straight beam.
At this point, all eigenfrequencies can be approximated by finding the roots to the

equation

N0-NrN2-.-Nn = 0. (3.1)
To compute the positions of the streams of the eigenvalues we can use the results

from [13]. If the lengths are all integers, we can divide (3.1) by factors of t] to obtain
an equation of the form

m + ~ = 0(^2) (3-2)

for some polynomial functions f(x) and g(x). If we let r be a root of f(x) = 0,
then there will be two possibilities. If |r| = 1, then

xk ~ r'fV + (2kn + afg(r))2/ • (3-3)
J \r)r

If |r| ^ 1, then

~ 2\og\r\(2kn + arg(r)) - + {(2kn + arg(r))2 - 2log2 |r|)/.
/ (r)r

In [14], it was proved that all streams were in fact linear. The basis for this proof
involved observing patterns in the matrices Nf. In particular, we had that

_2/^length( j/_) = Mength^^
J K ' ' J

Notice that the same pattern occurs in the Ar|urve, that is,

x2/7Vcurve(l/x) = NjUrve(x).

Thus, by the same reasoning given in [14], the streams of eigenfrequencies will all be
linear, even if the beams are curved.



270 WILLIAM H. PAULSEN

As an example, we can use the large matrices to find the approximate eigenfre-
quencies of the structures in Figure 1. For simplicity, we will take mEI = 1 . In
this case, the damper is a type III, with a = K and b = c = d — e — f = 0. After
multiplying the matrices together, and dividing by a factor of ^ , we obtain (3.2),
with

/(x) = -87i(l + x2n)

and
g{x) = - 4 - 4/ + (2 + 2i)Kn + (16 + 16i)x*12 - 40** + 4iKjtx"

+ (16 - 16/)x3?r/2 + (-4 + 4i)x2n + (-2 + 2i)Knx2n .

Since the lengths of the beams were not rational, f(x) and g(x) are not polynomials
in x. However, we can change variables to make them polynomials. If we let
r\ = nrj/2 and x = e'n = x^2, then (3.2) becomes

f(x') + ^ = 0(rj'~2)t]
with

f(x') = —8tt( 1 -I- x'4)
and

g(x') = (-2 - 2i)n + (1 + i)Kn2 + (8 + 8 i)nx - 20nx'~ + 2iKn x2

+ (8 - 8/)7ix'3 + (-2 + 2i)nx'A + (-1 + i)Kn2x'4.

We can apply (3.3) to obtain an estimate for it]2. We obtain the four linear streams

inA //-,_> . _ , .s2
1 ,k ((2nk + n/4) + 3/2 - ^2 - Kn/8)i,

in'2 k ~ - Kn/4 + ((2nk + 3n/4)2 - 1 - Kn/S)i,

in'2 k ~ ({Ink + Sn/4)1 + 3/2 + sfl - Kn/S)i,

ink ~ - Kn/4 + ((2nk + In/4)" - 1 - Kn/S)i.
2 / 2Since X = it] = 4it] /it , we have

Xx k ~ ((4k + \/2)2 + 6/n2 -4^2/n2 - K/2n)i,

X2 k ~ - K/n + ((4k + 3/2)2 — 4/n2 - K/2n)i,

X3tk ~ ((4A: + 5/2)2 + 6/^2 + 4\/2/7r2 - A"/2tc)i,

~ - K/n + ((4k + 7/2)2 - 4/n2 - K/2n)i.
Much of the work in this paper required the use of the symbolic manipulator

MATHEMATICA running on a SUN Microsystems workstation for the computation
of the large matrices.

Although this paper analyzes a linear model of a physical system, the experimental
data cited in [5] and [6] indicate that this model is an accurate one. However, we
still are only considering vibrations that occur within the plane. Hopefully, analysis
for structures that do not lie in a plane can be done using a similar technique, and
this will be treated in a future work.
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