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Summary. A priori restrictions on the relaxation function of linear viscoelastic-
ity are studied under regularity assumptions weaker than those usually made in the
literature. The new set of assumptions is sufficient to define, by a limit procedure,
the work done in deformation processes in which some parts are subject either to
extreme retardations or to extreme accelerations. The use of such processes results
in a considerable simplification of the proofs of some classical results. Under the
same assumptions, we give a characterization of the monotonicity of the relaxation
function in terms of work. We also extend an earlier one-dimensional characteriza-
tion of complete monotonicity due to Day, and prove that the work done in every
closed path in stress-strain space is nonnegative if and only if the relaxation function
is of exponential type.

1. Introduction. In a linear viscoelastic material, the stress response to a deforma-
tion process E is determined by the hereditary law

r+oo

T(t) = G0E(t)+ G (s)E(t-s)ds (1.1)
Jo

due to Boltzmann and studied extensively by Volterra. 1 Restrictions on the relax-
ation function G have been deduced from two general requirements on the work:
the postulate of dissipativity due to Konig and Meixner [12], which requires that the
work done in any finite deformation process starting from the natural state be non-
negative, and compatibility with thermodynamics in the sense of Day [4], according
to which the work done in any finite cyclic process starting from equilibrium must
be nonnegative. The latter requirement has been obtained by Coleman [1, 2] as a
consequence of the Clausius-Duhem inequality; the substantial equivalence of the
restrictions coming from the two requirements has been proved by Day [4],

These restrictions are not severe; in particular, they do not imply that the re-
laxation function be monotonic decreasing, a property systematically observed in
experiments. An attempt for characterizing the monotonicity of G by some more
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restrictive property of the work was made by Day in [3]. He proved that, in the one-
dimensional case, the work done in retraced paths is increased by delay if and only if
the relaxation function is completely monotonic. The main purpose of this paper
is to supply some further characterizations of monotonicity in terms of work. There
is, however, a preliminary point to be clarified. In the literature, there is no general
agreement about the regularity assumed for the functions E and G ; moreover, it is
usual to introduce supplementary assumptions when proving specific results. For de-
formation processes, there is a dichotomy in the fact that, on the one hand, physical
considerations suggest that E should be continuous and start from a state of equi-
librium, since only processes with these properties are accessible to experiments; on
the other hand, the mathematical convenience of using step functions and functions
extended indefinitely in the past recommends the choice of a more general class of
processes.

We assume that G has a Lebesgue integrable derivative and that E has bounded
variation in the past and is continuous from the right. These assumptions are suffi-
cient for the existence of the integral in (1.1) as a Lebesgue integral. They also suffice
for establishing a formula of integration by parts involving the Riemann-Stieltjes in-
tegral, and for defining the extreme acceleration and the extreme retardation of a
part of a given process by means of a limit procedure. The regularity assumptions
are discussed in Sec. 2 and the accelerated and retarded processes in Sec. 3. In partic-
ular, we are interested in the properties of convergence of the stress and of the work
done in accelerated and retarded processes when the accelerations and retardations
become extreme. These properties, quite easy to prove when more regular functions
are involved, require now a more complicated machinery.

In Sec. 4 the effects of the new assumptions on the work postulates are examined;
indeed, it is conceivable that the same postulates imposed on a broader class of pro-
cesses result in more severe restrictions on the relaxation function. We find that no
new restrictions come from dissipativity and from compatibility with thermodynam-
ics; only the property of strong dissipativity [7], which must be reformulated in the
new context, has stronger implications.

The last three sections are devoted to the characterization in terms of work of
monotonicity and related properties. In Sec. 5 we consider processes in which the
deformations are proportional to a fixed tensor, and whose magnitude varies mono-
tonically with time. We call such processes rectilinear monotonic. We prove that the
relaxation function is monotonic if and only if the work done in all rectilinear mono-
tonic processes is decreased by retardation. Section 6 is devoted to completely mono-
tonic relaxation functions; in it, the result of Day [3] mentioned above is extended
from one to more dimensions, eliminating at the same time all superfluous regularity
assumptions. Relaxation functions of exponential type are studied in the last section.
In dimension one, such functions describe the Maxwell rheological model, for which
it is easy to prove that the work done in any cycle closed in stress-strain space is
nonnegative, so that no work can be extracted from any cycle in stress-strain space,
irrespective of the history of the deformation preceding the cycle. In our weaker con-
2 For precise definitions see Sec. 6 below.
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text, we prove that this property of the work is not only necessary, but also sufficient
for a relaxation function being of exponential type; it does not hold, for example, if
the relaxation function is a linear combination of exponentials.

Let us add some remarks on the notation. We denote by Sym the set of all sym-
metric linear transformations on the vectors defined on the ordinary Euclidean point
space, and by LinSym the set of all linear transformations on Sym. Sym is a finite-
dimensional vector space, equipped with the inner product

A ■ B := tr(^fiT) (1.2)

and with the norm
Ml (A ■ A)1'2. (1.3)

Throughout this paper, no use will be made of the fact that the elements of Sym are
tensors, except for the definition (1.2) of the inner product. Consequently, the ele-
ments of LinSym will be regarded as linear transformations on a finite-dimensional
vector space, without reference to the fact that they are indeed fourth-order tensors,
and LinSym will be normed by the operator norm

l|C|| := sup (1.4)
/(GSym \{0} 1^1

For any C in LinSym, we note

CS:=i(C + CT), CW:=i(C-CT) (1.5)

for the symmetric and the skew-symmetric part. The notations

C > D, C > D (1.6)

mean that (C - D) is positive-definite or positive-semidefinite, respectively.

2. Regularity assumptions. According to the constitutive equation (1.1), the re-
sponse of a linear viscoelastic material is characterized by a tensor G0 e LinSym
and by a function G : (0, +oo) —> LinSym. The tensor T(£) e Sym is the stress
reached at the time t in the deformation process E : R -+ Sym . It is clear from (1.1)
that only the restriction of E to (—oo, /) and the actual value E{t) of E contribute
to the determination of T(f). In this section we make, and discuss, the regularity
assumptions on the functions E and G which will be used throughout the paper.

The variation of E in the closed interval [p, q] is the nonnegative number

VpJE) := sup |£(/,.) - £(f,._,)| j , (2.1)

with the supremum taken over all finite collections {t{, i = 0, 1n e N}
of points in [p, q] such that ti_l < tjt and the variation of E in the unbounded
interval (-00, q] is

V IE) := lim V IE). (2.2)
' P-+-00 P'l

The restriction of E to some (bounded or unbounded) interval is a function of
bounded variation if the variation of E in that interval is finite. A function of
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bounded variation is bounded. Moreover, it is known that a function of bounded
variation has at most countably many discontinuity points and admits a left limit and
a right limit at all interior points of its domain. It is also known that the finiteness
of the limit (2.2) implies that the limit

E{-oo) := lim E{p) (2.3)
p—> — oo

exists in Sym.
We make the following regularity assumptions on E and G:
(Al) for all / e R the restriction of E to (—oo, t\ is a function of bounded

variation;
(A2) E is continuous from the right;
(A3) G is Lebesgue integrable in [0, +oo).

If we denote by E(t~) and E(t+) the left and right limits of E at t, with the second
assumption we set

E(t) = E(t+). (2.4)
The assumption (A3) implies that G has a primitive, i.e., that there is an abso-
lutely continuous function G : [0, +oo) -+ LinSym such that G coincides almost
everywhere with the derivative of G. This function has the form

G(s) = G(0)+ [SG(r)dr
J o (2.5)

and is determined to within the initial value G(0). It is convenient to choose G(0)
equal to the tensor G0 appearing in (1.1), so that the stress is completely deter-
mined by E and G. G is called the relaxation function of the viscoelastic material.
Another consequence of (A3) is that the limit

G := lim G(s) (2.6)
5-+ + 00

exists in LinSym [5, p. 111]. The existence of G^ and the continuity of G also
imply the boundedness of G.

Let H and C be maps from R into Sym and LinSym, respectively. The
Riemann-Stieltjes integral of C with respect to H from p to q is the second-order
tensor

/'J D
C(r)dH(r):= lim (i?)^) - (£,)), (2.7)

M—> + 00 Z' ' ' ' 1
P /=1

each {?",/ = 0, 1n e N} being a finite collection of points with t^=p,
and with the maximum of the distances (t" - ?"_,) approaching

zero when n —»• oo, and each r" being an arbitrary point in , t"]. Here we list
some properties of this integral that will be used in this paper, and for which we refer
to [14] and [10],

2.1. Proposition. The Riemann-Stieltjes integral has the following properties:
(i) if the integral (2.7) exists, then

fJ D
C{r)dH{r) < sup ||C(r)|| Vp (H). (2.8)

relp.Q]
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(ii) A sufficient condition for the existence of (2.7) is that C be continuous and
H be of bounded variation in [p , q].

(iii) If Condition (ii) is verified, the function

F(t):= f'c(r)dH(r), te[p.
JP

q] (2.9)

is of bounded variation. Its right and left limits at t are given by

F(t+)-F(t) = C(t)[H(t+)-H(t)],
F(t)-F(D = C(t)[H(t)-H(r)].

(iv) If (ii) holds and if C has a Lebesgue integrable derivative C, then the for-
mula of integration by parts applies:

f C(r) dH(r) = - [" C(r)H(r) dr + C(q)H(q) - C(p)H(p). (2.11)
J P J p

(v) If H has bounded variation in (-oo, q] and if C is continuous and has
a Lebesgue integrable derivative in (-00, q], then the formula (2.11) holds
with p replaced by -oo . □

Under our assumptions (A1)-(A3), the conditions for the validity of the formula
(2.11) are satisfied by C(r) = G(q - r), re (-oo, q]. In particular, taking p =
-oo, q = t and substituting into (1.1) we get the following alternative form of the
constitutive equation:

T{t) = [' G(t — r) dE(r) + Gtx)£'(-oo). (2.12)
J —OO

By this way, the stress process T associated with E, defined by (1.1), is represented
by an integral of the type (2.9). Consequently, T has bounded variation in (-oo, t]
for all ( e R and its right and left limits are given by (2.10) with C(r) = G(t - r).
Recalling that E(t) = E(t+) by (2.4), we have

T(t+)-T(t) = 0,
_ (2.13)

T(t)-T{t ) = G0[E(t) - E(t )].
The first equation shows that T is continuous from the right and leads to the fol-
lowing conclusion.

2.2. Proposition. Let E and G satisfy the assumptions (A 1)-(A3). Then the stress
associated with E satisfies (A 1)-(A2). □
The second equation shows that T and E have the same jump points and that the
jump of T at a point t is given by G0 applied to the jump of E at t.

The constitutive equation in the form (2.12) also shows that the stress correspond-
ing to the constant deformation process E(t) = A , t e R, A e Sym, is

T(t) = GooA W 6 R. (2.14)
We say that G^A is the equilibrium stress associated with A , and that the deforma-
tion-stress pair (A, G A) is an equilibrium state for the material. A particular
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equilibrium state is the natural state (0, 0). Notice that, by (2.12), r(-oo) =
G00£(-oo), i.e., that every pair (T, E) of processes related by the constitutive equa-
tion (1.1) starts from an equilibrium state.

The work done in the process E in the time interval [p, q] is

w(E p, q) := (Q T(t) • dE(t), (2.15)
Jp

with the Riemann-Stieltjes integral on the right defined as in (2.7), with the tensors
C(r")H(t") replaced by the scalars T(r") • E(t"). By (ii) of Prop. 2.1, the existence
of this integral is ensured whenever T, and therefore E, is continuous in \p, q].
A counterexample [10, Note 8.1] shows that, if T is discontinuous even at a single
point, the value of the integral may depend upon the choice of the points r . The
definition of the work done in a discontinuous process is one of the purposes of the
next section.

3. Accelerations and retardations. Let [a, b] be a fixed interval. For any real
positive a consider the time rescaling fa :

t + (1 — a)(b - a) for t < a,
fa(t) := < at + (\- a)b for a<t<b, (3.1)

/ for t > b ,
which maps [a, b] into the interval [aa + (1 - a)b, b], with a uniform contraction
if a < 1 and a uniform dilatation if a > 1 . If E is a deformation process, the
process Ea:

Ea{fa{t))'.= E{t), te R, (3.2)
is also a deformation process, called the a-acceleration of E in [a, b] if a < 1 , and
the a-retardation of E in [a, b] if a > 1 . In particular, for t > b,

Ea(t) = E(t) Va > 0, (3.3)
and, for t < b ,

/ E(t-(l -a)(b -a)) for t < fja),
L (t) := < . (3.4)

[E{b-a (b-t)) for t > fa{a).
Recalling that fa(a) — b-a(b-a) and that E is continuous from the right by (A2),
for all t < b we have

lim£ (t) = E(t — b + a), lim E (t) — E(b ). (3.5)
a—*0 a a—++OQ a

From (3.3) and (3.4) it follows that the one-parameter family a *-> Ea converges
pointwise to the deformation process EQ :

f E(t) for t > b,
EM) := \ ~ 3.60 \E(t-b + a) for t<b,

when a —> 0, and to the deformation process E^ :

( E(t) for t > b,E (t) := I (3.7)
00W I E(b~) for t<b,
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when a —> +00 . Denote by Ta the stress process associated with Ea :
r+oo

Ta (0 = G0Ea{t) + / G (s)Ea(t-s)ds, (3.8)
J 0

and by T0, Tx the stress processes associated with E(j, Erxj, respectively. The next
proposition shows that the family a >-> Ta converges pointwise to T0 when a —> 0
and to Tx when a —> +00 .

3.1. Proposition. Let E and G satisfy (A1)-(A3). Then, for all (eR,
lim T (t) = TJt), lim T (t) — T (t). (3.9)
a—>0 aW °W a-+oo aW 00 W V '

Proof. For the integrand function in (3.8) we have

\G(s)Ea(t-s)\<\\G(s)\\ sup \Ea(r)\. (3.10)
r€( — 00, /]

If t > b , then Ea and E take the same values in (-00, /], so that the suprema in
(-00, t] of Ea and E coincide. If t < b, then

sup \Ea{r)\< sup |£a(r)|= sup \E(r)\. (3.11)
r€(—oo,/] r€(—00,6] r£(—oo,A]

In both cases, the supremum of Ea in (-00, t] is bounded by a constant independent
of a. Since G is Lebesgue integrable in [0, +00) by (A3), we conclude that for
all a > 0 and for any fixed t e R the integrand function in (3.8) is bounded
by a Lebesgue integrable function. Thus, by the Lebesgue dominated convergence
theorem, the limit can be taken inside the integral, and Eqs. (3.9) follow from the
pointwise convergence of a Ea to EQ and Ex , respectively. □

We say that a process E is subject to an extreme acceleration in [a, b] when
a —> 0 and to an extreme retardation when a —> +00. We have shown that a
process Ea converges pointwise to EQ in an extreme acceleration and to E^ in an
extreme retardation, and that the stress converges pointwise to the stresses T0, T^
associated with EQ, E^ by the constitutive equation. To evaluate the corresponding
limits of the work, we start from a preparatory result, which shows the behaviour of
the stress response at the interior points of the interval [fa(a), f (b)] when a —> 0
and a —> +00 .

3.2. Proposition. Let E and G satisfy (A1)-(A3). Then, for all t e [a, b),

lim rQ(/Q(0) = T(a) + G0(E(t) - E(a)) (3.12)
a—►u

and
Jlim^ Ta(fa(t)) = Goo£(D + G0(E(t) - E(t~)). (3.13)

Proof. By the constitutive equation (1.1),
r+oo

UW) = G 0Ea(fM+ / G (s)Ea(fa(t)-s)ds,
Jo

and, by (3.4),

(3.14)

E (/ to -,) = (E(W 7"(11"'a){b-a))
\ E{b — oT {b — fa{t) + s)) for fa(t) - s > fa{a).
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For t € [a, b), from (3.1) we get

{E(at - s + (1 - a)a) for s > a(t — a),
, (3.16)

Eit-a^s) for s < a(t — a),

and (3.14) is transformed into
ra(t-a) r+oo

Ta(fa(t)) = G0E(t)+ G(s)E(t-a~s)ds + G(s)E(at - s + (1 - a)a) ds.
JO Ja(t—a)

(3.17)
Using inequalities of the type (3.10), (3.11) it can be proved that the integrand
functions are uniformly bounded by a Lebesgue integrable function. Therefore, by
the dominated convergence theorem, we can take the limits inside the integrals. For
a —> 0, the first integral converges to zero and the second one converges to

fJo

+oo
G(s)E{a-s)ds = T(a)-G0E(a), (3.18)*o

and for a —> +oo the first integral converges to

fJo

+oo

G(s)E(r)ds = (Goo-G0)E(r) (3.19)

and the second integral converges to zero. □
Note that Eq. (3.12) associates with E{t) the same stress which, according to Eq.

(2.13)2, would follow from a jump of E at a, of amount E(t) - E(a). Moreover,
Eq. (3.13) tells us that, if E is continuous at t, an extreme retardation associates
with E(t) the equilibrium stress Goo£'(?) • Thus, Eqs. (3.12) and (3.13) can be
interpreted by saying that an extreme acceleration has the same effect as a jump,
and that in an extreme retardation of a continuous process the material undergoes a
sequence of equilibrium states.

For the work done in a retardation or acceleration E we introduce the notation
Q

wa(E \ p, q) := w{Ea ; fjp), fa{q)), (3.20)

where \p, q] is any interval of the real line, not related with the interval [a, b] in
which E has been accelerated or retarded. For the moment, this definition applies
only to processes that are continuous in \p, q], because only for such processes is
the integral (2.15) well defined. The work done in [p, q] in an extreme acceleration
and in an extreme retardation of [a, b] is defined as the limit of wa(E; p, q) when
a -* 0 and a —> +oo, respectively. For the particular case \p, q] - [a, /?], these
limits are evaluated in the next proposition and in the following corollary, which
generalize results established by Gurtin and Herrera [7] and by Day [4, 5] under
stronger regularity assumptions.

3.3. Proposition. Let E and G satisfy (A1)-(A3) and let E be continuous in
{a, b]. Then,

lim wa(E-a,b) = (T(a)-G0E(a))-(E(b)-E(a))+ f G 0E(t)-dE(t) (3.21)
a—>0 J a
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and b

lim w (E\ a, b) — f G^t) ■ dE(t). (3.22)
a->+oo Q Ja

Proof. By (2.15) and by the fact that Ea(fa(t)) = E(t),
rfa(b) rb

wa(Ea, b) — / Ta(fa(t))-dEa(fa(t))= TJfo(t))-dE(t). (3.23)
J fa(a) J a

If E is continuous in (a, b], so are Ea(fa(-)) and Ta(fa(-)), and the above integral
is well defined. We recall that Ta(fa(-)) continuous also implies that the Riemann-
Stieltjes integral coincides with the Lebesgue-Stieltjes integral, i.e., with the Lebesgue
integral with respect to the Stieltjes measure corresponding to E [11, Sec. 36]. By the
preceding proposition, the family a >-> Ta(fa(-)) converges to the limits (3.12), (3.13)
at all points of [a, b). Since E is continuous at b by assumption, this convergence
property extends to the whole interval [a, b]. Moreover, it follows from (3.14) that
a >-> Ta(fa(-)) is uniformly bounded in [a , b] by

|r(/Q(0)l< sup \E(r)\(\\G0\\+ [+°°\\G(s)\\ds). (3.24)
r€(-oo,b] \ J 0 /

Thus, the Lebesgue dominated convergence theorem applies, and we can take the
limits inside the integral (3.23). The desired results follow at once from (3.12) and
(3.13). □
3.4. Corollary. Let E and G be as in the preceding proposition and let G0 and

be symmetric. Then

lim wa(E ■a, b) = T(a) ■ (E{b) - E(a)) + 0(E(b) - E{a)) • (E(b) - E{a)) (3.25)
a—»0

and
o!jm wa{E;a, b) = ^G ̂ (b) ■ E(b) - ^E(a) • E(a). (3.26)

Proof. The formula of integration by parts for the Stieltjes integral [10, Sec. 8.1]
yields

[ G0E(t)-dE(t) = - [ G]E(t)-dE(t) + [G0E(t)-E(t)]ba. (3.27)
J a J a

Thus, if G0 is symmetric,

G0E(t) ■ dE(t) = i[G0£(/) • E(t)]ba , (3.28)
/J a

and (3.25) follows from (3.21). The proof of (3.26) is similar. □
For intervals [p, q] other than [a, b], the evaluation of the limits of wa(E; p, q)

can be done without difficulty. For q < a, it is immediate to check that wa{E\p,q)
= w(E; p, q) for all a > 0, so that

lim w (E;p,q)= lim w (E; p, q) = w(E; p, q). (3.29)
a—>0 a—>+oo

It is also not difficult to prove that, for all p > b,

\imw {E\p,q) = w(E0\p,q), lim w(E\p,q) = w(E;p,q). (3.30)
a—>0 a—>+oo "
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Any other interval can be decomposed into the sum of subintervals of the type con-
sidered above, and the work can be evaluated as the sum of the works done in each
subinterval. For example, for an interval [p, q] with p < a and q > b ,

lim w(E\p,q) = w(E\p,a)+ lim w (E ■ a, b) + w(E \ b, q). (3.31)
a—»+oo a—>+00

The same procedure can be used to evaluate the work done in processes with more
than one interval subject to an extreme acceleration or retardation.

The fact, expressed by (3.12), that an extreme acceleration has the same effect on
the material response as a jump, suggests that discontinuous processes could be iden-
tified with the extreme accelerations of suitable continuous processes. For example,
a process E{) discontinuous at b could be identified with the extreme acceleration
in [a, b] of any continuous process E such that, for some a < b ,

E(t) = EQ(t + b - a) for t<a, E(t) = E0(t) for t > b. (3.32)

The fundamental advantage of this identification would be the possibility of defining
the work done at the jump point by

w (E0\ b) := lim w(E; a, b). (3.33)
a—>0

Unfortunately, the expression (3.21) of this limit shows that it depends upon the
values taken by E in {a, b), which are arbitrary. However, as shown by (3.25), if
G0 is symmetric the limit becomes independent of these values and the definition
(3.33) becomes meaningful. In the following, we identify the extreme acceleration
of E in [a, b] with the process E0 defined by (3.6), and we take (3.33) as the
definition of the work done in a jump, bearing in mind that this takes for granted the
symmetry of G0.

Let us prove a useful alternative expression for the work (3.33).

3.5. Proposition. Let E0 be a deformation process discontinuous at b, and let
T0 be the corresponding stress. Let E0 and G obey (A1)-(A3) and let G0 be
symmetric. Then

w(E0-,b) = ±(T0(b) + T0(b-))-(E0(b)-E0(b~)). (3.34)

Proof. After identifying E0 with the extreme acceleration in [«, b] of a contin-
uous process E obeying (3.32), from (3.33) and (3.25) we have

w(E0 ■ b) = T(a) ■ (E(b) - E(a)) + ±G0(E(b) - E(a)) • (E(b) - E(a)). (3.35)

By (3.32),
E(b) = E0(b), E(a) = E0(b ), (3.36)

and by the fact that E, and therefore T, is continuous at a and the restriction of
E to (-00, a) differs from that of EQ to (-00, b) only by a shift of the time scale,

T{a) = T{a~) = TQ(b~). (3.37)

Moreover, by the formula (2.13)2 relating the jumps of T and E,

T0(b) = T0(b~) + G0(E0(b) - E0(b~)) = T{a) + G0(E(b) - E(a)). (3.38)
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Substitution into (3.35) yields the desired result. □
The identification of the extreme retardation of E in [a, b] with the process E

defined by (3.7) is impossible. The reason is that the work done by E^ is different,
in general, from the limit (3.31), which is the work done in the extreme retardation
of E. The impossibility of this identification reflects the fact that E^ bears no
trace of the work done in the interval (-oo, fa{a)) preceding the retarded interval
I,fa(a) > fa(b)] ■ Rather than with a process, an extreme retardation can be identified
with a path in stress-strain space; indeed, consider a process E continuous in [a, b]
and take its retardations Ea in [a, b]. For all t e [a, b] we have Ea(fa(t)) = E(t)
from (3.2); moreover, by (3.13), for a —► +00 the stress Ta(fa(t)) converges to
Goo£'(0 . In the limit for a —> +00, with any t £ [a, b] we can associate the pair
(E(t), G^Eft)), which represents an equilibrium state for the material. Thus, in the
extreme retardation the material traverses the equilibrium path

(£(0,Goo£(/)) , te [a, b]. (3.39)
Notice that the parameter t does not coincide any more with the time. Indeed, the
time required to traverse the whole path is infinite.

To account for extreme retardations, rather than of the work done in a process, it
is convenient to speak of the work done in an admissible path in stress-strain space,
where by admissible we mean either a path in which £ is a process obeying (Al)-
(A2) and T is the process associated with E by the constitutive equation (1.1),
or an equilibrium path associated with an extreme retardation. In both cases the
work done in the path has the expression (2.15), but only in the first case does the
parameter t coincide with the time.

4. Work postulates. As already remarked, a priori restrictions on the relaxation
function have been deduced from the study of two special classes of functions: the
dissipative functions and the functions compatible with thermodynamics. Let us
introduce the following terminology: we say that a deformation process E is finite
if there is an interval [a, b] such that E(t) = E{a) for all t < a and E(t) = E(b)
for all t > b. We say that E starts from the natural state if E{—00) = 0 and that
E is cyclic if the limit E(+oo) exists and coincides with E(—00).

4.1. Definition (Gurtin and Herrera [7]). A relaxation function is dissipative if
the work done in any finite process starting from the natural state is nonnegative. □

4.2. Definition (Day [4]). A relaxation function is compatible with thermody-
namics if the work done in any finite cyclic process is nonnegative. □

The relationship between these two classes of functions and the restrictions to
which they are subject are summarized in the following statement.

4.3. Proposition (Day [4]). A relaxation function G is dissipative if and only if it is
compatible with thermodynamics and G^ is positive-semidefinite; G is compatible
with thermodynamics if and only if G^ is symmetric and the function G:

G(s) := G(s) - G^ (4.1)
is dissipative. If G is dissipative, then

G0 and G^ are symmetric and positive-semidefinite (4.2)
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and
G0 i G(s) > 0, Vs G [0, +oo). □ (4-3)

A requirement that can be removed from Definitions 4.1, 4.2 is that the processes
be finite; for example, an extension of the dissipation principle to processes that are
not finite, but are continuous and have a Lebesgue integrable derivative, can be found
in [6], In fact, we prove below that all restrictions imposed to the work done in finite
processes by dissipativity and compatibility with thermodynamics are automatically
satisfied by the work done in any admissible path. In the following statement, a
cyclic admissible path is an admissible path whose final deformation coincides with
the initial one.

4.4. Proposition. Assume that (A 1)-(A3) hold. Then G is dissipative if and only if
the work done in any admissible path starting from the natural state is nonnegative,
and G is compatible with thermodynamics if and only if the work done in any cyclic
admissible path is nonnegative.

Proof. Only the only if parts need to be proved. Moreover, we can restrict our-
selves to those admissible paths that are associated with deformation processes obey-
ing (A1)-(A2). Indeed, if we are able to prove that w(E; -oo, t) > 0 for all t € R
and for all E that either start from the natural state or are cyclic, then the same holds
for their retardations Ea . By definition, the work done in the extreme retardation
of E is the limit of wa(E\ -oo, b) when a —* +oo, and therefore is nonnegative
as well.

The proof is based on the fact that, if the variation of E in (-oo, b] is bounded,
then for any e > 0 there is a te < b such that

V^^EXe. (4.4)

Fix a deformation process E, two instants a, b with a < b, an s > 0, and take
te < a satisfying (4.4). Consider the finite process Ee:

, ( E(—oo) for r < t, and for r > b,
E ^ := Lm f (4-5)I E(r) for te < r < b,

and denote by Te the stress process associated with Es. Using the fact that Ee(r) =
E(r) for all r e (te, b), for any t e (tE, b) we get

w{E- -oo, t)-w(Ee\-oo, 0 = [' T(r) -dE(r) - f ' T\r) ■ dE\r)
J—oo J—oo

+ f'(T(r)-T£(r))-dE(r). (4.6)
J'c

For the first integral, by (4.4),

11"I J — »
T(r) ■ dE(r) < sup \T(r)\V (E)<e sup |7\r)|. (4.7)

r€(—oo,f ] ' ' r£(—oo,a]

Recalling that Ee takes constant values in (-oo, tE), the second integral reduces
to the work done at the jump point t . Since by Prop. 4.3 both dissipativity and
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compatibility with thermodynamics imply the symmetry of G0 , the work at the jump
can be evaluated by the formula (3.35), with E(b), E(a), and T(a) replaced by
Ee(tg) = E(ts), E\t~) = E{~oo), and Te(t~) = G^J^-oo), respectively. Keeping
in mind that, by its very definition (2.1), the variation of E in some interval is
greater than the norm of the difference of the values taken by E at any two points
of the same interval, from (4.4) we have

\E(r)-E{-oo)|<K_00>(i(£)<e Vre(-oo,g, (4.8)

and, therefore,

\['e T\r)-dE\r) < |(G00£(-oo) + $G0(E(te) - E(-oo))) ■ (E(te) - E(-oo))\
I J —OO

- IIG || |£(—oo)|e + j||G0||e2.2II 0

Finally, from (1.1) and (4.8), for all r e [t , t],
(4.9)

/

r+oo

\T{r)-T\r)\ = / G(s){E{r - s) - Ee(r - s)) ds
\J o

)
G(s)(E(r - s) - E(-oo)) ds

r+oo

< sup \E{r)-E(-oo)| / ||G(j)||rfy
r€(—oo, te\ J r-te

r+oo

:/ ||G(*)||A.

(4.10)

< e

Thus, all terms on the right-hand side of (4.6) are bounded by e multiplied by a
constant independent of e, t, and b . Therefore,

w(E; -oo, t) > w(Ee; -oo, t) - Me Ve>0, Vte(a,b), (4.11)

with M independent of e , t, and b .
Let G be dissipative and let E start from the natural state. Then Ee is a finite

process starting from the natural state, and this implies w(Ee; -oo, t) > 0 . Since e
is arbitrarily small, it follows from (4.11) that w(E; -oo, t) > 0 for all t in (a, b),
and, since (a, b) has been chosen arbitrarily, the work w(E; -oo, t) is nonnegative
for all (eR.

Let now G be compatible with thermodynamics and let E be cyclic. Then Ee
is a finite cyclic process, and this implies w(Ee; -oo, +oo) > 0. Using the fact that
M does not depend upon b, we can take the limit of (4.11) for b —> +oo to get

w(E ; — oo, +oo) > — Ms , (4.12)

and the nonnegativeness of the work done in the cyclic process E follows by letting
e —> 0. □

We are also interested in strongly dissipative relaxation functions, whose definition,
due to Gurtin and Herrera [7], is the following.
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4.5. Definition. A relaxation function is strongly dissipative if it is dissipative
and if the only finite deformation process starting from the natural state that satisfies
w(E; -oo ,0 = 0 for all (eR is the null process E(t) = 0, W e R. □

When considering admissible paths instead of finite deformation processes, it
seems reasonable to replace finite deformation process by admissible path in the above
definition. We recall that, in this case, the parameter t need not be identified with
the time. It is also convenient to consider the following alternative definition of
strong dissipativity.

4.6. Definition. A relaxation function is strongly dissipative if it is dissipative
and if, for any deformation process E starting from the natural state,

E{t) ^ 0 =>• w(E; — oo, /) > 0. □ (4.13)

Since any process can be frozen at any time t by setting E(r) = E(t), Vr > t, the
new definition states that a relaxation function is strongly dissipative if a positive
work is required to deform the material starting from the natural state. The equiva-
lence of the two definitions and a characterization of both are given by the following
statement.

4.7. Proposition. Let (A1)-(A3) hold. Then the assertions
(i) the relaxation function is strongly dissipative according to Definition 4.6,

(ii) the relaxation function is strongly dissipative according to Definition 4.5,
with finite deformation process replaced by admissible path,

(iii) the relaxation function is dissipative and is positive-definite

are equivalent.
Proof. Assume that the relaxation function satisfies Definition 4.6 and assume that

there is an admissible path E starting from the natural state in which w(E; -oo, t) =
0, V? € R. Then (4.13) implies E(t) = 0 for all (eR. This proves that (i) => (ii).

Assume now that (ii) is true, and that is symmetric and positive-semidefinite,
as required by (4.2), without being positive-definite. Then there is an A £ Sym \{0},
such that G^A = 0 . Consider the process E(t) = A(t)A , with X a continuous scalar-
valued function with X(t) = 0 for all t < a and A(?) = 1 for all t > b . Consider the
retardations Ea of E in [a, b]. A simple computation based on (3.31) and (3.26)
shows that the work done in the extreme retardation is

lim w (E;-oo, t) = U2(/)G A-A = 0 Vt 6 R. (4.14)a—>+00 a z oo

Thus, we have a non-null admissible path starting from the natural state, for which
the work is zero for all t, in contradiction with (ii). This shows that the assumption
that G^ is only positive-semidefinite is false, and proves that (ii) => (iii).

Assume, finally, that (iii) holds. Fix an interval [a, b], and take a process E
starting from the natural state, continuous in [a, b], and with E(t) = 0 for all
t > b. If we consider the retardations of E in [a, b], from (3.26) and (3.31) we
have

lim w (E; -oo, b) = w(E; -oo, a) - AGnnE(a) • E(a). (4.15)
a—»+oo a
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For a dissipative relaxation function, wa(E; —oo, b) is nonnegative for all a, and
therefore the limit is nonnegative. Thus,

w(E; -oo, a) > ^GooE(a) • E(a), (4.16)

and (4.13) follows from the positive-definiteness of . Since the restriction of E
to (—oo, a\ is arbitrary, we have proved that (iii) =>• (i). □

4.8. Remark. It follows from the first assertion in Prop. 4.3 that, if is
positive-definite, then G is dissipative if and only if G is compatible with ther-
modynamics and G^ > 0. Thus, the result just proved can be restated as follows:
under the assumptions (A1)-(A3), a relaxation function G is strongly dissipative if
and only if it is compatible with thermodynamics and G^ is positive-definite. □

4.9. Remark. In [7], Gurtin and Herrera proved that, if G is twice continuously
differentiable and if all deformation processes are continuous and piecewise smooth,
then G is strongly dissipative in the sense of Def. 4.5 if and only if G is dissipative
and G0 is positive-definite. Here we have proved that the modified definition of
strong dissipativity is equivalent to G dissipative and G^ positive-definite. Since
(4.3) implies G0 - ^ v , the modified definition of strong dissipativity given here is
more restrictive than the original one. □

5. Monotonicity of the relaxation function. A relaxation function G is monotonic
(,nonincreasing) if

r > s => G(r) < G(s). (5.1)

G is nonincreasing if and only if for each A e Sym the scalar function gA :

gA(s) := G(s)A ■ A, s e [0,+oc), (5.2)

is nonincreasing. Therefore, monotonicity is indeed a condition on the symmetric
part of G. Although there is some experimental evidence about the monotonicity of
the relaxation function, this property has not yet been related with general postulates,
such as those discussed in the preceding section. An explicit example of a function
that is dissipative but not monotonic, due to Gurtin and Herrera [7], excludes that
monotonicity be a consequence of dissipativity or compatibility with thermodynam-
ics. The most successful attempt to characterize monotonicity in terms of work is due
to Day [3], who was able to show that, in dimension one, the complete monotonicity
of the relaxation function is equivalent to the property of the work being increased
by delay in retraced paths. We shall discuss and extend Day's result later.

We say that a deformation process E is rectilinear if there is a real-valued function
X such that

E[t) = k{t)A We R, (5.3)

for some A e Sym, and that a rectilinear process is monotonic if the function A
is monotonic (nonincreasing or nondecreasing). Our characterization of the mono-
tonicity of the relaxation function is that a relaxation function is nonincreasing if
and only if the work done in any monotonic rectilinear process is decreased by re-
tardation.
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5.1. Theorem. Let (A1)-(A3) hold and let G0 be symmetric. Then G is nonin-
creasing if and only if, for all monotonic rectilinear processes E and for all finite
intervals [a , b], the work done in all retardations Ea of E in [a , b] satisfies

wa(E\ a, b) < w(E\ a, b). (5.4)

Proof. By (3.23) and (2.12),

wa(E; a, b) - w(E) a, b) = f"(Ta{fa{t)) - T(t)) ■ dE(t)
J a

fb ( rfjt) rt
= / G (fa(t)-r)dEa(r)~ G(t

J a \J —oo J— oo
r) dE(r)j • dE(t).

(5.5)
We claim that

r/.(0
/ G(fa(t)-r)dEa(r)= / G(fa(t) - fa(r))dE(r).

J— oo J —OO
(5.6)

Indeed, consider a finite interval \p, t], and take points t" , r" as in (2.7). In the
interval [fa(p),fa(t)), take the points fa(t"), fa(r"). Using the definitions (2.7)
and (3.2) we get

rfjf) "
J ' G(fa(t) - r)dE^r) = ^ £C</„(1) - fa{r")){Ea(fa{t")) - £„(/„(C,)))
'/» ,= i

n

= - uCmEiO - E«U)) (5-7)(=i
= [' G(fa(t)-fa(r))dE(r),

Jp

and (5.6) follows for p —► -oo. Substitution into (5.5) yields

wa(E; a, b)-w(E] a, b) = J (^J (G(fa(t) - fjjr)) - G(t - r)) dE(r)j • dE{t).
(5.8)

For a rectilinear process, we have dE(t) = A dk{t), and therefore

wa{E\ a,b) - w(E; a, b) = J (J (gA{fa{t) - fa(r)) - gA(t - r))dA(r)) dX{t).
(5.9)

Let G, and therefore g4, be nonincreasing. Then the fact that fa(t) - fa(r) > t - r
for all retardations implies

gA(faW - fa(r)) < gA(t - r), (5.10)
so that the integrand function in (5.9) is nonpositive. If X is nondecreasing (nonin-
creasing), then (5.10) and the formula (2.7) imply that the integral

[ (^(/Q(0- /»)- gA(t-r))dl(r)
J — OO

(5.11)
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is nonpositive (nonnegative). For the same reason, the integral (5.9) is nonpositive,
both for nondecreasing and for nonincreasing A .

Assume now that (5.4) holds. Take a monotonic rectilinear process E(t) = X{t)A
with

0 for t < a,
X(t) for a<t<b, (5.12)

A, + A2 for t > b,
and with kxX2 > 0. Since E is piecewise constant, the work is concentrated at the
jump points a, b, and, since G0 is symmetric, this work can be evaluated using the
formula (3.34). From the constitutive equation we easily get

T{b~) = XxG{b-a)A, T{b) = XxG{b-a)A + k2G()A, (5.13)
so that, by (3.34),

w(E;a, b) = {XxgA{b - a) + ^2gA(0))Ar (5.14)

For the retardations of E in [a, b] we have the same result with (b - a) replaced
by a(b - a). Therefore,

wa{E\ a, b)-w(E; a, b) = (gA(a(b - a)) - gA(b - a))XxX2. (5.15)

Since the left-hand side is nonpositive and XxX2 is positive by assumption, we have
proved that

gA(a(b - a)) < gA(b - a) Va > 1. (5.16)
The monotonicity of G follows from the arbitrariness of (b - a) and A . □

6. Complete monotonicity. Consider a function G : [0, +oo) —► LinSym. For a
given h > 0, the finite difference of G at 5 is

AhG(s) := G(j + h) - G(s), (6.1)
and the finite difference of order n at s is

AZG(j):=£(-1)"-*("W + *A), ne N. (6.2)
k=0 ^ '

Note that A°hG(s) = G(j) and A^G(s) = AhG(s). G is said to be completely mono-
tonic if

(-1)"a;G(s)>0 V5£[0,+oo) (6.3)
for all natural integers n and for all h > 0. These definitions are obvious extensions
of the standard definition for real-valued functions; see, e.g., [14, Chapt. IV]. In
particular, for any A e Sym we have

AnhG(s)A-A=A"hgA(s), (6.4)

with gA the real-valued function defined in (5.2). Thus, G is completely monotonic
if and only if for all A e Sym the function gA is completely monotonic. Since only
the symmetric part G of G enters in the definition of gA , we have that, just as
monotonicity, complete monotonicity is a condition on the symmetric part of G.
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6.1. Remark. It is known that a real-valued function g is completely monotonic
if and only if it has all derivatives Dn g and

(-1)"Dng(s) > 0 (6.5)

for all n e N and for all s in the domain of g [14, Sec. 4.7]. By applying this result
to the functions g4 and using the fact that DnG(s)A • A — DngA(s), we have that G
is completely monotonic if and only if the function 5 h-> G(s)/1 -A has all derivatives
and satisfies

(-\)nDnG{s)A- A > 0. □ (6.6)

In dimension one, completely monotonic functions are characterized by Bern-
stein's representation formula.

6.2. Theorem (Bernstein). A real-valued function g is completely monotonic if and
only if there is a bounded nondecreasing function k such that

r+oo
g(s) = / e~ws dk(co). □ (6.7)

Jo
For a proof of this theorem see, e.g., [14, Sec. 4.12], This result can be extended

to more dimensions in the following way.

6.3. Corollary. A function G : [0, -t-oo) —► LinSym is completely monotonic if
and only if there is a bounded, nondecreasing function K : [0, +oo) —> LinSym such
that

« r+°°G (s) — / e wsdK(co). (6.8)
Jo

Proof. Let Gs be as in (6.8) and set kA(a>) := K(a>)A - A . Then,
r+oo

gA(s)= e~wsdk4(co). (6.9)
Jo

Clearly, K bounded and nondecreasing implies kA bounded and nondecreasing.
Thus, gA is completely monotonic by Bernstein's Theorem. Since this holds for all
A e Sym, the function G is completely monotonic.

Assume now that G is completely monotonic. Then gA is completely monotonic
for each A e Sym and, by Bernstein's Theorem, there is a bounded, nondecreasing
function kA : [0, +oo) —> R such that gA has the representation (6.9). Take an
orthonormal basis {A1} of Sym . In view of the identity

2GS(sM' • AJ - GS(5)(^'' + A') ■ (A' + AJ) - GS(s)A' ■ A' - GS(s)AJ ■ Aj ,£ , m(o. 1U)
= sA'+As) ~ sAs) - saj{s),

from (6.9) we get
„ r+OO

2G (s)Al ■ AJ — e ws[dkA,+Aj(aj)-dkA,(co)-dkA](aj)]. (6.11)
Jo

Define K e LinSym by
m

K(«):= 53 Kij(oj)A'^Aj, (6.12)
',7=1
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with m the dimension of Sym and

S7((w) := {[kA<+A]\v->) - ~ k,;Kij{(o) \= \[kA,,Aj(aj) - kA(o) - k (6.13)

Then (6.11) implies

2GS(s)v4i • Aj = 2 ^+°° e~ws (/K(g;)^ A' ■ AJ, (6.14)

and, therefore, (6.8). It remains to prove that K is bounded, symmetric, and non-
decreasing. The first two properties are direct consequences of (6.13). To prove that
K is nondecreasing, it is sufficient to prove that

K(co)A • A = kA(u>) VyleSym, V<ye[0,+oo). (6.15)

Indeed, kA is nondecreasing for all A . For any fixed A , take the basis {A1} such
1 2that A = A/\A\. By the fact that, for any positive A, kXA(co) = X kA{a>) as a

consequence of (5.2) and (6.9), it is sufficient to prove that K(co)Al • A1 = kA\(a>).
This is done by observing that, by (6.12) and (6.13),

K(co)A1 • A1 = Kn(a>) = jk2A\(a>) - k4i(co). □ (6.16)

We say that a relaxation function is of positive type if
f+OO r +OOr+oo r+oo

/ / G(r + s) dH(r) ■ dH(s) > 0
J o Jo (6.17)

for all functions H : [0, +oo) —> Sym with bounded variation. Just as complete
monotonicity, this is in fact a condition on the symmetric part of G. Indeed, r and
s can be interchanged in (6.17), so that G can be replaced by GT or by Gs .

In [3] Day shows that, in dimension one and considering only continuous functions
H, G is of positive type if and only if it is completely monotonic. Here we give
a proof in finite dimension, removing at the same time the requirement that the
functions H be continuous.

6.4. Proposition. Let G satisfy (A3). Then G is of positive type if and only if it
is completely monotonic.

Proof. Let G be completely monotonic. Recalling that, in (6.17), G can be
replaced by GS , the representation formula (6.8) yields

r+OO n +00 r+OO r+OO r+oo

/ / G{r + s)dH(r)-dH{s)= / / / e~w(s+r) dK(co) dH(r) ■ dH(s),
Jo Jo Jo Jo Jo

(6.18)
with K : [0, +oo) —► LinSym symmetric-valued, bounded, and nondecreasing. The
function (co, s, r) \e~wt~s+r)\ being integrable in (0, +oo)3, we can invoke Fubini's
Theorem to interchange the order of integration:

r+oo r+oo r+oo / r+oo \ / r+oo

/ / G{r+s)dH(r)-dH{s)= dK(co) / e~(or dH{r)\-[ e~ws dH{s)
Jo Jo Jo \J0 J \j0

(6.19)
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Denote by F{co) the integral in brackets. By the definition (2.7) of the Riemann-
Stieltjes integral we get

p + OO n

dK{(o)F{oj) ■ F(co) = Hm ^(K(^) - K■ F(r"), (6.20)
n—>°° 7=1

where each term in the sum is nonnegative because K is nondecreasing. Thus, we
have proved that G completely monotonic implies G of positive type.

Assume now that G is of positive type. Take a finite subdivision {s(., i =
0,1, ... ,n; neN} of [0, +00), with sj+{ > s{, and take n+1 tensors A0,AV ... ,
An in Sym. Consider the piecewise constant function H:

0 for 5 < s0,
k

53^. for sk < s < sk+i ,k = 0, 11,
i=0
n

EAi fOTSn<S.
i=0

Using the formula (2.7) twice, we get
r+oc r+oo n r+oo n

/ / G(r+s)dH(r)-dH(s) = J2 G(Si+s)ArdH(s) = ^ G{Si+Sj)ArA,.
Jo Jo 1=0 0 l J=0

(6.22)
Consider the following particular choice of st and At. For fixed positive reals a , h
and for any fixed A € Sym, take

si = ja + ih, At = (—1A, /'= 0, 1, , n. (6.23)

The right-hand side of (6.22) takes the form

E(-1)2"~'Wf/) (n:)G(a + (i + j)h)A-A. (6.24)
i,j=0 ^ J \ J /

Setting k := i + j, from the identity

and from the definition (6.2) we get

£ G(si + sJ)ArAj = £(-l)2n-k (2£)G(a + kh)A-A = A%G(a)A-A. (6.26)
i,j=0 k=0 ^ '

If G is of positive type, comparison with (6.22) shows that

Af G(fl) > 0 (6.27)
for all natural integers n and for all positive reals a and h . It remains to prove
that, for all n , a, and h ,

Af+1G(a) <0. (6.28)
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Let us first observe that, if G(a) has a limit when a —► +00, as implied by (A3),
then, by (6.2),

&;C(a) = E(-1)""' ( ? ) G„ = 0 (6.29)
k=0 V 7

for all n , a , and h . Consider the identity

A2h"G{a + 2h) - 2Af G(a + h) + Af G(a) = Af+2G(a), (6.30)
coming again from (6.2), and note that the right side is positive-semidefinite by (6.27).
Writing the same identity at all points a + kh , k = 0, I, ... , £ and summing in k
we get

Af G(a + (£ + 2)h) - Af G(a + (£ + \)h) - Af G(a + h) + Af G{a) > 0. (6.31)
For £ —> +cxd we get the inequality

-AfG(a + A) + AfG(a)>0 (6.32)
which implies (6.28). □

Adopting a terminology introduced in [3], we call retraced path a deformation
process such that, for some a e R,

E(a - s) = E(a + s), Vs > 0. (6.33)

A retraced path delayed by time h with respect to E is the retraced path Eh defined
by

r E(a) for 0 < s < h,
£„(* + *):= ; ; (6.34)

[E(a + s-h) for s > h.
For simplicity, we denote by w(E) the work w(E; -oo, +oo) done in the whole
process E. We say that the work is increased by delay in retraced paths if w(Eh) >
w(E) for all retraced paths E and for all h > 0. The following theorem generalizes
the one-dimensional characterization of complete monotonicity given in [3],

6.5. Theorem. Let (A1)-(A3) hold. Then the work is increased by delay in retraced
paths if and only if the function G defined in (4.1) is completely monotonic.

Proof. By (6.34), the work w(Eh; -oo, a - h) is equal to w{E; -oo, a), and
w(Eh ; a - h , a + h) is equal to zero. Therefore, denoting by Th the stress process
associated with Eh,

r+oo /»+oo

w(Eh)-w(E)= Th{t) ■ dEh{t) — / T(t) • dE(t), (6.35)
Ja+h J a

and, after a change of variable in the first integral, using the fact that Eh(t) — E(t-h)
in (a + h, +oo),

r+oo

w(Eh)-w(E)= (Th(t + h)-T(t))-dE(t). (6.36)
J a

From the constitutive equation (2.12), using again (6.34) we get

Th(t + h) - T(t) = f (G(t + 2h-r)- G(t - r)) dE(r), (6.37)
J —OO
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so that
r + OO rd

w(Eh)-w(E)= / / (G{t + 2h-r)-G(t-r))dE(r)-dE(t). (6.38)
•j a J —oo

After the changes of variable t — a + p and r = a- q and after use of (6.33) we get
r+oo r+oo

(Eh)-w(E)= / (-G(p + q + h) + G(p + q))dE(a + q)-dE(a+p). (6.39)
Jo Jo

Since the restriction of E to (a,+oc) is an arbitrary function of bounded variation,
we have proved that the work is increased in retraced paths if and only if the finite
difference -AaG is of positive type for all h > 0. By Proposition 6.4, -A^G is of
positive type if and only if it is completely monotonic. It remains to prove that -A^G
is completely monotonic for all h > 0 if and only if G is completely monotonic.
To do this, it is sufficient to note that, by the definition (6.2),

(-DXG (s) = (-lr'AfVA hG(s)), V« e N\{0}. (6.40)
Therefore, G completely monotonic implies -A^G completely monotonic for all
h > 0. Conversely, if -A^G is completely monotonic for all h > 0, then G satisfies
(6.3) for all n e N\{0} . The missing inequality G > 0 comes from the identity

-G(s + h) + G{s) = -\G(s) > 0, V/z > 0, (6.41)
in the limit for h —> +oo . □

7. Relaxation functions of exponential type. In this section we consider relaxation
functions of the form

G(5) = A + B/H, (7.1)

with A, B, H 6 LinSym and with
OO

sH _

k\
oo kSH:=E^' (7-2)

k=0

For this particular class of functions we wish to prove that our assumption (A3) is
satisfied if and only if all eigenvalues of H whose eigenspaces are not contained in
the null space of B have a negative real part. The proof is based on the S + N de-
composition of linear operators on a real finite-dimensional vector space introduced
by Hirsch and Smale [9, Sec. 6.2],

7.1. Theorem (Hirsch and Smale). Any H e LinSym admits a unique decomposi-
tion into the sum of two commuting operators S and N:

H = S + N, S,N 6 LinSym, SN = NS, (7.3)

with S semisimple and N nilpotent. Moreover, H and S have the same eigenval-
ues. □

We recall that N is nilpotent if there is a positive integer q such that N9 = 0,
and that S is semisimple if its complexification is diagonalizable. This means that
with each complex eigenvalue Xh, h = 1, 2, ... , t of S it is possible to associate a
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h(complex) projection E of the complexification of Sym into the eigenspace corre-
sponding to Xh such that

i
SEA=AAE\ E*E*=<5wfcE*, £e* = I> (7.4)

h= I

and, therefore,

S = £A*e\ (7-5)
h-\

This spectral representation of S is discussed in [8, Sec. 80] in the particular case of
a normal operator, in which the projections e'1 are all orthogonal.

Let us examine the consequences of our assumption (A3) on relaxation functions
of the type (7.1).

7.2. Proposition. Let G be as in (7.1). Then the assertions
(i) G satisfies (A3),

(") Goo = A,
(iii) the eigenvalues of H whose eigenspaces are not contained in the null space

of B have a negative real part
are equivalent.

Proof. Let A.h = ah + i[ih be an eigenvalue of H and let Lh be a corresponding
(complex) eigenvector:

H Lh = XhLh, h=l,2,...,L (7.6)
Then, by (7.2),

esilLh = esX"Lh , HesHLh = khe'l*Lh (7.7)

and, recalling the definition (1.4) of the operator norm and the identities \esXh\ = esa>t
and \khe$Xh\ = \Xh\esa",

l|B/H||>/^, (7.8)
I ̂ h\ \^h\

for all h = 1, 2 On the other hand, using the S + N decomposition of H,
from the fact that S and N commute we have

„ sH ~ jS sN n.Be - Be e . (7.9)

Since S and H have the same eigenvalues, the spectral representation (7.5) of S
leads to the expansion

Be'S = BE*', (7.10)
h'

f h'the sum being made over all indexes h such that BE ^ 0. Denoting by the
maximum of the qa- , we get

||B^S|| < esa"" ^||BE*'||. (7.11)

h'
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For the nilpotent operator N, the existence of a q such that N9 = 0 implies
9-1 k

sN„ ^

k=0
e < P(s) V —^ k\

k=0
<p(s)\\e*\\, (7.12)

with <p{s) =1 for 0 < 5 < 1 and <p(s) = s9 1 for s > 1 . In conclusion, we have
proved that there is a constant M such that

||B?sH|| < M(p{s)eah". (7.13)

5HThis inequality, together with (7.8)2 and with the fact that G(s) = BHe , shows
that

IBL I r+°° r+oo _ r+oo
\kh„\ h" / esah" ds < / ||G(s)|| ds < M||H|| / (p{s)eS0Ch" ds, (7.14)

\Lh"\ Jo Jo Jo
and proves that (i)'O(iii), since (iii) is the same as assuming aA» < 0. Moreover,
(7.13) together with (7.8), implies

^11 T1 H 11 \ ,f Q \ SCXill /"j I r\e h < ||Be || < Ms e h (7.15)
\Lh"\

for all s > 1, and taking the limit for 5 —> +cxd shows that (ii) (iii). □
From this proposition it follows that a relaxation function of the type (7.1) obeying

the assumption (A3) takes the form

G(5) = G/H (7.16)
with G(s) := G(s) - G^ as in (4.1). In particular, the tensors A and B appearing
in (7.1) are identified with G^ and G0 , respectively.

7.3. Definition. A relaxation function of the type (7.16) is called a relaxation
function of exponential type. □

In what follows, relaxation functions of exponential type are related with the sign
of the work done in closed paths in stress-strain space. If £ is a deformation process
and T is the corresponding stress process, we say that the restriction of E to the in-
terval [a , b] is a closed path in stress-strain space if E(a) = E(b) and T(a) = T(b).
It seems reasonable to suppose that the work done in any such path be nonnegative.
It turns out that this assumption is very restrictive: it is verified if and only if the
relaxation function is of exponential type and compatible with thermodynamics. The
proof of this assertion is preceded by the following preliminary results.

7.4. Lemma. Let G be a relaxation function compatible with thermodynamics, and
let P be the orthogonal projection of LinSym onto the range of G0 . Then

G0 = PG0 = G0P = PG0P, (7.17)

and
G(s) = PG(s) Vs g [0, +oo). (7.18)

Moreover, if G is of exponential type,

G(0) = PG(0) = G(0)P = PG(0)P. (7.19)
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Proof. Equation (7.17), is a consequence of the fact that the restriction of P to
the range of G0 coincides with the identity mapping in the range of G0. If G is
compatible with thermodynamics, then G0, and therefore PG0, is symmetric by
Prop. 4.3. Thus, Eq. (7.17)2 follows from the symmetry of P. The last equation
follows from (7.17), .

To prove (7.18), take A, B e Sym, a, b e R, with b > a and p > 0. Consider
the piecewise-constant process

0 for t < a - p and for t > b,
E(t) — - A for a-p<t<a, (7.20)

A + B for a < t < b.

The work done in the whole process is the sum of the works done at the discontinuity
points, and can be evaluated using the formula (3.35):

w(E j —oo, +oo) — ̂ GqA • A -f- j(2G(p)A + GqB) • B
+ £(2G(p + b - a)A + 2G{b - a)B - G0(^ + B)) • {-A - B).

(7.21)
Since £ is a finite cyclic process and G is compatible with thermodynamics, this
work is nonnegative. In particular, for b - a —» +oo we get

G0(j4 + B) ■ (A + B) + (G (p) - G0)v4 B> 0, (7.22)

and, if B belongs to the null space of G0 ,

G0A • A + G(p)A • B >0 VAe Sym. (7.23)

This implies G(p)A ■ B — 0. After introducing the orthogonal projection onto the
null space of G0 :

P±:=l-P, (7.24)

we obtain
G{p)A ■P±B = 0 VA, Be Sym. (7.25)

This implies PxG(p) = 0, and therefore (7.18). Finally, if G is of exponential type,
the diiferentiation of (2.16) yields

G(0) = G0H (7.26)

and (7.19), follows from (7.17), . The restriction (4.3) imposed by compatibility
with thermodynamics requires that G(0) be negative-semidefinite. Thus,

PG(0)/l -A<0 VA e Sym. (7.27)

After introducing the projection Px , this condition takes the form

G(0)(P^ + P"1^) • PA < 0 VA G Sym, (7.28)

and, since PA and Px^l may vary independently, this implies G(0)Px = 0, i.e.,
G(0) = G(0)P. □
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7.5. Theorem. Let the assumptions (A1)-(A3) hold. Then the work done in all
closed paths in stress-strain space is nonnegative if and only if G is of exponential
type and compatible with thermodynamics.

Proof. It follows from (7.17) that there is a unique L in LinSym such that

L = PLP and LG0 = G0L = P. (7.29)

Consequently, for a relaxation function of the form (7.16) and compatible with ther-
modynamics,

G{s) = G(0)/H = G(0)P^H = G{0)LGQesH = G(0)LG(s), (7.30)

and the constitutive equation (1.1) takes the form

T(t)-G0E(t)= f G(t-r)E{r) dr = 6(0)L f G (t-r)E(r)dr. (7.31)
J— oo J— oo

By differentiation, we get

LFAt\\ = GrmT,fG„£,m + T(t\ - G.FAtW
(7.32)

(T(t) - G0E(t)) = G(0)L(G0E{t) + T(t) - G0E(t))

= G(0)UT(t)-GooE(t)).
The multiplication of the left-hand side by L{T(t) - Goc£'(/)) = L(T(t) - G0E(t) +
G0E(t)), followed by integration over [a, b], yields

fb L(T(t) - G0E(t)) ■ (T(t) - G0E(t)) dt + f LG0E(t) ■ (T(t) - GQE(t))' dt. (7.33)
J a J a

In (7.29), the symmetry of P and G0 implies the symmetry of L. The use of the
symmetry of L in the first integral and integration by parts of the second integral
yield

[{um - G0E(t)) ■ (T(t) - G0E(t))]ha - fb(T(t) - G0E(t)) ■ LG0 dE(t)
J a (7.34)

+ [LGo£(0-(r(0-Gn£(0)t*0 V- / \ v ' 0

If the restriction of E to [a, b] is a closed path in stress-strain space, the terms in
brackets vanish. Recalling that LG0 = P by (7.29), we get from (7.32)

- fb(T(t) - G 0E(t)) • P dE(t) = I' G(0)L (T(t) - Goo£(0) • L (T(t) - 0^(0) dt.
J a J a

(7.35)
Moreover, recalling that G(0) = PG(0) by (7.19), it follows from (7.31) that (T(t)~
G0E(t)) = P(T(t) - G0E(t)). Thus, the operator P can be omitted from the first
integral, which by this way reduces to

'"(Tit) - G0E(t)) ■ dE(t) - [±G0£(0 • E(t)fa - w(E;a, b). (7.36)/J a

The term in the bracket vanishes because we are considering a closed path in stress-
strain space. Thus, we find that the work done in [a, b] is the opposite of the integral
on the right-hand side of (7.35). But this integral is nonpositive by the negative-
semidefiniteness of G(0). Thus, we have proved that for a relaxation function of
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exponential type and compatible with thermodynamics the work done in any path
closed in stress-strain space is nonnegative.

Assume now that the work is nonnegative in any closed paths in stress-strain space.
Since finite cyclic processes are particular closed paths in stress-strain space, it follows
from Def. 4.2 that the relaxation function is compatible with thermodynamics. To
prove that G is of exponential type, take A, B, C e Sym, a, b e R with b > a,
and p, q > 0. Consider the deformation process

0 for / < a - p - q,
A for a-p-q<t<a-p,

E(t) = < A + B for a-p<t<a, (7.37)
A + B + C for a < t < b,
A + B for b < t.

For any fixed s e (0, p), take the restriction of E to [a — e,b\. Since E(a - e) =
E(b) = A + B , this is a closed path in stress-strain space if

0 = T(b) - T(a - e)
- G(p + q + b - a)A + G{p + b - a)B + G(b - a)C - G0C (7.38)

- G(p + q - e)A - G(p - e)B.

The corresponding work is

w(E \ q — e , b) = ^(2G(p + q)A + 2G(p)B + GqC) • C
+ j(2G (p + q + b — a) A + 2 G{p + b — a)B (7.39)

+ 2G{b - a)C - G0C) • (—C),

as given by the formula (3.35) for the work done at discontinuity points. By assump-
tion, this work is nonnegative if A, B, C satisfy (7.38). For b — a —* +00, the
work converges to

(G{p + q)A + G(p)B+ G0C)-C (7.40)
and (7.38) reduces to

G(p + q - e)A + G(p - e)B + G0C = 0. (7.41)

By the property (7.18) of G, this is an equation in the range of G0 . Thus, there is
no loss of generality in taking C = PC and in pre-multiplying by L. From (7.29)
we get

C = -L(G(p + q - e)A + G{p - e)B), (7.42)
and the nonnegativeness of the work is expressed by the inequality

UG{p+q)A+G{p)B-G{p+q-e)A-G{p-e)B]-[G(p+q-e)A+G(p-e)B] < 0 (7.43)

for all A, B e Sym, for all positive reals p , q , and for all e € (0, p). This implies
that the function /:

f(p) := |L1/2(G(p + q)A + G(p)B)\ (7.44)
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is nonincreasing. In particular, the choice

B := -LG(q)A (7.45)

yields /(0) = 0 and therefore f(p) — 0 for all p , because / cannot take negative
values. By the arbitrariness of A , this implies

L1/2(G(/j + q) - G(p)LG(q)) = 0, (7.46)

and, since the restriction of G0 , and therefore of L, to the range of G0 is positive-
definite, we conclude that

G(p + q) = G(p)LG(q) (7.47)
for all positive p and q. Differentiation with respect to p at p — 0 yields

G(q) = G(0)LG(<7). (7.48)

The solution of this differential equation under the initial condition G(0) = G0 is
(7.16), with PH = PHP = LG(0) and P^H arbitrary. Thus, G is of exponential
type. □
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