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Abstract. Several authors have used explicit numerical schemes of bicharacteris-
tics to solve the system of hyperbolic partial differential equations describing the
two-dimensional propagation of stress waves in elastic solids. However, their numer-
ical approaches differ slightly, which results in different limits of the CFL number for
stable solutions and in different defects of numerical accuracy near singular points
like, e.g., a numerically caused cutting trace emanating from a crack tip. After review-
ing the different approaches, some techniques are presented to set up stable explicit
schemes with CFL number up to the limiting values 1 for the fastest mode. Finally,
the schemes are applied to the crack problem of a shock loaded body, where the main
reasons for the appearance of a cutting trace become apparent.

1. Introduction. Stress waves in elastic solids, which may be caused by an impact
or other impulsive loading, are governed by a system of hyperbolic partial differential
equations. Hyperbolic PDEs exhibit undetermined derivatives in certain space-time
directions, which define the normals of so-called characteristic manifolds. These
manifolds represent singular surfaces along which the disturbances propagate contin-
uously while certain derivatives in the normal direction may be discontinuous. Thus
every sophisticated numerical method for the solution of hyperbolic PDEs has to
employ the directions of wave propagation in some way. Methods of bicharacteris-
tics use these directions explicitly and have therefore a direct physical interpretation.
Consequently it might be expected that those methods represent a good tool for the
understanding of transient stress fields and dynamic fracture processes in solids gen-
erated by impulsive loading.

Methods of characteristics were introduced first in gas dynamics for inviscid com-
pressible flows where scalar constitutive equations govern the material behaviour
and pressure disturbances propagate along characteristics. Clifton [1] transmitted
the method of bicharacteristics, which was developed originally by other authors
for multi-dimensional unsteady flows, to the two-dimensional propagation of stress
waves in isotropic linear elastic bodies with straight boundaries. In contrast to an
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inviscid, compressible fluid, due to the tensor constitutive law in an elastic solid two
kinds of waves occur, a longitudinal one and a transverse one.

Since Clifton’s paper, various forms of explicit bicharacteristic schemes have been
introduced and used by several authors to deal with linear and nonlinear elastic
problems [2-5] and elastic-viscoplastic problems [6-12]. Many important results
were obtained, e.g., for focusing of waves in plates with curved boundaries, for the
dynamic stress intensity factors at crack tips, for stress wave interactions at material
interfaces, and steepening and focusing caused by nonlinearity.

However, there are still two major problems arising in the application. One is
caused by the discrepancy of the numerical and physical wave speeds, described by
the CFL number (Courant-Friedrichs-Lewy), which produces numerical dispersion
and—Dby interpolation procedures in the initial values plane—numerical viscosity,
too. All above-mentioned schemes are explicit and use only a single numerical mesh
in space with mainly quadratic cells. Under these conditions it is at most possible
to achieve the parity of numerical and physical wave speeds for the fastest wave,
i.e., the longitudinal one. Accordingly, the CFL number is based on the longitudinal
wave speed ¢, . In order to obtain an appropriate numerical approximation with only
moderate numerical dispersion and dissipation, one should have CFL = 1 at least
for this mode. However, in [1] and [6-12], CFL was set to 0.5 (in [7] even 0.25) for
the sake of the J. von Neumann stability condition. The other problem is connected
with singular points like crack tips or points at the boundary where the prescribed
conditions include a discontinuity. It may happen that the singularity seems to be
continued by the numerical scheme as a cutting trace through the solution domain,
which represents a nonphysical discontinuity of the stress solution. It has been shown
in [13] that the dimensional splitting technique [14] will cause such a cutting trace.
Nevertheless, cutting traces also appeared in the results of [5] and [12]. This fact
means that the cutting trace problem exists for the bicharacteristic method, too.

In this paper, we consider the two above-mentioned problems. Firstly, a general
expression of bicharacteristic solutions for the elastodynamic equations is presented.
Then, based on this expression, some finite difference schemes are presented, where
the main interest is focused on the von Neumann stability condition in the case
CFL = 1. Finally, the capabilities of different schemes in treating singular point
problems are discussed on the basis of numerical examples.

2. Basic equations and bicharacteristic solution. The elastodynamic equations for
an isotropic linear elastic solid under plane strain can be written in the following
form:

ow ow ow
E_Aﬁ-FBa_y_’
u 001 00 0 000 1
v 0 0 00 I 0 0010 (1)
w=|p|, A=|1 0 o0o0of, B=|0 ao00O0]|,
q a 0 000 0 1000
T 0 > 0 0 0 > 0 0 0 0

where u and v denote the dimensionless particle velocities in the x- and y-direc-
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tions, respectively (their dimensional quantities are uc, and vc,); p = o, /(pclz) ,
q=o9,/ (pcf) ,and 7 =0,/ (pclz) are dimensionless stress components; p is the
density, ¢, and c, are the longitudinal and transverse wave speeds, b = ¢,/c,,
a= l—2b2; x and y are Cartesian coordinates, and ¢ represents the time multiplied
by ¢, . In some cases it will be convenient to write Eq. (1) in the conservative form

ow of Og
o ~ax Ty ?)
with f=(p, 7, u, au, bzv)T and g=(7,¢q,av, v, bzu)T.

The conclusive bicharacteristic relations for Eq. (1) can be obtained by the methods
presented in [1] or [2]. However, for a problem with only one straight boundary and a
corresponding finite difference scheme with a rectangular mesh, only bicharacteristic
lines parallel to the (x, f)-plane or the (v, t)-plane will be used. In this case, a
straightforward approach can be used to obtain the bicharacteristic relations.

Suppose there is a characteristic solution for w in an (x, ¢)-plane (y = constant);
then

d_w _ow + ca_w c= éx_ (3)
dt — ot dx Tdt )
Combining Eqgs. (1) and (3), we get
ow dw ow
(A+e)gs =7 ~Bg (4)
where I is a unit matrix. For the characteristic solution, ¢ satisfies
lA+cIf =0, (5)
which leads to e
c=E=:t1,ib. (6)
For the four characteristic values ¢ = +1, +b, the solutions of equation
1"A+cD) =0 (7)

are four left-eigenvectors I:TH =(1,0,%1,0,0), llb =(0,1,0,0, ¥1/b). Sub-
stituting these left-eigenvectors into the equation,

T (dw ow

1 (W_BW>_O’ (8)

four compatibility relations along the bicharacteristic lines in the (x, ¢)-plane are

obtained:
du dp 091 ov

dx
H—t;E?_aiaé;—o (alongz_ﬂ:l),
dv _1dt dgq ou dx
?17*’5%‘5”5‘0 (alongz—ib)
Similarly, the compatibility relations in a (y, ¢)-plane (x = constant) can be derived
as

9)
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dv _dq 0t du _ dy
Eq:?i?—aﬂ:aa_o <alongm_il>,

du _1dt dp _,0v _ dy _
T F5d  ax 5—0 <alongE—:tb>.

(10)

The finite difference scheme can be obtained by integration of Egs. (9) and (10)
along the bicharacteristic lines. Suppose (x,, y,) to be inside the considered two-
dimensional region, and w(x, y, f) to be given by the initial values in the plane
t = t, (see Fig. 1). We want to determine the value of w at the point (x,, y,, {,+A?).
Starting from this point, we draw eight backward lines according to the bicharacter-
istic directions given in Egs. (9) and (10). The points of penetration of these lines
with the initial value plane are denoted as follows:

(1): (%= AL, 5, 10), (1)t (xg = bAL, ¥y, 1),
(2):(x0+Atay05[0)s (2)/:(x0+bAt7y0’t0)7
(11)

(3): (X, Vo= AL, 1g),  (3)'t (xg, ¥y — DAL, 1),

(4): (xp, Vo + AL 15),  (4): (x,, vy + bAL, 1)

y
(Xgs Yoo Ig t At)
/!

FiG. 1. A sketch of bicharacteristic lines in (x, y, t) space
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Then, the second-order accurate integration of the compatibility relations (9) and
(10) yields the following eight algebraic equations:

_p_Mtdr aAtov o Aot aAr (v
P2y 2oy o P2 \5y ), "2 \ay)
uwp_ L0t _adtov . o L AL(0T +a_A’(_U>
P=2oy " 28y "o P2 \5y) T2 5y ),
po L, _Atda  bAtOu . 1 AL Q‘l)' _ b %)'
b 29y 29y W b2 \ay), 2 v/’
vy Lo AOg bAOu_ . 1, AL(0q\' | bAL(OuY
b™ 29y 209y W b® T 2Ny, 2 \9y/)y’
(12)
vog-arot adtou ., . L AL(9T) _adl(ou
T3 T2 ax "o T T \ax )y, T 2 \ax )y,
vig- A0t _adtou o . L AL(0T) | aAl(ou
TT2x T 2 ax w2 \ox ), T 2 \ax ),
1 At dp  bAt v / 1

5T Zax 2 ox Mo

L L Mop batov 1. Ar(op\' | bAt (0vY
b™ 20x 209x W bW 2\ax), 2 \9x/,

where u, p, g% , g—; , ... on the left-hand sides of the equations are the unknown

values at point (x,, y,, {, + At). The number of unknown values in Egs. (12) is 13,
which is larger than the number of equations. Therefore, Eq. (1) is integrated along
the line: x =Xx,, y =y,, t, <t <t,+At to obtain another five algebraic equations:

At . Ow  At_Ow ow At ow
Y- 3Ax 2B T Vet 2A<ax>(o)+7B(b—y>(0)’ (13)

where (0) (and below (0)" in Eq. (15)) represents the point (%95 Vo> ty) - Thus, Egs.
(12) and (13) can be solved simultaneously for the 13 unknown values. As results,
only the five components of w are of interest in the numerical calculation. We define
A and B by

00100 00000
00000 00010

A=[1 0000, B=|0a 000 (14)
a 0000 01000
00000 00000
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Then, w can be expressed in the following matrix form:

l’\ 1 N ! i
W=W, + EA(wQ) - w(l)) + E(A —A) (W — W)

14 1 ' '

+ EB(W(4) w(3)) + %(B B)(w(4> w<3))
L2 2 L A2 3 -2

A Wiy = 2w + W) 2_1)2( = A7) (Wiy) = 2wy + W)
I=2 1 2 =2, / /

+ (w(4) - 2w(0) +w(3>) + W(B -B )(w<4> - 2w(0) +w(3))

W)

.1;|> A'D (S]]
})
| pe—|
/\
v
/\
v
=
&=
>
2
>~

o (), - (3),)
l( )> < ><3> +%(B_B)A[<g:>(4>_<g_¥>(3)] (15)
+%A23 (g:) -2 _>(0) (Z_Dm]
w

ow

<<9y *
+£(A2—A2B[< ) —2(‘;

(2)

ow

(Bx

ow _!)'
4b* oy Y/ )
2

A%)
(), ), (5
4 0x /(4 ©  \9xX /g
w322
ap? O0x) @ \OX/ (@ \0X/q

Equation (15) is the general expression for the second-order accurate numerical
bicharacteristic solution of the elastodynamic equations.

3. Construction of numerical schemes. Since we consider an isotropic material, it is
convenient to introduce a quadratic mesh in space with the mesh size Ah = Ax = Ay.
If we want to apply an explicit bicharacteristic scheme to calculate the solution in
a point in space at the level 7, + A¢ from known data at the time level ¢,, we
always have to fulfill the necessary stability condition CFL < 1. For CFL < 1, the
eight backward characteristics will meet the plane ¢ = 7, in the interior part of the
2Ah x 2Ah quadratic subdomain around the point, where we want to determine the
solution at time f;, + Af. But only in the 3 x 3 vertices, which are numbered by
0,1,2,...,8 in Fig. 2, the discrete values of the solutions are known. In order to
calculate the initial values at the penetration points of the bicharacteristics, some kind
of analytic reconstruction of the solution from its discrete values or an interpolation
is needed.

If we suppose that the data at time ¢ = ¢, are locally smooth and twice differen-
tiable, W, can be calculated by a Taylor expansion. This method, as a matter of
fact, was used by Clifton in [1]. Introducing the CFL number A = At/Ah, it follows
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FiG. 2. A sketch of grid point positions for the numerical scheme

w,, =w,— At ow +é-t—2 é)—zz +
(n — 70 on 2 0x20

2

A
R W, — i(w2 —-w,)+ ?(w2 = 2w, +w,),

bA ba)?
wlm AWy — —2—(w2 -w,)+ %(w2 — 2w, +w,),

389

and so forth for the other points. Inserting these expressions into Eq. (15), we get the
same form of the solution in the new point (x,, y,, {, +At) as by the Lax-Wendroff

Scheme [15]:

A
W =W, + S[A(W, = w,) + B(W, = wy)]

2
+ %[Az(wz — 2wy +w,) + BX(w, — 2w, + w,)

1
+ Z(AB+BA)(wg = w; — W, +w,)]

(17)

The scheme (17) was used in [1] and applied to elastic-viscoplastic problems in [6—
12]. Unfortunately, the scheme (17) is not stable up to the values of 4 =1. In order
to find the upper limit of A for the stable solution, we consider the amplification
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matrix of scheme (17), which is denoted by G, in the following:

G, =1+ ii(Asin¢ + Bsinn)

2,2 2 ) L (18)
- A[A"(1 —cos¢) + B (1 —cosn) + 3(AB + BA)sin¢ sin ],

where [§| <7, || < m, i = v—1. The eigenvalues of G, are denoted by u(G,).
The scheme (17) is stable, if G, satisfies the von Neumann condition for all (£, 1)

with [£| <7, || < @, i.e., the absolute maximum of the eigenvalues u of G, must
be less than 1: max |u(G,)| < 1. In particular, for (¢, ) = (n, ),

1 —22%(1 + b%)
1 =221+ b%)
G (n,n) = 1-247 —2a2° ,
—2ax* 1-23°
1 —4b2*
(19)
which requires that A < 1/V 1+ b*.

The differentials in the scheme (17), say dw/9x and 62w/8x2, are calculated
only with the values on the line between point 1 and point 2. This is correct, if there
is no gradient between this line and line 5-7 as well as line 6-8. Similar arguments
hold for partial derivatives with respect to y and the line from point 3 to point
4. However, if there exists a gradient, some information is lost. In this case, the
differentials should include the values on the other parallel lines. For example, let

A
W(l) zwo — mlw7 —WS + )’(W2 —wl) +W8 —W6]
22 (20)
+ < [W, — 2w, + W + P (W, — 2w, + W) + W, — 2w, + W],
2(?+2) 7 3 5 2 ‘ 0 1 8 6

with y > 1, and similarly for w'(l) and so forth. The most interesting case is y = 2.
Then Eq. (15) results in the following scheme:

A
w=w0+§A[w7—w5+2(w2—w1)+w8—w6]

A
+ gB[w6 — Wy + 2(W, — W;) + W, —w,]

A2

+ g ATy = 2wy o+ we + 2(W, = 2Wo W)+ Wy — 2wt we] (21
PR

+ g BIWs — 2w, + Wy + 2(W, — 2w, Wy) + Wy — 2w, + W]

3,2

+ Y(AB + BA)(wg — W, — W, + W),
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Denote the amplification matrix of scheme (21) by G, ; then

G,=1+ %[Asinf(l + cosn) + Bsinn(1l + cos&)]

2
- %[Az(l —cos&)(1 + cosn) +B2(1 —cosn)(1 + cosé)
+ (AB + BA) sin & sin 7].

It is helpful to rewrite G, in the following form:

G, =1+ 2iAcos % cos gD —2°p? ,

(23)
a6 .n &
D=Asm§cos§+Bsm§cos§.

Then, the eigenvalues of G, can be represented by the eigenvalues of D,

#(G,) = 1 + 2iA cos % cos g 1(D) — 22* (D). (24)

The eigenvalues of D are easily calculated as

0; :l:\/%(l —cosécosn); ib\/%(l —cos&cosn). (25)

Then, the eigenvalues of G, are

l; 1 —/12(1 —cosécosn) £ Mcos%cosg\/%l —cosécosn);
(26)

1 - (bl)z(l —cosécosn) + iblcosg-cosg\/Z(l —cosécosn),

which show max |u(G,)| <1 forall (¢, 7) and 4 < 1. Therefore, the CFL number
equal to 1 can be used in scheme (21).

One of the advantages of the scheme (21) is that it can be split up into two steps.
If we denote w,; = w(kAx, [Ay, nAt) as the value at grid point (k, /) at time level
t", and start with Eq. (2) in place of Eq. (1), we obtain

n+1/2 _ 1, n n n n
Wist2, 0412 = Z(wkl FWort 0 T Wi T Vs )

j' n n n n
+ Z(fk+l,1 R VTR VRIS PRI

l n n n n
+ 28k 11~ Bl T Bt 1e1 T Bha 1)

(27)

n+l _ n n+1/2 n+1/2 n+1/2 n+l)2
Wi =Wt A =800 )+ A8 1412 — Bk, 1l1)2)
12 12 12 .
where f::lfz,, = f((wZilfz‘,H/2 + wZsz‘,_,/z)/Z) , etc. Equations (27) were first

formulated by Eilon, Gottlieb, and Zwas [16] for problems in gas dynamics. With a
two-step scheme, nonlinear problems can be treated with less difficulty. In [13, 17-
18], Egs. (27) have been extended for the elastic-plastic case by solving a Riemann

problem for the fluxes f::iﬁ,ln/z and g:::ﬁ,m/z'
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There is another technique for obtaining Wiy and its related scheme. Suppose

(X9 ¥y) = (0, 0) and w(x, y, {;,) can be approximated by a quadratic polynomial:
2 2
©, X M,y @, X 3, YV @, 2xy
= — = — — —c . 2
wx,y,t,)=c +Ahc +Ahc +Ah2c +Ah2c +Ah2c (28)
When Wiy is calculated by Eq. (28), Eq. (15) yields the following scheme:

w=c" +AAc” + B

(29)
+27[A%Y + B2 + (AB + BA)].

The coefficients ¢ will be determined by the least squares method using the 3 x 3
sets of discrete values at the grid points. Substituting the coordinates (x Y j) and
the values W, into Eq. (28),

2
T T INE V B. 77 P
TART AR AR ARPT AR? / (30)
(.1207 la R 8)’
where C = (c(o) , ¢ R @ , ¥ , c(4), c(s))T. We rewrite Egs. (30) into the following
form:

HC=W, (31)
with H a 9 x 6 matrix and W = (Wo, Wyseens ws)T. The solution of the least
squares method for Eq. (31) is

C=MHH 'HW. (32)

In the above-mentioned least squares procedure, the contributions from all nine
grid points seem to be equal. In a general case, the contributions can be taken to
be different by using weighting functions. Suppose that the weighting functions are
distributed over nine grid points in the following manner (in accordance with the

grid positions in Fig. 2):
1 g1
{ﬂ a /3}- (33)
1 g1

This means that the first equation (j = 0) in Egs. (30) is multiplied by «, and the
next four equations (j = 1, 2, 3, 4) are multiplied by f. The functions a and
B are always chosen to satisfy a > f > 1, which implies that the center grid point
makes the highest contribution, and grid points far away from the center make less
contribution. Therefore, the solution C takes the form

C=(H'AH) 'H'AW, (34)

where A = diag(a, 8, 8,8,0,1,1,1,1) isa 9 x9 diagonal matrix. It is fortu-
nate that the matrix H'AH is simple; then the components of C can be resolved
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as
¢ = LLa(B + 4w+ 2w, + Wy + W+ w,) — B + W+ Wy + )],
O = S A = W) wy =),
® = z(ﬁ—:z—)[ﬂ(w4 —Wy) W — Wy Wy — W],
¢ = la(f + 2w, — 2wy +w,) (35)

+(a+2B)(W, = 2w, + Wy + Wy — 2w, +w,)],
1
¢ = sxla(B +2)(w, — 2w, + wy)
+ (@ +28)(Wg — 2w, + W + Wy — 2w, +w, )],

=c(Wg—w, —w.+w),

where I'=aff + 4a +48.

Weighting functions have been used to calculate the results of [2-5]. In order to en-
sure the stability condition, the authors of those papers have tested some parameters.
They have obtained one successful result in which the parameters are represented as
a function of the CFL number 4 and the ratio of two wave speeds b =c,/c, :

f+1 -\ (1452 B_(ﬁ+1),1— (1+b%)/2 36
i Jasoh2 w-Ja+p)2

Obviously the derivation of Egs. (35) admits many more possible choices for a and
B.

The most interesting case is a = 4, f = 2. In this case Egs. (29) and (35) lead
to the following numerical scheme:

1
w= 1—6[12w0 +2(w, + W, + Wy + W) — (W + W + W, W)
A
+ §A[w7 = Ws + 2(W, — W)+ wg — W]

+ %B[w6 — W+ 2(wW, —W;) +w; —w.]

2, (37)
+ —8—A (W, = 2wy + wy+ 2(w, — 2w, + W) + wg — 2w, + W]

A
+ §B [We — 2w, + Wy + 2(w, — 2w, + W) + Wy — 2w, + W, ]

22
+ §(AB +BA)(wg — w, — w +w,).

Scheme (37) is different from scheme (21) only in the first term of the right-hand
side. Therefore, it can also be split up into two steps. The amplification matrix of
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scheme (37) is

G, = %(3 + cosé + cosn — cosé cos )l + 2iA cos —i— cos gD —u'p? , (38)
where D is the same as in Egs. (23). It is then not difficult to calculate the eigenvalues
of G, and to know that the von Neumann condition can be satisfied for 2 < 1.

However, it should be noticed that not all values of o« and B for Egs. (35) are
acceptable. For example, take a = BZ and let f — oo; then scheme (29) with (35)
will become the same as scheme (17), in which A cannot be set to 1. For the anti-
plane shear problem [13], A and B are 3 x 3 matrices, in which eigenvalues can be
solved explicitly. In this case, the stability region is a < oo, f <2.6.

4. A numerical test for the singular point problem. As pointed out in [13], a reason-
able finite difference scheme to deal with stress waves in elastic-plastic solids should
possess three properties: (1) its CFL number can be chosen up to the limiting value
1 in order to minimize the numerical dissipation and dispersion; (ii) it produces few
numerical defects if a singular point is present, so that wave interactions with a crack
tip can be calculated appropriately; (iii) it contains two steps so that plastic yielding
may be included in the physical problem, and the Riemann solver can be applied.
It was already shown in the last section that the numerical schemes (21) and (37)
possess the properties (i) and (iii). But for (ii), the two schemes exhibit a different
solution behaviour.

Let us consider the problem of a mode I central crack in an infinite body, which
was discussed in [19-20] with analytical methods. A numerical modelling of this
problem can be found in [21]. The problem is shown in Fig. 3(a), where two plane
waves of equal amplitude arrive simultaneously at the crack from both sides y > 0
and y < 0. The signs of v are opposite and the wave fronts are parallel to the
crack surface. Because of the symmetry, the x- and y-axes can be introduced as
boundaries such that only the solution in the first quadrant has to be calculated; see
Fig. 3(b). The material constant b is set to b = 1/v/3. In order to ensure that the

A

PO

s E7T
¢ 9=0
_4_1 _____ 4_ I symmetry

0 -

—
~
symmetry

Y.

I

- !

(a) (b)

F1G. 3. Sketches of the calculated crack problem. (a) Physical prob-
lem; (b) Zoning for calculation

Y
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stress field at the crack tip region can be calculated in a large time interval without
being disturbed by the reflected wave from outer boundaries, the number of grid
points is chosen as I, = 20, I, = 200, J, = 180. The x-axis is located at the
middle of two rows of grids, and so too is the y-axis. Since the schemes (21) and
(37) can be divided into two steps, it is easy to introduce the boundary conditions in
the first step by using the flux. A method for treating boundary conditions is given
in [17] and [21], in which the cell’s center corresponds to a grid point in this paper.
At time ¢ = 0 the waves just arrive at y = 0, and the initial conditions for all grid

points are
0

qO:vO=O.5, u0=10=0, p =1VVq0, (39)
where v = a/(1 + a) is Poisson’s ratio. The resulting distributions of stress g and
velocity v at time step N = 320 (time = N/I, = 16) are plotted in Figs. 4 and
5, where method 1 and 2 represent schemes (21) and (37), respectively. The results
seem quite interesting. Apart from some oscillations, method 1 delivers a good stress
distribution, but exhibits some defects for the velocity component in the region near
the crack tip. In contrast to that, method 2 creates a cutting trace in the stress

distribution, but leads to a smooth velocity distribution.

method 1

4
3
2
1 N
0
Yy
min = —0.31 0
4
3
2
1 N
0
A.

min = —-0.18 0

FiG. 4. Comparison of stress ¢ distribution of two numerical schemes
for a crack problem
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method 1

time = 16.

R4

max= 0.06
min = —0.05

method 2

time = 16.

max= 0.02
min = (.00

Fig. 5. Comparison of velocity v distribution of two numerical
schemes for a crack problem

The solution around the crack tip always shows numerical errors no matter which
approximation method is used. This is due to the singularity and the high gradient
of the stresses in the crack-tip region, which cannot be modeled adequately by a
coarse rectangular mesh. On the other hand, the example presented above shows
that the spreading of numerical errors differs. Method 1 distributes the error over
a region, while method 2 concentrates it in a cutting trace. Schemes (21) and (37)
are different only in the first term. In the first term of scheme (37) the contributions
from points 1, 2, 3, and 4 (see Fig. 2) are strengthened, while those from points 5,
6, 7, and 8 are weakened. This term introduces a smoothing to the computation.
However, in a singular point region, it will lead to a cutting trace. A cutting trace
also became apparent in the examples of [5] and [12] (Fig. 4). Carrying out some
numerical experiments with the combination of scheme (29) and (35) we always
found a cutting trace around a singular point no matter how o« and f were chosen.
So the comparison of the two methods gives us a good explanation for the appearance
of the cutting trace.

Nevertheless, it should be pointed out that an appropriate combination of schemes
(21) and (37) will create a useful method to compute dynamic crack problems. For
example, scheme (21) can be used for the near crack-tip region, and scheme (37)
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for the far field; another method might be to use scheme (21) to calculate the stress
components, and scheme (37) for the velocity components. For a particular problem,
of course, some numerical tests are necessary to find out the optimal combination.

5. Conclusions. To conclude this paper, we make two remarks.

(i) The CFL number of an explicit finite difference scheme for hyperbolic PDEs
is very important in practice, not only for the numerical stability, but also for the
control of numerical dissipation and dispersion. This was also shown explicitly for
one-dimensional problems in [22], where for each wave mode a proper grid was
introduced such that the CFL number became equal to 1 for both longitudinal and
transverse waves. Here we have presented some techniques to form two-dimensional
bicharacteristic schemes in which the CFL number of longitudinal mode can be set
to its limiting value 1. Among them, schemes (21) and (37) are the most important
ones, because they can be divided into two steps. Following [22] it will be possible
to construct bicharacteristic schemes which admit CFL = 1 for the transverse mode
for linear problems, too, by introducing two meshes.

(ii) A cutting trace is a nonphysical discontinuity appearing in the region near the
crack-tip or other singular points. It can appear not only in the difference method
based on the operator splitting technique, but also in some bicharacteristic schemes.
The generation of the cutting trace can be explained by comparing schemes (21) and
(37).
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