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Abstract. This paper is concerned with three-dimensional interface (or transmis-
sion) problems in solid mechanics that consist of time-dependent nonlinear problems
in a bounded Lipschitz domain and the homogeneous linear elasticity problem in an
unbounded exterior domain. The exterior part of the interface problem is rewritten
with integral operators on the interface boundary using the Poincare-Steklov opera-
tor. This coupling approach uses the Calderon projector.

We show existence and uniqueness of solutions for three models in elasto-visco-
plasticity, namely Groger's model, Maxwell material, and material of the generalized
Burger type. Finally, we sketch corresponding numerical approximation procedures
that are a coupling of finite elements and boundary elements in space and difference
schemes in time.

1. Introduction. This paper gives a uniform approach to the coupling of time-
dependent nonlinear problems in a bounded Lipschitz domain Q c K with a time-
independent problem from linear homogeneous elasticity in an exterior domain ft2 c"i  
R \Q. Three material laws are under consideration describing the interior problem
in Q ; they model creeping and relaxation, i.e., the evolution in time of bituminous
cements, concrete, ductile metals, polymers, etc. (cf. also [26, p. 353] for an analogy
to electrical circuits). We refer to the appendix for further explanations concerning
the three models.

i) Groger's material is given as the system (16)-( 19) of partial differential equations
and a first-order evolution inclusion (compare Appendix). Eliminating variables this
system can be reduced to a single first-order evolution inclusion

b' ej/~Y + d<p{q), (1)
with prime denoting the time derivative. Now, due to the main theorem on first-order
evolution inclusions [25] we obtain existence and uniqueness for the solution of (1),
and thus we can show the unique solvability of (16)—(19) by simple resubstitution.
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ii) Although the material of the generalized Burger type is of second order in time,
it can be rewritten (with a suitable vector U) as a first-order evolution inclusion

U'+^UbF. (2)

Since sf is maximal monotone we directly conclude existence and uniqueness of a
solution of (2) (under suitable initial conditions).

iii) For the classical Maxwell material (in contrast to the previous examples) one
cannot substitute one of the variables from the equilibrium condition to apply the
main theorem on first-order evolution inclusions. Instead we use a regularization
technique (see §6).

In the interface problems we have the conditions of the respective interior prob-
lems (i, ii, iii), the homogeneous Navier-Lame equations for the exterior problem
A*u2 = 0, u2 being the displacements with u2(x) —► 0, |x| —► oo, and the inter-
face conditions, namely continuity of displacements and tractions on the interface
r = n n n2.

We rewrite the exterior problem with boundary integral operators based on the
fundamental solution for the Lame system. Using the Poincare-Steklov operator the
monotonicity property of the nonlinear part carries over to the rewritten form of the
interface problems. Thus, the ideas of the proofs—based more or less on the main
theorem on evolution inclusions—can be successfully applied proving existence and
uniqueness of solutions of the various interface problems.

Since the coupling approach is the same in all three examples, the exterior prob-
lem is stated and rewritten in terms of boundary integral operators concerning the
Poincare-Steklov operator in §2. Some notations for the time-dependent problems
and the main theorem on first-order evolution inclusions are recalled in §3. Then, the
three material laws in elasto-viscoplasticity are considered in Q whereas the exterior
part always describes linear elasticity. In §4 we analyze Groger's material [16, 26],
in §5 we consider the material of the Burger type [22], and in §6 we treat the clas-
sical Maxwell material [22], In all cases we show that the interface problem can be
rewritten in a form allowing a proof of existence and uniqueness of solutions as well
as their numerical approximation. The numerical schemes are based on a coupling
of finite elements and boundary elements together with difference approximations in
time.

2. The exterior problem. Let ftQ c ft, C K3 be bounded Lipschitz domains in
three dimensions such that ft0 lies compactly in ft, . Then, ft := ft,\ft0 is the
interior domain and ft2 := K3\ft, is the exterior domain.

The boundary of Q is divided into two parts, namely the interior boundary T0 :=
<9ft0 and the interface T := 3ft,; cf. Fig. 1. We consider Dirichlet, Neumann, or
mixed boundary conditions on ro and allow the case ro = 0 (whence ft0 = 0).

The exterior problem is the homogeneous Lame system of linear elasticity [11, 12]

A*u := -ji2Au - (A2 + ,u7)graddivM = 0 in ft2 (3)

with A = div grad denoting the Laplace operator, , X2 being the positive Lame
constants.
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Fig. 1.

Given a smooth vector field u-,, its Cauchy data on the boundary T are

(w21p, 7%(w2) I r)

where T2(u2) is the conormal derivative defined by

r,(w,) := 2n2dnu-, +A2«divw2 + /i2« x curlw2.

dn denotes the normal derivative, n being the unit normal pointing into Q,, cf.
Fig. 1.

Due to the trace lemma, u2|r e //1/2(T; R3) whenever u2 6 hIoc(Q2 ; R3),
hIoc(Q.2 ; R3) denoting the displacements of locally finite energy.

As e.g. in [10, 11, 12] the traction T1(u1)\r can be defined via the First Green
formula.

In order to do this, we introduce the following notation:

aijkl *= V,7 ^kl + + $il'fyk) '
dij = 1 for i - j and Sij = 0 for / / j . The strain tensor e(w) is defined by

Sij(u) := {{Ui j + iij j), (4)

(w. j) (ut .)t /=1 2 3 := grad u. The brackets (•, •) always denote the duality
between Hx'2 := Hl,2(T; R3) and H~l/1 := H~[,2{T; R3) = (Hx/2)* such that for
v 6 //l/2(r; R3) and w 6 L2(Y\R3)

(w, v) = J w • v dT.

Lemma 1 ([12]). Let u2 e Hloc(Q2, R ) with A*u2 £ L|oc(£22, R ). Then T2{u2)|r e
R3) is defined by

/ vA*u2d£l2 = {T2u2 , w| r) + 0>2(u2 , v) (5)
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for any v e Hl (Q2; E3) with compact support and

r 3 ^
<&2(u2,v)= Y, aUklekMeijiV)da2- D

Jn2 ijkl= 1

According to Lemma 1 the Cauchy data of a function u2 e , E") with
A* u2 = 0 satisfy

(u2|r, r2(«2)|r) 6 H1'2 x /Tl/2 := //1/2(r; E3) x E3).

Note that in Eq. (5), v must have a compact support. In order to allow v e
//'(f22; E3), a boundary condition at infinity is required. Following, e.g., [10, 11,
12, 14, 18, 20], we consider solutions that are regular at infinity, which means in the
three-dimensional case that u2 satisfies Sommerfeld's radiation condition

=°(r)u2 = O ( — ) as |jc| —> oo. (6)

Definition 1. Given (v, t) e Hl/2 x H ^2 the exterior problem consists of
finding w,

£?2 := {u2 e hIoc(Q2 ; E3) : u-, satisfies (6) and A*w2 = 0}, (7)

with (u2\r, T2u2) = (v, t).
For the Lame operator the fundamental solution G2 with kernel GJx, y)—called

the Kelvin matrix—is well known,

Cr (X V) = A2 + 3^2 [ 1 r , *2+l*2 (X-y)(X-y)T\
2 ' Snn2{X2 + 2/i2)\\x-y\ X2 + 3n2 \x - y\3 J

3 TI is the unit matrix in E and denotes the transposed matrix. Since G is analytic
in E3 x E3 without the diagonal we may define its traction

T2{x,y):=T2y(G2{x,y))J, x^y.

Due to the second Green formula, see Lemma 1, the following Somigliana represen-
tation formula for x e £l2

u2(x) = (T2(x,-),v)~ (G2{x,-),(/)) (8)

^2 e <(is proved for Lipschitz domains in [7], Equation (8) holds for all u1 e hIqc(Q.2) with
compact support satisfying (3) and v = u1\r, <f> = T,(u2)\r.

For any (8) can be differentiated, giving a representation formula for the
stresses T2(u2). By using the classical jump relations for x —> T and inserting the
Cauchy data into these formulas, one obtains on T

;)-*•(;) w
where the Calderon projector

<2? _ ( J + \ _ *2
2 ^ _d2 i_a'2
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is defined by means of
(F20)(x) = (G2(x,.),<£>,
(A2v)(x) = {T2(x, -),v),
(D2v)(x) = -T2J(T2(x,-),v)),

(A'24>)(x) = t2 j(g2(x, ■),<»)) (x g r).

K, is the single layer potential, A2 is the double layer potential with its dual A'?,
and D2 is the hypersingular operator.

The next lemma recalls some properties of the above operators, namely their do-
main, continuity, and ellipticity from [6, 7, 12]; see also [9, 10], For real Banach
spaces X and Y let J?(X, Y) denote the real vector space of bounded linear map-
pings from X into Y.

Lemma 2 ([7, 12]). Set //1/2 := Hl,2(r, R3), H~1'2 := H~[,2(T, R3). Then

V2 e ; H1'2),

A2 e^f(H1'2- HU2),

A'2 e^(//"1/2; H~m),

D2e5?(H1'2- H~1'2).

D, is positive semidefinite and V2 is positive definite, i.e., there exists a constant
y1 > 0 such that for all v e HU1 and all 0 € H~l/2, it follows that

(D2v,v)> 0 and {<f>, V2<j>) > y2U\tH-m.

D1 and V2 are symmetric, and A' is the dual of A. □
The relations between the Calderon projector e J?(//l/2x//~l/2; //l/2x//_l/i)

and the Cauchy data of a function in Sf2 are recalled in the next lemma.

Lemma 3 ([11, 12]).
(i) If u2 e SC2 then (8) holds for v := u2|r e Hl/2 := H^2(T, R3) and (f> :=

T2{u2)| r e H~1'2 := //"1/2(r, R3).
(ii) For any v £ H{/2 and </> 6 H~l/2 the vector field u2 defined via (8) belongs

to J2?2.
(iii) For (v, <f>) e H1/2 x H~[/2 the following statements (a) and (b) are equiva-

lent.
(a) (v , 4>) are Cauchy data of some e S?2, i.e., v = u2\r, 4> — T^(u2)\ r

for some m2 € .
(b) (v , (j)) satisfies (9).

I j2  |/2(iv) The Calderon projector is a projection in H x H onto its subspace
of Cauchy data of weak solutions in 2C2, i.e., onto {(«2| r, T2(u2)\r) : w2 e

We are now in a position to prove the following equivalence result concerning the
exterior problem.
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S2:=D2 + (\- A'2)V2 "(i-A 2)eJ?(HW2,H 1/2). (10)
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Theorem 1. For any (v, t) £ H1/2 x /Tl/2 := //l/2(r, R3) x H~X'2{T, K3) the
exterior problem has a solution u2 if and only if

where

In this case the solution u2 of the exterior problem is unique and given by the
representation formula (8) with v and <f> := - j)v .

Proof. Let u2 be a solution of the exterior problem. According to Lemma 3(iii)
the Cauchy data v = u2\r, 4> = T2(u2)\ r = t satisfy (9) which is equivalent to

V2<j) = (A2 - ^)v and (f> - -D2v + ( + - A'2)0. (11)

By Lemma 2, V2 is invertible such that (11) is equivalent to

4>=V2\A2-\)v and 0 = -D2v + (± — A2)F2~'(A2 - {)v. (12)

The last equation in (12) is t = <t> = -S2v , which proves the first implication of the
theorem.

In order to verify the second implication assume that (v, t) £ /7I/2 x //~l/2 satis-
fies t — -S2v . According to Lemma 3(ii) we may define a vector field u2 £ £f2 via
(8) with v and <f>^~'(A2 - j)v . Using the jump relations for x —> T in (8) we
obtain (cf. Lemma 3(iv))

M2lr \=??(v\ = ( + A2v ~ ^ \ _ ( v
T2(u2)\rJ 2\(p) \-D2v + (i - A'2)4>) \-S2v

where the last equality follows from the definitions of (j> and S2. Therefore, and
since t = —, one obtains u1\r — v, T2(u2) |r = t, i.e., w, solves the exterior
problem.

It remains to prove uniqueness of the solution u2. Assuming the existence of two
solutions of the exterior problem with respect to the same Cauchy data {v, t), let
w2 e .5^ denote their difference. According to Lemma 3(i) we have for jc e

w2(x) = (T2{x, ■), w2|r> - {G2{x, •), r2(«>)|r). (13)

On the other hand, by construction of W-,, the Cauchy data of w2 are homogeneous,
i.e., w2\v = 0 and r,(?i;2)|r = 0, which gives w2(x) = 0 in (13). Thus, two
solutions of the exterior problem with respect to the same Cauchy data are equal. □

The following property of the Poincare-Steklov operator is crucial for our boundary
conditions at ro . For clarity we present the proof of the following lemma.

Lemma 4 ([4, 8]). S2 is positive definite, i.e., there exists c > 0 such that for any
» e Z/1'2 it follows that

(S2v, v) > cIMI^i/2.

Proof. According to Lemma 2, S2 £ 5C(HXI1; H~l/2)—as defined in (10)—is
symmetric and positive semidefinite, i.e., for all v, w £ H1/2,

(S2v , w) = (S2w, v) and (S2v, v) > 0
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hold. With [12, Lemma 4.5] we have that S2 differs from a positive-definite operator
by a compact perturbation (see also [7]). Thus, since S2 is positive semidefinite, it
remains to prove that S2v = 0 for v e Hl/2 implies v = 0.

Given v e Hl/2 with 0 = S2v we define eY2 by (8) for 0 = 0. Note that
S2v = 0 implies D2v = 0 and (A2 - \)v = 0 (due to the bijectivity of V2 from
H~l/2 onto Hl/2). Then, as seen in the second part of the proof of Theorem 1,
we have u2\r = v and T2(u2)\v = <f> = 0. As in the proof of [12, Lemma 4.5], (6)
allows us to apply the First Green's formula to u2 ■ A*u2 = 0 in , which (cf. (5))
leads to

0 = 02(u2, u2),

i.e., u-, is a rigid body motion. Because of (6), this gives u2 = 0. □
Remark 1. Define e € L) through (4) and let S := y*S2y € ^f(H; H*)

with the trace operator y e Hx/2) and its dual y* € 5C{H~^2; H*).
Then, according to Korn's inequality, e*e + S e £?{H; H*) is positive definite

[4, Lemma 5].
The proof is based on the fact that e*e is positive semidefinite, strongly elliptic,

and its nullspace ker(e*e) consists of rigid body motions. Thus e*e + S is injective
proving that s*e + 5 is positive definite.

3. Notation. If X is a real separable Hilbert space, (•, •)x denotes the scalar
product in X. If T > 0 is a fixed real number and 1 < p < oo then let Lp (0, T; X)
denote the space of all measurable functions h : [0, T] —> X (h is measurable if it
is the pointwise limit of a sequence of step functions) such that

:=[T\\h(t)f}
JolLp(0, T; X) •- / dt < oo

if p < oo and with the natural modification for p = oo. wj(0, T; X) denotes the
space of all h 6 Lp {0, T; X) such that h has a weak derivative h' e Lp {0, T; X).
Set

II^II^(0,T\X) := ^Wlp{0,T\X) + 11^ \\l"(0,T-,X)-
According to the main theorem on calculus,

v(t) = v(0) + [ u(t) dt
Jo

whenever v = u € L1 (0, T \ X), we see that we ^'(0, T; X) is absolutely con-
tinuous (after changing u on a set of measure zero). Hence

^'(0, T; X) = {he C(0, T-X)\h'eL"(0, T~X)}

and C'(0, T \ X) C W^'(0, F; I) C C(0, T; X) with continuous embeddings.
XWe recall that a mapping A : X —> 2 is called multivalued, i.e., A(x) is a subset

(possibly empty) of X for any x e X, and 2X denotes the set of all subsets of
X. Dom(^) := {jc e A" | A(x) / 0} is called the effective domain of a multivalued
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operator A . We write (jc, y) € A if y e A(x). For two multivalued operators A
and B we write AC B if for any (x, y) e A , (x, y) e B holds.

A multivalued operator A is called monotone if for all (x,,}>,), (x,, y2) 6 A

0<{y2-yl,x2-xl)x.

A monotone multivalued operator A is called maximal monotone if for any mono-
tone multivalued operator B with KB we have A = B. It is well known that a
multivalued monotone operator A is maximal monotone if and only if R(I+A) — X,
I being the identity in X, and R(A) denoting |Jv€x ; cf., e.g., [25, Proposition
55.1].

The subdifferential d<p of a convex, lower semicontinuous and proper functional
(p : X —> (-00, +oo] is maximal monotone; see, e.g., [25, Theorem 47.F] for a proof.
Recall that (p is proper if it is not equal to oo .

The main theorem on first-order evolution inclusions (cf., e.g., [25, Theorem 55.A,
Corollary 55.4]) states for a real separable Hilbert space X and a maximal monotone
operator A : X —► 2X that for given data u0 £ Dom(^4) and be W2(0, T; X) there
exists a unique function u e W2(0, T; X) with u{0) = u0 and

b e u + A(u) a.e. in (0, T). (14)

Moreover, u e 1^(0, T; X). The assumptions on the data f e W2 (0, T \ X) and
uQ € Dom(yl) can be weakened, yielding weaker regularity of the solution u .

In the applications below we use the following consequence of the main theorem.

Corollary 1. Let X be a real separable Hilbert space and let <p : X -* (-00, +00]
be a convex, lower semicontinuous and proper functional and let A e 5C(X; X) be
positive definite and selfadjoint. Let u0 € Dom(#>) := {x € X\ <p(x) < 00} and let
b € W2 (0, T; X). Then there exists a unique function u € 1^(0, T; X) with
m(0) = m0 such that

beAu' + d<p{u) a.e. in (0, T). (15)
Proof. For A being the identity I the corollary is included in the main theorem

(cf. [25, Theorem 55.A, Corollary 55.4]). The proof for A ^ I follows the lines in
[26, p. 357] changing the norm in the Hilbert space X. □

4. The nonlinear interface problem for elasto-viscoplastic material with linear hard-
ening. In this section elasto-viscoplastic material with linear hardening of the Groger
type is considered in the interior region Q [16; 26, Chapter 66]. Using Theorem 1,
the interface problem is rewritten using boundary integral operators. Following the
ideas of [16; 26, Chapter 66] one proves existence and uniqueness of solutions.

The abstract model below describes slow deformation processes in elasto-visco-
plasticity. Some physical interpretations are given in [26, Chapter 66], Besides the
equilibrium condition

e.* a = y*t + f (16)
for body forces / e H*, H := H^Cl, R3) = {u e //'(Q; K3) : «|r = 0}, Tu C
ro, /(0) = 0, surface forces t e H~^2 — R3) and the stress field a e
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2 3x3L := L (fi, Rsym), we consider the following stress-strain relation which is more
complicated and involves two further internal variables p, q e L. As usual L is
identified with its dual space L — L*. p is a so-called plastic part of the strain e(u),

a = A(e{u) - p), (17)

where A e^f(L, L) is a linear elasticity operator, i.e., A is symmetric and positive
definite.

The constitutive relation for p is more complicated and becomes time-dependent:

p'ed<p(q) a.e. in (0, T) (18)
where (p : L —» (-00, +00] is a convex, lower semicontinuous and proper functional
with 0 e Dom(<p), (0, T) is the time interval under consideration and q is the
second internal variable. In (18) p denotes the time-derivative of p as introduced
in the previous section.

The constitutive relation for q is given by

q + (A + B)p - Ae(u) (19)

where B e <Sf(L, L) is symmetric and positive definite.
For convenient notations, we assume homogeneous initial values. Then, the inter-

face problem for Groger's material described by (16)—(19) reads as follows.
Definition 2. Given / e W2(0, T\ H*) with /(0) = 0 the interface problem

of this section consists of finding functions

(u, u2, a, p, q, t) € W2' (0, T; H x x L x L x L x H 1/2)

satisfying (16), (17), (18), (19), and the initial conditions (u, a, p, q, t)(0) = 0 as
well as the interface conditions

yu = u2\r€ W2(0, T-,Hl/2) and / = T2{u2)\r e W2{0, T\ H'[/2). (20)

Remark 2. The physical background of the time-dependent nonlinear problem
can be found in [26, Chapter 66]. There, it is shown that plastic, viscoplastic and
elasto-viscoplastic material behavior with linear hardening is included as a particular
case. We emphasize that due to the analogy between strain and voltage, stress and
current, the stress-strain relation and Ohm's law, we can also apply the analysis of
the interface problems at hand in electrical models.

Next we rewrite the interface problem in terms of boundary integral operators (for
the notation compare Theorem 1).

Theorem 2. (u, u2, a, p, q, t) € ^'(0, T \ Hx£?2 x LxL x LxH~l/2) solves the
interface problem of Def. 2 if and only if (u, p, q) e W2(0, T\ H x Lx L) satisfies
a.e. in (0, T)

e*{q + Bp) + Su = f, (21)
q + (A + B)p - Ae(u), (22)

p ed(p{q), (23)
and the initial conditions {u, p, q)(0) = 0.
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In the latter case, a is given by (17) and u2 is given by the representation formula
with Cauchy data (v , t) (yu, -S2yu).

Proof. Assume that (u, u2, a, p, q, t) e W2 (0, T; H x x L x L x L x H~]/2)
solves the interface problem of Def. 2. Then, the initial conditions (u, a, p, q)(0) =
0 and (22) as well as (23) are satisfied. Substitution of a from (17) in (16) gives

e*Ae(u) - y*t = / + e*Ap. (24)

On the other hand, according to the interface conditions and Theorem 1 we have
/ = -S2yu. Taking t = -S2yu in (24) and substituting e*Ae(u) from (19) proves
(21).

Conversely, assume that (u, p, q) e W2 (0, T; H x Sf2 x L x L) satisfy (21), (22),
and (23) a.e. in (0, T) as well as the initial conditions (m , p, q)(0) — 0. Then define
t := -S2yu £ W2(0, and v := yu e W2(0, T\Hxtl). According to
Theorem 1 the representation formula gives a function u2 e having Cauchy data
(v , /) a.e. in [0, T]. Note that the representation formula is not time-dependent.
Therefore u2 has the same regularity in time as the data, i.e., m, e W2 (0, T; Jz^).
Define o by means of (17). Altogether we have (u, u2, a, p, q, t) e (0, T ; Hx
J2?2xLxLxLx H~l/2) solving the interface problem of Definition 2. Note that
(22), (23) coincide with (19), (18), respectively, and (17) is satisfied by construction.
Furthermore, substituting yt := -Su in (21) yields

e*{q + Bp) = f+y*t,
which implies (16) using (22) in connection with (17). □

Remark 3. Note that the assertions of Theorem 2 hold also in the subspace
w^(0, T; H x Jzf2 x L x L x H~X/1) of fV2\o, T; H x^x Lx Lx H~l/1).

Using the equivalent form of Theorem 2 one proves existence and uniqueness of
a solution of the interface problem.

Theorem 3. The interface problem of Definition 2 has a unique solution in (0, T\
H x5?2x Lx Lx Lx H~l/1).

Proof. According to Remark 3 following Theorem 2 it suffices to prove that there
exists (m, p, q) e ff^(0, T\HxLxL) satisfying the homogeneous initial condi-
tions as well as (21), (22), and (23) a.e. in (0, T).

We start with the proof of uniqueness and assume that (u, p, q) 6 W2(0, T \ Hx
Lx L) exists with the above properties.

Application of e* to (22) shows

e*(q + Bp) + e*Ap = e*Ae(u).

Combining this with (21) gives

(e*Ae + S)(u) = f + s*Ap. (25)

Define
A:=e*Ae + S e&(H, H*) (26)
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and note that A is symmetric and positive definite (compare Remark 1). Due to the
Lax-Milgram lemma, A is invertible and (25) is equivalent to

u = A~l f + A~'e*Ap. (27)

Substitution of (27) into (22) gives

q = AeA~lf-(A + B-AeA-le*A)p. (28)

Let
:=A + B- AeA 'e*A e £f{L, L). (29)

Using the relations

+ e* A
Ae A )(;)•(;)

'H

and

HxL

= (Su, u)H + (A(s(u) + p), (e(u) + p))L > 0

0\/e*^4e + 5' e*yl\ (I -(e*yle + 5') xe*A
-^e(e*yie + 5,)~1 IJ \ Ae A J \ 0 I

e*Ae + S 0 \
0 st-BJ

(0 and I denote zero and identity in different spaces) one concludes that st is
positive definite due to the corresponding property of B. Hence, due to the Lax-
Milgram lemma, st is invertible and (28) is equivalent to

p = g-st~lqe ^'(0, T-L) (30)

where we used g := st~lAeA~[ f e IV^O, T\ L). Substitution of (30) in (23)
shows

g es/-lq+dq>{q) (31)

a.e. in (0, T). Note that g e fV2' (0, T; L) such that we may apply Corollary 1 to
conclude that there exists a unique function q £ W^(0, T; L) satisfying (31) and
<7(0) = 0 e Dom(9>). As seen above, any solution (w, p, q) of Theorem 2 satisfies
(31) which—together with the initial conditions—determines q uniquely. Then (30)
determines p uniquely and finally (27) determines u uniquely.

Secondly, we conclude that the above problem has a solution. As mentioned, (31)
together with the initial condition g(0) = 0 has a solution q € H^(0, T\ L). Then
define p by means of (30) and u by (27). It remains to prove that (u,p,q) e
PF^O, T; H x L x L) solves (21)—(23). According to (30) and (31) we have

p = g -st~Xq e d(p(q),

which proves (23). Equation (30) is equivalent to

q + (A + B)p = AeA~'e*Ap + AsA~lf. (32)
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Using (27) to compute Ae(u) we get

Ae(u) = AeA 1 e* Ap + AsA~' f. (33)
Then, (32) and (33) prove (22). Finally, (27) leads to

e* Ae(u) + Su = f + e* Ap. (34)
Since we have already proved (22) we may substitute Ae(u) from (22) in (34) to
prove (21). □

We finally sketch the numerical approximation of the interface problem consisting
of a Galerkin procedure in space and the implicit Euler method in time. Unfor-
tunately, since V21 is not known explicitly, the stiffness matrix (SUj, Uj) of the
Poincare-Steklov operator S cannot directly be computed numerically and hence
has to be approximated leading to the coupling of finite elements and boundary ele-
ments.

Definition 3. Let (^ | h e I) be a family of regular triangulations of the polygo-
nal domain Q; h e I c (0, oo), 0 G 7, may be regarded as the maximal mesh size.
If Pk(R'") denotes the polynomials of degree < k with values in R'" then let

Hh := {u € C(Q; R3): u\ r = 0, vr g u\ T g P,(R3)} c H,
rr~ 1/2

h

Lh

= {v e L°°(r; R3) : vr 6 t;|Tnr G ̂ (R3)} c H 1/2,

= {a e L°°(Q) : VT G , a\TePJ^)}CL,0^ sym >

Hh(H;l/2, Lh) being piecewise linear (constant) trial functions in H (H{/2, L)
with respect to the regular triangulation .Th.

Define Sh € ■S'{Hh ; H*h) through {Shuh, vh)H for uh, vh 6 Hh as follows. Given
uh G Hh solve the Galerkin equations: find (ph e H^i/2 with

{vh , v2<j>h) = (y/h,(\- K2)yuh) (for all y/h e
(note that V2 is positive definite) and set for arbitrary vh e Hh

(S2uh , vh)H := (D2ruh + j ~ A )(t>h > vh)H~

The discrete problem for (21 )-(23) is now written as follows. Set (uh 0,a0 h , qh 0)
:= 0 and compute {uh j, ahJ, qhJ) e Hh x Lh x Lh for j = 1,2,3,...,«,
recursively, with

(<lhj + Bph j, e(vh))L + (Shuh j, vh) = (f (^-J , v

(qh j + (A + B)ph j, rh)L = (Ae{uhJ), rh)L

'Ph,j ~Ph,j-\

h
H

YJn >1h,j-sh)L <<P(Qh,j)-<P(sh),

for all vhe Hh, rh eLh, sheLh.
Remark 4. As is shown in [4], S-, approximates 5; cf. also [12] where—for

another class of materials—the equation for <ph is explicitly added to the discrete
system.
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We conclude this section with a regard to the semidiscrete time discretization [16]
where we have above HhxH^>/2xLhxLh = HxH ^/2xLxL. Define {un, qn, pn) e
W2 (0, T; H x Lx L) by linear interpolation of (uh . , qh ., ph •) -=0 n where the
interpolation points are (j • T/«)J=0 „ ■

Corollary 2. In the semidiscrete case of a time discretization it follows that

lim (u ,qn,pn) = (u,q,p) in w\ (0, T; H x L x L).n—*oo n " n *•

Proof. The proof of [16, Theorem 4.3] for the time discretization (for the nonlin-
ear material behavior of the interior problem only) works verbatim for our interface
problem if we replace e*e with e*e + S. □

5. Nonlinear interface problem for viscoelastic material of the Burger type. In this
section elasto-viscoplastic material of the Burger type from [22] is considered in
the interior region Q whereas in the exterior domain we have again linear elastic
material. Again using Theorem 1 we represent the exterior problem via boundary
integral operators. Therefore, we can show existence and uniqueness of the solution
of the resulting interface problem by modifying the analysis for the interior problem.

Some physical interpretations of the abstract model below are given in [22] mod-
eling slow deformation processes in elasto-viscoplasticity. Inertia is included in this
model such that we obtain an equilibrium condition of second order in time since
we have v = u for the velocity v with the displacements u. Incorporating inertia
the equilibrium condition (16) is extended to

pv = div o + f in £2 (35)
while the boundary conditions are as above, i.e.,

an = t on T,

and we may have Neumann data on ro\ru. The problem is of second order in time
since the additional term pv' = pu" describes inertia of the material.

Besides the equilibrium conditions for the stresses a , we have further constitutive
relations and internal variables e, , e2 [22],

The interior problem can be written as the first-order evolution inclusion

('0,f/p,0,0)eU'+s/U a.e. in [0, T], U{0) = U0 (36)
where U0 £ D(s/), (A2e2 -I- A4e(u))n = t on Y, and

/ —D \
-j div(yl2e2 + A4e(u))

d<p\{A2e2) + d(p\(A2e2 - ^e,) - e(v)
V d(pi (iA2€f Atet) J

for [/ = (H,t),£,,61)6/:=//xL'xLxL.
The condition v = u is the first condition of (36), noting a := (A2e2+A4e(u)) the

equilibrium (35) is the second condition in (36) while the constitutive relations are
given in the third and fourth components of (36). The boundary condition crn = t
is treated in the domain of srf ; see below.

sfU:= (37)
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Here, we use the following notation: / G W2 (0, T; L') with /(0) = 0 is a given
body force, L' := L2(Q; R3), t G ^'(0, ^> H~l/2) is a surface force, H~l/2 :=
//"1/2(r, R3), a = (^(2e2 + A4e(u)) G ^2'(0, T; L) is the stress field, and L \—
L2(Q, K3^3) • p G L°°(Q) is a given density with p0> 0 such that

p > p0 a.e. in ft. (38)

Ax, A2, A4 g -^(R3*™, R3yxm3) are symmetric and positive definite; for j = 1,3,

<pi : R^J —> [0, oo], (t) •-» if tr(r) = 0 and oo otherwise,

where tr(r) := X),=i 2 3 Ta an<^ Qj> uj are Positive constants, (p* denotes the
Legendre-Fenchel transform of <p}, and d(p* denotes its subdifferential. For the def-
inition and some properties of the Legendre-Fenchel transform <p* : L —> [-00, 00],

<p*(t) = sup (a : t - <p io)) (for all x G L)
J 1 V 1 J

with the scalar product in R3x3, <7 : t := X), ;=i 2 3 aij ' zji > we refer> e-8-> to [13,
22, 25], The above particular case for cp} is a simple example; it is only needed in
the following that <pj is a positive normal integrand [13] with (p j{Qi) = 0 in Q. For
convenience of notation, we neglect the possible space dependence of the functional
and remark that the results below also hold in the general case.

Note that j/ is a multivalued operator in the Hilbert space

/ := // x L' x L x L (39)

which (provided Tu has positive surface measure) can be endowed with the scalar
product

{U, V) | .— (A4e(u^), e(vj ))^ + (pu2, L' (-^2^3 ' ^3(^41 W4 , ^4)^

setting U = (ul, ... , u4) and V = {vx,... ,v4). We will consider the following
domains of sf :

D(s/) := {(m , v , e2, e,) G \ v G H, div(A2e2 + A4e(u)) e L' ,

dtp*}(A2e2) ni/0, d<p*l(A1e2 - A,£,) nL/0},

D{sz?) := {(m, v, e2, e,) € D(sf) \ (A2e2 + A4e(u))n - 0 on T},

D(sf) := {(u, v , e2, e,) G Z)(j/) | (^2e2 + /l4e(w))« + 5'2}'w = 0 on T}.

Z)(j/) is used in [22] where the inhomogeneous Neumann boundary conditions are
taken into account via some substitution.

Remark 5. According to (u, v , e2, e,) G D(sf), we have a (A2e2 + A4e(u)) G
L = L2(ft; R3y^3) and diver G l! = L2(Q.\ R3). Thus, we may define an by means
of Green's formula

/ wan dV= (e(w): a + w div a) dQ.
J r Jq (40)
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for any w G H. According to the trace lemma, yw G Hirl can be extended to a
function w G H. Thus (40) shows an G H~x/2 such that the Neumann boundary
condition an = t on d£l makes sense.

The interface problem—which consists of (36) in the interior domain Q and of
the exterior problem given by Definition 1—reads as follows.

Definition 4. Under the above notation, given f, the interface problem of this
section consists in finding functions

((w, v, e2, e,), u2, t) G W2'(0, T; D(s/)x^2 x H~1'2)

satisfying (36) as well as the interface conditions

(;yu, (A2e2 + A4e(u))n) = (u2, T2(u2))\re W2(0, T; H1'2 x /T1/2). (41)

Next we rewrite this interface problem with boundary integral operators.

Theorem 4. (U, u-,, /) e W2(0, T \ x S?2 x H~1/2) solves the interface problem
of Definition 4 if and only if U e W2(0, T; %?) satisfies (36) and

UeD{tf) a.e. in [0, T], (42)

In the latter case, u1 is given by the representation formula with Cauchy data
(yu,-S2yu).

Proof. Assume that (U, u2, t) G W2( 0, T; D(s/) xJz?2x //~l/2) solves the inter-
face problem of Definition 4. According to Theorem 1 and the interface conditions
we have

t = -S2yu = (A2e2 + A4e(u))n = T2(u2)|r G ^'(0, T; H l/2).

Therefore, U Gfl(i) a.e. in [0, T].
Conversely, assume that U = (u, v, e2, e,) G W2(0, T; %f) satisfies (36) and

U G D(s/) a.e. in [0, T). Then, define t := -S2yu e W2(0, and
w := yu e W2 (0, T; //l /2). According to Theorem 1 the representation formula
gives a function w2 G ̂  having Cauchy data (if, ?) a.e. in [0, T]. Note that the
representation formula is not time-dependent. Therefore u2 has the same regularity
in time as the data, i.e., u-, G W2 (0, T\ . Since U G we have

(A2e2 + A4e(u))n = -S2yu = t onT,

which shows (41) since t = T2(u2). Thus (U, u2,t) G T> ̂ (-^O x ^ x
H~l/2) solves the interface problem of Definition 4. □

Define the scalar product (•, -)2 on as follows:

(U, V)2 :=([/, V)l + (Sul,vl)H,

U = (w,, ... , m4) , and V = (v{, ... ,v4). Since S = y*S2y G J2?(H, H*) is
symmetric and positive semidefinite, but S2 G «5f (H1'2; H~x/1) is positive definite,
(•, •), is a scalar product of the real Hilbert space (compare Remark 1).
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Theorem 5. j/ : D(sf) —► 2r is maximal monotone in the real Hilbert space
, (•, -)2). Thus there exists a unique solution of (36) as well as of the interface

problem from Definition 4.
Proof. It is proved in [22] that sf : D{sf) —> 2 is maximal monotone in the real

Hilbert space , (•,•),) if Tu has positive surface measure. Following the lines of
the proof (in [22, Sec. 3.4]) the above theorem can be proved in the present slightly
different situation. Modifications are required just if Green's formula is applied. The
examination below is given only for completeness.

Similarly to [22] we prove that sf : D(sf) —> 2* is monotone. For U =
(M,,...,M4), V = (Uj , ... , v4) e D(sf),

{stfU-stfV, U - V)2
= —((e(«2 - v2), A4e(ut - »,) + A2{u3 - v3))L

- (div(^4e(M, -vi) + A2(u3 - v3)), u2 - v2)L,

+ {d<p3(A2u}) — d <p3(A2v3), A2(u3 — v3))^

+ (d<p*(A2u3 - Atu4) - d<p\{A2v3 - A[v4),A2{u3 - v3) - Al(u4 - v4))L
-{S{u2-v2), (w, -v{))H.

Using Green's formula for the first term on the right-hand side and the interface
conditions in D{sf),

- (div(^4e(M, -vx) + A2(u3-v3)), u2-v2)l,

= (A4e(ul - v,), e(u2 - v2))L, + (A2(u3 - v3), e{u2 - v2))L,

+ {S(ul -w,), {u2-v2))H.

Thus, since d(p\, d(p\ are monotone (p,, q>i are convex), one concludes

{sf U-s>?V, U - V)2 > 0,

i.e., sf : D(sf) —> 2? is monotone.
In order to prove that s# : D(sZ) ->2 is maximal monotone it suffices to show

that for any Z = (z,, ... , z4) e and t > 0 there exists some U = (m, , ... , u4) e
D(sf) with

tU + S)f U = Z (43)

(cf., e.g., [25, Proposition 55.1]).
-)>••• > Z4) 6 aim i jyGiven Z = (z,, ... , z4) e and T:= 57 > 0 consider the functional

J \ H 1 U {oo} , w h-> J(w) + USu), w)f

where the functional J : H —> Mil {oo} is motivated in [22, Subsection 3.4.3] and
defined by

1 / , ~ , J_
2tJ(w) := - ( p{rw - 2z2), w)L, + — < A4e(w + 2z,), e(w)

L

+ / i//*(A2(e(w) + z3 + z4)) d£l
Jo.
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where y/, <pAt : K^3 -> K U {00} are defined as in [22, Subsection 3.4.3], i.e.,

i//(d) := j.A2d : d + x<p*Al(A2d) + <p\{A2d),

(pAt{d) := ^A{d : d + ^tp^rd - z4)

for d € R3*m3. <p*Al is the Legendre-Fenchel transform of <pAt, and y/* is the
Legendre-Fenchel transform of y/ .

In [22, Subsection 3.4.4] it is proved that J is strictly convex, lower semicontin-
uous and coercive on H. Thus, the same holds for J, since due to Remark 1 there
exists c > 0 with

1 2
~(A4e(w), e(w))L + {Sw, w) > c\\w\\H

for all w e H. Therefore, there exists a unique minimizer u2 € H of J, i.e.,
0 e dJ{u2).

In [22, Subsection 3.4.5] the subdifferential of J is calculated. Since J - J is
convex and continuous, the sum rule gives

d?=dj + s.
Define u{ := j(u^ + z{) e H. Applying the characterization of 0 e dJ from [22,
Subsection 3.4.5] to our case 0 e dJ{u2) we obtain some

«3 € d ^ ijj*(A2{e{u2) + z3 + z4)) dQ^j

with
0 = {p(tu2 - z2), w)L, + (AAe{ux), e(w))L

+ {A2e{w),ui)L + {Su2,w)H

for all w G H and m, = \(z( + w,,). Using Green's formula again, i.e.,

- (div(^4e(«j) + A2u3) , w)L<

= {AAe{ux) + A2u3 , e{w))L - L w • (A4e{u{) + A2ui)n dY,

this leads to

P{tu-, - z2) - div(^4e(U[) + A2u}) — 0 inQ, (44)
(A^iUj) + A2u3)n + S2yu1 = 0 on T. (45)

Note that (44) is the second component of (43). Note also with e2 = u3 and u = u[
that (45) coincides with the interface conditions in D(sf). We have already defined
M| , u2, u}. Since the remaining considerations in the proof do not concern any
boundary condition one can argue verbatim as in [22] to obtain u4 such that U =
(m, , ... , m4) e D(stf) satisfies (43).

This proves that : D($f) —> 2 is maximal monotone. Consequently, accord-
ing to the main theorem on first-order evolution inclusions, Eq. (36) has exactly one
solution and therefore, due to the equivalence given by Theorem 4, the interface
problem of Definition 4 has a unique solution. □
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Finally, we sketch a numerical approximation using notation from Def. 3. Given a
time step At := T/n, n being a natural number, setting (uh 0, vh 0, e2 h o' ei h o)
:= 0, compute Uh j := (uhj,vhj,e2hj,elhj) e Hh x Hh xLhxLh for j =
1recursively,

(A2e2,hj + AAuhj))n + S2,hyuhj = °>

where S2 hy is defined by y*S2 hy = Sh.
The discrete problem leads to the problem (43) and then to the minimization of

J (where S is replaced with Sh) yielding existence and uniqueness of the solution
of the discrete problem.

Remark 6. In [22] this full discretization is considered for the purely interior
problem only and, by numerical examples, the reliability of this algorithm is shown.
There, instead of Hh, the use of further trial functions for the approximation of
divergence-free velocity fields is discussed [22, Sec. 4.6],

6. Maxwell material. In this section we treat the classical Maxwell material [22]
in the form

e(u') - Aa' — k ■ a° (46)

where 0 < k e L°°(Q; E) and

aD := o - j tr a I, tr a := on
7=1,2,3

and / € l3x3 is the unit matrix. A € £?{L\ L) is symmetric and positive definite.
In addition to the constitutive relation we provide the equilibrium condition

e* o = y*t + f (47)

for body forces / e H*, H := R3), /(0) = 0, surface forces t e H~l/2 =
R3) and the stress field o e L:= L2( Q, R3^).

The interface problem reads as follows.
Definition 5. Given / e W2(0, T; H*) with /(0) = 0, the interface problem

of this section consists of finding functions

(u, u2, a, t) e w2{0, T- H x^f2x Lx H~]/2)

satisfying (46), (47) and the initial conditions (u, a, t)(0) = 0 as well as the interface
conditions

yu = u2jr e tV2'(0, T; H,/2) and t = T2(u2)fr e fV2'(0, T; H'I/2). (48)

As in the previous sections we rewrite the interface problem in terms of boundary
integral operators; the proof is omitted.
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Theorem 6. (u, u2, a, t) e tV2(0, T; H x S?2 x L x H~l/2) solves the interface
problem of Definition 5 if and only if (u, a) e W2(0, T; H x L) satisfies (46) a.e.
in (0, T) and

e* a + Su = f (49)
and homogeneous initial conditions on (u, a).

In the latter case, u2 is given by the representation formula with Cauchy data
(v, t) := {yu, -S2yu). □

Theorem 7. The interface problem of Definition 5 as well as the problem of Theorem
6 have unique solutions.

Proof. We apply a regularization technique to (46), (49) and consider for given
v > 0 the auxiliary problem (Pu): Find (uv, au) € W2(0, T\ H x L) such that
("„ ' CTJ(°) = 0 and

eov + (.ve*e + S){uv) = f, (50)

e{uv) - Aa'v = k • o°. (51)

Since (ve*e + S) e Jz?(H; H*) is positive definite, (50) is equivalent to

uv = {uee + S)-\f-eov). (52)

Substitution of uv in (51) leads to a first-order evolution equation which has a
unique solution av (cf. Corollary 1). According to (52), this yields a unique solution
(u„> av) of problem (P ).

H2

/ = £*X
and define

:=X-°„eW}(0, T; L).
The function x can be determined by solving

e*e{v) = fe Q, v|an = 0
and letting x = e(v) f°r instance. Substitution of ou—x~ T„ and «„ from (52) in
(51) leads to

/ KAV% > Ol ds= f (kX°. \)L *Jo T 0 (53)

where Av := A + e(S + ue*e)~{e*. Since A is positive definite, (53) leads to a
constant c > 0, c does not depend on v , such that

ll^i/ IIZ.2 (0, T; L) — C '

i.e., (tv) Q is uniformly bounded in W2(0, T; L) and thus the same holds for

Consider a function x £ ^(O, T; L) with ^(0) = 0 and

(cri/)i/>o. Hence, according to (50) and (51), we have with S = y*S2y that (,S2yu'v)lf>o
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is uniformly bounded in L2(0, T; /7~l/2) and (£(t^,))„>0 is uniformly bounded
in L2(0, T\L), respectively. Hence, ((e*e + S)uy)v>Q is uniformly bounded in

(0, T; H*). Therefore, Remark 1 yields that («„)„ > 0 is uniformly bounded
in W2'(0, T; H).

Since (uv , ov)v>Q is a bounded family in W-! (0, T; H x L) the Banach-Alaoglu
theorem [21] shows that there exists some parameter sequence (vn) with lim)J_(oo vn
= 0 such that (uv , a ) converges weakly toward some (u, a) in w] (0, T \ HxL).

n n

It is a straightforward calculation that (u, a) then solves the problem of Theorem
6.

It remains to prove the uniqueness of a solution of (46), (49) satisfying homoge-
neous initial values. In order to do this it suffices to prove (u, o) = 0 whenever
(u, a) solves this problem for / = 0. Multiplication of (46) with o', integration
on (0, T), using the main theorem on calculus and e*a' = -Su lead to

- u)H + (Ao ,o)\ dt = (j0D(T),0°(T)^ > 0.

Since S2 and A are positive definite and S = y*S2y, this proves a = 0 and yu- 0.
Hence, from (46) we have e(u) = 0 so that (e*e+S)u = 0 gives u = 0 due to Remark
1. □

Finally, we sketch the numerical approximation of the solutions of (46), (49)
using notation from Definition 3. The discrete problem—consisting of coupling finite
elements and boundary elements in space with the implicit Euler method in time—
reads as follows. Setting (uh 0, oh ■) := 0 compute (uh J, oh 7) e Hh x Lh for
j = 1, 2, 3, ... , n , recursively, with

(°h,j' £K))l + (ShuhJ, vh) = (f , vh
H

h{uhJ)-e(uhj_x) ah]-ghj_{ \ = D
\ T/n T/n ' hJ/L hJ' hJ L

for all vh e Hh, th e Lh.
Using the regularization technique from the proof of Theorem 7 one can prove

that the discrete problem has a unique solution. The numerical analysis of the above
algorithm is included in [5] proving convergence of this procedure.

Appendix. Here we consider the three models of this paper. In Fig. 2 springs
(denoted by A, B, At , A^, A4) describe elastic material components such that
stress a results from strain e in a linear manner, e.g., o = A~'s. The dissipative
elements (denoted by <p , (px, <p3) describe viscous or perfect plastic behavior, i.e.,
the time derivative of the strain, which is called the strain rate, depends on the stress
as in the case of a Newtonian fluid: e' e dcp(o). This form includes the normal
rule in plasticity giving the Prandtl-ReuB model. For particular cases of dissipative
functionals see [22, 26],

The equations corresponding to Fig. 2 can be obtained as follows. For any element
j introduce variables e and a for strain and stress and write down the law of theJ j j
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I
(a) (b) (c)

element. Then, calculate the relations between the introduced variables. If two
elements are serial (i.e., they build a line) the stresses are equal and the total strain is
the sum of the two strains. If two elements are parallel the strains are equal and the
total stress is the sum of the two stresses. Using the above rules calculate the final
relation between total stress (always denoted by a) and total strains e(u) where u
is the displacement of the element.

i) The rheological model for Groger's material is shown in Fig. 2a. If e1, e2,
and CTj , a,, er3 denote the strain and the stress of the elements denoted as A , B ,
cp , respectively, we have

cr, = Aex , a2 = Be2, £3 e d<p{a3).

Since B and tp are parallel,

Ej = , O '.= CF-, + CTj.

Since A and (B, q>) are serial

a, = a, e(u) = e, + e2.

The weak form of the (quasi-static) equilibrium condition e*a + y*t = / can be
obtained from the strong form

/ + div er = 0 in Q, on = t on T

by multiplication with a test function from H, integration over Q, and using Green's
formula with any Dirichlet and Neumann boundary condition.
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Letting p := e2, q := ct3 gives a — Bp + q , and the above relations imply

e*{Bp + q) + y*t = f,
(A + B)p + q = Ae(u),

p € d<p{q).
ii) The Theological model for material of the Burger type is shown in Fig. 2b. The

situation is slightly more complicated than in i). We have

0*2 A2&2 ' £3 € (p, (7^ A^£q

and we write
a(=A1eJ, <rf €?»,(«,)

for the stresses corresponding to A{ and <px , respectively, £, for the strains; <p* :
L —> [—00, 00] is the Legendre-Fenchel transform of <p] defined by means of

<p*(t) = sup (<r : r - (p.(<7)) (for all r e L)
oeC3

(: being the scalar product in K3x3). It can be proved that apx € <p{(e\) if and only
if e', e ^*(°f) [13, 22, 25]. Calculating the relations between the elements in Fig.
2b we obtain

e p
(J — Cj "I- 0°^ , (J \ .— (71 "I- Cj — 0*2 — ^ "S

and
e(m) = £^ = £j + £j + £3.

From this one finally concludes
a = ^4e(«) + A2e2 ,

£ 1 ^1^1 ) '

e(w') - £| - £2 e c?973(v42e2)-

These conditions explain a = ^44£(w)+/*.,£., used in §5 and lead with (35) and u — v
to the components of (37) in (36).

iii) The rheological model for a material of the Maxwell type is shown in Fig. 2c.
Let £| , £2 correspond to A, (p . As above we get e(u) = £,+£-, and ax = A~'e, as
well as £j 6 <p{o2). Since a = a x = a, this yields

fi(w') - ^<7' G ^(cr).

Setting ^(er) := ycr73 : crD we obtain (46).
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