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Abstract. This paper presents a few results on the free vibration of a finite elastic
dielectric with linear piezoelectromagnetism. Following the proof of selfadjointness,
the orthogonality of modes corresponding to different frequencies is proved. A vari-
ational principle is given in Rayleigh quotient form for the natural frequency. The
variational principle is mixed in the sense that all field variables can be varied inde-
pendently, and it can be used to generate other variational principles.

1. Introduction. The theory of piezoelectromagnetism (dynamic piezoelectricity)
has fully dynamic electromagnetic fields. Reciprocity, uniqueness, and minimum
principles have been proved in [1]. The vibration of piezoelectromagnetic plates has
been studied [2-4] to consider the effect of electromagnetic radiation. The predic-
tion of electromagnetic radiation from vibrating piezoelectric bodies is important
in the resonator industry. Knowledge of the amount of energy radiated is needed
in computing the quality factor of the resonator. The exact treatment of radiation
phenomena requires a fully dynamic theory. The quasi-static theory of piezoelectric-
ity can at most give an approximation of the radiation. A variational principle for
piezoelectromagnetism is given in [5], which can be used to derive field equations
for piezoelectromagnetism. A mixed variational principle for the field equations of
piezoelectromagnetism is given in [6].

In this paper, a few basic properties of the eigenvalue problem for the free vibration
of a finite elastic dielectric with linear piezoelectromagnetism are established. The
selfadjointness of the eigenvalue problem is proved first, which then leads to the
orthogonality of modes corresponding to different frequencies. A mixed variational
formulation for the natural frequency is derived in Rayleigh quotient form with
all field variables as independent variables. The variational principle can be used to
derive other variational principles. This will be shown by an example. The variational
principles given here generalize the results in [8] from the quasistatic case to the
dynamic case.
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2. Governing equations. Let the finite spatial region occupied by the piezoelectro-
magnetic elastic dielectric be V', the boundary surface of V' be S, the unit outward
normal of S be n,, and S be partitioned in the following ways:

S,US; =S,US,=5,US, =S5, 1
S,NS;=S,nS,=5,nS, =02. )

The governing equations for the free motion of a finite piezoelectromagnetic body
in V are [5]

T, =pv, —pv,=—pu; mV,
Sij—%(uj,,.+u[ )=0 inV,
~E-¢,=4,, B -¢,4 ;=0 iV,
Dl_’l_=0, _8iijk,j=—Di inV, (2)

T, = (cijuSiy— €y Ex)=0 inV,
=D, —(-€,;S,, —¢,E,)=0 inV,
H-Y1B=0 inv,

Ko

with homogeneous boundary conditions

u;=0 onsS,, —Tjinj =0 onS,,
$=0 onS§,, -Din, =0 ons§,, (3)

sijknjAk=0 onsS,, s,.jknij=0 onS,,

where p is mass density, T, ; stress, S, ; strain, u; displacement, v, velocity, E,
electric field, D, electric displacement, B, magnetic induction, H; magnetic field, ¢
and A, the scalar and vector potentials of the electromagnetic fields in the dielectric,
and u, is the magnetic permeability of free space. ¢, ikl Ckij> and ¢, ; are all material
constants. &, is the permutation tensor. Because of the potential representation
(2), of the electromagnetic fields, only two ((2),) of the four Maxwell’s equations
are left and the other two are identically satisfied.

We note that the stress equation of motion (2), has been written in terms of the
velocity v; so that only the first-order time derivative appears. This is for consistency
in form with the first-order time derivative in Maxwell’s equations and the potential
representation of the electromagnetic fields.

The homogeneous electromagnetic boundary conditions (3) .3 include the two
common electromagnetic boundary conditions [7] of short circuit boundaries (elec-
tric wall, on which tangential E and normal B vanish) and open circuit boundary
(magnetic wall, on which tangential H and normal D vanish) as special cases.
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For time harmonic motions, let
u,(x, t) = u,(x)coswt, v,(x, 1) =v,(x)sinwt,
T,;(x, t) =T, (x)coswt, §;;(x, 1) =S§,;(x)coswt,
E.(x, t) = E(x)coswt, D,(x, t) = D,(x)cos wt,

- (4)
o(x, t) = ¢p(x)cos wt,
H(x, t) = H,(x)sinwt, B,(x, t) = B(x)sinwt,
A,(x, t) = A,(x) sinwt.
Then (2) and (3) become
T, =wpv, —pv; = wpu; inV,
S, - %(uj’,.+ul.'j) =0 inV,
_El,_¢‘i=a)A,., Bi—eijkAk’jzo inV,
Ty = (CojurSis — € Ek) =0 inV,
=D, — (€S — &4 E) =0 inV,
H,.—ﬂlBl.=O inV,
0
and
u,=0 onS, - T;n =0 onsS,,
$=0 onS,, -Dnn, =0 onS§, (6)

€A, =0 onS§,, & Hy =0 onS,.

Values of @ are sought corresponding to which nontrivial solutions of u,, v,, S;; i

T,, ¢, E,D;, A, H,and B, exist. Hence (5) and (6) constitute an elgenvalue
problem. For ( ) and (6), it is convement to introduce the electric enthalpy density

function
H(S,E, B) = 3c,/S; Sy — € ES

ijk =i jk (7)
2t-:UE,Ej+2/10 BB in V.
Then (5) and (6) can be written as
T,  =wpv, —pv; = wpu; inV,
S, —%( ;tu, ;)=0 inV,
_Ei ¢'i=wAl., B, —¢,4, ;=0 inV, 8)
Dl_‘[_—_-o, —sl.ijk’j—wD. in V,
oH OH oH .
T‘U—'a—SU'—O, —D'« 6E 0 Hl_a_Bl_O an,
and
u;=0 onS,, -T;n, =0 onS;,
¢=0 onS,, -Dnn;, =0 onSp, 9)

,,A”,A =0 onS,, U,\nH =0 onsS§,.
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3. Selfadjointness and orthogonality. We introduce the following abstract notations
of vector U, operators L and M, and inner product { , ):

Uz{u,‘av[’Y}j,D,‘aH,w¢,A,’>S,‘J',E1,B[}’ (10)
LU = { Ty j»=pv;s Sy —5(u; +u; ), Dy i, —E —¢
(11)
oOH OH OH
B, —¢, A i~ H Tij_ﬁ’ _Di_ﬁ’ H; - 8_5} ’
ij i i
MU = {pv,, pu,,0, 4,,0,0,D,,0,0, 0}, (12)

(U, U%) =/[u.uf+v.vf+T..Tf‘.+D.Df+H<Hf
Vll (] joij [} [y} (13)

+¢¢" +A,4; +S,, S, +EE +BB]dV,
where U” is another arbitrary abstract vector. It is clear that the above inner product
is symmetric, that is, (U, U*) = (U*, U). With the above definitions, Eq. (8) in V
can be written as
LU = oMU. (14)

It can be verified with integration by parts that for any two abstract vectors U and
U" satisfying homogeneous boundary conditions (9) the following is true:
(LU, U*) = /V { Tji.j u: - pv,v: + [Sij - %(uj,,- + u,j)]le

- (E; + d).i)D; + (B, - 8ijkAk,j)H; + Di,i¢* — &, H, A;

Y
oH * oOH * oOH *
+(T,I—WU)SU-(D,+6—E)E,. +(H,.—a—Bi)B,.}dV
=/V { uiT;i.j_”i/w; +T, [S:j_ %(u;.i"‘u:.j)]

Ay )+ D] — Ag H,

iCijk

*

= D,(E] +¢",)+ H/(B] — ¢

. OH" . OH . OH"
+S,j<Tij—W7j)—Ei<Di+6—El,_.)+Bi<Hi—a—Bi,>}dV

= (U, LU"),
(MU, U") = / (pv,d’ + puv” + AD; +D,A7)dV
’

= / (u,pv; +v,pu; + D, A, + A,D})dV
y
= (U, MU").
(15)
Hence the operators L and M are selfadjoint for abstract vectors satisfying homo-

geneous boundary conditions (9). With the selfadjointness, we can now proceed to
prove the orthogonality of eigenvectors corresponding to different eigenvalues. Let
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w and w* be two different eigenvalues and let their corresponding eigenvectors be
U and U"; we have

LU = wMU,
* x x (16)
LU =w MU .
Taking the inner product of both sides of (16), by U" and both sides of (16), by
U, and then subtracting the resulting equations, we obtain

0=(w-w)U", MU). (17)

Since w # w", (17) implies the orthogonality condition
(U, MU) = / (pvu; +puv’ + AD; +DA;)dV =0. (18)
Vv

We note that (18) further implies (U*, LU) = 0, which is another form of the
orthogonality condition.

3. A variational principle. In this section, we will give a variational formulation
for the eigenvalue problem (8) and (9). Different from the variational formulations
for the quasi-static case [8] which are for w* , the following variational principle
is for w. This is consistent with the corresponding variational principle for pure
electromagnetic fields of a finite body [9].

Generally, for a fractional functional

A
I1= T (19)
we have

oIl = %(I‘(SA — Aol = %(5A —TIIoT). (20)

Therefore, 6I1 = 0 implies
OA -TIéI' = 0. (21)

Now we consider the following functional of those U that satisfy (9):
HLU, U)

n,U)=-2——. 22
o) = F5 ) (22)

With the selfadjointness of L and M, it can be verified that the stationary condition
of I, is
(LU -II)MU, 6U) = 0. (23)

Because of the arbitrariness of dU, the stationary condition of I, gives (14), with
the stationary value of I as w. Here the boundary conditions (9) are constraints
that must be satisfied by all the admissible vectors U for I1;. To include boundary
conditions (9) as stationary conditions of variations, we can use Lagrange multipliers
to release (9). This leads to the following functional Il, which has no constraints
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and gives (14) or (8), and (9) as stationary conditions. To be specific, we define
A(a,v, T,D,H,¢,A,S,E,B)
= [ o, 18, — Hu, 4w, 0T, = (B +9,)D,
+ (B, — ¢, A, )H,—H(S,E,B)}adV

1

+/ T, nudS+/ Dn¢dS+/ & A H dS, (24)

Ji'
l"l(u,v,T,D,H,qS,A,S,E,B)=/V(pu,.’vi+A,.Di)dV,

A
H[(u, v, T, Dy H: ¢: A, S, E, B) = 'ITI.
1
Then we have, after integration by parts,

5Al=/l/{ pvov, + T, ou,+D; 6¢—¢,H 64,

Jivj

+[S

ij

—%(uj’i+u 6T, —(E;+¢ )0D,+ (B, —¢,, A, ;)0H,

3H oH 6H

i

/uéTnaS /‘Tnduds (25)
/¢6DndS /DnéquS‘
+/§ U,‘nA(SHdS+/S su,‘n]HéAa’S

| "

or, = /V(puiév, + pvdu,+ A 6D, + D6 A,)dV.

Therefore, 6I1, = 0 implies

T, ,=Mpv, —pv, =Il,pu, inV,
S, =3, ;+u, )=0 inV,
-E -¢ =114, Bi_sijk v, =0 inV,
D, =0, anA .—l'ID inV,
0H 8H OH . (26)
Yt D -2 = I = vV
T, 55, 0, D, 3E, 0, H, 3B 0 inV,
u;=0 onsS§,, —Tjinj =0 on§,,
¢=0 onSd), —D.n. =0 onS s
s,jknjAkzo onS,, & n Hy =0 ons§,.

Comparing (26) with (8) and (9), we conclude that the stationary conditions of I1,
in (24) give the eigenvalue problem (8) and (9) with the stationary value of II, as w.
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This variational formulation is of mixed type in the sense that various mechanical
and electromagnetic fields can vary independently and there are no constraints.

5. Other variational principles. The variational principles for the vibration of
quasi-static piezoelectricity were summarized and systematically developed in [8]. It
was shown that for each Legendre transform of the electric enthalpy H there exists
a variational principle. The situation is similar for piezoelectromagnetism. Since the
electric enthalpy function for piezoelectromagnetism has more variables, there can
be more versions of variational principles. We will just show one as an example and
not try to exhaust them.

First we introduce a function M from H through Legendre transform as follows:

M(T,D,H)=H(S,E,B)-T S, +DE ~HB, (27)
which generates the constitutive relations in the following form:
oM oM oM

Sij——a—T,ij, Ei—a_l)i, Bi——a—fli'. (28)

Then we define
A,(u,v,T,D,H, ¢, A)

/[—71)11,1), iU )T - ¢ D,
A, H - M(T D, H)]dV

UA
+/s le.njuidS+/ Dn¢d$+/ & A H dS, (29)
I‘z(u,v,T,D,H,qﬁ,A):/(pu,.v,.+A,.D,.)dV,
vV
AZ
HZ(U,V,T,D,H, ¢>A)=T‘_’
2

Then we have, after integration by parts,

JiJ

oM BM 3M

/uaT n,ds - /T.AnjéuidS

5A2=/V{ pvov, +T, du +D, 6¢—¢, , H .4,

/qb(SDndS /Dn§¢d5

+/S e A OH, d$+/ 6, H04,dS,

A

or, = / (pu,0v, + pv.éu,+ A6D,+ D,SA4,)dV.
v
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Therefore, 611, = 0 implies

T,  =M,pv,, —pv;=ILpu, inV,
oM .
__67'”-_7( [t ) 0 inV,
oM oM .
_a_Di_¢vi_n2Ai’ _a—l'll UkA =0 1in V, (31)
Di,iZO’ —8l.ijk’j=H2Di in V,
u;=0 onS§,, —le.nj =0 onS,,
$=0 onS,, -Dnn, =0 onS§p,
8ijknjAk=0 onS§,, & xn Hy =0 ons§,.

Hence, the stationary conditions of I, give the eigenvalue problem (31), with the
stationary value of II, as the eigenvalue. It can be seen that the elimination of S,
E, and B in (8) through the constitutive relation (8), results in (31). Hence (31) is
equivalent to the original eigenvalue problem (8) and (9). The variational principles
for II; and II, here generalize indirectly those in [8] to the dynamic case.
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