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1. Introduction. This paper is concerned with the investigation of large-time be-
havior of globally defined smooth solutions of the initial-boundary value problem for the
system in one-dimensional nonlinear thermoviscoelasticity, namely,

ut-vx = 0,

vt - ax = 0, (1.1)

[e + \v\ - Hi +qx = o,
which is the referential (Lagrangian) description of the balance laws of mass, momentum
and energy for one-dimensional materials with reference density po = 1 and is supple-
mented with the second law of thermodynamics expressed through the Clausius Duhem
inequality

r]t + (§).*» (L2)
where u,v,e,a,r),9, and q denote specific volume (deformation gradient), velocity, inter-
nal energy, stress, specific entropy, temperature, and heat flux, respectively, while e, a, 77,
and q are given by so-called constitutive relations for the thermoviscoelastic materials to
be considered. The quantities u, 9, and e may only take positive values.

We consider here a body with reference configuration the interval [0,1] whose end-
points are stress-free and thermally insulated, that is,

f <t(0, t) = a(l,t) = 0,I , i , t > 0, (1.3)
\ 9(0, t) = q{l,t) = 0,

and we prescribe the initial values of u, v, and 9 as follows:

u(x, 0) = uo{x), v(x,0) = vo(x), 9(x, 0) = 0o(x), 0 < x < 1. (1.4)

For the material of ideal gas, in which the constitutive relations take the form

9 Vt 9 t ,e — c9, a — —R—b ̂ —, q = —K— (1.5)
u u u
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where c, R, /z, and K are positive constants, it has been proved in [NA] that the solution
(u*,v*,9*) to the problem (1.1), (1.3), and (1.4) satisfies

u*(x, t) > c* log(l + t), c* > 0.

On the other hand, however, totally different phenomena may occur on large-time
behavior of solutions for other kinds of constitutive relations to be considered. In the
case of isothermal viscoelasticity (i.e., 9 = constant), the solution may approach a
unique state exponentially fast as shown by Greenberg and MacCamy in [GM], or phase
transition may take place as discovered by Andrews and Ball in [AB] with nonmonotone
pressure, who prove that the large-time behavior of strain is described by a Yang measure
whose support is confined in the set of zeroes of pressure. Our goal here is to extend the
analysis to the nonisothermal case—thermoviscoelastic materials.

For simplicity, we consider in the present paper the kind of solid-like materials with
the following constitutive relations:

e = Cy9, a =—f(u)9 + (i(u)vx, q = —k—, (1.6)
u

where Cv and k are positive constants, and f(u) is twice continuously differentiate for
u > 0 such that

f(u) >0, 0 < u < u,
(1.7)f(u) <0, U < u < -l-oo,

for some fixed 0 < u < U < +oo, and the viscosity fi(u)u is uniformly positive, that is,

ft(u)u > Ho > 0, 0 < u < +00. (1.8)

Remark 1.0. It is known that for rubber a good model for pressure is of the form

p(u, 9) = —79 (u » ] , 7 is a positive constant,V u1 J

namely, f(u) = —7(u — 4?), which satisfies (1.7) with u = U = 1.
We turn to assumptions on initial data now. Without loss of generality, by superim-

posing a trivial rigid motion, we normalize the initial velocity so that

fi

vo(x)dx = 0. (1.9)
/Jo

Furthermore, we assume that the initial data are compatible with the boundary condi-
tions (1.3).

The global existence of (1.1), (1-3), and (1.4), under the assumptions of (1.6)—(1.9),
can be established by the approach in [DH] and [DA] where the solid-like material with
more general constitutive relations than (1.6) and (1.7) is concerned. Namely, assume
uo(x),u'0(x),vo(x),Vq(x),v/0'(x),9o(x),9q(x),9q(x) are in CQ[0,1] for some 0 < a < 1
and uq{x) > 0, #o(x) > 0, 0 < x < 1; under the assumptions (1.6)—(1.9), there exists
a unique solution {u(x,t),v(x,t),9(x,t)} on [0,1] x [0,00) such that for every T > 0,
the functions u, ux,ut, uxt,v, vx, vt,vxx, 9, 9X, 9t,9xx are all in CQ-t (QT) and utt, Vxt, 9xt
are in L2(Qt), Qt = [0,1] x [0,T]. Moreover, 9(x,t) > 0, 0 < u < u(x,t) < U, for
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0<z<l,0<i< +00, where u and U are positive constants depending only on the
initial data but not on T, and 0 <u < u < U <U.

The following results on large-time behavior of solutions have been established in the
present paper.

Theorem 1.1. Assume that (1.6)—(1.9) are satisfied. Let {u(x,t),v(x,t),9(x,t)}, (x,t) £
[0,1] x [0,oo), be the globally defined smooth solution of the problem (1.1)—(1.4). Then

I.

||p(u,0)(-,t)||Li[Oii] = ||/(w)6>(-,i)||Li[0,i] -> 0 as t -► +00,

II/(«)(-,*)I|l=[o,i] -► 0 as£->+oo,
IK-,*)IIl2[o,i] 0 ast-*+ oo,

and
c^ /?

6{t) =f / 9(x, t) dx —* as t —> +oo
Jo ^v

where Ex = /^[CV^o + ^Vq](x) dx.
II. There exists a family of probability measure {^i}ie[o,i] on ® (depending measurably

on x) with supp vx C K — {z : f(z) = 0} such that if $ 6 C(R) and

g<t,(x)d= { vx,$) a.e.,

then <3>(u(-, t)) <?$(•) in L°°[0,1] as t —> +oo.

Remark 1.2. Theorem 1.1 extends the phase transition results in [AB] to nonisother-
mal cases.

Corollary 1.3. Suppose the equation f(z) = 0 possesses only one root z — z\. Then

u(-, t) —► zi strongly in Lq(0,1) as t —> oo

for all q, 1 < q < +oo, provided the conditions (1.6)-(1.9) hold.

Corollary 1.4. Suppose the equation f(z) = 0 has exactly m roots, z\, z?,... ,zm,
m > 1. Then there exist nonnegative functions /it, € £°°[0,1], 1 < i < m, such that

m

$(u(-,<)) ^2$(zi)iii(-) in L°°[0,1], as t —► +oo,
i=i

for any $ € C(K).

Furthermore, J2iLi Mi(a:) = 1> a-e-
If f(u) is strictly monotone decreasing, namely,

f'(u) < 0 for u e [u, U], (1-10)

it follows from (1.7) that there exists a unique u € [it, U] such that f(u) = 0. We have
further results then in the next theorem.
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Theorem 1.5. Assume that (1.6)—(1.10) hold. Then there are positive constants (3, T,
and A, independent of t, such that

||u(-,i) - u||/fi(o,i) + +
Cv

< Ae ^ for t >T.
H1 (0,1)

Theorem 1.5 generalizes the results obtained in [GM] which discusses the case of
isothermal viscoelasticity.

Section 2 and Section 3 are devoted to proving Theorem 1.1 and Theorem 1.5, respec-
tively.

2. The proof of Theorem 1.1. From now on, {u(x, t), v(x, t), 6(x, t)} will denote
the solution described in the global existence theorem.

It is known from [DA] that

0 <u <u(x,t) <U, 9(x,t) > 0, a; G [0,1], t € [0, +oo) (2.1)

where u and U are positive constants, independent of t, such that 0 < u < u < U < U.
(2.1) and (1.8) yield

0 < fJ-i < fi{u(x, t)) < H2, a: e [0,1], i € [0, +oo) (2.2)

where /j,j and )i>2 are positive constants, independent of t.
In the sequel, A will denote a generic constant, independent of t.
Integrating (1.1) over [0,1] x [0, t] and using the boundary condition (1.3) we obtain

the conservation laws of total momentum and energy:

[ v(x,t)dx= f vo(x)dx = 0, 0 < t <+oo, (2.3)
Jo Jo

[ [CyO + 5v2] (x,t)dx = f [CyOo + ^wo] ix) dx = E\. (2.4)
Jo Jo

Lemma 2.1.
rt rl rMivl , kelJlJ0 ^0

q + ~(p~ (x,T)dxdT<A, te[0,+oo). (2.5)

Proof. Substituting a from (1.6), we may write (1.1)2 in the form

vt + [f(u)Q]x = \Ku)vx\x (2-6)

while combining (1.1)3 with (1.1)2 and using (1.6) we obtain

CyOt + f(u)6vx - £l(u)vI - k0xx = 0. (2.7)

Multiplying (2.7) by 0_1 and integrating over [0,1] x [0, t], with the help of (1.3) and
(l.l)i, one obtains

rt rl rtl(u)vl kOl'IIJo J0 0 + e2

Cy

(x,t) dxdr

[ log0(x,t)dx— f \ogd(x,0)dx + f G(u)(x,t)dx— f G(u)(x,0)dx
.Jo Jo J Jo Jo
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where G(u) — f(Qd£,. This, with (2.1), (2.2), and the inequality log 0 <0 — 1, for
9 > 0, implies (2.5).

Due to (2.3) and the mean value theorem, there exists a y{t) G [0,1] for every £ > 0
such that

v(y(t),t) = 0. (2.8)

Thus

Km) I = rx r r1 i r z-1 w2 i1^2
/ vx(£,t)d£ < / 9(x,t)dx / ~^(x,t)dx
Jy(t) [Jo J [Jo 0fv(t)

which, combined with (2.4) and (2.5), yields

(2.9)

[ max v2(-,t) dr < A, £€[0,+oo). (2.10)
Jo [o,i] ~

Lemma 2.2.

[ (v4 + 92)(x, t) dx + f ( [02 + v2v2] dx dr < A, £ G [0, +oo). (2-11)
Jo Jo Jo

Proof. Multiply (1.1)3 with (Cy6 + \) and integrate over [0,1] x [0, £]. With the help
of (1.3), (1.6), (2.1), (2.2), and Young's inequality, we arrive at

- f Cv8+~^r (x, £) dx + Hi f f v2v2(x,t) dxdr + f f 92(x,t) dxdr
2 Jo [ 2 J Jo Jo 2 Jo Jo

<A + A f maxi)2(-,r) f 92(x,t) dx dr + A f f v2v2(x,t) dx dr. (2.12)
Jo I0-1! Jo Jo Jo

To estimate the term J* J* v2v2 dx dr, we multiply (1.1)2 by v3, integrate the resulting
equation over [0,1] x [0,£], and use the boundary conditions (1.3), (2.1), (2.2) and the
Cauchy inequality. It then follows that

/ v4(x,t) dx + 2/ii / I v2v2(x,t) dx dr
Jo Jo Jo

/ maxu2(-,r) / 92(x,t) dx dr.
Jo [0,1] Jo

ft
< A + A

(2.13)

By using the Cauchy inequality with the term (Cy9 + \)2 in (2.12), we obtain

, t) dx dr
rl rt r 1 rt rl

/ 92(x,t)dx+ / / v2v2(x, t) dxdr + / / 9l(x,-
Jo Jo Jo Jo Jo

. f f v2v2(x, t) dxdr + A / max«2(-,r) [ 92(-,t) dxdr
Jo Jo Jo [0,1] Jo

+ A f v4(x,t)dx. (2-14)
Jo

< A + A
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Multiplying (2.13) with a suitably large positive constant, and combining with (2.14),
we get

f 1 rl rt rl pt /»1

/ 92(x,t)dx + / v4(x, t) dx + / / v2vl(x,r) dx dr + / / 92(x,t) dxdr
Jo Jo Jo Jo Jo Jo

< A + A f maxw2(-,r) f 92(x,r)dxdT. (2.15)
Jo [°>i] Jo

Applying Gronwall's inequality to (2.15) and using (2.10), one arrives at (2.11).

Lemma 2.3.
rt piIfJo Jo

vx(x,t) dx dr < A. (2-16)

Proof. Multiplying (1.1)2 by v and integrating over [0,1] x [0,i], it follows, with the
help of (1.3), (2.1), and (2.2), that

^ f v2(x, t) dx + Hi ( f v2(x,t) dxdr < A + f f f(u)9vxdxdr. (2-17)
2 Jo Jo Jo Jo Jo

Due to (l.l)i and (2.1),

rt r 1
■ dx dr[ [ f(u)0Vx (

Jo Jo

nf(u)(9 — 9)vx(x,t) dx dr + f ( f(u)9vx(x,T)dxdr
Jo Jo

< / I vx(x> T) dxdr + A f f (9 — 9)2(x, r) dx dr
4 Jo Jo Jo Jo

(2.18)

t r 1
f(u)9ut(x,T) dxdrIIJo Jo

where 9{t) = J* 9(x, t) dx, t € [0, +00).
By the mean value theorem, there exists a z(t) £ [0,1] such that 9(t) = 9(z(t),t).

Thus

\9-9\{x,t) [ 9x{£,T)d£, < f 92(x,
J z(t ) U 0

r) dx
1/2

, t € [0, +00). (2.19)
z(r)

Integrating (1.1)3 over [0,1] and using (1.3) and (1.6), we arrive at

CV (/ 9(x,r)dxSj = — ^v2(x,r)dxSJ , r £ [0, +00). (2.20)

Namely,

#t(T) = -7T" [ \v2{x,r)dx , t € [0, +00), (2.21)
^V Jo * . t
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which, together with (2.4), implies

E1 — / ^v2{x,r)dx , t € [0, +oo). (2.22)

In view of (l.l)i, (2.1), (2.4), (2.10), (2.21), and (2.22), it follows, upon integrating
by parts and using the Cauchy inequality, that

/ [ [f(u)0ut](x,T)dxdT
Jo Jo

iv2(s,r)ds^ j (x,T)dxdr

(x, t) dx dr

<A -J J | f\u)uut

+
_ A

+

/ A(u)(x,t) dx — / \(u)(x, 0)dx
Jo Jo

Jo Jo f'(u)uvx (jf ^2(s,t)c^ (x,r)dxdT

(x,t) dx+ ^v{Jo \v2(s^ds;

-Jo f(u)u(^J ^t;2(s,0)ds^ (x,0)da:|

h L Jo {^'^U + ̂ U^Vx (_/ ^v2{s,r)ds^ (x,r)dxdr

(2.23)

CV

< A +

^A+4

nvl(x,r) dx dr + A ( j v4(x,t) dxdr j v2(x,t)dx
Jo Jo 4 Jo

nu2(x,r) dxdr + — f v2(x,r)dx
4 Jo

where

\(u)(x,t)=[ /'(£)£
7 u

(2.16) then follows from (2.15), (2.17)—(2.19), and (2.23).

Lemma 2.4.

[ [ [f(u)0}2(x,r)dxdT<A. (2.24)
Jo Jo
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Proof. By integrating (1.1)2 over [0, x] for any x 6 [0,1] and using the boundary
condition (1.3), it follows that

[f(u)B\(x,t) = [fi,(u)vx\(x,t)~ v(y,t)dySj , x e [0,1], t £ [0, +00). (2.25)

Multiplying (2.25) by f(u)0 and integrating it over [0,1] x [0,£], we arrive at

[ [ [f(u)0]2(x,T)dxdT
Jo Jo

= [p,(u)vxf(u)0](x,T)dxdT
Jo Jo

rt rl

/0 JO
rt rl

+
/o JO

v(y, r) dy

v(y,r) dy
IJ 0

(x,

f(u) (0 — 0) | (x, t) dx dr

f(u)0 > (x, r) dx dr.

We estimate each term in (2.26) separately.
In view of (2.1), (2.16), and Cauchy's inequality,

n[fi(u)vxf(u)6] (x, t) dx dr

\ [ [ [f{u)0]2(x,r)dxdT + A, <g[0,+00).
4 Jo Jo

~ 4

By (2.1), (2.11), (2.16), (2.19), (2.25), and the Cauchy inequality,

rt r 1
v(y,r) dy

10 Jo / 0

1 ^

(2.26)

(2.27)

16 Jo Jo
v(y,r)dy

t ri /■!

f(u) (0 — 0) J (;x, t) dx dr

\ 12 ft pi
(x, t) dx dr + A / / 02(x,t) dx dr

t i (2.28)
-Iff [f{u)9}2{x,T)dxdT + A f ( {vl + 0l){x,r)dxdT

5 Jo Jo Jo Jo

— zl I [f(u)6]2{x,T)dxdr + A, te[0,+00).
° Jo Jo
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Integrating by parts and using (l.l)i, (2.4), (2.10), (2.16), (2.21), (2.22), (2.25), Holder's
inequality, and Cauchy's inequality, it follows that

rt rl\L I {[l'viy-r)dy f{u)6 > (x,r)dxdr

A + A f [ v2 + f v2(s,T)ds
Jo Jo . Jo

<

1

(x,t) dxdr

rriir u(y,r)dyj /(it) \j ^i)2{s,r)ds

"it:k
(x, t) dx dr

v{y,r)dy f(u)

+

rt /•!

J v(y,r)dySj f(u)vx J iw2(s,r)dsj (x,r)dx

v(y, t) dyj | (x, r) dxdr + A jfjf [v2 + u4](:e,t) dxdr

A+f/ J [f(u)e}2(x,T)dxdT.<

(2.26)-(2.29) then imply (2.24).

Lemma 2.5.

[ v2(x,t)
J 0

(2.29)

dx —> 0 as t —> +oo. (2.30)

Proof. It is clear from (2.10) that
r+oo /»!p-f-co ri

/ / v2(x, t)dxdt < A. (2-31)
7o Jo

Namely,

f v2(x,t) dx 6 Z/1 ([0, +oo)).
J o

(2.32)

Multiplying (1.1)2 by v and integrating over [0,1], we obtain, with the help of (1.6)
and (1.3),

/ (vvt)(x,t)a
Jo

= J[(f{u)6 - fi(u)vx)vx](x,t)

<A f [{f{u)6)2 + v2x]{x,t)dx,
Jo

dx

which, combined with (2.16) and (2.24), implies

So \iL "2(x-t)dxdx < A. (2.33)



210 L. HSIAO and T. LUO

(2.31) and (2.33) yield (2.30).

Lemma 2.6.

9{t) = f 9(x, t) dx —* as t —■* -(-ex), (2-34)
Jo

(2.35)n[f(u)]2(x,T)dxdT < A, t £ [0, +oo),

ll/(w)('^)IU2[o,i] 0' ast^+oo, (2.36)
||p(«,0)(-,t)||Li[o,i] = IK/H^C-.OIUmo.i] °' asi-+ +00. (2.37)

Proof. (2.34) follows from (2.22) and (2.30) directly. It is known from (2.34) that
there exists T0 > 0 such that

9{t) > as t > T0,

which, together with (2.1), (2.11), (2.19), and (2.24), implies
rt ri

I dx dr[ [ [f(u)]2{x,T)>
J T*o J 0

4 C2 f1 _
^u)'6^T)dxdT (2.38)

< A f f [f(u)9]2(x,T)dxdr + A f ( [f(u)(9 — 9)]2(x,T)dxdT
J To Jo Jt0 Jo

< A.

(2.38) and (2.1) now yield (2.35).
To prove (2.36), we make the following estimate by using (l.l)i, (2.1), (2.16), and

(2.35):

<

(2.39) and (2.35) imply (2.36) directly

r+°° (j r1

I dtJ0[fM]2M
r + OO r\

A + A / v2(x,t)dxdt<A.
Jo Jo

dt
(2.39)

||(/(«)0)(-,t)IUi[o,i] < [f{u)}2{x,t)dxSj ■ ̂  92(x,t)dxSj

This, combined with (2.11) and (2.36), gives (2.37).
So far, part I of Theorem 1.1 has been established by the above lemmas.
Next we will employ an idea of Andrews and Ball (see [AB]) and the results obtained

above to prove part II of Theorem 1.1.
Suppose ^ 6 £2[0,1] with 4* > 0 and $ 6 C2([u, U]) satisfying

$'(*)/(*) >0 for z e [u,U} (2.40)

where u and U are the lower and upper bounds of u.
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Let

V(x, t) := ^ for x e [0,1], ( > 0.

Multiplying (1.2)2 with and integrating over [0,1] x [0, f] and using the boundary
condition (1.3), we get, with the help of (1.1) and integration by parts,

//Jo J0

t r 1
(x, r) dx dr

$'(u)

l [i* *(s,)iss7w h - r "»(i) tr mT^Mdy.dx

~l I vix,r) I T)v-{y'T)dy

+ / ty(x)$(u(x,t)) dx - / 4'(a;)$(wo(a;)) dx
Jo Jo

dx dr

(2.41)

where ' denotes the differentiation with respect to u.
To show the existence of the limit of the left-hand side of (2.41) as t —> +oo, we

estimate each term on the right-hand side of (2.41).
For the first term, it is easy to see that

Jo [Jo WW)) .

< lk(-,t)IUa[0,l] • II^IIl2[0,1]

< A||u(-,i)||L2[0ii]

dx

*'(«(•,*))
i)) L2 [0,1]

which tends to zero as t —> +oo, due to (2.30).
The third term can be treated as follows:

/ v(x,t) [ V(y)
U/o Jo . AM

<IN-,t)MI*IU.

(y,t)vx(y,t)dy

$'(«)

dx

M)
A(") - ^oo

< A[||v(-,f)|||2 + \\vx(-,t)\\2L2] for all t > 0

VX(',t) \\L2

Therefore, the limit of the third term as t —» +oo exists by (2.10), (2.16), and the
dominated convergence theorem.

It is obvious that the term /U0 Jq V(x)$>(u(x, t)) dx is uniformly bounded in t > 0 since
u < u(x,t) < U.

Thus, the above estimates imply that

HI {|/(u $'(u) ■
)^]^>(a:) ^ } (x,r)dxdr is bounded uniformly in t > 0.
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This, together with (2.40), (2.2), and 9 > 0, yields the existence of

lim
t—> OC

Furthermore, the existence of

im [ [ [f(u)6ty(x)$'(u)](x,T)dxdT.
~*°°Jo Jo

lim [ ty(x)$(u(x, t)) dx,
t~*+ooJ o

for all "J £ C2[0,1] with >I> > 0, is established since each term in (2.41), apart from
fg *1'(x)$(u(x, t)) dx, is either independent of t or tends to a limit as t —* +oo.

Therefore, it follows that

$(u(-,t)) -> g<s,(-) in L2[0,1]

as t —> +oo for some g,j, £ L2[0,1].
In view of ||$(u(-, 0)lk°° — A, it can be shown that

e L°°[0,1]

and

$(«(•,<))-</*(•) in ^°°[0,1]. (2.42)

Let 0 £ C([u, U]) be arbitrary and £ Ll{0,1) now. It is easy to verify that

lim / :)<&(u(x,t)) dxt_>°° Jo

exists for all £ L1 [0,1] and $ £ C([u,u\), by using the same method in [AB] and the
following Lemma 2.7 which can be proved by the same argument as used for Lemma 3.1
in [AB],

Lemma 2.7. Let / £ C(K) and let 0 < u < U. Then the set

S — span{<f> £ C2([u, U]) : > 0 if z £ [u, U]}

is dense in C{[u,U\).

Thus, it turns out that (2.42) holds for an arbitrary $ £ C([u, U]). The existence of
probability measures vx follows at once from (2.42) and Theorem 5 in Tartar's paper in
1979 ([TA]). To prove that suppz/x C K — {z : f(z) = 0} a.e., it suffices to show that
if $ is zero on K then (vx,$) — 0 a.e. But, if $ is zero on K, then —> 0 in
measure as t —> +oo due to (2.36). Therefore, —> 0 in Z/°°[0,1] as t —> oo, and
hence = 0, a.e., as required.

Theorem 1.1 has been proved completely now.
Corollaries 1.3 and 1.4 can be proved in the same way as in [AB].
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3. The proof of Theorem 1.5. In view of (1.10), (2.1), and the smoothness of
f'{u), there exists a constant b > 0 such that

—/'(«) > b > 0 for u e [u, U]. (3.1)

Lemma 3.1. If (1.10) holds, then

[ u2(x,t)dx + j f {u2x + 9ux)(x, t) dxdr < A, i € [0, +oo). (3.2)
Jo Jo Jo

Proof. Define M(u) = f™ /i(£)d£ and consider M(u) as a function of x and t. Then
we may rewrite (1.1)2 35

[v - M(u)x]t = [■-f(u)0]x.

Multiply the above equation by [v — (Mu)x\ and then integrate over [0,1] x [0, t\. We
arrive at

i [ [v - M(u)x]2(x,t) dx + ( f {[—f'(u)9fl(u)}ux}(x, r)dxdr
* Jo Jo Jo

= 7. [ [v - {Mu)x]2(x, 0)dx - f f [f'(u)0uxv](x,T)dxdT (3.3)
* Jo Jo Jo

- [f(u)vOx](x,T)dxdr+ / / [f(u)p,(u)ux9x](x, t) dxdr.
Jo Jo Jo Jo

(2.2), (2.5), (2.10), (2.11), and (3.1) then yield

^ Jo ~ J0 [eul](x'T)dxdT
ft r 1 q2

<A + A / / ~(x,t) dxdr (3.4)
Jo Jo "

< A + Ai'fJo Jo
ft2 4- ® *~o (̂x,r)dxdr < A,

which, with the help of (2.1) and (2.4), implies

f ul(x,t)dx+ f f 9u2x(x,t) dx dr < A, £ € [0, +00). (3.5)
Jo Jo Jo

Next, it is known from (2.34) that there exists a To > 0 such that

_ /*1 E
0{t) = / 9(x,t) dx = 9(z(t),t) >—-^-> 0 for t > T0.

Jo 2Cy
Then, it can be shown by the Holder inequality that

el'2{x,t) = el'2{z{t),t)+ [
J z\

/7 \
>(-^

2C\

r ox&t)

( 1/2'
I dx

(3.6)
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which implies

0l/2{x,t) + > A > 0, for t > T0.
r 1 q2

I -fi (x,t)dx
;y, it then follow

f1 9^J t) dx > A > 0, i€[r0,+oo).

(x,t) < A^9u2x(x,t) + u2x(x,t) J ^(x,t)dx^, t € [To, +oo).

By using the Cauchy inequality, it then follows that
1 d2

d(x,t)+ ' '

Therefore,

ul

This, combined with (2.5) and (3.5), implies

[ f ul(x,r) dx dr < A, £€[t0,+oo). (3.7)
JT0 Jo>T0

Thus, (3.2) follows from (3.5) and (3.7).

Lemma 3.2. If (1.10) holds, then there exists a T* > 0 such that

[ (vl +02x)(x,t)dx+ [ [ [v2xx +6?}(x,T)dxdT < A for t >T* (3.8)
JO JT" Jo

and

lim
t—*+oc

f {v2 + 0l)(x, t) dx —► 0 as t —> +oo. (3.9)
Jo

Proof. Multiplying (1.1)2 by {-f{u)9 + p,(u)vx)x and using (l.l)i, (1.3), (2.1), (2.2),
and Cauchy's inequality, we get

n[jl(u)vxx\2(x, r) dx dr + - f t) dx
£ Jo

<\ j (v)v2x\{x,T)dx + J ^p,'(u)vl (x, t) dxdr

+ f f [f{u)6vxt](x,T)dxdT+ ^ f f v2xx(x,r)dxdT (3.10)
J T J 0 J T J 0

+ A maxti?(',r) / u2(x,r)dx dr + A / 92(x,t) dxdrJt ,[o.i] Jo x . Jt Jo

+ A [ max92(-,t) [ u2(x,T)dxJt .[o,i] Jo . dr for any t > T > 0.

To estimate the terms in (3.10), we first give an estimate on fQ fQ vx(x,t) dx dr, which
plays a key role in the following estimates. Due to W1,1 *-» L°°, it follows that

nvt(x.T) dx dr < / max«? / v.Jt [o,i] \Jo '
2 dx ) dr

< A sup [ vl{x,r)dx■ [ [ [vl+v2xx\
re[T,t]Jo IJt Jo

{x, t) dx dr for any t > T > 0.

(3.11)
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Similarly, it can be shown, with the help of W1,1 c—> L°° and Cauchy's inequality, that

/ r«TlMdT

<A(«) f fvldxdr + 6 f f^dxdr (312)
Jt Jo Jt Jo

for any t>T> 0 and 6 > 0.

It reads from (2.19), (2.22), and (2.11) that

max0(-,f) < A + O^xjtjdx^j for t > 0. (3.13)

Moreover, (2.4) and (3.2) yield

f [d2(x,t) + ul(x,t)]dx < A for t > 0. (3-14)
Jo

We turn to estimate the terms in (3.10) by using these inequalities (3.11)—(3.14) in which
6 can be chosen suitably.

Using (l.l)i, (2.1), (2.4), (3.12), (3.13), Cauchy's inequality, and integration by parts,
we obtain

n[f(u)9vxt] (x, t) dx dr

= [ [f(u)6vx\(x,t)dx - f [f(u)0vx](x,T)dx
Jo Jo

- f f vx[f'(u)6vx + f(u)6t]dxdr
Jt Jo

< J v2{x, t) dx + Amax9(x, t) J \f(u)0\(x,t) dx

+ A f {[f(u)9]2+vl}(x,T)dx + A f max ( [ tfdaA dr (3.15)
Jo Jt I0-1] \Jo J

+ AJ jo vx dx dr + J J e2tdxdr

< ~r [ vl{x,t) dx + A f [(f(u)9)2 + v2}{x,T)dx + K f \f(u)0\(x,t) dx
4 Jo Jo Jo

+ 7 f 0l(x,t)dx + A [ \f(u)6\{x,t)dx +A [ [ v^dxdr
4 Jo IJo J Jt Jo

+ ~ J J v2xx dx dr + J J 92 dx dr for any t > T > 0,

whereafter, k is the constant in (1.6).
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By using (2.1), (3.11), and Cauchy's inequality, we get

I I \u'(u)v%dxdT
JT Jo 2^

nVj dx dr + A f f v4x dx dr
Jt Jo

nl /»1 r Cl C^
v^dxdr + A sup / vl(x,r)dx• / / (u^ + w^x) efcrdr

rs[T,t)io L-/t Jo

(3.16)

for t > T > 0.

Similarly, the fifth and seventh terms on the right-hand side of (3.10) can be bounded
by

rt r1 ,,2 rl r1
dx dra r [4**+% rr

Jt Jo 0 Jt Jo

and

A f [ (ul +0l)dxdr
Jt Jo

by using (3.12) and (3.14), and (3.13)-(3.14), respectively.
This, together with (3.10)-(3.16) and Cauchy's inequality, implies

y Jt vLdxdr + ^ vl{x,t)dx

< A [ [(f(u)6)2+vl]{x,T)dx +A [ \f(u)0\(x,t)dx+ f f \f(u)0\(x,t) dx
Jo Jo \Jo

21

ft r 1
+ 'A [ [ lul + vl + dl\{x,T)dxdr

Jt Jo

A sup f vl(x,r)dx ■Iff (vl + v'L) dxdr
re[T,t] Jo IJt Jo

^ [ 0l(x,t) dx + Of- [ [ 0l(x,T)dxdr.
4 Jo 4 Jt Jo

(3.17)

Multiplying (2.7) by 0t and integrating over [0,1] x [T,t], we get, with the help of
(1.3), (3.11), (3.12), (3.14), and the Cauchy inequality,
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^ J 02x{x,t)dx + Jt Jq 02t(x,r)dxdT

~^JQ ^(^r)da: + A^max^(',r) e2{x,r)dx^j dr

ft /*1
+ Al / / vx(x, t) dx dr

JT JO

<\J el(xiT)dx+^ J J vlx(x,T)dxdr+ A J J v2(x,t) dx dr

[ vl(x,r)dx f [ (vl+vlx)(x,r)dxdT
| Jo Ut Jo

+ A sup
re[T,t].

for any t >T > 0.

(3.18)

(3.17) and (3.18) imply

[ {vl+0l){x,t)dx+ [ [ (vlx+9t)(x,T)dxdr
J0 JT JO

< A [ [v2 + 02x + (f(u)6)2](x,T)dx + [ \f(u)0\(x,t)dx+ ( [ \f(u)9\(x,t) dx
Jo Jo \J0

ft r 1
+ [ [ («* + vl + el)ix,T)dxdr

Jt Jo

[ vl(a:,r)dx- [ [ {vl + vlx){x, r) dxdr
Jo Ut Jo

+ sup
re[T,t]

for any t>T> 0.
(3.19)

Due to Lemma 3.1 and the results in Sec. 2, it is known that

/• + C© f 1f-t-OO f 1
/ / {[f(.u)6]2 +u2x +v2x + el} dxdr < A

Jo Jo

and

f \f(u)6\(x,t)dx—>0 as t —> +oo.
Jo

Therefore, for any e > 0, there exists a Ti > 0 such that the following holds:

a/" {{f{u)9}2 +v2x +9l}{x,Ti)dx < e, (3.20)
Jo

a{ [ \f{u)6\{x,t)dx + <e foranyi>Ti, (3.21)[ \f{u)6\{x,t)dx
Lio J

A f j [u2 +vl + 0l] dxdr < e for any t > T\. (3.22)
Jt Jo

For convenience, we assume that the constant A in (3.19)-(3.22) satisfies A > 1.
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We choose e so small that

It follows from (3.20) that

Let us define
Jo

e < i (3.23)

'l + ODfaTjdxKjKe. (3.24)

T2 = sup ^ t: sup f (v2 + 02)(x, t) dx < be
[ T€[Tut]J0

and show next that T2 = +00.
Suppose that X2 < +00. By taking t = T2 and T = T\ in (3.19) and using (3.20)-

(3.23), it turns out that

[ (el + v2x){x,T2)dx + \ ( f v2xxdxdr+ [ [ 02tdxdr
Jo z Jti Jo Jt1 Jo

< 3e + 5e2 < 3e + ^ < 4e.2
Namely, /J (82 + v2)(x, T2) dx < 4e, which contradicts the definition of T2. Then T2 =
+00.

This implies that

f (9l + v2)(x, t) dx < 5e for t > T\
Jo

which yields, due to the arbitrary smallness of e, that

f (62 + vl)(x,t) dx —* 0 as t —> +00. (3.25)
Jo

(3.8) can be obtained from (3.19), (3.25) and the above arguments. The proof of Lemma
3.2 is finished then.

We prove Theorem 1.5 now. It has been proved that

H-,i)llffi[o,i] -> 0 as £->+oo.

It is known from part I of Theorem 1.1 that

[ [f(u)]'2(x,t)dx—>0 as t -+ +00.
Jo

On the other hand, due to (3.1) and the mean value theorem, it can be shown that

[ [f(u)}2(x,t)dx>b2 f (u - u)2(x,t) dx
Jo Jo

where it is the unique root of f(u) = 0 in [u, U], Thus,

f (u — u)2(x,t) dx —> 0 as t —» +00. (3.26)
Jo
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Furthermore, it follows from Lemma 3.1 that /0+°° Jq u\ dx dr < A < +00, while
Lemma 3.2 and (l.l)i imply

[+oo ^ rl /.+00 />1 /.+00 pi

/ — / v?x(x,t) dx dt < A / u^dxdt + A / vlxdxdt
JT. dt J0 Jt, Jo Jo

< A < +00.

Therefore,

(3.26) and (3.27) yield
fJo

1
2ux(x, t) dx —► 0 as £ —> +00. (3.27)

IK-.O -"lljfi 0.
It is known from part I of Theorem 1.1 that

9(t) = [ 0(x^)
Jo

This, combined with (3.9), implies

dx —*
Cy

cv <\fel{x,t)Jo
dx

L2[ 0,1]

and furthermore,

cv

1/2 E
+ —> 0 as t —> +00 (3.28)

L2

0 as t —> +00.
i/1

So far, we have proved that all of (u — u),v, and (0 — become small in the Z/1-
norm for large t. Thus, the arguments similar to those in [OK] can be used to obtain
the exponential convergence of {u, v, 8} to the constant state {u, 0, as t —* +00. We
omit the details.
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