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1. Introduction. The subject of this paper is the Maxwell-Bloch equations from
nonlinear optics:

dt'E = curl H — <9tP — j — crE, <9,H = - curlE, (1.1)

on R+ x Q coupled with the equations

d2tV + pdtP + aP = NE (1.2)
on R+ x G and

dtN + A (TV - Ne) = —7E<9tP (1.3)
also on R+ x G. The initial boundary conditions

ft A E = 0 on (0, oo) x Ti and n A H = 0 on (0, oo) x (1-4)

E(0, x) = E0(x), H(0,x) = H0 (a;), (1.5)

N(0, x) — No(x), P(0, x) = Po(x), and 9tP(0, x) = Pi(a;) on G (1.6)
are imposed. The electromagnetic field is governed by the classical Maxwell equations,
whereas the polarizable medium occupying the set G is modelled as a gas of quantum
mechanical systems with two energy levels as described in [5] and [11]. Here f! C I3 is an
arbitrary spatial domain, G C fl a certain subset of fl, and Ti C dfl, '=f Also,
the whole space case fi = R3 without boundary condition 1.4 is under consideration.

The unknown functions are the electric and magnetic fields E, H, which depend on
the time t > 0 and the space variable x 6 Q and the dielectic polarization P defined on
the set R+ x G. Furthermore, N denotes the difference of the densities of the electrons in
the excited and in the ground state. It is also an unknown function defined on R+ x G. In
(1.1) the function P is the extension of P on R x 17 defined by zero on the set R+ x (f1\G).
The physical meaning of the boundary condition 1.4 is that Ti is perfectly conducting,
such that the tangential component of the electric field must vanish.
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The coefficients a G L°°(G), (3 G L°°(G), A G L°°(G), and 7 G L°°(G): which depend
on the space variables, take into account the possibly variable dipole moment and the
density of the medium as well as the inverse of the relaxation times for the polarization
and for the density N. The equilibrium density Ne £ L°°(G) is assumed to be positive.

A prescribed external current, j G Ll ((0, 00), L2(fi)), is included. The nonnegative
function a G L°°(Q) represents the electric conductivity.

In [5], where G = = R3 and the coefficients do not depend on x, it is shown that
(1.1) (1.6) admit a unique strong solution in C([(0, 00), HS(M.3)) for s >2. Note that in
our case, system (1.1) does not admit classical solutions on all of (0, 00) x $1 due to the

— def
discontinuity of P on £ = {dG) n £2, the interface between the polarizable medium and
the vacuum region fl\G. For smooth solutions, (1.1) includes a transmission condition,
which requires the continuity of the tangential components of E and H on £. In Sec. 3,
suitable weak formulation admitting discontinuous solutions to (1.1), (1.2), (1.3) and an
existence proof for weak solutions with the properties

(E,H) gC([0,oc),L2(0,R6)),

P G W12oc2([0,oo),L2(G,K3)) nw£c2([0,00), L°°(G,R3)),

and

•V(-) - Ne e Wjo'c ([0,00), L\G)) n A£.(|(), 00),L°°(G))
will be given.

Section 4 is devoted to the investigation of the long-time asymptotic behaviour of the
solutions (E, H, P, N) of (1.1)—(1.6). First it is shown that

lim ||N(t) - Ne|U,(G) = 0 for all q G [1,2).
t—> OO v '

Let TV denote the set of all (f, g) G X =f L2(Q, R6) that satisfy

curlf = curlg = 0 on f2,

nAf = 0 onFi,

n A g = 0 on T2,

and

f = 0 on the set Ga.

Here Sl\Ga is the set of vanishing conductivity, i.e., the set of all x G with <j(x) = 0.
The main result concerning the asymptotic behavior is that

(E(i),H(£)) t—$ (Eoo.Hoo) in X weakly (1.7)

and

P(t) Poo in L2(G) weakly, (1.8)

where the functions (Eqo, Hoo) G J\f and P G L2(G) satisfy

[ ([E00 + Poc]f + H00g)dx= /([Dif + Hog)dx (1.9)
J n J ft
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for all (f, g) 6 J\f and

aPoo = NeEoo on G. (110)

Here Di =f Eo + Po — /0°°j(s)ds is determined by the initial data and the external
current, where Po denotes the extension of Po by zero on fl\G. By (1.9) the functions
(Eqo, Hoc) G j\f and P^ G L2(G) satisfy

curl Eoo = curl =0 on f2,

n A Eoo =0 on Fi,

n A Hoo =0 on F2,

div(Eoo + Poo) = divDi on £l\Ga,

div Hoo — div Ho on fl,

the boundary conditions

n(Eoo + Poo) = nDi on r2\GCT

and

nHoo = nHo on Ti.

(This follows from the fact that (V<p, V^) G Af for all <p G Co°(IR3\(ri U Ga)) and
ip G Co°(R3\r2).) In the case j = 0, the function (Eoo, Hqq, Poo, Ne) is a stationary state
for the system (1.1)—(1.4).

Note that Eoo = Hoo = 0 if the initial data satisfy the condition

/J n
(Djf + H0g)da; = 0 for all (f, g) G M. (1.11)

As a consequence, one obtains decay of the electromagnetic field in the weak L2(Q)
topology if and only if condition (1.11) is fulfilled. This condition includes

div Di = 0 on fl\Ga

and

div Ho = 0 on f2.
Hpf ~

By (1.1), the function D = E + P and H obey divH(t) = div Ho = 0 and

div D(£) = div Eo + Po —o - / j{s)ds
Jo

^ divDi = 0 in V'{n\Ga).

Hence the physical meaning of condition (1.11) is that the space charge p d= divD
determined by the initial state (Eo, Ho) and the prescribed current j vanishes as t —> oo
in the nonconducting region.

The basic step of the proof of (1.7) and (1.8) is that the w-limit set uiq C L2(f2,R6) of
(E, H) with respect to the weak L2(Q.) topology satisfies

too G A/*. (1.12)
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The proof of (1.12) is based on a result in [8], where weak decay of solutions of certain
semilinear hyperbolic systems including Maxwell's equations is shown by identifying the
weak w-limit set of the trajectories; see also [4], [6].

In Sec. 5, the case where the set G is bounded and Q = M3 is considered. It is shown
that u(t) d= (E(t),H(t)) - (Eoq, H^) obeys

[ |u|2dx o for all a < 1, (1.13)

in particular, that the convergence in (1.7) is locally strong in the energy space. The
physical meaning of (1.13) is that the wave-packet u(t) is concentrated near the sphere
\x\ = t for large times. Furthermore, also strong convergence in (1.8) is shown, i.e.,

lim ||P(i) - Poo||li(g) = 0 for all q G [1,2).
t—>00

2. Basic assumptions, definitions. For an arbitrary open set K Cl3, the space
of all infinitely differentiable functions with compact support contained in K is denoted
by Cq°(K). HCU[\(K) is defined as the space of all E G L2(K,C3) with curlE G L2(K).

Let Q C R3 be an arbitrary domain and G C an open nonempty set.
Next, let a G L°°(Q) be a nonnegative function and a G L°°(G),(3 G L°°(G), 7 G

L°°(G), and Ne G L°°(G) be uniformly positive functions on G. Furthermore, let

Gad= {x G a(x) > 0}.

In the sequel, we denote by wx G C3 the first three and by w2 G C3 the last three
components of a vector w G C6.

Next, some function spaces related to Maxwell's equations with mixed boundary con-
ditions are introduced.

Wh denotes the closure of C^°(]R3\r2, C3) in Hcuri(fi), where Hcuri(Q) is the space of
all E G L2(f), C3) with curlE G L2(Vt). We denotes the set of all E G HCUT\(fl) such that

/ EcurlF - FcurlEete = 0 for all F G Wh,
J o

which includes a weak formulation of the boundary condition n A E = 0 on T1; see [7].
defNow, the following operators are defined. Let D(B) = We x Wh and let

B{E.H) =f (curl H, - curl E) for (E,H) G D(B).

It turns out that B is a densely defined skew selfadjoint operator in the Hilbert space
X = L2(fi,C6) endowed with the usual scalar product.

Next, let M be the set of all w = (E, h) G kerB with E(x) = 0 for all x G Ga.
For f G £ioC([0,00), X), a function u G C([0,00), X) is called a weak solution to the

initial boundary value problem

c^Uj = curlu2 +fi, dtu2 = — curluj +f2, (2-14)

supplemented by the initial boundary conditions

n A Uj = 0 on (0, 00) x Tj, (2-15)
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and

if
nAu2 = 0 on (0, oo) xr2

~{u(t),a.)x = -{u(t),Ba.)x + (f(t),a)x for all a G D(B). (2.16)

This means that (2.14) is fulfilled in the sense of distributions, whereas the boundary
conditions (2.15) are satisfied in the sense that u(s)ds G D(B) = We x Wh for all
t > 0. It is well known that (2.16) is equivalent to the variation of constant formula

u(t) = exp(tB)u(0) + f exp((t — s)B)i(s)ds, (2-17)
Jo

where (exp(tB))te^ is the unitary group generated by B\ see [1], [7] and [12]. Equation
(2.17) yields the energy estimate

1 d
2 dt- — llultjll^- = (f(t),u(t))x. (2.18)

Let

j G L\(0, (X)), K3)) n w^ao, 00), L2(fi)), (2.19)

(Eo,Ho)eD(B), P0,Pi G L°°(G),

and

N0 G L°°{G).

Furthermore, it is assumed that Po G L2(G), Pi G L2(G), and No — Ne e L2(G).

3. Existence and uniqueness of weak solutions. First some a priori bounds
on the solution P,N of Eqs. (1.2), (1.3), and (1.6) are given. Suppose that E G
C([0, oo), L2(fi,M3)) and let P,iV be the solution to (1.2), (1.3), and (1.6). Then

^dt{y(x)\dtP(t,x)\2 +'y(x)a{x)\P(t,x)\2 + N(t, x)2)

= 7(rr)<9tP(i, x)[d2~P(t, x) + a(x)P(t,x)]

- N(t, x)[X(x)(N(t, x) - Ne(x)) + 7(x)dtP(t, x)E(t, x)]

— —7(x)/3(x)|i9tP(i, x)|J - \(x)N(t, x)(N(t, x) - Ne(x)) < \(x)Ne(x)2/2.

This implies the pointwise bound

|P(i,x)| + |dtP(t,x)| + N(t, x) < Ci(l + t1/2) (3.20)

with some constant C\ G (0, oo) independent of E and t > 0. In particular, the ordinary
initial value problem (1.2), (1.3), and (1.6) admits a global solution P,N defined on
(0, oo) x G. With (3.20) and E G C([0, oo), L2(U, R3)) one has

iVE G L^c([0, oo),L2(G',K3)) and EdtP G L£c([0, oo), L2(G)). (3.21)

Since Po,Pi G L2(G,M3), (1.2) and (3.21) yield

P G <o'2([0,oo),L2(G,R3))n wfc2([0,oo),L~(G)).
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Furthermore,

N(-) — Ne € W£c2([0, oo), L2(G)) n L£([0, oo), L~(G)),

by (1.3) and (3.21), since Nq — Ne E L2(G, R3).
Now suppose E e G([0, oo), L2(Q, 1R3)) and F € G([0, oo), L2(f2, R3)) and let P,N

and Q, M be the corresponding solutions to (1.2), (1.3), and (1.6). Then

—mm - m(t) \\h{G) + h-l/2(^vw -

= [ (dtP-dtQ)[-/3(dtP-dtQ)-aP + aQ + NE-MF]dxJg
- [ (N- M)[7"1A(7V -M) + E<9tP - FdtQ}dxJg

< c2(\\dtp(t) - dtm\\h(G) + iipw - QmUo)
+ f (MdtP - NdtQ,)(E -F)dxJg

< C2(\\dtP(t) - dtQ(t)\\2L2{G) + ||P(t) - Q(<)IIl2(g))

+C3(l + i1/2)(||^P(i)-atQ(i)||L2(G) + ||iVW-MW||L2(G))||E(i)-FW||L2(n)

by (3.20). By Gronwall's lemma, one finds for each time T > 0 a constant C\ t 6 (0, oo),
such that

ll^tP _ ^QIIl°°((o,t),l2(g)) < Ci,t||E - F||Loo((0iX)jL2(q)). (3.22)

Let A: C([0, oo),X) —> C([0, oo),X) be defined by

C4(E,H))(t) = exp(*B)(E0,H0)

[ exp((t — s)5)[72.9tP(s) 4- (crE(s) 4-j(s), 0)]ds
Jo

where P, N solve (1.2), (1.3), and (1.6). Here 7Z: L (G) —> X is defined by

and

(7?.p)(x) =f (p(x), 0) if x e G

(JZp){x)d=0 iix£n\G.

Now suppose (E, H) € G([0, oo),X) and let P £ Wio'c([0> oo), L2(G, M3)) and N with
N(-) - Ne e W^o'c2([0, oo), L2(G)) n L~c([0, oo), L°°(G)) be the solution to (1.2), (1.3),
and (1.6). Then (E, H, P,N) solves (1.1)—(1.6) (in the sense of 2.16), if

(E(t),H(t)) = exp(iB)(Eo,Ho)
<•* (3.23)

[ exp((t - s)B)[R.dtP(s) + (<rE(s) + j(s), 0)]ds,
Jo

i.e.,

*4(E, H) = (E, H). (3.24)
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Now it follows from the estimates (2.18) and (3.22), using the contraction mapping
principle in the space C([0,T],X) with arbitrary large T > 0, that the fixed point
problem 3.24 has a unique solution on each finite time interval (0, T) and hence a unique
global solution on (0, oo).

Theorem 1. Problem (1.1)—(1.6) has a unique weak solution (E, H, P, N) with the prop-
erties (E,H) G C([0, oo),X),P 6 Wfoc2([0,oo),L2(G,R3)) n w£c2([0,oo),L°°(G)) and
7V(.) _ ATe e w^ao, oo), L2(G)) n L£c([0,oc),L°°(G)).

By (3.20) one obtains the following L°° estimate.

Lemma 1. There exists a constant Kb independent of t, such that

IIPWIIl-(G) + II W)Hl~(G) + ||W(t)||L«(G) < Kb( 1 + t1'2) for all t > 0.

Next, further estimates on the solution are given using the energy functional

£(t) ^ (||E(t),H(t))|ft + ||iVe-1/2^P(i)|||2(G)

+ ||iV-1/2a1/2PW||2L2(G) + ||7~1/2iVe"1/2(N(t) - Ne)\\2L2{G)).

The physical meaning of £(t) is the total energy of the system, including the potential
and kinetic energy and the energy of the electromagnetic field.

Lemma 2. It follows that

(E, H) G L°°((0, oo),X), P G L°°((0, oo), L2(G)), (3.26)

dtP G L°°((0, oo), L2{G)) n L2((0, oo), L2(G)),

and

Moreover,

N-Nee L^((0,oo),L2(G))nZ/((0,oo),L2(G)).

nOO r pOO

/ / <t|E|2 dx dt = / ||cr1'/2E(t) ||^2(j-j)rft < oo. (3.27)
Jo J n Jo

Proof. First (3.23) and the energy estimate (2.18) yield

\jt£{t) = -(mm + (aE (t) + j(i),0),(E(t),H(t)))x

+ f N~ldtP{d2P+ aP)dx- [ (N~XN — 1)(7_1A(7V — Ne) + dtPF,)dxJg Jg
= - [ N-l(3\dtP\2dx- [ X^N'^N-Jg Jg - Ne\ dx

— / o\E\2dx — / Ejdx
J a Jn

< ||(E(t),H(t))||x||jWIUa(n) " lk1/2E(i)||ia(n)
- c0\\dtP\\2L2(G) - c0\\N(t) - Ne\\2L2iG).

(3.28)
Since ||j(-)l|L2(ft) € ^(Ojoo), the assertion follows from Gronwall's lemma. □
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By the regularity assumption j G ^^([O, oo), L2(f2)) in (2.19), it follows that 1ZdtP(-)
+ (j,0) e Wi'c1([0,oo),X). Since also (E(),Ho) € D(B), it follows from the result in [12,
Corollary 2.5, Sec. 4.2] that

(E, H) e C1([0, oo), X) n C([0, oo),D(B)) (3.29)

is a strong solution of <9t(E(i), H(i)) = B(E(i),H(i)) — lZdtP(t) — (aE(t) + j(t), 0).
However, it is not clear whether ||<9t(E(f), H(£))||x or ||£?(E(f), H(i))||x remain bounded
for t —» oo.

4. Weak convergence to stationary states. The next lemma concerns the con-
vergence of the density N to the equilibrium Ne as t —> oo.

Lemma 3. Suppose that, in addition, 7V0 — Ne € Ll(G). For all q £ [1, 2) one has

lim-Nehw^O-
Proof. The idea is to multiply Eq. (1.3) by the sign (N — Ne) to obtain an L1-estimate:

i||iV(t)-JVe||Li(G). = - f sign(Ar — Ne)[\(N — Ne) + 7E<9tP]
J G

<-\\X(N(t)-Ne)\\LHG) + \\(E(t).H(t)\\xhdtP(t)\\LHG)
< -\\\(N(t) - Ne)||Li(G) + Ci||atP(i)||L2(G)

by Lemma 2. Hence

|| N(t) - Ne ||h(g) < 11 ~ ■^ellii(G) exp(-iA0)

+ Ci [ exp((s - t)A0)||9tP(s)i|i,2(G)ds
JO

defwith Ao = essinf Ao- Since ||5*P(-)IIl2(G) £ L (0,oo) by Lemma 2, this yields

\\N(t)-Ne\\rj{G) ^0. (4.30)

By Lemma 2 again, ||iVe — N(t)fix2(G) is bounded on (0, oo). Finally, the assertion follows
from (4.30) by interpolation. □

The following "unique continuation" principle has been shown in [8], which holds even
for arbitrary spatial domains. As in [8] it will be used in the investigation of the weak
w-limit set of the solution of (1.1) (1.6).

Theorem 2. Suppose that g £ X obeys

(exp(£J3)g) = 0 on G for all iel. (4-31)

Then g £ ker B.

The above theorem is a suitable modification for not necessarily bounded domains of
the unique-continuation principle for the scalar wave equation, which is used in [4], [6],
and [13].

Theorem 2 says that each solution (e,f) € C(R, L2(fl, RM+W)) of the evolution equa-
tion dt(e, f) = B(e, f) with the property that e(t, x) = 0 for all t G M and x e G satisfies
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(e(0),f(0)) G kerB. In contrast to the unique continuation principle for bounded do-
mains, it is necessary to require the condition e(i, x) = 0 on G for all i G M and not only
for positive times. The basic idea of the proof of Theorem 2 is to show that for each
/ G C£°(]R\{0}), the function f{iB)g is real analytic and vanishes on G. This implies
f(iB)g = 0 for all / G Co°(E\{0}) and hence g G kerB. (Here the operator f(iB) can
be defined by the spectral theorem, since iB is selfadjoint in L2(Q, C6).)

Let ujo be the w-limit set of the trajectory (E, H) with respect to the weak topology
of X, i.e., the set of all G G X, such that there exists a sequence tn n—f qq with
(E(in),H(t„)) G in X weakly.

Theorem 3. It follows that loo c TV.

Proof. Suppose g G X and tn ? oo with

(E(*n),H(*n))n-=^g (4.32)

in X weakly. Let un(t) =f (E(in +1), H(tn + t)) G X, Nn(t) =f N{tn + t) and fn(t) =f
aP(tn + t) for n G N. One has, by (3.23),

un(i) = exp(£i?)un(0)

/

tn+t

exp((tn -(-1 - s)B)[RdtP{s) + (<xE(s) + j(s),0)]ds,

from which one obtains by Lemma 2 that

||u„(i) - exp(tB)un(0)\\x < J (||7e^P(s)||x

+ ||<TE(s)||i,2(n) + ||j(s)||i2(n))ds' —> 0

for all t G K and hence, by (4.32), with un(0) = (E(in), H(£n)),

u„(t) uoc(i) ^ exp(ti?)g in X weakly for all t G K. (4.33)

Suppose T > 0. Then Lemma 2 yields

||f„(t) - f„(0)||L2(G) < Cx [ ||ftP(a)||ia(G!)ds n-=^° 0 (4.34)

for all t G R. This implies for all G Co°((—T, T), L2{G) n L°°{G)) that
rT r rT

lim [ [ fn(t)dtip(t) dx dt = lim I [ f„ (0)dt<p{t) dx dt = 0. (4.35)
n^°°J-TJG n—>oo J _t JG

Using <9tP G L2((0, oo), L2(G)), again one obtains from (1.2) and (4.35) that

CT
lim

n—► oo LL
= lim [ [ N(tn + t)E(tn + t)dtf{t) dx dt (4.36)

= lim [ [ (<92P(£„ + t) + /3dtP(tn + t) + in{t))dtip{t) dx dt = 0.n->o° J_T JG
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Next

||Are(Un)1 ~ Nn(Un)1IU3((-r,r),Z.1(G))

( rtn+T \1/2 (4.37)
< \\un\\L°°((-T,T),X) [J ^ \We ~ Nn(t)\\2L2(G)dt\  >0,

since \\Ne — -Nn(')lli2(G) e Ll(0,oo) by Lemma 2. Now, one obtains from (4.33), (4.36),
and (4.37) that

rT
[ f Ne{u00) (t)dtip(t)dxdt= lim [ [ Ne(un)(t),dttp(t) dxdt

J-tJg   1 ri-*ocJ_TJG  1

= lim / [ Nn(un)(t) dt<p{t) dxdt = 0.
J-tJg  1

(4.38)

l-T JG

Since T > 0 and <p £ Cq°((—T, T),L2(G) D L°°(G)) are chosen arbitrarily, this yields

at(uoo) =0 onlxG. (4.39)

Because there is no uniform bound for ||.B(E(f„), H(£n))||x as n —* oo, one cannot
expect that g € D(B) at this stage. For this purpose, let \ e Co°(®) and X be its Fourier
transform. Then

exp(tB)x{iB)g = (27r)_1/2 [ x(Q exp((t - £)B)gd£
J R

= (2?r)"1/2 f x(Oucx>(< - £K-
jr

Here the operator f(iB) is defined by the spectral theorem, since iB is selfadjoint in
L2(fi,C6). Since xi}B)g £ D(B2), one obtains from (4.39),

(exp(tfi).Bx(ig)g)] = gf(exp(t5)x(t-B)g)1 =0 on R x G. (4.40)

Invoking Theorem 2, one obtains B\(iB)g 6 kerf?, and hence \\Bx(}B)g\\2x =
— (x(iB)g,B2x(,iB)g)x = 0, whence x(iB)g € kerS. Since x 6 Co°(®0 is chosen
arbitrarily, it follows that

g £ kerS. (4-41)

It remains to show that g^z) = 0 for all x £ Ga. By (4.33) and (4.41) one has

un(t) "—2" g in X weakly for all t £ R,

and hence by the dominated convergence theorem,

[ {un(t),h)xdtn^' [ (g,h)xdt = (g,h)x
Jo Jo

for all h £ X, i.e., un(t)dt ?1—^D g weakly. In particular,

f g1/2(un{t))xdt cr1/2g1 in L2(Ga) weakly. (4.42)
J 0
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On the other hand, it follows from Lemma 2 that

ri+tn \ 1/2/*! / rl-Kn \ '
/ a1/2(un(t))dt <(/ \\a1/2E(t)\\2L2(mdt) "^0. (4.43)

Jo L2(fi) Vt„ /

Now (4.42) and (4.43) yield

g^x) = 0 for all x e Ga.

By 4.41 the assertion follows. □
Let a = (f,g) 6 Af, i.e, a £ kerf? with f(x) = 0 for all x G Ga. By the definition of

the set Ga one has ((crE(f), 0), a)^ = fn crEfdx = 0 for all t > 0. Now it follows from
(3.23) that

((E(t),H(*)),a)x = ( exp(t5)(E0,H0)

- [ exp((t - s)B)[(aE(s) + j(s),0) + dtTZP(s)]ds,
Jo

'(Eo.Ho) - A(aE(s) +j(s),0) + dtTZP(s)}ds,
\ Jo

a r
' x

and hence

((E(i), H(t)) + ftP(t), a)x = (ao + J(t), &)x (4-44)

for all a£A/", with
pOO

ao d= (E0, H0) +KPo- (j(s), 0)ds
Jo

and

J
/OO

(j(s),0)ds.

Now, the main theorem concerning the weak convergence to stationary states can be
proved.

Theorem 4. There exist uniquely determined functions (E^, Hoc) e Af and P € L2(G)
with

<(Eoo, H^) + 7lPoo, bl)x = (a0) a)x for all a e N (4.45)

and

aPoo = NeEOQ on G. (4.46)

Moreover,

(E(i),H(t)) l=¥ (Eqq, Hoc) in X weakly (4.47)

and

P(t) P^, in L2(G) weakly. (4.48)
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Proof. Suppose tn n—? qq with

(E(tn), H(tn)) n(Eqo, Hoq) (4.49)

in X weakly and

P(tn) Pqo in L2(G) weakly. (4.50)

First, Theorem 3 yields

(Eoo.Hoc) € N C ker 5. (4-51)

Furthermore, (4.45) follows from (4.44), (4.49), and (4.50). Next it is shown that
(Eoo.Hoo) G keri? and P 6 L2(G) satisfy (4.46).

Let un(t) and Nn for n G N be as in the proof of Theorem 3. Invoking (4.33) and
(4.51), one obtains

u„(f) ™ Uoo(t) = exp(tB)(E00,U00) = (Eoo.Hoo) (4.52)

in X weakly for all igR.
Since dtP G L2((0, oo), L2(G)), by Lemma 2 one has

\\P(tn+t)-P(tn)\\LHG)< [ ||9(P(s)||L2(G)dsn-=3°0 (4.53)
J [tn ,tn ~(~t]

for all t€l. By (4.50) this implies

P(tn + t) n-P^ in L2(G) weakly for all t G R. (4.54)

Suppose ip G Cq°((— 1,1 ),L2(G) H Loc(G)). Then one obtains from (4.52) and (4.54) as
in (4.38) that

[ I NgEiooipU) dx dt = lim / / Ne(un)(t) ip(t)dxdtJ-iJg n-~°°J-lJG  1

= lim [ [ Nn(un)(t) <p(t)dxdt 1

= lim / [ (d2P(tn + t) + f3dtP(tn + t) + aPn(t))tp(t) dxdtn—>oc J—i Jg

-LL aP oof(t) dx dt.
(4.55)

In the last step, <9tP G L2((0, oo), L2(G)) is used again. Since <p G Cq°((— 1,1), L2(G) D
L°°(G)) is arbitrary, this yields (4.46).

In order to show that (Eoo.Hoo) G ker B and P G L2(G) are uniquely determined,
suppose that (Foo, G^) G ker B and Q G L2(G) also obey (4.45) and (4.46). Then

II (Eoo — Foe, Hoo — Goo) ||A' = — {^-(Poo ~~ Qoo), (Eoo ~ Foo, Hoo — Goo))A'

= - [ (Eoo - FooHPoo - Qoo)dx
Jg

= - [ N^alPoo - Qoo] [Poo - Qoo}dx < 0.
Jg
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This completes the proof of uniqueness. In particular, it follows that (Eqo, Hoc, Poo) is
the only possible accumulation point of (E, H, P), whence (4.47) and (4.48). □

5. Local strong convergence in the case Q = R3. Throughout this section it is
assumed that the set G is bounded and = ]R3. Furthermore, it is assumed that the
external current j and a are located in a fixed finite ball, i.e.,

Ga C Br1 and j(t, x) =0 for all t 6 (0, oo), xeR3\Sj?1, (5.56)

with some R\ > 0.
In this case, X = L2(R3) and D(B) = Hcuri(K3) x /?curi(M3). Let Q be the orthogonal

projector on (kerB)1- = ranB, which consists of all u £ L2(R3) with divu^ = 0. Then
1 — Q is the orthogonal projector on ker B consisting of all u £ L2(iR3) with curl = 0.

The main goal of this section is to prove the decay property (1.13). Since B(E(t), H(i))
is generally not bounded in X as t —» oo, it is a priori not clear whether {(E(t), H(f)): t >
0} or at least the divergence free part {Q(E(i), H(i)): t > 0} are locally precompact.

For all a £ ker B one has

((E(t),H(i)),a)x = ( exp(t5)(E0,H0)

- I exp((t - s)B)[JZdtP(s) + (<tE(s) + j(s), 0)]ds, a
Jo / x

(E0, H0) + UPo — 1ZP{t) — [ [(o-E(s) + j(s),0)]ds,a
Jo x

and hence

with

(1 - Q)[(E(i), H(i)) + TIP(t)] - (1 - Q)[ao + J(t) ~ G{t)]ds (5.57)

roo

a0 = (E0, H0) + 7£Po ~ aW,0)d5,
J o

/oo (j(s),0)ds
poo

J(t) d=

and

ft
G(i)d= / (aE(s),0)ds.

Jo
Lemma 4. It follows that

r1 [ ((E(s),H(s)),QnP(s))xdst^ 0,
JO

t-1 [ ((E(s),H(s)),G(s))xdS4^f 0,
Jo
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and

r1 /i((E(s), H(s)), QG(s))xcLs0.
Jo

Proof. Let F(i) =f Q(E(t),H(i)) and A(t) d= fgF^sjds. Since F(t) € (ker B)1- one
has

divA(t) = 0 on i3. (5.58)

Let g € Hcuri(IR3). Then it follows from (2.16) and (3.23) that

[ A(t)cm\gdx = {(A{t),0),B{0,g))x
J R3

= [ (Q(E(s),H(s)),B{0,g))xds
Jo

= [ ((E(s), H(s)), B(0, g))xds
Jo

I tr|((E(S),H(S)),(0,g))x

+ (TZdtP(s) + (ffE(s), 0) + (j(s), 0), (0, g))x

= <(E0) H0), (0, g))x - ((E(t), H(t)), (0, g))x

/ (Jr3
Ho-H(t))gdr.

Hence

curlA(t) = H0(£) - H(t) € L2(M3),

which implies by (5.58) and Sobolev's inequality that A(t) 6 LG(R3) and

I|A(<)||l6(r3) < ^3II curl A(t)||L2(K3) = if3||H(0) - H(i)||L2(R3).

Now, it follows from Lemma 2 and the previous estimate that

||A(t) |j z,e(R3) < C\ for all t e (0, oo) (5.59)

with some constant C\ independent of t.
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Using Holder's inequality and the assumption that G is bounded, one obtains from
Lemma 2 and (5.59) that

-1 [t(Q(E(s),U(s)),nP(s))xds
JO

= f f F1(s)P(s)dxds
Jo Jg

1 [ [ dtA{s)P(s)
Jo Jg

dxds

= t 1 [ A(t)P(t)dx — t 1 [ f A(s)dtP(s) dxds
Jg Jo Jg (5.60)

1||A(0I|l6(G)I|P(0IIl6/5(G) + t 1 [ llA(s)l|L6(G)l|5tP(s)||i6/5(G)ds
Jo

C2t-1\\P(t)\\LHG) + C2t-1 [ ||atP(fl)||L2(G)ds
Jo

<C2t~1 ^||P0||l2(g) + 2 J ||<9tP(s)||L2(G)ds^

< C3^—1 + 2C2^1/2||9sP||l2((o,oo),l2(G)) t—^ 0,

< t

<

whence the first assertion. Next

rt
<(E(t),H(*)),G(t)>*< / / c|E(s)||E(t)| dxds

Jo Jn

< f ||cr1/2E(s)||L2(n)cis||o-1/2E(t)||L2(n)
Jo

ft \ !/2
\\cr1/2E(s)\\l2{n)dsj ||o-1/2E(0Hl2(Q)

< C4^1/2 llcrl/2E(£) ||z,2(r2> ■

For all T > 0 one obtains

rt
r1 J ms),H(s)),G(s))xds

< r1 ^T((E(S),H(S)), G(s))xds + Cit-1 s1/2||(T1/2E(s)||i2(Q)ds

<r' j\(E(s),H(s)),G(s))xds + C4 Qf* |k1/2E(s)|||2(n)rfs

and hence by Lemma 2,

limsup (t~l ((E(s),H(s)),G(s))xds^ < C4 ^ \\a1/2E(s)fL2{n)ds

for all T > 0, which implies the second assertion.
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Next, one obtains from Lemma 2, (5.56), (5.59), and Holder's inequality with A(t) =f
JoFi(s)ds as above that

r1 f (Q(E(s),U(s)),G(s))xds
Jo

= t~l I f F1(s)Gi(s) dxds = t"1 f f dsA(s)Gi(s) dx ds
Jo J R3 Jo J R3

= t~l I A(t)G\(t)dx — I I A(s)<tE(s) dxds
../r3 Jo JR3

<t 1||A(^)||L6(G(t)||G(<)||L6/5(G(t) +1 1 I ||A(s)||L6(G<7)||<7E(s)||L6/5(GCT)cis
Jo

< Cst-'WGmx + Cst-1 [ ||a1/2E(s)||L2(n)ds
Jo

< CtfT1 f ||(J1/i'E(s)||L2(f2)rfs < C,6^1/2||cr1/'2E||L2((0iOO)iL2(n)) t—¥ 0.
Jo

(5.61)

This completes the proof. □
In what follows, let u(s) = (E(s),H(s)) — (EocHqo).
Using Lemma 2, (3.27), ||j(-)||x G ^x(0, oo), and (3.28), one obtains ^£{t) £ L1(0, oo),

which implies the existence of the limit

(5.62)
foo d=? lim £{t) = lim (||(E(t),H(i))||5c + ||^"1/2^P(i)||£a(G)

L )OO C 'OO

+ ||We"1/2a1/2P(t)llL2(G) + ||7"1/2^e-1/2(iV(S) - iVe)||22(G)) ds.

By Lemma 2 again, it follows that

5no = tlhni-1£(||(E(S),H(S))||2f + ||iV-1/2a1/2P(S)||22(G))dS. (5.63)"°° t-

Lemma 5. It follows that
rt

lim t 1 [ ||Qu(s)||^ds = lim t 1 [ ||Q(E(s), H(s)||\ds
t—oo J0 t~> oo J0

= £oo - ((Eoo,Hoo),a0)x > lim sup ||u(t)||^.
t—y oo

Proof. Since (Eqo.Hoo) e M C kerB, it follows from (5.57) that

\\Qu(t)fx = ||Q(E(i),H(i))|& = ||(E(t),H(t))|& - ||(1 - Q)(E(t),H(i))|&
= ||(E(i),H(t))\\x ~ ((E(i),H(«)), (1 - Q)[ao + J(«) - G(t) - HP{t)])x

= ||(E(t),H(t))||^ + ai(0-((E(0,H(t)),(l-Q)ao)x+ I E(t)P(t)dx
Jg

with

ai(t) d^f -((E(0- H(t)), (1 - Q)G(t) + QRP{t) - (1 - Q)J(t))x.
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By Lemma 4 one has

lim t
t—> OO

1 [ a,i{s)ds = 0. (5.64)
Jo

Next

||Qu(*)fx = ai(t) + a2(t) + ||(E(t),H(t))|& - <(E(«),H(t)), (1 - Q)a0)x

+ [ N-l[d2tV{t) + pdtV(t) + aP{t)]P{t)dx
Jg

= ai (t) + a2(t) + a3(t) + || (E(t), H(t)) H^-

+ [ N~1a\P(t)\2dx — ((E(£), H(t)), (1 — Q)&o)x
Jg

with

and

a2(t) d= [ (I- N{t)/Ne)E(t)P(t)dx
Jg

a3(t)= f N-iffiPW+fldtPMPWdx.Jg

For all T > 0, one obtains by Lemma 1 and Lemma 2,

|f lJ^ «2(s)cM

<t~x |a2(s)|ds

+ *"1 £ 111 - JV(«) /JVe IU» «3) II E(«) II ia(G!) IIP («) |U~ (Gf) els

|a2(s)|ds + Cit-1 J s1/2\\N{s) - Ne\\L2(G)ds<

/T / poo \ 1/2
\a2(s)\ds + C! (J^ \\N(s) - Ne\\lHG)dsj

and hence

1/2
lim sup

t—> OO

r*
t-it J a2(s)ds

for all T > 0, which implies that

' f-OC

<Ci(JT \\N(s) - Ne\\l2{G)ds

(5.65)

lim t 1 [ a2(s)ds = 0. (5.66)
t—OO J0
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t^ooQ.

By Lemma 2 again, it follows that

t~1 f a,3(s)ds = t~l f N~1P(t)dtP(t)dx — f N~1PoPidx
Jo Ug Jg

- [ [ N-x\dtP{s)\2dxds (5.67)
Jo Jg

+i jf N~1(3\P(t)\2dx -\Jg JVe-1/?|P0|2da:

Now, it follows from (5.63) and (5.64)-(5.67) that

lim t~l f ]|<5u(s)||^-ds
t—oo J0

= lim t-1 f [||(E(*),H(s))|fr + f W"1a|P(
Jo L Jg

- lim r1 f ((E(s),H(s)), (1 - Q)a0)xds
t-*ao J0

lim t_1 [ ((E(s),H(s)), (1 - Q)a0)xds
t—oo 70

(s)| ete
(5.68)

(5.69)

(5.70)

By (4.48) one has

£oo > limsup(||(E(i),H(i))|ft + ||A^e_1/2a1/2P(i)|||2(G))
t—>00

> limsup||(E(f),H(*))||^ + [ N^alPoofdx.
t—>oc J G

By taking a = (Eoo, Hoo) £ M, (4.45) and (4.46) yield

(a0, (Eqo, Hoo))x — ((Eoo, Hqo) + 1ZPoo, (Eoo, Hoo))a"

= ||(E00,H00)||i+ f N~q|Poo|2dx.Jg
Finally, it follows from (5.68), (5.69), (5.70), and Theorem 4 that

lim t~x [ ||Qu(s)|||-ds = £oo - ((Eoo,Hoo),ao)xt-> o° JQ

> lim sup || (E(t), H(^)) ||3c - II (Eoo, Hoo)\\2x
t—> OO

= lim sup ||u(t) ||3c -
t~* OO

In the last step, (4.47) is used again. □
The following estimate will be used in what follows.

Lemma 6. There exists a constant K\ e (0, oo) such that

||(1 + |a;|)Qf||L2(K3) < l|f IIl2(r3)

for all f £ Cq°(Br1). Here Ri is as in assumption (5.56).
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Proof. Let F =f (1 + |x|)Qf - Q((l + |z|)f). Then

BY = \x\-iSQf + (1 + |a:|)Bf - B((l + |x|)f) = - f]

and hence

l|-BF||L2(R3) < || (Q - l)f||z,2(R3) < I|f Hz,2 (R3),

with Sw =f (— x A w2, x A wx). A similar estimate using div (Qf). = 0 yields

II divF^-||z-2(K3) = IKQ^KHl^r3) < l|f||z,2(R3)-

By Sobolev's inequality one obtains

l|F||L6(K3) < C2(|| curlFj||l2(r3) + || divFJ||L2(R3)) < C3||f||z,2(r3). (5.71)

This means that the commutator [Q, (1 + |a;|)] is a bounded operator from L2(]R3) to
L6(R3). By duality it follows that it is also a bounded operator from L6/5(M3) to L2(R3),
i.e.,

||[Q, (1 + M)]f||z,2(ir3) < C3l|fllz-6/5(K3)• (5-72)

Therefore, Holders inequality yields

11(1 + |x|)Qf||L2(R3) < IIIQ, (1 + M)]f||z,2(R3) + HQ((1 + |x|)f)||£2(R3)

^ C3 l|f llz,6/5(R3) + 11(1 + kl)f||L2(R3)
< -frrl|f||z,2(R3)

for all f e CZ°(BRl). □
Since (E(i),H(£)) solves the homogeneous Maxwell equations outside BRl, Lemma 7

follows from an energy estimate.

Lemma 7. For all b > 1, one has

[ |(E(i),H(i))|2dz^0.
J {|x|>6t}

Theorem 5. Suppose g € Co°(]R) with g(u) — 1 on a neighbourhood of [0,1]. Then

lim t_1(55(|a;|/i)Qu(t), Qu(t))x = £00 - ((E^, Hoo), a0)x > limsup ||u(i)||^
t—>oc

with Sw =f (—a; A w2, x A wx).

Proof. Since (E^Hoo) € Af C kerB, it follows by (3.29) that u G C([0,00), X) is a
strong solution of

<9tu(t) = Bu(t) -TldtP{t) - (ctE(s) + j(s),0).

Define

F(t) d= (Sg(\x\/t)Qu(t),Qu(t))x■
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Then
F'(t) = 2(Sg(\x\/t)Qu(t),Q(Bu(t) - KdtP(t) - (ctE(s) + j(s),0)))x

- t~2(S\x\g'(\x\/t)Qu{t): Qu(t))x
(5.73)

= X! MO + 2(s9{\x\/t)Qu{t)), BQu(t))x-
j=i

Here

hi(t) = -2(Sg(\x\/t)Qu(t),Q(HdtP(t) + (<rE(t) +j(t),0))}x, (5.74)

h2{t) d= -t~2(S\x\g'(\x\/t)Qu(t),Qu(t))X- (5.75)

For f G (kerf?)-1 fl D(B) C Hl(R3) one has divf; = 0. Therefore, it follows from the
identity x A curia = V(xa) — a — (iV)a that

2{Sg(\x\/t)f,B{)x

= 2 I g(\x\/t)f ■ (x A curlf1;» A curlf2)dx
J R3

= 2 [ g(\x\/t){ • (VlxfJ, V[xf2})dx
J R3

-2 [ g(\x\/t)\i\2dx — [ g(\x\/t){xV)\f\2dx
J R3 J R3

= ~2t~1(Sg'{\x\/t)f,f)x + ([g{\x\/t)+ t~>\x\g'{\x\/t)\f,f)x

with S( =f |a;|_1([xf1]x, [rf2]x). Hence

2(Sg{\x\/t)Qu{t)),BQu{t))x
= {[d(\x\/t) + t~1\x\g'(\x\/t)]Qu{t),Qu(t))x ~ 2t~l(Sg'(\x\/t)Qu(t),Qu(t))x.

With (5.73)-(5.75) it follows that

F'(t) = \\Qu(t)\\2x + hit) + h3(t), (5.76)

where

foit) =f {[g{\x\/t) - 1 -t-|ar|sr'(|a;|/f)]Qu(i), Qu(i))^

- £_1{(25 + t~1\x\S)g/(\x\/t.)Qu(t), Qu(t))x■ (5.77)

In the following estimates, the Cj are constants independent of s. Lemma 2 and Lemma
6 yield, by assumption (5.56),

Ms)| < CxIKl + |x|)Q(ftc>tP(s) + (<j(E(s) + j(s),0))||L2(R3)
< KiCi\\HdtP(s) + (aE(s) + j(s),0)||L2(BRi).

By Lemma 2 again, one has \\TZdtP{-) + (o~E(-) + j(s), 0)||z,2() £ L2(0,oo), which
implies

t~l |/ii(ff)|dfl^0. (5.78)



MAXWELL-BLOCH SYSTEM FROM NONLINEAR OPTICS 337

Next, Lemma 5 yields

lim t~l f ||(1 - Q)u(s)||^ds = lim t'1 [ (||u(s)|& - ||Qu(s)||2Y)ds
t-+oo J0 t—oo J0

< lim sup ||u(t)||\ - lim t^1 I ||Qu(s)||\ds — 0.
t—>oc 1-*°° JO

Together with Lemma 7, this implies that, for all b > 1,

ton t'1 J ||Qu(s)||z,2({|x|>bs})rfs = Hm f_1 J j]u(s)||i2({|a.|>6s})ds = 0. (5.79)

Since g'(\x\/t) = 0 and g(\x\/t) = 1 for |x| < bt with some b > 1, (5.77) and (5.79) yield

t~l [ \h3(s)\ds < C5t~i I ||Qu(s)||L2({|x|>bs})ds 0. (5.80)
Jo Jo

Now, it follows from (5.76)-(5.80) and Lemma 5 that

lim t 1F(t) = lim t 1 [ F'(s)ds
t—*00 t—>oo Jx

= lim r1 [ ||Qu(s)||xds
t->oo Jl

= £oo~ ((EOo,Hoo),a0)x > limsup ||u(t)||x.
t—>CO

This completes the proof. □
Now the main result of this section, (1.13), can be proved.

Theorem 6. For all a < 1, one has

IuWIIlW^O (5.81)
and

||(1 - Q)u(£)||L2(R3) —> 0.

Proof. Suppose S > 0. Choose g e Co°(3R, [0, oo)) with g(y) = 1 on [0, 1 + 5/2} and
g(u) = 0 for all u > 1 + S. Then

11(1 — Q)u(i)||x = ||u(t)|||- — ||Qu(£) ||3st
< IK*)llx - (l + '5)_1^1(5,ff(|a;|/^)Qu(t),Qu(t))x

and hence, by Theorem 5,

limsup ||(1 - Q)u(t)\\2x < (1 - (1 + <5)_1) limsup ||u(i)||^.
t—* oo t—>oo

By letting 5 —> 0, this yields

lim ||(1 — Q)u(i)||5s: = 0. (5.82)
t—>00

Now it follows from Lemma 7, Theorem 5, and (5.82) that, for all b > 1,

lim i"1(5,X{|x|<6t}u(0'uW>x = lim t'1 (Sg(\x\/t)u(t),u{t))x
£—►00 11 ~ J t—>00

= lim t~l(Sg(\x\/t)Qu(t),Qu(t))x > limsup ||u(t)||jf. (5.83)
i-»°° t-> oo
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Here g £ Cq°(R, [0, oo)) with g(y) — 1 on [0, b] and g(y) = 0 for all y > 2b is chosen.
Let 6 > 1. Then one obtains, from (5.83),

f |u(t)|2<ir < f \u(t)\2dx — b lt 1 f \x\\u(t)\2dx
J Bat JBbt J{at<\x\<bt}

— llu(0llx — b"1^1 I \x\\u{t)\2 dx + b~l a f |u(t)|2d:r
J Bbt J Bat

< lluWIIx-^_1^1(5'X{|x|<fct}u(i),u(f))x +a [ \u{t)\2dx.
J Bat

(1 — a) [ |u(*)|2ete < ||u(i)||2Y - ^~1^"1(5'X{|x|<6t}u(i),u(0)A--
Jb„,

Hence

' Ba

Next, it follows from (5.83) that

□

(5.84)

(1 — a) lim / \u(t)\2dx < (1 — b x) limsup ||u(i)||^- for all b > 1.
t~HX'J Bat t^00

By letting b —> 1 this yields

llu(#)IU2(Bof) t~~^ 0.

Finally, the strong convergence of P(s) — is proved.

Lemma 8. For all <7 6 [ 1,2) one has

IIPW- Poo||L«(G) ^ 0.

Proof. By (4.46) and Eq. (1.2), the function Q(s) =f P(s) — P^ obeys

Of Q + /39tQ + ctQ = iVE —
= (N BiVe)E — iVe(E — Eoo).

Since ||AT(-) — A^e||z.2(c3) £ L2(0,oo) and ||E(-)||^2E L°°(0,oo) by Lemma 2, one has

||(7V(.)-iVe)E(-)||Li(G) < ||iV(-) - Are||L2(G)||E(-)||i2(G) 6 L2(0,00). (5.85)

Theorem 6 yields, by the boundedness of the set G,

||JVe(E(t) - EooJIIiHG) < CjEft) - Eooll^o ^ 0. (5.86)
As in the proof of Lemma 3, it follows easily from (5.84), (5.85), and (5.86) that

ITO-PooIIlho^O. (5.87)
By Lemma 2 again, ||P(£) — Poo||l2(G) is bounded on (0, 00). Finally, the assertion follows
from (5.87) by interpolation. □

Remark 1. Suppose that the initial data obey

div Di = div H0 = 0 onR3. (5.88)

By the definition of B and Q, this means

ao = (Di,H0) e (kerB)-1 c J\f±,
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in particular, (1 — Q)ao = 0 and condition (1.11) is fulfilled. From (5.68) one obtains
directly, without using Theorem 4, that

lim t~l I ||Qu(s)|&ds = £» > limsup ||(E(t),H(t))||3c = limsup ||u(t)||^,
t—*00 Jo t—>OC t—KX)

i.e., the assertion of Lemma 5. This means that Theorem 5 and Theorem 6 can be proved
under condition (5.88) without using the results of Sec. 4.
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