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Abstract. The mixed problem for the Laplace equation outside cuts in a plane
is considered. The Dirichlet condition is posed on one side of each cut and the skew
derivative condition is posed on the other side. This problem generalizes the mixed
Dirichlet-Neumann problem. Integral representation for a solution of the boundary value
problem is obtained in the form of potentials. The densities in the potentials satisfy
the uniquely solvable Fredholm integral equation of the second kind and index zero.
Uniqueness and existence theorems for a solution of the boundary value problem are
proved. Singularities of the gradient of the solution of the boundary value problem at
the tips of the cuts are studied. Asymptotic formulas for singularities are obtained. The
effect of the disappearance of singularities is discussed.

Introduction. The skew derivative problem for the Laplace equation outside cuts in
a plane describes electric current from electrodes in a semiconductor film [9]. The mixed
problem for the Laplace equation outside cuts in a plane with setting Dirichlet and skew
derivative conditions on different sides of the cuts arises in the physics of semiconductors
as well [2]. Cuts model electrodes in a semiconductor film. The Dirichlet condition
specifies the electric potential, while the skew derivative condition specifies the normal
component of the electric current from an electrode in a magnetized semiconductor. The
mixed problem for the Laplace equation in which the Dirichlet condition is posed on
one set of cuts and the skew derivative condition is posed on the other set of cuts was
investigated in [10]. In the present paper, we study a mixed problem with the Dirichlet
condition on one side of each cut and the skew derivative condition on the other side. We
obtain integral representation for a solution of the boundary value problem in the form
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of potentials for the cuts of an arbitrary shape. Substituting this integral representation
in the form of potentials into the boundary conditions we derive the system of integral
equations for the densities in potentials. The system involves Cauchy singular integral
equations and additional conditions. Next this system for the densities in the potentials is
reduced to the uniquely solvable Fredholm integral equation of the second kind and index
zero in the appropriate Banach space. Uniqueness and existence theorems for a solution
of the boundary value problem are proved. The integral representation for a solution of
the boundary value problem is used to derive asymptotic formulas for singularities of a
solution gradient at the tips of the cuts. The effect of the disappearance of singularities
at the tips under certain conditions is discussed. The particular case of the present
boundary value problem has been studied in [2], where cuts placed along a straight line
have been considered. Another particular case of this problem has been treated in [1],
where Dirichlet and Neumann conditions were specified on different sides of the cuts of
an arbitrary shape.

1. Statement of the problem. In a plane x = (x1, x2) ∈ R2, we consider a set
of simple open arcs Γ1, . . . , ΓN of class C2,λ, λ ∈ (0, 1]. The arcs are assumed to be
disjoint (including the endpoints). This set of arcs is referred to as the contour Γ. Let
the contour Γ be parametrized by the arc length s:

Γn = {x : x = x(s) = (x1(s), x2(s)), s ∈ [an, bn]}, n = 1, 2, . . . , N .
We choose the parametrization in such a way that for different n, the closed intervals
[an, bn] are disjoint including the endpoints. The set of closed intervals Os corresponding
to the contour Γ is also denoted by Γ. The tangent vector to Γ at the point x(s) is denoted
by τx = (cosα(s), sinα(s)), and the normal is denoted by nx = (sin α(s),− cosα(s)), i.e.,
cos α(s) = x′

1(s), sin α(s) = x′
2(s). Let a plane be cut along the contour Γ. By Γ+ we

denote the left side of Γ as s increases, and by Γ− we denote the opposite side. By the
indices + and − we denote the limit values of functions on Γ+ and Γ−, respectively.

We say that a function u(x) belongs to the class G if:
1) u(x) ∈ C0(R2 \ Γ) and u(x) is continuous at the endpoints of Γ;

2) ∇u(x) ∈ C0(R2 \ Γ\X), where X =
N⋃

n=1
(x(an)∪x(bn)) is the set of endpoints of Γ;

3) the relation

|∇u| ≤ const |x − x(d)|δ,(1)

is valid as x → x(d) ∈ X, where const > 0, δ > −1, and either d = an or d = bn

(n = 1, . . . , N).
By C0(R2 \ Γ) we denote the class of functions that have left and right limit values

on the cut Γ; these values can be different in the inner points of Γ, i.e., functions may
have a jump on Γ.

Let us state the mixed skew derivative problem for the Laplace equation outside the
set of cuts in a plane.

Problem S. To find a function u(x) ∈ G that satisfies the Laplace equation

∆u(x) = 0, x ∈ R2 \ Γ,(2)
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the boundary conditions

u(x)|x(s)∈Γ+ = f+(s),(3) (
∂u

∂nx
+ β

∂u

∂τx

)∣∣∣∣
x(s)∈Γ−

= f−(s),(4)

and the conditions at infinity

u(x) = A ln |x| + O(1),
∂u

∂|x| =
A

|x| + O(|x|−2), |x| → ∞.(5)

We assume that f+(s), f−(s) are given functions; A and β are given constants. For
A = 0, we have the classical boundedness condition at infinity. For β = 0, we have the
mixed Dirichlet-Neumann problem [1].

Let us prove the uniqueness theorem.

Theorem 1. Problem S has at most one solution.

Proof. Suppose that Problem S has two solutions u1(x), u2(x) ∈ G. Then the func-
tion u0(x) = u1(x) − u2(x) belongs to the class G and satisfies Problem S with the
homogeneous boundary conditions (3) and (4) and with the conditions

u0(x) = O(1),
∂u0

∂|x| = O(|x|−2), |x| → ∞(6)

at infinity. By lr we denote the circumference of large radius r centered at the origin.
We surround each cut Γn, n = 1, . . . , N, by a closed curve. In the domain bounded with
this closed curves and the circle lr, we write out the energy identity for Eq. (2). We
shrink closed curves to the cuts Γ, let r → ∞ and use the smoothness properties of the
function u0(x) and condition (6). Then the energy identity acquires the form

||∇u0||2L2(R2\Γ) = lim
r→∞

||∇u0||2L2(Cr\Γ) =
∫
Γ

u+
0

(
∂u0

∂nx

)+

ds −
∫
Γ

u−
0

(
∂u0

∂nx

)−
ds,

where Cr is the circle of radius r centered at the origin. The first integral equals zero
by virtue of the homogeneous boundary condition (3). It follows from the homogeneous
condition (3) and from the definition of class G that u0(an) = u0(bn) = 0, n = 1, . . . , N .
Putting (∂u0/∂nx)− = −β(∂u0/∂τx)− to the second integral we obtain

||∇u0||2L2(R2\Γ) = β

∫
Γ

u−
0

(
∂u0

∂τx

)−
ds =

β

2

N∑
n=1

(u2
0(bn) − u2

0(an)) = 0.

Hence u0(x) ≡ const in R2 \ Γ. The homogeneous condition (3) gives us const = 0.
Therefore, u0(x) ≡ 0. The proof is complete.

2. Reduction to a system of singular integral equations. To prove the exis-
tence theorem, we impose additional smoothness conditions on the functions occurring
in the boundary conditions (3) and (4); namely,

f+(s) ∈ C1,λ(Γ), f−(s) ∈ C0,λ(Γ), λ ∈ (0, 1].(7)
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Note that the Hölder coefficient λ in the smoothness conditions for the contour Γ and
that for the functions f+(s) and f−(s) are assumed to be the same. If these coefficients
are different, then as λ we can take the smaller of them.

We replace condition (3) by the following equivalent boundary conditions on Γ:

∂u

∂τx

∣∣∣∣
x(s)∈Γ+

= f
′+(s), f

′+(s) ≡ df+(s)
ds

∈ C0,λ(Γ),(8)

u(x(an)) = f+(an), n = 1, . . . , N.(9)

Here we have taken into account that the relation ∂/∂τx = ∂/∂s is valid at each point
x(s) ∈ Γ by virtue of chosen parametrization.

We seek a solution in the form

u[µ, ν](x) = V [µ](x) + T [ν](x) + B2N ,(10)

where B2N is a real constant (the notation B2N is clarified below),

V [µ](x) = − 1
2π

∫
Γ

µ(s) ln |x − y(s)|ds

is a single layer potential for the Laplace equation (2),

T [ν](x) = − 1
2π

∫
Γ

ν(s)ψ(x, y(s))ds

is an angular potential [3, 4] for the Laplace equation (2).
The unknown functions µ(s), ν(s) defined on Γ will be looked for in the space C�

q (Γ),

 ∈ (0, 1], q ∈ [0, 1).

We say that a function F(s) defined on Γ belongs to the Banach space C�
q (Γ), 
 ∈

(0, 1], q ∈ [0, 1), if

F0(s) = F(s)
N∏

n=1

|s − an|q|s − bn|q ∈ C0,�(Γ).

The norm in the space C�
q (Γ) is given by the relation

||F(s)||C�
q (Γ) = ||F0(s)||C0,�(Γ).

The kernel of the angular potential is defined up to 2πm (where m is an integer) by
the formulas

cos ψ(x, y) =
x1 − y1

|x − y| , sin ψ(x, y) =
x2 − y2

|x − y| .

Obviously, ψ(x, y) is the angle between the vector −→yx and the direction of the axis Ox1.
On the other hand, ψ(x, y) is the multivalued harmonic function conjugate to ln |x − y|
in the sense of the Cauchy-Riemann relations.

Let x be an arbitrary given point of a plane lying outside Γ, and let y = y(s) ∈ Γ. Then
ψ(x, y(s)) is treated as an arbitrary fixed branch of this function, which is continuous
with respect to s along Γ. In view of this definition of ψ(x, y(s)), the angular potential
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is a multivalued function. The angular potential is single valued under the following
conditions [3, 4]: ∫

Γn

ν(s) ds = 0, n = 1, . . . , N.(11)

Under these conditions, the harmonic angular potential can be represented as the har-
monic double-layer potential

T [ν](x) =
1
2π

∫
Γ

w(s)
∂ ln |x − y(s)|

∂ny
ds,

where

w(s) =

s∫
an

ν(σ) dσ, s ∈ [an, bn], n = 1, . . . , N.

It follows from (11) that w(an) = w(bn) = 0 for n = 1, . . . , N .
If we require that ∫

Γ

µ(s) ds = −2πA,(12)

then the function u[µ, ν](x) occurring in (10) satisfies condition (5) at infinity.
If the densities µ(s) and ν(s) belong to C�

q (Γ), 
 ∈ (0, 1], q ∈ [0, 1), and satisfy
conditions (11), (12), then the function u[µ, ν](x) in (10) belongs to the class G and
satisfies all the conditions of Problem S except for the boundary conditions [3, 4, 5]. In
particular, condition (1) is valid with δ = −q if q ∈ (0, 1).

Let us satisfy the conditions (4) and (8). Substituting the function (10) into these
conditions and taking into account the limit formulas for the tangent and normal deriva-
tives of the logarithmic and angular potentials [4, Theorem 5], we obtain the following
system of two singular integral equations for ν(s) and µ(s):

ν(s)
2

+
1
2π

∫
Γ

ν(σ)
cosφ0(x(s), y(σ))
|x(s) − y(σ)| dσ +

1
2π

∫
Γ

µ(σ)
sin φ0(x(s), y(σ))
|x(s) − y(σ)| dσ

= f
′+(s), s ∈ Γ,

−µ(s) + βν(s)
2

+
1
2π

∫
Γ

(µ(σ) + βν(σ))
cosφ0(x(s), y(σ))
|x(s) − y(σ)| dσ

− 1
2π

∫
Γ

(ν(σ) − βµ(σ))
sinφ0(x(s), y(σ))
|x(s) − y(σ)| dσ = f−(s), s ∈ Γ.

The second integrals in these equations are treated in the sense of the principal value.
By φ0(x(s), y(σ)) we denote the angle between the vector −→xy and the direction of the
normal nx at the point x ∈ Γ. The angle is considered to be positive if it is measured
anticlockwise from nx, and negative if it is measured clockwise from nx. Moreover, if
x �= y, then the angle φ0(x, y) is assumed to be continuous with respect to x and y on Γ.
The angles φ0(x(s), y(σ)) and ψ(x(s), y(σ)) are connected up to 2πm (with integer m)
by the formula φ0(x(s), y(σ)) = ψ(x(s), y(σ))− α(s) − π/2.
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We introduce the notation

Y2(s, σ) =
1
π

[
sin φ0(x(s), y(σ))
|x(s) − y(σ)| − 1

σ − s

]
, Y1(s, σ) =

1
π

cos φ0(x(s), y(σ))
|x(s) − y(σ)| .

It was shown in [4, Lemmas 2(1) and 3(1)] that if Γ ∈ C2,λ, then the functions Y1(s, σ) and
Y2(s, σ) satisfy the Hölder condition with the exponent λ with respect to both variables
on Γ. We rewrite singular integral equations for ν(s) and µ(s) as follows:

ν(s) +
1
π

∫
Γ

µ(σ)
σ − s

dσ +
∫
Γ

µ(σ)Y2(s, σ) dσ +
∫
Γ

ν(σ)Y1(s, σ) dσ = 2f
′+(s), s ∈ Γ,

(13)

µ(s) + βν(s) +
1
π

∫
Γ

ν(σ) − βµ(σ)
σ − s

dσ +
∫
Γ

(ν(σ) − βµ(σ))Y2(s, σ) dσ(14)

−
∫
Γ

(µ(σ) + βν(σ))Y1(s, σ) dσ = −2f−(s), s ∈ Γ.

Putting the function (10) into conditions (9), we obtain the following additional con-
ditions for µ(s), ν(s), and B2N :

V [µ](x(an)) + T [ν](x(an)) + B2N = f+(an), n = 1, . . . , N.(15)

We have thereby obtained the system of integral equations (11)–(15) for the functions
µ(s) and ν(s), s ∈ Γ, and for the constant B2N . The preceding considerations imply the
following assertion.

Theorem 2. If condition (7) is satisfied and system (11)–(15) has a solution µ(s), ν(s),
B2N such that µ(s), ν(s) ∈ C�

q (Γ), 
 ∈ (0, 1], q ∈ [0, 1), then the solution of Problem
S exists and is given by (10).

Further on we analyze the solvability of the system of integral equations (11)–(15).
We perform a change of the unknown functions by the formulas

ρ1(s) =
ν(s) − (

√
1 + β2 + β)µ(s)

(
√

1 + β2 + β)
∈ C�

q (Γ),

ρ2(s) =
µ(s) + (

√
1 + β2 + β)ν(s)

(
√

1 + β2 + β)
∈ C�

q (Γ),

(16)

ν(s) =
ρ1(s) + (

√
1 + β2 + β)ρ2(s)

2
√

1 + β2
,

µ(s) =
ρ2(s) − (

√
1 + β2 + β)ρ1(s)

2
√

1 + β2
.

(17)
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In terms of ρ1(s), ρ2(s), Eqs. (13) and (14) acquire the form

ρ1(s) − (
√

1 + β2 + β)
1
π

∫
Γ

ρ1(σ)
σ − s

dσ = F1(s), s ∈ Γ,(18)

ρ2(s) + (
√

1 + β2 − β)
1
π

∫
Γ

ρ2(σ)
σ − s

dσ = F2(s), s ∈ Γ,(19)

where the functions

F1(s) = 2
√

1 + β2f
′+(s) + 2f−(s)

+(
√

1 + β2 + β)

⎛⎝−
∫
Γ

ρ2(σ)Y1(s, σ) dσ +
∫
Γ

ρ1(σ)Y2(s, σ) dσ

⎞⎠, s ∈ Γ,

F2(s) = 2(
√

1 + β2 − β)(
√

1 + β2f
′+(s) − f−(s))

−(
√

1 + β2 − β)

⎛⎝∫
Γ

ρ1(σ)Y1(s, σ) dσ +
∫
Γ

ρ2(σ)Y2(s, σ) dσ

⎞⎠, s ∈ Γ,

belong to C0,λ(Γ).
In terms of ρ1(s), ρ2(s) Eqs. (11), (12), and (15) acquire the form∫

Γn

(ρ1(s) + (
√

1 + β2 + β)ρ2(s)) ds = 0, n = 1, . . . , N,(20)

∫
Γ

(ρ2(s) − (
√

1 + β2 + β)ρ1(s)) ds = −4πA
√

1 + β2,(21)

V [ρ2 − (
√

1 + β2 + β)ρ1](x(an)) + T [ρ1 + (
√

1 + β2 + β)ρ2](x(an))(22)

+2
√

1 + β2B2N = 2
√

1 + β2f+(an), n = 1, . . . , N.

The system of integral equations for µ(s), ν(s), and B2N is thereby reduced to a system
of equations for the functions ρ1(s), ρ2(s), and B2N .

The main advantage of the resulting system is that the principle part of each equation
(18), (19) contains only one unknown function (either ρ1(s) or ρ2(s)).

Lemma 1. There is a one-to-one correspondence between solutions µ(s), ν(s) ∈ C�
q (Γ),

B2N of system (11)–(15) and solutions ρ1(s), ρ2(s) ∈ C�
q (Γ), B2N of system (18)–(22).

This correspondence is given by (16) and (17).

3. Regularization. Investigation of the regularized system. We solve Eq. (18)
for ρ1(s) and Eq. (19) for ρ2(s) assuming that F1(s), F2(s) are given functions. Using
the results of [2, 6], one can prove the following assertion (see Section 5).

Lemma 2. Let F1(s) and F2(s) be given Hölder functions on Γ. Then Eqs. (18) and
(19) have the solutions in space C�

q (Γ), 
 ∈ (0, 1], q ∈ [0, 1). These solutions are given
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by the following expressions: for Eq. (18)

ρ1(s) =
(
√

1 + β2 − β)
2
√

1 + β2
F1(s)

+
1

2π
√

1 + β2Q1(s)

∫
Γ

F1(σ)Q1(σ)
σ − s

dσ − cos πη

Q1(s)

N−1∑
m=0

Bmsm, s ∈ Γ,

for Eq. (19)

ρ2(s) =
(
√

1 + β2 + β)
2
√

1 + β2
F2(s)

− 1

2π
√

1 + β2Q2(s)

∫
Γ

F2(σ)Q2(σ)
σ − s

dσ − sin πη

Q2(s)

N−1∑
m=0

Bm+Nsm, s ∈ Γ,

where B0, . . . , B2N−1 are arbitrary real constants,

Q1(s) =
N∏

n=1

|s − an|1/2−η|s − bn|1/2+η sign(s − an),

Q2(s) =
N∏

n=1

|s − an|1−η|s − bn|η sign(s − an).

The number η is defined by

η =
1
2π

arcctg β ∈ (0, 1/2)

and satisfies the following relations:

cos πη =

(√
1 + β2 + β

2
√

1 + β2

)1/2

, sin πη =

(√
1 + β2 − β

2
√

1 + β2

)1/2

,

tg πη = (
√

1 + β2 − β), ctg πη = (
√

1 + β2 + β).

Substituting the expressions for F1(s) and F2(s) into formulas for ρ1(s) and ρ2(s), we
obtain the system of regularized equations

ρ1(s) +
1

Q1(s)

∫
Γ

ρ1(σ)K11(s, σ) dσ +
1

Q1(s)

∫
Γ

ρ2(σ)K12(s, σ) dσ(23)

+ cos πη

N−1∑
m=0

Bmsm

Q1(s)
=

Φ1(s)
Q1(s)

, s ∈ Γ,

ρ2(s) +
1

Q2(s)

∫
Γ

ρ1(σ)K21(s, σ) dσ +
1

Q2(s)

∫
Γ

ρ2(σ)K22(s, σ) dσ(24)

+ sin πη

N−1∑
m=0

Bm+Nsm

Q2(s)
=

Φ2(s)
Q2(s)

, s ∈ Γ,
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where we have used the notations

K11(s, σ) = −Y2(s, σ)Q1(s)
2
√

1 + β2
− (

√
1 + β2 + β)

2π
√

1 + β2

∫
Γ

Y2(ξ, σ)
ξ − s

Q1(ξ) dξ,

K12(s, σ) =
Y1(s, σ)Q1(s)

2
√

1 + β2
+

(
√

1 + β2 + β)
2π

√
1 + β2

∫
Γ

Y1(ξ, σ)
ξ − s

Q1(ξ) dξ,

K21(s, σ) =
Y1(s, σ)Q2(s)

2
√

1 + β2
− (

√
1 + β2 − β)

2π
√

1 + β2

∫
Γ

Y1(ξ, σ)
ξ − s

Q2(ξ) dξ,

K22(s, σ) =
Y2(s, σ)Q2(s)

2
√

1 + β2
− (

√
1 + β2 − β)

2π
√

1 + β2

∫
Γ

Y2(ξ, σ)
ξ − s

Q2(ξ) dξ,

Φ1(s) = (
√

1 + β2 − β)

(
f

′+(s) +
f−(s)√
1 + β2

)
Q1(s)(25)

+
1
π

∫
Γ

Q1(σ)
σ − s

(
f

′+(σ) +
f−(σ)√
1 + β2

)
dσ,

Φ2(s) =

(
f

′+(s) − f−(s)√
1 + β2

)
Q2(s)(26)

− (
√

1 + β2 − β)
π

∫
Γ

Q2(σ)
σ − s

(
f

′+(σ) − f−(σ)√
1 + β2

)
dσ.

We put η0 = min{η, 1/2 − η}. Note that the densities of singular integrals in the
expressions for Kpj(s, σ) and Φp(s) (p, j = 1, 2) satisfy the Hölder condition on Γ. (The
densities in Kpj(s, σ) satisfy the Hölder condition with respect to both variables.) In
particular, these densities satisfy the Hölder condition with respect to the variable ξ on
Γ with the exponent ω = min{λ, η, 1/2 − η} (uniformly with respect to σ in the case of
Kpj(s, σ)), because Q1(ξ), Q2(ξ) belong to C0,η0(Γ). These densities vanish if ξ is the
endpoint of Γ because Q1(ξ), Q2(ξ) vanish at the endpoints of Γ.

This, together with properties of singular integrals [6, Sec. 18] imply the following
assertion.

Lemma 3. The functions Kpj(s, σ) (p = 1, 2, j = 1, 2) satisfy the Hölder condition on Γ
with respect to both variables. In particular, these functions satisfy the Hölder condition
on Γ with respect to s with the exponent ω = min{λ, η, 1/2 − η} uniformly with respect
to σ ∈ Γ. If conditions (7) are satisfied, then Φ1(s), Φ2(s) ∈ C0,ω(Γ).

Obviously, if functions ρ1(s) and ρ2(s) from the space C�
q (Γ) with 
 ∈ (0, 1] and

q ∈ [0, 1) satisfy integral equations (23) and (24), then these functions can be represented
in the form ρj(s) = ρj∗(s)/Qj(s), j = 1, 2 where ρ1∗(s), ρ2∗(s) ∈ C0,ω(Γ), ω is given by
Lemma 3. So, from here on, the functions ρ1(s) and ρ2(s) are looked for in this form. It
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follows from this representation that ρ1(s), ρ2(s) ∈ C�
q (Γ), where

q = max{1/2 + η, 1 − η}, 
 =
{

min{ω, |2η − 1/2|}, η �= 1/4,
ω, η = 1/4.

(27)

Below we assume that ω = min{λ, η, 1/2 − η}; 
 and q are defined in (27). Note that
0 < ω ≤ 1/4, 0 < 
 ≤ 1/4, 1/2 < q < 1. If β > 0, then 0 < η < 1/4 and q = 1 − η; if
β < 0, then 1/4 < η < 1/2 and q = 1/2 + η; and if β = 0, then η = 1/4, q = 3/4.

We multiply Eq. (23) by Q1(s), and Eq. (24) by Q2(s). As new unknown functions,
we choose ρj∗(s) = ρj(s)Qj(s) ∈ C0,ω(Γ), j = 1, 2. Note that there is a one-to-one
correspondence between ρj(s) and ρj∗(s) (j = 1, 2). Equations (23) and (24) acquire
the form

ρ1∗(s) +
∫
Γ

ρ1∗(σ)Q−1
1 (σ)K11(s, σ) dσ +

∫
Γ

ρ2∗(σ)Q−1
2 (σ)K12(s, σ) dσ(28)

+ cos πη

N−1∑
m=0

Bmsm = Φ1(s), s ∈ Γ,

ρ2∗(s) +
∫
Γ

ρ1∗(σ)Q−1
1 (σ)K21(s, σ) dσ +

∫
Γ

ρ2∗(σ)Q−1
2 (σ)K22(s, σ) dσ(29)

+ sin πη

N−1∑
m=0

Bm+Nsm = Φ2(s), s ∈ Γ.

Using Lemma 3, one can easily prove the following assertion.

Lemma 4. Let the functions ρ1∗(s), ρ2∗(s) ∈ C0(Γ) satisfy Eqs. (28) and (29) for
Φ1(s), Φ2(s) ∈ C0,ω(Γ) with ω = min{λ, η, 1/2 − η}. Then ρ1∗(s), ρ2∗(s) ∈ C0,ω(Γ).

Remark. Obviously, if Φ1(s), Φ2(s) ∈ C0,ω1(Γ), ω1 ∈ (0, 1], then the functions
ρ1∗(s), ρ2∗(s) from C0(Γ), satisfying Eqs. (28) and (29), belong to the space C0,ω2(Γ)
with ω2 = min{λ, ω1, η, 1/2 − η}.

It follows from Lemma 3 that the condition Φ1(s), Φ2(s) ∈ C0,ω(Γ) is satisfied if
condition (7) is valid. Thus, further on we construct solutions ρ1∗(s) and ρ2∗(s) of Eqs.
(28), (29) in C0(Γ). By Lemma 4, these solutions necessarily belong to C0,ω(Γ). The
solvability of Eqs. (28) and (29) in C0(Γ) can be analyzed under weaker conditions
imposed on Φ1(s), Φ2(s). More precisely, we assume that Φ1(s), Φ2(s) ∈ C0(Γ). If Eqs.
(28) and (29) have solutions ρ1∗(s), ρ2∗(s) ∈ C0(Γ) for Φ1(s), Φ2(s) ∈ C0,ω(Γ) ⊂ C0(Γ),
then, by Lemma 4, ρ1∗(s), ρ2∗(s) ∈ C0,ω(Γ).

We introduce operators Kpj by the formula

Kpj [v](s) =
∫
Γ

Kpj(s, σ)Q−1
j (σ)v(σ) dσ, p = 1, 2, j = 1, 2.(30)

Lemma 5. The operators Kpj (p = 1, 2, j = 1, 2) are compact operators from C0(Γ) to
C0(Γ).

The proof is performed by straightforward verification on the basis of the Arzela-Ascoli
theorem and Lemma 3.
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Substituting the functions ρ1(s) = ρ1∗(s)/Q1(s) and ρ2(s) = ρ2∗(s)/Q2(s) into con-
ditions (20)–(22), where ρ1∗(s) and ρ2∗(s) are given by (28), (29), we rewrite these
conditions as follows:

2∑
j=1

∫
Γ

Q−1
j (σ)Ln,j(σ)ρj∗(σ) dσ +

2N∑
m=0

wn,mBm = χn, n = 0, . . . , 2N ;(31)

here we have used the notation

χ0 =
∫
Γ

(
Φ2(s)
Q2(s)

− (
√

1 + β2 + β)
Φ1(s)
Q1(s)

)
ds + 4πA

√
1 + β2,

χn =
∫
Γn

(
(
√

1 + β2 + β)
Φ2(s)
Q2(s)

+
Φ1(s)
Q1(s)

)
ds, n = 1, . . . , N,

χn = −2
√

1 + β2f+(an−N ) + V

[
Φ2(·)
Q2(·)

− (
√

1 + β2 + β)
Φ1(·)
Q1(·)

]
(x(an−N ))

+T

[
(
√

1 + β2 + β)
Φ2(·)
Q2(·)

+
Φ1(·)
Q1(·)

]
(x(an−N)), n = N + 1, . . . , 2N,

w0,m = − cos πη(
√

1 + β2 + β)
∫
Γ

sm

Q1(s)
ds, m = 0, . . . , N − 1,

w0,m = sin πη

∫
Γ

sm−N

Q2(s)
ds, m = N, . . . , 2N − 1,

wn,m = cos πη

∫
Γn

sm

Q1(s)
ds, m = 0, . . . , N − 1, n = 1, . . . , N,

wn,m = cos πη

∫
Γn

sm−N

Q2(s)
ds, m = N, . . . , 2N − 1, n = 1, . . . , N,

wn,m = cos πη

(
−(

√
1 + β2 + β)V

[
(·)m

Q1(·)

]
(x(an−N)) + T

[
(·)m

Q1(·)

]
(x(an−N ))

)
,

m = 0, . . . , N − 1, n = N + 1, . . . , 2N,

wn,m = sin πη

(
V

[
(·)m−N

Q2(·)

]
(x(an−N )) + (

√
1 + β2 + β)T

[
(·)m−N

Q2(·)

]
(x(an−N ))

)
,

m = N, . . . , 2N − 1, n = N + 1, . . . , 2N,

w0,2N = 0, wn,2N = 0, n = 1, . . . , N,

wn,2N = −2
√

1 + β2, n = N + 1, . . . , 2N,

L0,j(σ) =
∫
Γ

(
K2j(s, σ)

Q2(s)
− (

√
1 + β2 + β)

K1j(s, σ)
Q1(s)

)
ds, j = 1, 2,
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Ln,j(σ) =
∫
Γn

(
(
√

1 + β2 + β)
K2j(s, σ)

Q2(s)
+

K1j(s, σ)
Q1(s)

)
ds, j = 1, 2, n = 1, . . . , N,

Ln,j(σ) = V

[
K2j(·, σ)

Q2(·)
− (

√
1 + β2 + β)

K1j(·, σ)
Q1(·)

]
(x(an−N ))

+T

[
(
√

1 + β2 + β)
K2j(·, σ)

Q2(·)
+

K1j(·, σ)
Q1(·)

]
(x(an−N )), j = 1, 2, n = N + 1, . . . , 2N.

The dot (·) stands for the integration variable in the potentials. In system (31), the
index n = 0 corresponds to Eq. (21), the indices n = 1, . . . , N correspond to Eq. (20),
and n = N + 1, . . . , 2N correspond to (22). For each n, in all formulas containing the
angular potential, we choose the same branch of the function ψ(x(an−N), y(s)), where
s ∈ Γ. Alternatively, one can use the representation of the angular potential in terms of
the double-layer potential.

Note that the functions Q1(s) and Q2(s) can readily be reduced to a form admitting an
analytic extension to the entire complex plane (see Sections 5 and 6 below). By applying
residue theory (see Section 6) to these functions, one can readily obtain the relations

cos πη

∫
Γ

sm

Q1(s)
ds = sin πη

∫
Γ

sm

Q2(s)
ds =

{
0, m = 0, . . . , N − 2,

π, m = N − 1.

Since the function sm(cosπη)/Q1(s) satisfies the homogeneous equation (18) and the
function sm(sin πη)/Q2(s) satisfies the homogeneous equation (19) with m=0,1,. . .,N−1,
it follows (see Section 6) that ∫

Γ

Φp(s)
Qp(s)

ds = 0, p = 1, 2,

∫
Γ

Kpj(s, σ)
Qp(s)

ds ≡ 0, σ ∈ Γ, p = 1, 2, j = 1, 2.

Hence we have the following simplifications of the expressions for the coefficients of system
(31):

w0,m = 0, m = 0, 1, . . . , N − 2, N, N + 1, . . . , 2N − 2,

w0,N−1 = −π(
√

1 + β2 + β), w0,2N−1 = π,

L0,j(σ) ≡ 0, σ ∈ Γ, j = 1, 2, χ0 = 4πA
√

1 + β2.

We introduce the column vector of coefficients:
B = (B0, . . . , B2N )T ∈ E2N+1. System (28), (29), (31) can be rewritten in the form of a
single equation for the unknown column vector ρ = (ρ1∗(s), ρ2∗(s), B)T from the Banach
space C0(Γ) × C0(Γ) × E2N+1 with the norm
||ρ||C0(Γ)×C0(Γ)×E2N+1 = ||ρ1∗||C0(Γ) + ||ρ2∗||C0(Γ) + ||B||E2N+1 ; that is,

(I + R)ρ = Φ,(32)

where we have introduced the following notation:

Φ = (Φ1(s), Φ2(s), χ0, χ1, . . . , χ2N )T ∈ C0(Γ) × C0(Γ) × E2N+1,
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where Φ1(s) and Φ2(s) are the functions given in (25), (26); I is the identity operator
mapping the space C0(Γ) × C0(Γ) × E2N+1 into itself,

R =

⎛⎝ K11 K12 P1

K21 K22 P2

L1 L2 W − I2N+1

⎞⎠ ,

I2N+1 is the identity matrix of order 2N + 1, W = {wn,m}n=0,... ,2N
m=0,... ,2N is a square matrix

of order (2N + 1) × (2N + 1);

Lj = (L0,j ,L1,j , . . . ,L2N,j)T , j = 1, 2;

Ln,j are the functionals expressed in terms of the functions Ln,j(σ) by the formulas

Ln,jρj∗ =
∫
Γ

Q−1
j (σ)Ln,j(σ)ρj∗(σ) dσ, j = 1, 2, n = 0, . . . , 2N ;

Kpj (p = 1, 2, j = 1, 2) are the operators given by (30); P1 and P2 are the multiplication
operators defined by the relations

P1B = cos πη
N−1∑
m=0

Bmsm, P2B = sin πη
N−1∑
m=0

Bm+Nsm.

Lemma 6. Eq. (32) is a Fredholm equation of the second kind and index zero in the
space C0(Γ) ×C0(Γ) × E2N+1.

Proof. Consider the operators comprising the operator R. By Lemma 5, Kpj (p =
1, 2, j = 1, 2) are compact operators from C0(Γ) into C0(Γ). The operator (W − I2N+1)
maps E2N+1 into E2N+1. Since any linear operator acting in a finite-dimensional space
is a compact operator [7], it follows that (W − I2N+1) is a compact operator. The
operators P1 and P2 mapping E2N+1 into C0(Γ) and the operators L1 and L2 mapping
C0(Γ) into E2N+1 are finite-dimensional and therefore compact [7], [8, p. 64]. Thus,
all operators comprising R are compact operators. Therefore, R is a compact operator
from C0(Γ) × C0(Γ) × E2N+1 into itself. By [8, p. 67], an equation of the form (32)
with compact operator R satisfies the Fredholm alternative. The proof of the lemma is
complete.

Lemma 7. Let condition (7) be satisfied, and let Eq. (32) have a solution
ρ = (ρ1∗(s), ρ2∗(s), B)T ∈ C0,ω(Γ)× C0,ω(Γ) × E2N+1,

where ω = min{λ, η, 1/2 − η}. Then
(1) the functions

ρ1(s) =
ρ1∗(s)
Q1(s)

∈ C�
q (Γ), ρ2(s) =

ρ2∗(s)
Q2(s)

∈ C�
q (Γ)(33)

and the constant B2N (that is, the last component of the vector B) solve the system
(18)–(22), where the indices 
 and q are given by (27);
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(2) the solution of Problem S exists and is given by (10), where

ν(s) =
ρ1(s) + (

√
1 + β2 + β)ρ2(s)

2
√

1 + β2

=
1

2
√

1 + β2

[
ρ1∗(s)
Q1(s)

+ (
√

1 + β2 + β)
ρ2∗(s)
Q2(s)

]
∈ C�

q (Γ),

µ(s) =
ρ2(s) − (

√
1 + β2 + β)ρ1(s)

2
√

1 + β2

=
1

2
√

1 + β2

[
ρ2∗(s)
Q2(s)

− (
√

1 + β2 + β)
ρ1∗(s)
Q1(s)

]
∈ C�

q (Γ),

(34)

and B2N is the last component of the vector B.

Proof. Let Eq. (32) have a solution
ρ = (ρ1∗(s), ρ2∗(s), B)T ∈ C0,ω(Γ) × C0,ω(Γ) × E2N+1,

transforming Eqs. (28), (29) and (31) into identities. Let us prove assertion (1). Obvi-
ously, the functions ρ1(s), ρ2(s) constructed by formulas (33) and the constants
B0, . . . , B2N−1 comprising the vector B convert Eqs. (23) and (24) into identities. We
introduce singular operators S− and S+, acting on functions w(s) ∈ C�

q (Γ) as follows:

S−w = w(s) − (
√

1 + β2 + β)
1
π

∫
Γ

w(σ)
σ − s

dσ,

S+w = w(s) + (
√

1 + β2 − β)
1
π

∫
Γ

w(σ)
σ − s

dσ.

We apply the operator S− to identity (23) and the operator S+ to identity (24). As
a result, we find that ρ1(s) and ρ2(s) satisfy singular integral equations (18) and (19).
Using identities (31), which are components of identity (32), one can readily see that the
functions ρ1(s) and ρ2(s) and the constant B2N satisfy conditions (20)–(22). Therefore,
the functions (33) and the constant B2N solve system (18)–(22), and the proof of the
first assertion is complete.

(2) As shown in item (1), the functions given by (33) and the constant B2N solve
system (18)–(22). By Lemma 1, the functions µ(s) and ν(s) given by (17) (or, which
is the same, by (34)) and the constant B2N solve system (11)–(15). We substitute the
functions µ(s) and ν(s) and the constant B2N into the function (10). By Theorem 2, the
function (10) is a solution of Problem S . The proof of the lemma is complete.

In the following section, we prove the solvability of Eq. (32) and Problem S .

4. Existence of a solution. Let us now prove the solvability of Eq. (32).

Theorem 3. (1) Eq. (32) has a unique solution ρ in the space C0(Γ)× C0(Γ) × E2N+1

for an arbitrary right-hand side
Φ ∈ C0(Γ) × C0(Γ) × E2N+1.

(2) If the right-hand side Φ belongs to the space C0,ω(Γ)× C0,ω(Γ) × E2N+1, ω =
min{λ, η, 1/2 − η}, then the solution ρ belongs to the same space.
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Proof. (1) By Lemma 6, Eq. (32) is a Fredholm equation in the space C0(Γ)×C0(Γ)×
E2N+1. By the Fredholm alternative, to prove assertion (1), it suffices to show that the
homogeneous equation (32) has only the trivial solution in this space. We prove the
latter assertion by a contradiction. Suppose that the homogeneous equation (32) has
a nontrivial solution ρ0 = (ρ0

1∗(s), ρ0
2∗(s), B0

0 , . . . , B0
2N )T ∈ C0(Γ) × C0(Γ) × E2N+1.

This implies that the functions ρ0
1∗(s), ρ0

2∗(s) ∈ C0(Γ) and the constants B0
0 , . . . , B0

2N−1

satisfy the homogeneous equations (28), (29), which are part of the vector equation (32).
By Lemma 4, one can claim that ρ0 ∈ C0,ω(Γ) × C0,ω(Γ) × E2N+1. The homogeneous
equation (32) occurs if f+(s) ≡ 0, f−(s) ≡ 0 and A = 0, i.e., the homogeneous problem
S leads to the homogeneous equation (32). By assertion 2 of Lemma 7, the function

u0(x) = V [µ0](x) + T [ν0](x) + B0
2N(35)

is a solution of the homogeneous problem S ; here µ0 and ν0 are defined via ρ0
1∗ and ρ0

2∗
by formulas (34). On the other hand, it follows from Theorem 1 that the homogeneous
problem S has only the trivial solution

u0(x) ≡ 0.(36)

Taking into account the limit formulas for potentials [3, 4][(
∂V [µ]
∂nx

)+

−
(

∂V [µ]
∂nx

)−
]∣∣∣∣∣

Γ

= µ(s),

[(
∂T [ν]
∂nx

)+

−
(

∂T [ν]
∂nx

)−
]∣∣∣∣∣

Γ

= 0, s ∈ Γ,[(
∂V [µ]
∂τx

)+

−
(

∂V [µ]
∂τx

)−
]∣∣∣∣∣

Γ

= 0,

[(
∂T [ν]
∂τx

)+

−
(

∂T [ν]
∂τx

)−
]∣∣∣∣∣

Γ

= ν(s), s ∈ Γ,

we obtain the relations[(
∂u0

∂τx

)+

−
(

∂u0

∂τx

)−]∣∣∣∣∣
x(s)∈Γ

= ν0(s) ≡ 0,

[(
∂u0

∂nx

)+

−
(

∂u0

∂nx

)−]∣∣∣∣∣
x(s)∈Γ

= µ0(s) ≡ 0.

By the formulas (34) (see also (16)), we have

ρ0
1∗(s)

Q1(s)
=

ν0(s) − (
√

1 + β2 + β)µ0(s)
(
√

1 + β2 + β)
≡ 0, s ∈ Γ,

ρ0
2∗(s)

Q2(s)
=

µ0(s) + (
√

1 + β2 + β)ν0(s)
(
√

1 + β2 + β)
≡ 0, s ∈ Γ.

Thus, ρ0
1∗(s) ≡ 0, ρ0

2∗(s) ≡ 0, s ∈ Γ. Taking into account (36) and (35), we obtain
B0

2N = 0. From the homogeneous identities (28) and (29), which are part of Eq. (32),
we obtain

N−1∑
m=0

B0
msm ≡ 0,

N−1∑
m=0

B0
m+Nsm ≡ 0, s ∈ Γ.
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By the main theorem of algebra on the number of roots of a polynomial, the identities
are valid only if B0

m = 0, m = 0, 1, . . . , 2N − 1. Thus, ρ0 ≡ 0, which contradicts the
above-stipulated assumption. The proof of assertion (1) is complete.

(2) Let ρ = (ρ1∗(s), ρ2∗(s), B)T ∈ C0(Γ) × C0(Γ) × E2N+1 be a solution of the inho-
mogeneous equation (32) for Φ ∈ C0,ω(Γ) × C0,ω(Γ) × E2N+1. It follows from assertion
(1) that this solution exists. The functions ρ1∗(s) and ρ2∗(s) satisfy Eqs. (28) and (29),
which are part of Eq. (32). Consequently, by Lemma 4: ρ ∈ C0,ω(Γ)×C0,ω(Γ)×E2N+1.

The proof of the theorem is complete.
Therefore, Theorem 3 provides the unique solvability of Eq. (32) in the space C0,ω(Γ)×

C0,ω(Γ)×E2N+1 if the right-hand side of Eq. (32) belongs to the same space. By Lemma
3, the vector Φ does belong to this space if conditions (7) are satisfied. By assertion 2 of
Lemma 7, Problem S has a solution given by (10), where µ(s), ν(s), B2N can be expressed
via the elements of a solution of (32). It turns out that µ(s), ν(s) ∈ C�

q (Γ).
Using Theorem 1, Theorem 3 and assertion 2 of Lemma 7, we state the resulting

assertion.

Theorem 4. Let Γ ∈ C2,λ and let conditions (7) be satisfied. Then the solution of
Problem S exists, is unique and is given by (10), where µ(s) and ν(s) are given by (34);
the functions ρ1∗(s), ρ2∗(s) ∈ C0,ω(Γ) (ω = min{λ, η, 1/2 − η}) and the constant B2N

can be found from the Fredholm equation of the second kind (32), which is uniquely
solvable.

It follows from the properties of potentials [4] that, as a rule, the gradient of the
solution of Problem S is unbounded in neighborhoods of the endpoints of the contour Γ.
Moreover [4, Theorem 5], inequality (1) is valid with δ = −q, where q is the constant
given by (27).

5. Solution of the singular equations. Let us prove Lemma 2. We consider the
singular integral equation (19). Let the function ρ2(s) satisfy Eq. (19). We consider the
Cauchy type integral

R2(z) =
1

2πi

∫
Γ

ρ2(σ)
σ − z

dσ, z �∈ Γ.(37)

By the Sokhotskii formulas, we have

R+
2 (s) − R−

2 (s) = ρ2(s), s ∈ Γ,(38)

R+
2 (s) + R−

2 (s) =
1
πi

∫
Γ

ρ2(σ)
σ − s

dσ, s ∈ Γ.

Therefore, if the function ρ2(s) satisfies Eq. (19), then the limit values of the function
R2(z) on Γ± must satisfy the relation

(R+
2 (s) − R−

2 (s)) + (
√

1 + β2 − β)i(R+
2 (s) + R−

2 (s)) = F2(s), s ∈ Γ.

By reducing the last equation to a standard form, we give a rigorous statement of the
resulting conjunction problem [2].
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Problem C. Find a function R2(z) that is piecewise holomorphic with jump line Γ
and satisfies the condition R2(∞) = 0 as well as the boundary condition

R+
2 (s) − G(s)R−

2 (s) =
F2(s)

1 + i(
√

1 + β2 − β)
, s ∈ Γ,(39)

where

G(s) =
β − i√
1 + β2

.

(The condition R2(∞) = 0 follows from the form of the function (37).)
In the notion of the piecewise holomorphic function we include the following condition:

a function may have integrable singularities at endpoints of the contour Γ.
Let us solve Problem C and then, using (38), find the function ρ2(s). This function

will be a solution of the singular integral equation (19).
Let us define the number η using the formula

ei2πη =
β + i√
1 + β2

, η ∈ (0, 1/2)

(this definition is equivalent to that given in Lemma 2).
The canonical solution of the homogeneous conjunction Problem C has the form [2]

R0
2(z) = 1/Q2(z), where Q2(z) =

N∏
n=1

(z − an)1−η(z − bn)η.

Let us find the expressions for the limit values of Q2(z) on Γ+ and Γ−:

lim
z→s∈Γ±

Q2(z) ≡ Q±
2 (s) =

N∏
n=1

[(s − an)1−η]±[(s − bn)η]±.

If s �∈ Γn, then [(s − an)1−η(s − bn)η]± = |s − an|1−η|s − bn|η sign(s − an).
If s ∈ Γn, then [(s − an)1−η]± = |s − an|1−η, [(s − bn)η]+ = eiπη|s − bn|η,

[(s − bn)η]− = e−iπη|s − bn|η. Here everywhere n = 1, . . . , N .
Therefore,

Q+
2 (s) = eiπηQ2(s), Q−

2 (s) = e−iπηQ2(s), s ∈ Γ.(40)

Here Q2(s) =
N∏

n=1
|s−an|1−η|s−bn|η sign(s−an) is a real function called the direct value

of the function Q2(z) on the axis Os, in particular, on Γ.
Let us return to the conjunction Problem C for the function R2(z). By [2], the solution

of the inhomogeneous conjunction Problem C with the condition R2(∞) = 0 has the form

R2(z) =
1

2πiQ2(z)

∫
Γ

F2(σ)Q+
2 (σ)

(σ − z)(1 + i(
√

1 + β2 − β))
dσ +

N−1∑
m=0

B̃m+Nzm

Q2(z)
,

where B̃N , . . . , B̃2N−1 are arbitrary complex constants.
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Now, by (38), we find a solution of Eq. (19):

ρ2(s) = R+
2 (s) − R−

2 (s) =
1

Q+
2 (s)

(
F2(s)Q+

2 (s)
2(1 + i(

√
1 + β2 − β))

+
1

2πi

∫
Γ

F2(σ)Q+
2 (σ)

1 + i(
√

1 + β2 − β)
dσ

σ − s
+

N−1∑
m=0

B̃m+Nsm

⎞⎠
− 1

Q−
2 (s)

(
− F2(s)Q+

2 (s)
2(1 + i(

√
1 + β2 − β))

+
1

2πi

∫
Γ

F2(σ)Q+
2 (σ)

1 + i(
√

1 + β2 − β)

dσ

σ − s
+

N−1∑
m=0

B̃m+Nsm

⎞⎠

=
(
√

1 + β2 + β)
2
√

1 + β2
F2(s) −

1
2π

√
1 + β2Q2(s)

∫
Γ

F2(σ)Q2(σ)
σ − s

dσ − sin πη

N−1∑
m=0

Bm+Nsm

Q2(s)
,

where BN , . . . , B2N−1 are arbitrary real constants. In the latter relation, we have used
formulas (40) and the definition of the constant η. This completes the proof of Lemma
2 for (19).

The singular integral equation (18) for the function ρ1(s) can be treated in a similar
way. For the function

R1(z) =
1

2πi

∫
Γ

ρ1(σ)
σ − z

dσ, z �∈ Γ,

we obtain the conjunction problem [2] with the boundary condition

R+
1 (s) + G(s)R−

1 (s) =
F1(s)

1 − i(
√

1 + β2 + β)
, s ∈ Γ.

The solution of the homogeneous conjunction problem has the form R1(z) = 1/Q1(z),

where Q1(z) =
N∏

n=1
(z − an)1/2−η(z − bn)1/2+η. The limit values of the function Q1(z) on

Γ± are given by the relations

Q+
1 (s) = ieiπηQ1(s), Q−

1 (s) = −ie−iπηQ1(s), s ∈ Γ,(41)

where Q1(s) =
N∏

n=1
|s − an|1/2−η|s − bn|1/2+η sign(s − an) is the direct value of Q1(z)

on the axis Os, in particular, on Γ. We construct the solution of the inhomogeneous
conjunction problem and obtain

ρ1(s) =
(
√

1 + β2 − β)
2
√

1 + β2
F1(s)

+
1

2π
√

1 + β2Q1(s)

∫
Γ

F1(σ)Q1(σ)
σ − s

dσ − cosπη

N−1∑
m=0

Bmsm

Q1(s)
,
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where B0, . . . , BN−1 are arbitrary real constants. The proof of Lemma 2 is complete.

6. Computation of integrals. Here we consider the integrals

I1,m = cos πη

∫
Γ

sm

Q1(s)
ds, I2,m = sin πη

∫
Γ

sm

Q2(s)
ds, m = 0, 1, . . . , N − 1,

J1,m(s) = cosπη

∫
Γ

σm

Q1(σ)
dσ

σ − s
, J2,m(s) = sin πη

∫
Γ

σm

Q2(σ)
dσ

σ − s
.

To compute the integrals Ip,m we use residue theory. We surround the cuts Γn, n =
1, . . . , N, by smooth closed curves and shrink these curves to Γn. We denote the resulting
contour by Λ. We also construct a circle Cr of large radius r centered at the origin.

For example, consider the integral I1,m. By passing from the direct value Q1(s) of the
function Q1(z) to the limit values Q±

1 (s) on Γ with the use of (41), we obtain

I1,m =
1
2

∫
Γ

(
eiπη

Q1(s)
+

e−iπη

Q1(s)

)
sm ds

= − 1
2i

∫
Γ

(
1

Q+
1 (s)

− 1
Q−

1 (s)

)
sm ds = − 1

2i

∫
Λ

zm

Q1(z)
dz.

The function zm/Q1(z) is analytic in the domain enclosed between Λ and Cr and is
continuous on the boundary of this domain. By the residue theorem, we have∫

Λ

zm

Q1(z)
dz +

∫
Cr

zm

Q1(z)
dz = 0

for an arbitrary sufficiently large r. By letting r → ∞, we obtain

I1,m = − 1
2i

∫
Λ

zm

Q1(z)
dz =

1
2i

lim
r→∞

∫
Cr

zm

Q1(z)
dz

= π lim
|z|→∞

|z|m+1

|z|N =
{

0, m = 0, . . . , N − 2,

π, m = N − 1.

Likewise,

I2,m =
{

0, m = 0, . . . , N − 2,

π, m = N − 1.

We apply the same technique to the Cauchy type integrals Jp,m(s) with s �∈ Γ:

J1,m(s) = − 1
2i

∫
Γ

(
1

Q+
1 (σ)

− 1
Q−

1 (σ)

)
σm dσ

σ − s

= − 1
2i

∫
Λ

zm

Q1(z)
dz

z − s
= − 1

2i
2πi Res

[
zm

Q1(z)(z − s)
, z = s

]
= − πsm

Q1(s)
, s �∈ Γ,

where m = 0, 1, . . . , N − 1.
Likewise,

J2,m(s) = − πsm

Q2(s)
, s �∈ Γ, m = 0, 1, . . . , N − 1.
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One can also find the values of the integrals Jp,m(s) for s ∈ Γ. Note that the func-
tion sm(cosπη)/Q1(s) is a solution of the homogeneous equation (18) and the function
sm(sin πη)/Q2(s) is a solution of the homogeneous equation (19). Therefore,

J1,m(s) = π sin πη
sm

Q1(s)
, J2,m(s) = −π cos πη

sm

Q2(s)
, s ∈ Γ,(42)

where m = 0, 1, . . . , N − 1.
Using this result, we obtain

∫
Γ

Φp(s)
Qp(s)

ds = 0,

∫
Γ

Kpj(s, σ)
Qp(s)

ds ≡ 0, σ ∈ Γ, p = 1, 2, j = 1, 2.(43)

Let us prove, for example, the first of these equalities. To this end, we represent the
function Φ1(s) from (25) in the form

Φ1(s) = tg πη f̂1(s)Q1(s) +
1
π

∫
Γ

f̂1(σ)Q1(σ)
σ − s

dσ

and straightforwardly verify the following relation by changing the integration order in
the double integral:

∫
Γ

Φ1(s)
Q1(s)

ds = tg πη

∫
Γ

f̂1(s) ds +
1
π

∫
Γ

dσ f̂1(σ)Q1(σ)

⎛⎝∫
Γ

1
Q1(s)

ds

σ − s

⎞⎠ .

By virtue of (421), the integral in the round brackets equals −π(tg πη)/Q1(σ). Hence,
the whole expression equals zero, which proves the assertion.

The remaining relations in (43) can be proved in a similar way.

7. Case of a single cut. Let N = 1, i.e., let Γ contain a single cut:

Γ = {x : x = x(s) = (x1(s), x2(s)), s ∈ [a, b]}.

In this case, it is possible to simplify Eq. (32). We seek a solution to the problem in the
form

u(x) =
1

2
√

1 + β2

(
V [ρ2 − (

√
1 + β2 + β)ρ1](x) + T [ρ1 + (

√
1 + β2 + β)ρ2](x)

)
+ c.

(44)
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The functions ρ1(s), ρ2(s) ∈ C�
q (Γ) and the constant c can be found from the following

system of equations:

ρ1(s) − (
√

1 + β2 + β)
1
π

∫
Γ

ρ1(σ)
σ − s

dσ = F1(s), s ∈ Γ,(45)

ρ2(s) + (
√

1 + β2 − β)
1
π

∫
Γ

ρ2(σ)
σ − s

dσ = F2(s), s ∈ Γ,(46)

∫
Γ

(ρ1(s) + (
√

1 + β2 + β)ρ2(s)) ds = 0,(47)

∫
Γ

(ρ2(s) − (
√

1 + β2 + β)ρ1(s)) ds = −4πA
√

1 + β2,(48)

1
2
√

1 + β2

(
V [ρ2 − (

√
1 + β2 + β)ρ1](x(a)) + T [ρ1 + (

√
1 + β2 + β)ρ2](x(a))

)(49)

+c = f+(a).

This system follows from the system (18)–(22) if N = 1. The functions F1(s) and F2(s)
are given by (18) and (19). We solve Eq. (45) for ρ1(s) and (46) for ρ2(s) using Lemma
2 and assuming that F1(s), F2(s) are given functions. We have

ρ1(s) =
(
√

1 + β2 − β)
2
√

1 + β2
F1(s) +

1
2π

√
1 + β2Q1(s)

∫
Γ

F1(σ)Q1(σ)
σ − s

dσ − B1 cos πη

Q1(s)
,

(50)

ρ2(s) =
(
√

1 + β2 + β)
2
√

1 + β2
F2(s) −

1
2π

√
1 + β2Q2(s)

∫
Γ

F2(σ)Q2(σ)
σ − s

dσ − B2 sin πη

Q2(s)
,

(51)

where s ∈ Γ; B1, B2 are arbitrary real constants,

Q1(s) = (s − a)1−η(b − s)η, Q2(s) = (s − a)1/2−η(b − s)1/2+η, s ∈ Γ,

Q1(s), Q2(s) ∈ C0,η0(Γ), the constant η is defined in Lemma 2, η0 = min{η, 1/2 − η}.
By substituting functions ρ1(s), ρ2(s) from (50) and (51) into (47), (48) and by using
formulas from Section 6, we arrive at the system of linear algebraic equations for B1, B2:

B1 + (
√

1 + β2 + β)B2 = 0,

(
√

1 + β2 + β)B1 − B2 = −4A
√

1 + β2.

The solution is

B1 = −4A
√

1 + β2 sin πη cos πη, B2 = 4A
√

1 + β2 sin2 πη.(52)
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Writing out the expressions for F1(s), F2(s), we obtain the system of regularized equations
for ρ1(s), ρ2(s):

ρ1(s) +
1

Q1(s)

∫
Γ

ρ1(σ)K11(s, σ) dσ +
1

Q1(s)

∫
Γ

ρ2(σ)K12(s, σ) dσ =
Φ1(s)
Q1(s)

,

(53)

ρ2(s) +
1

Q2(s)

∫
Γ

ρ1(σ)K21(s, σ) dσ +
1

Q2(s)

∫
Γ

ρ2(σ)K22(s, σ) dσ =
Φ2(s)
Q2(s)

,

(54)

here s ∈ Γ;

Φ1(s) = (
√

1 + β2 − β)

(
f

′+(s) +
f−(s)√
1 + β2

)
Q1(s)(55)

+
1
π

∫
Γ

Q1(σ)
σ − s

(
f

′+(σ) +
f−(σ)√
1 + β2

)
dσ + 4A

√
1 + β2 sin πη cos2 πη,

Φ2(s) =

(
f

′+(s) − f−(s)√
1 + β2

)
Q2(s)(56)

− (
√

1 + β2 − β)
π

∫
Γ

Q2(σ)
σ − s

(
f

′+(σ) − f−(σ)√
1 + β2

)
dσ − 4A

√
1 + β2 sin3 πη.

Let us transform Eqs. (53) and (54) in the same way as Eqs. (23) and (24). Namely, we
introduce functions ρj∗(s) = Qj(s)ρj(s), j = 1, 2, and operators Kpj , p = 1, 2, j = 1, 2
(see (30)). As a result, Eqs. (53) and (54) are reduced to a vector equation for an
unknown vector column ρ = (ρ1∗(s), ρ2∗(s))T from Banach space C0(Γ) × C0(Γ) with
the norm ||ρ||C0(Γ)×C0(Γ) = ||ρ1∗||C0(Γ) + ||ρ2∗||C0(Γ); that is,

(I + R)ρ = Φ, R =
(

K11 K12

K21 K22

)
,(57)

where Φ = (Φ1(s), Φ2(s))T ∈ C0(Γ) × C0(Γ), the functions Φ1(s), Φ2(s) are given by
(55) and (56), I is the identity matrix mapping the space C0(Γ) × C0(Γ) into itself, the
operators Kpj (p = 1, 2, j = 1, 2) are defined by (30).

Obviously, (57) is a Fredholm equation in the space C0(Γ) ×C0(Γ) and it has a
unique solution in this space. Furthermore, if Φ1(s) and Φ2(s) are defined by (55) and
(56), then the solution of Eq. (57) from C0(Γ) × C0(Γ) belongs to C0,ω(Γ) × C0,ω(Γ)
with ω = min{λ, η, 1/2 − η}. The proof is similar to that for Eq. (32).

Let ρ = (ρ1∗(s), ρ2∗(s))T be a solution of Eq. (57) in the space C0,ω(Γ) × C0,ω(Γ).
Then the solution of Problem S with the single cut is given by (44), where ρj(s) =
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ρj∗(s)Q−1
j (s), j = 1, 2, and the constant c is uniquely defined from the condition (49):

c = f+(a) − 1
2
√

1 + β2
V

[
ρ2∗
Q2

− (
√

1 + β2 + β)
ρ1∗
Q1

]
(x(a))(58)

− 1
2
√

1 + β2
T

[
ρ1∗
Q1

+ (
√

1 + β2 + β)
ρ2∗
2Q2

]
(x(a)).

8. Behavior of the solution gradient at the end of the cut. Let u be the
solution of Problem S with the single cut obtained in Section 7. Using the notation
introduced above, we investigate the behavior of ∇u at the ends of Γ = {x : x = x(s) =
(x1(s), x2(s)), s ∈ [a, b]}. Let x(d) be one of these endpoints. In a neighborhood of x(d)
we introduce the system of polar coordinates

x1 = |x − x(d)| cos ϕ, x2 = |x − x(d)| sin ϕ.

We recall that α(s) is the angle between the direction of Ox1 axis and the tangent
vector τx at the point x(s) ∈ Γ. We assume that ϕ ∈ (α(d), α(d) + 2π) if d = a and
ϕ ∈ (α(d) − π, α(d) + π) if d = b. We put α(a) = α(a + 0), α(b) = α(b − 0). Thus, the
angle ϕ varies continuously in a neighborhood of the point x(d) cut along Γ.

Let us represent the singularities of the functions µ(s) and ν(s) in the explicit form:
(1) at the end a:

µ(s) =
1

2
√

1 + β2

(
ρa
2(s)

|s − a|1−η
− (

√
1 + β2 + β)

ρa
1(s)

|s − a|1/2−η

)
,

ν(s) =
1

2
√

1 + β2

(
(
√

1 + β2 + β)
ρa
2(s)

|s − a|1−η
+

ρa
1(s)

|s − a|1/2−η

)
;

(59)

(2) at the end b:

µ(s) =
1

2
√

1 + β2

(
ρb
2(s)

|s − b|η − (
√

1 + β2 + β)
ρb
1(s)

|s − b|1/2+η

)
,

ν(s) =
1

2
√

1 + β2

(
(
√

1 + β2 + β)
ρb
2(s)

|s − b|η +
ρb
1(s)

|s − b|1/2+η

)
.

(60)

Here

ρa
1(s) =

ρ1∗(s)
|s − b|1/2+η

= ρ1(s)|s − a|1/2−η, ρa
2(s) =

ρ2∗(s)
|s − b|η = ρ2(s)|s − a|1−η

(61)

are Hölder functions on Γ in a neighborhood of a and

ρb
1(s) =

ρ1∗(s)
|s − a|1/2−η

= ρ1(s)|s − b|1/2+η, ρb
2(s) =

ρ2∗(s)
|s − a|1−η

= ρ2(s)|s − b|η
(62)

are Hölder functions on Γ in a neighborhood of b. The functions ρ1∗(s), ρ2∗(s) are the
components of the solution of Eq. (57).
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Using the results [6] on the behavior of Cauchy type integrals at the ends of Γ, we
arrive at the following assertion.

Theorem 5. Let x → x(d) ∈ X, where d = a or d = b; then in a neighborhood of x(d)
the derivatives of the solution of Problem S can be expressed by the following formulas:

(1) if d = a,

∂u

∂x1

∣∣∣∣
x→x(a)

= −ρa
1(a) sinϑa(1/2 − η)
2|x − x(a)|1/2−η

+ (
√

1 + β2 + β)
ρa
2(a) sinϑa(1 − η)
2|x − x(a)|1−η

+ O(1),

∂u

∂x2

∣∣∣∣
x→x(a)

=
ρa
1(a) cosϑa(1/2 − η)
2|x − x(a)|1/2−η

− (
√

1 + β2 + β)
ρa
2(a) cosϑa(1 − η)
2|x − x(a)|1−η

+ O(1);

(2) if d = b,

∂u

∂x1

∣∣∣∣
x→x(b)

=
ρb
1(b) cosϑb(1/2 + η)
2|x − x(b)|1/2+η

+ (
√

1 + β2 + β)
ρb
2(b) sin ϑb(η)
2|x − x(b)|η + O(1),

∂u

∂x2

∣∣∣∣
x→x(b)

=
ρb
1(b) sin ϑb(1/2 + η)
2|x − x(b)|1/2+η

− (
√

1 + β2 + β)
ρb
2(b) cosϑb(η)
2|x − x(b)|η + O(1).

Here,

ϑa(γ) = γϕ + (1 − γ)α(a), ϑb(γ) = γϕ + (1 − γ)α(b) − πη,

functions denoted as O(1) are continuous both at the point x(d) and in a neighborhood
of the point x(d) cut along Γ. The functions ρd

1(s) and ρd
2(s) (d = a, b) are introduced in

(61) and (62).

Proof. We introduce a complex coordinate x̃ expressed via the Cartesian coordinates
x = (x1, x2) by the relation x̃ = x1 + ix2. We write out the representation of the
derivatives of the angular and logarithmic potentials in terms of the Cauchy type integral
in the complex plane [4]:

∂V [µ](x)
∂x1

= − Im Ω[µ](x̃),
∂V [µ](x)

∂x2
= −ReΩ[µ](x̃),

∂T [ν](x)
∂x1

= Re Ω[ν](x̃),
∂T [ν](x)

∂x2
= − Im Ω[ν](x̃).

(63)

Here

Ω[µ](x̃) =
1

2πi

∫
Γ

µ(s)e−iα(s) dỹ(s)
ỹ(s) − x̃

, ỹ = y1 + iy2.

It follows from (44) and (63) that the investigation of the behavior of ∇u can be
reduced to the study of the behavior of the Cauchy type integrals

Ω[ρa
1(s)/|s − a|1/2−η](x̃), Ω[ρa

2(s)/|s − a|1−η](x̃),

Ω[ρb
1(s)/|s − b|1/2+η](x̃), Ω[ρb

2(s)/|s − b|η](x̃)

in the complex plane near the ends of Γ.
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We give a detailed investigation for the fourth of these functions. (The others can be
treated in a similar way.) We have

Ω
[

ρb
2(s)

|s − b|η

]
(x̃) = Ω[Ψb

2(s)](x̃) + ρb
2(b)Ω

[
1

|s − b|η

]
(x̃),(64)

where Ψb
2(s) = (ρb

2(s) − ρb
2(b))/|s − b|η.

Let d = a or d = b. Let us transform the density of the integral Ω[1/|s − d|γ ](x̃)
with γ ∈ (0, 1):

e−iα(s)

|s − d|γ =
φ̃(ỹ(s))

(ỹ(s) − x̃(d))γ
,

where

φ̃(ỹ(s)) = φ(s) = e−iα(s)

[(
ỹ(s) − x̃(d)

|s − d|

)γ]
(65)

= e−iα(s)

∣∣∣∣ ỹ(s) − x̃(d)
s − d

∣∣∣∣γ exp{iγ arg(ỹ(s) − x̃(d))}.

Using the technique from [4, Lemma 1], one can readily prove that the function g̃(s) =
(ỹ(s)− x̃(d))/|s − d| belongs to the class C1(Γ) and does not vanish for any s ∈ Γ. Note
that (g̃)γ is a Hölder function with the exponent 1 on an arbitrary smooth arc which does
not contain the point g̃ = 0. Using the theory of composite functions, one can readily
prove that the expression in the square brackets in (65) is a Hölder function of s on Γ in
a neighborhood of d with the exponent 1. Obviously, e−iα(s) = (y′

1(s)− iy′
2(s)) ∈ C1(Γ).

Hence, φ(s) is a Hölder function with respect to s on Γ in a neighborhood of d with the
exponent 1; i.e., for arbitrary points s1 and s2 lying on Γ in a neighborhood of d, we
have

|φ̃(ỹ(s2)) − φ̃(ỹ(s1))| = |φ(s2) − φ(s1)| ≤ const |s2 − s1|.(66)

Let us prove that φ̃(ỹ(s)) = φ(s) is a Hölder function of ỹ on Γ in a neighborhood of x̃(d).
By [4, Lemma 1], the function |s2 − s1|/|ỹ(s2) − ỹ(s1)| belongs to C1(Γ×Γ) ⊂ C0(Γ×Γ)
with respect to both variables s1, s2 and is therefore uniformly bounded with respect to
s1, s2 ∈ Γ:

|s2 − s1|
|ỹ(s2) − ỹ(s1)|

≤ c∗.(67)

Hence, |s2 − s1| ≤ c∗|ỹ(s2) − ỹ(s1)|. Using this estimate in (66), we have

|φ̃(ỹ2) − φ̃(ỹ1)| ≤ c0|ỹ2 − ỹ1|,(68)

where ỹ2 = ỹ(s2), ỹ1 = ỹ(s1) are arbitrary points lying on Γ in a neighborhood of x̃(d),
and c0 is a constant. Therefore, φ̃(ỹ) is a Hölder function of ỹ on Γ in a neighborhood
of x̃(d) with the exponent 1.
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We transform the integral Ω[1/|s − d|γ ](x̃) as follows:

Ω
[

1
|s − d|γ

]
(x̃) =

1
2πi

∫
Γ

φ̃(ỹ)
(ỹ − x̃(d))γ

dỹ

ỹ − x̃

=
φ̃(x̃(d))

2πi

∫
Γ

1
(ỹ − x̃(d))γ

dỹ

ỹ − x̃
+

1
2πi

∫
Γ

φ̃(ỹ) − φ̃(x̃(d))
(ỹ − x̃(d))γ

dỹ

ỹ − x̃
;

the function φ̃(ỹ) has been introduced in (65). By virtue of the estimate (68) and results
of [6, Sec. 22], the second term in the latter formula is a function O(1) continuous in a
neighborhood of the point x(d) cut along Γ. We apply the results of [6] to the first term.
The behavior of the Cauchy type integral

I(x̃) =
1

2πi

∫
Γ

1
(ỹ − x̃(d))γ

dỹ

ỹ − x̃
,

where γ ∈ (0, 1), was studied in [6, Sec. 23]. For x̃ which are close enough to x̃(d), but
do not lie on Γ, the representation [6, Sec. 23]

I(x̃) = (−1)j(d) exp{(−1)j(d)γπi}
2i sin γπ

1
(x̃ − x̃(d))γ

+ O(1)(69)

is valid, where (x̃ − x̃(d))γ denotes a branch, which is holomorphic near x̃(d) in a plane
cut along Γ and equals (x̃(s) − x̃(d))γ on the left side of the cut; O(1) is introduced in
Theorem 5; j(a) = 2, j(b) = 1.

If s ∈ Γ and s → d, then |ỹ(s) − x̃(d)|/|s − d| → 1 and

arg(ỹ(s) − x̃(d)) → α(d) + π(2 − j(d)).

Taking into account this relation, we compute the limit values of the function φ̃(ỹ) from
(65) as ỹ → x̃(d) and ỹ ∈ Γ. Using (69), we obtain

Ω
[

1
|s − d|γ

]
(x̃) = (−1)j(d) exp{(−1)j(d)γπi}

2i sin γπ

1
(x̃ − x̃(d))γ

(70)

× exp{i
(
−α(d) + γ(α(d) + π(2 − j(d)))

)
} + O(1)

=
1

2 sin γπ

1
|x − x(d)|γ exp(iθd(γ)) + O(1),

where θa(γ) = −γϕ − (1 − γ)α(a) + (γ − 1/2)π and θb(γ) = −γϕ − (1 − γ)α(b) + π/2.
Now we investigate the behavior of the function Ω[Ψb

2(s)](x̃) in (64). To this end, we
study the function Ψb

2(s). Note that the function ρ2(s) = ρb
2(s)/|s − b|η satisfies Eq. (51).

Using this equation and results of [6, Sec. 22], one can prove the following assertion.

Lemma 8. If F2(s) from (51) is a Hölder function on Γ, then Ψb
2(s) is also a Hölder

function on Γ near b. In addition, Ψb
2(b) = lims→b Ψb

2(s) = 0.

The proof of the lemma is given in the next section. It follows from Lemma 8 and
estimate (67) that Ψ̃b

2(ỹ(s)) = Ψb
2(s) considered as a function of the complex variable ỹ,

is a Hölder function on Γ near x̃(b). Besides, Ψ̃b
2(x̃(b)) = 0. Hence, by [6, Sec. 22], the
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function Ω[Ψb
2(s)](x̃) is continuously extendible to the end x̃(b). Using the notation O(1)

introduced in Theorem 5, we have Ω[Ψb
2(s)] = O(1) as x̃ → x̃(b).

Returning to the original integral (64) and using (71), we obtain

Ω
[

ρb
2(s)

|s − b|η

]
(x̃) =

ρb
2(b)

2 sin πη

1
|x − x(b)|η eiθb(η) + O(1)(71)

as x̃ → x̃(b).
In a similar way, one can show that, as x̃ → x̃(d), the formula

Ω

[
ρd

j (s)
|s − d|γ

]
(x̃) =

ρd
j (d)

2 sin πγ

1
|x − x(d)|γ eiθd(γ) + O(1),(72)

is valid, where d = a, j = 2, γ = 1 − η or d = a, j = 1, γ = 1/2 − η, or d = b, j =
1, γ = 1/2 + η.

Using formulas (59), (71), (72), we obtain the following relations as x̃ → x̃(d):
(1) if d = a,

Ω[µ](x̃) =
1

2
√

1 + β2

(
ρa
2(a)

|x − x(a)|1−η

eiθa(1−η)

2 sin πη
− ρa

1(a)
|x − x(a)|1/2−η

eiθa(1/2−η)

2 sin πη

)
+ O(1),

Ω[ν](x̃) =
1

2
√

1 + β2

(
ρa
2(a)eiθa(1−η)

|x − x(a)|1−η

cos πη

2 sin2 πη
+

ρa
1(a)

|x − x(a)|1/2−η

eiθa(1/2−η)

2 cosπη

)
+ O(1);

(2) if d = b,

Ω[µ](x̃) =
1

2
√

1 + β2

(
ρb
2(b)

|x − x(b)|η
eiθb(η)

2 sin πη
− ρb

1(b)
|x − x(b)|1/2+η

eiθb(1/2+η)

2 sin πη

)
+ O(1),

Ω[ν](x̃) =
1

2
√

1 + β2

(
ρb
2(b)

|x − x(b)|η
eiθb(η) cos πη

2 sin2 πη
+

ρb
1(b)

|x − x(b)|1/2+η

eiθb(1/2+η)

2 cos πη

)
+ O(1).

Using (44) and (63), as x̃ → x̃(d), we have:
(1) if d = a,

∂u

∂x1

∣∣∣∣
x→x(a)

=
ρa
1(a)

2
√

1 + β2|x − x(a)|1/2−η

{
sin θa(1/2 − η)

2 sin πη
+

cos θa(1/2 − η)
2 cos πη

}
+

ρa
2(a)

2
√

1 + β2|x − x(a)|1−η

{
− sin θa(1 − η)

2 sin πη
+

cos πη cos θa(1 − η)
2 sin2 πη

}
+ O(1),

∂u

∂x2

∣∣∣∣
x→x(a)

=
ρa
1(a)

2
√

1 + β2|x − x(a)|1/2−η

{
cos θa(1/2 − η)

2 sin πη
− sin θa(1/2 − η)

2 cos πη

}
+

ρa
2(a)

2
√

1 + β2|x − x(a)|1−η

{
−cos θa(1 − η)

2 sin πη
− cos πη sin θa(1 − η)

2 sin2 πη

}
+ O(1);
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2) if d = b,

∂u

∂x1

∣∣∣∣
x→x(b)

=
ρb
1(b)

2
√

1 + β2|x − x(b)|1/2+η

{
sin θb(1/2 + η)

2 sin πη
+

cos θb(1/2 + η)
2 cos πη

}
+

ρb
2(b)

2
√

1 + β2|x − x(b)|η

{
− sin θb(η)

2 sin πη
+

cos θb(η) cosπη

2 sin2 πη

}
+ O(1),

∂u

∂x2

∣∣∣∣
x→x(b)

=
ρb
1(b)

2
√

1 + β2|x − x(b)|1/2+η

{
cos θb(1/2 + η)

2 sin πη
− sin θb(1/2 + η)

2 cos πη

}
+

ρb
2(b)

2
√

1 + β2|x − x(b)|η

{
−cos θb(η)

2 sin πη
− cos πη sin θb(η)

2 sin2 πη

}
+ O(1).

Elementary trigonometric transformations complete the proof of the theorem.
Theorem 5 shows that, as a rule, the partial derivatives of a solution of Problem S have

power-law singularities at the ends of the cut with the exponent q = max{1/2+η, 1−η}.

9. Proof of Lemma 8. Let us prove Lemma 8 used in Theorem 5.
We recall that Ψb

2(s) = (ρb
2(s) − ρb

2(b))/|s − b|η and ρb
2(s) = ρ2(s) |s − b|η. As was

mentioned above, the function ρ2(s) satisfies Eq. (51). Hence, for ρb
2(s) the identity

ρb
2(s)=F2(s)|s−b|η− 1

|s−a|1−η

∫
Γ

Q2(ξ)F̃2(ξ)
ξ−s

dξ−B2 sin πη

|s−a|1−η
, s ∈ Γ,(73)

is valid, where F2(s) = (
√

1 + β2 + β)F2(s)/(2
√

1 + β2), F̃2(s) = F2(s)/(2π
√

1 + β2);
F2(s), F̃2(s) ∈ C0,λ(Γ). Note that for s lying on Γ in a neighborhood of the point b, the
equality

1
|s − a|1−η

=
1

|b − a|1−η
+ O(|s − b|)

is valid, where O(|s− b|) denotes a Hölder function on Γ in a neighborhood of the end b

with the exponent 1. We transform the expression (73) as follows:

ρb
2(s) = F2(s)|s − b|η − 1

(b − a)1−η

∫
Γ

Q2(ξ)F̃2(ξ)
ξ − s

dξ − B2 sin πη

(b − a)1−η
+ O(|s − b|)Ξ(s),

(74)

where Ξ(s) is a Hölder function on Γ in a neighborhood of the end b with the exponent
min{η, λ}. Now we put s = b in (73) and compute a function [ρb

2(s) − ρb
2(b)], using Eqs.

(73) and (74):

ρb
2(s) − ρb

2(b) = F2(s)|s − b|η +
b − s

(b − a)1−η

∫
Γ

(ξ − a)1−ηF̃2(ξ)
(b − ξ)1−η(ξ − s)

dξ + O(|s − b|)Ξ(s).

Thus, the function Ψb
2(s) has the form

Ψb
2(s) = F2(s) −

(b − s)1−η

(b − a)1−η

∫
Γ

(ξ − a)1−ηF̃2(ξ)
(b − ξ)1−η(ξ − s)

dξ + O(|s − b|1−η)Ξ(s).
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Using the results of [6, Sec. 22, item 4] and the fact that F2(s) and F̃2(s) are Hölder
functions on Γ, one can state that Ψb

2(s) is a Hölder function on Γ near b. Note [6,
Sec. 22, items 2, 4] that for a function f(ξ) satisfying the Hölder condition on Γ in a
neighborhood of the end d, the formula

lim
s→d

⎛⎝ (s − d)γ

2π

∫
Γ

f(ξ)
(ξ − d)γ(ξ − s)

dξ

⎞⎠ =
(−1)j(d) ctg πγ

2
f(d)

is valid, where 0 < γ < 1, j(a) = 2, j(b) = 1. Applying this formula to the expression
Ψb

2(b) = lims→b Ψb
2(s), we obtain

Ψb
2(b) = F2(b) +

2π

2(b − a)1−η
ctg π(1 − η)(b − a)1−ηF̃2(b)

=
(
√

1 + β2 + β)
2
√

1 + β2
F2(b) +

− ctg πη

2
√

1 + β2
F2(b) = 0

(here we have used the relation ctg πη = (
√

1 + β2 + β)). The proof of the lemma is
complete.

10. Singularities of ∇u may disappear. It follows from the formulas of Theorem
5, that if ρd

j (d) = 0 for j = 1, 2, then ∇u(x) has no singularities in the point x(d) (d = a

or d = b), and vice versa. There are no singularities at both ends of Γ if the following
conditions hold:

ρa
j (a) = 0, ρb

j(b) = 0, j = 1, 2.(75)

Actually, (75) contains four requirements for the functions f+(s) and f−(s).

Lemma 9. (1) If ρd
1(d) = ρd

2(d) = 0 where d = a or d = b, then the solution gradient of
Problem S is continuous at the end x(d) of the cut Γ.

(2) If ρd
1(d) = ρd

2(d) = 0 for d = a and d = b, then the solution gradient of Problem
S is continuous at both ends of the cut Γ.

We study the following question: under what conditions on the functions f+(s) and
f−(s) from (3) and (4), do the singularities of the solution gradient of Problem S at
the ends of Γ disappear? The analytic investigation for a cut of an arbitrary shape
is quite difficult. We explore a certain particular case. Namely, let Γ be a segment:
Γ = {x : x(s) = (s cos θ, s sin θ), s ∈ [a, b]}. Then Y1(s, σ) = Y2(s, σ) ≡ 0 for s, σ ∈ Γ,
and Eqs. (45)–(49) have solutions

ρ1(s) =
(
√

1 + β2 − β)
2
√

1 + β2
F1(s) +

1
2π

√
1 + β2Q1(s)

∫
Γ

F1(ξ)Q1(ξ)
ξ − s

dξ − B1 cos πη

Q1(s)
,

ρ2(s) =
(
√

1 + β2 + β)

2
√

1 + β2
F2(s) −

1

2π
√

1 + β2Q2(s)

∫
Γ

F2(ξ)Q2(ξ)
ξ − s

dξ − B2 sin πη

Q2(s)
,
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where s ∈ Γ,

Q1(ξ) = (ξ − a)1/2−η(b − ξ)1/2+η, Q2(ξ) = (ξ − a)1−η(b − ξ)η, ξ ∈ Γ,

F1(s) = 2(
√

1 + β2f
′+(s) + f−(s)), F2(s) = 2(

√
1 + β2 − β)(

√
1 + β2f

′+(s) − f−(s)),

the constants B1, B2 are given by (52). We compute the functions ρd
j (s) using (61) and

(62):

ρa
1(a) =

1
2π

√
1 + β2(b − a)1/2+η

b∫
a

F1(ξ)
(

b − ξ

ξ − a

)1/2+η

dξ − B1 cos πη

(b − a)1/2+η
,

ρb
1(b) = − 1

2π
√

1 + β2(b − a)1/2−η

b∫
a

F1(ξ)
(

ξ − a

b − ξ

)1/2−η

dξ − B1 cos πη

(b − a)1/2−η
,

ρa
2(a) = − 1

2π
√

1 + β2(b − a)η

b∫
a

F2(ξ)
(

b − ξ

ξ − a

)η

dξ − B2 sin πη

(b − a)η
,

ρb
2(b) =

1
2π

√
1 + β2(b − a)1−η

b∫
a

F2(ξ)
(

ξ − a

b − ξ

)1−η

dξ − B2 sin πη

(b − a)1−η
.

We are going to satisfy all the conditions (75) at once, so that ∇u(x) will be continuous
at the points x(a) and x(b). We seek the functions F1(ξ), F2(ξ) in the form

F1(ξ) = (ξ − a)1/2+η(b − ξ)1/2−ηG1(ξ) ∈ C0,λ(Γ),(76)

F2(ξ) = (ξ − a)η(b − ξ)1−ηG2(ξ) ∈ C0,λ(Γ), λ ∈ (0, 1].

Then conditions (75) for F1(ξ) and F2(ξ) become the following conditions for the func-
tions G1(ξ), G2(ξ):

b∫
a

Gj(ξ)(ξ − a) dξ = Alj ,

b∫
a

Gj(ξ)(b − ξ) dξ = −Alj , j = 1, 2,

or
b∫

a

Gj(ξ) dξ = 0,

b∫
a

ξGj(ξ) dξ = Alj , j = 1, 2,(77)

where l1 = 8π(1 + β2) sin πη cos2 πη, l2 = 8π(1 + β2) sin3 πη.
Note (see (76)) that to satisfy the condition F1(s), F2(s) ∈ C0,λ(Γ) with some (i.e.,

not given before) λ ∈ (0, 1], it suffices that G1(s), G2(s) ∈ Cω0
η0

(Γ) with an arbitrary
ω0 ∈ (0, 1] and η0 = min{η, 1/2 − η}.

Lemma 10. Let Γ = {x : x = x(s) = (s cos θ, s sin θ), s ∈ [a, b]}, and let F1(s), F2(s) be
defined in (76), and G1(s), G2(s) satisfy Eq. (77). Then the solution gradient of Problem
S is continuous at the ends of the cut Γ.



MIXED PROBLEM FOR THE LAPLACE EQUATION OUTSIDE CUTS IN A PLANE 135

We give several ways to construct the functions G1(s), G2(s). Below we assume that
the segment [a, b] is simplified by a linear change of variables.

(I) We put a = −b < 0.
(1) Let G1(s), G2(s) be even functions, and let A = 0. Then to satisfy the homogeneous

conditions (77), it suffices to require that
∫ b

0
Gj(ξ) dξ = 0 for j = 1, 2. For instance, we

can choose G1(ξ) = G2(ξ) = C(b − 2|ξ|), where C is an arbitrary constant.
(2) Let G1(s), G2(s) be odd functions. If A = 0, then to satisfy (77), it suffices to

require that
∫ b

0
ξGj(ξ) dξ = 0 for j = 1, 2. In the general case, when A is an arbitrary

constant, it suffices to require that
b∫

0

ξ

(
Gj(ξ) −

(2k + 1)ljA
2b2k+1

ξ2k−1

)
dξ = 0,

where j = 1, 2, and k is a natural number. In particular, if A �= 0, we can choose

Gj(s) = (2k + 1)2−1ljAξ2k−1/b2k+1, j = 1, 2.

We can proceed in a similar way if one of the functions G1(s), G2(s) is odd and the other
is even.

(II) Below we assume a = −1, b = 1. In this case, it is convenient to rewrite require-
ment (77) in terms of Legendre polynomials [11, 12]. We recall that Legendre polynomials
Pn(s), n = 0, 1, . . . , generate a closed orthogonal system in the space L2(−1, 1). Besides,
||Pn||2 = 2/(2n + 1), P0(s) = 1, P1(s) = s. Putting

Gj(s) =
∞∑

n=0

Aj
nPn(s), j = 1, 2,

and assuming that the series converges in the mean, we define from (77): Aj
0 = 0,

Aj
1 = 3Alj/2, j = 1, 2. Other coefficients Aj

n remain undefined (j = 1, 2, n = 2, 3, . . . ).
Thus, let Aj

n be arbitrary coefficients (j = 1, 2, n = 2, 3, . . . ) such that the series
∞∑

n=2
A1

nPn(s) and
∞∑

n=2
A2

nPn(s) converge in the mean. Then functions

Gj(s) =
3Alj

2
s +

∞∑
n=2

Aj
nPn(s), j = 1, 2,(78)

satisfy the conditions (77).
The smoothness requirements for G1(s) and G2(s) in (76) admit that G1(s) and G2(s)

may have integrable power-law singularities in the points s = ±1. To simplify the
argumentation, we consider the convergence of the series in (78) to Hölder functions.

Using the Weierstrass sufficient test for uniform convergence and the fact that Pn(s)
are uniformly bounded on the segment [−1, 1] [12, Chapter 4, Sec. 2], one can prove the
sufficient condition of uniform convergence of the series in (78):

Lemma 11. Let Aj
n = O(1/n2+ε) as n → ∞, where ε > 0, j = 1, 2. Then the series in

(78) converge uniformly, and the functions G1(s) and G2(s) belong to the class C1(Γ)
and satisfy conditions (77).

The result of item (II) is the following.
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Theorem 6. Let
(1) Γ = {x : x = x(s) = (s cos θ, s sin θ), s ∈ [−1, 1]};
(2) the functions F1(s), F2(s) be defined by (76), (78);
(3) Aj

n be arbitrary coefficients (n = 2, 3, . . . ), such that the series in (78) converge in
the mean to Hölder functions for j = 1 and j = 2.

Then the solution gradient of Problem S is continuous at the ends of the cut Γ.

The work was partly supported by the RFBR grants no. 05-01-00050, 06-01-00001.
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