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Abstract. The brain (hypothalamus) directs hormone secretion by the pituitary
gland via burst-like (pulsatile) release of specific peptides at inferentially random times.
These pulsatile signals supervise growth, reproduction, lactation, stress adaptations, wa-
ter balance and immune responses. However, hypothalamic molecules are diluted >

3000-fold in systemic blood, leaving pituitary-hormone pulses as measurable surrogates.
The latter (roughly) mirror hypothalamic peptide bursts on a 1:1 basis, albeit being
observed in a noisy environment. As a window to the brain, one must accurately recover
the pulse (onset) times, and thereby estimate hormone secretion and kinetic parameters
(θ ∈ Θ) without distortion. Based upon limited observed data, one would like to obtain
probability statements about underlying pulsatility, secretion and kinetics. Moreover,
to be applicable in today’s clinical setting, it is important that any such procedure re-
quire minimal or no human input. We propose and justify the following method. First,
the data (a pituitary hormone concentration time-profile) is “selectively smoothed” by a
nonlinear diffusion equation, whose diffusion coefficient is inversely related to the degree
of rapid increase. This procedure generates a collection of potential pulse time sets (T).
Then, via an algorithm which alternates between a Metropolis algorithm on T and a
time-homogeneous diffusion process on Θ, a compact manifold with boundary, simula-
tion from an appropriately formulated (posterior) probability measure is achieved. The
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Fig. 1. Hormone concentrations, sampled every 10 min. for 24 hrs.
Left: ACTH from a healthy individual and a subject with Cushing’s
disease. Right: LH from a premenopausal–early phase of menstrual
cycle, and a postmenopausal female.

method is applied to recover the underlying structure of brain-pituitary regulation in
disease and aging.

1. Introduction. Self-adaptive neuroendocrine systems mediate significant control
of growth, metabolism, reproduction and stress adaptations. A basic driving property
of such ensembles is intermittent signal exchange among brain neurons, the pituitary
gland and secreted products of target glands. A fundamental unsolved problem is valid
quantification of episodic pituitary output as a window to brain regulatory mechanisms,
which cannot be measured directly (Veldhuis [20]). Salient features of pituitary hormone
bursts, or pulses, are their (unknown) timing, size and regularity. What are observed are
not secretions, but rather assayed concentrations. In Figure 1 are displayed time-sampled
pituitary hormone concentrations in the contexts of disease and aging: stress-responsive
adrenocorticotropin hormone (ACTH) from both a healthy individual and a subject with
Cushing’s disease (a pituitary tumor), and the reproductive signal luteinizing hormone
(LH) from both pre- and postmenopausal females. The clinician would like to be able
to make probability statements about the underlying pulsatile, secretory and kinetic
structure of such data. In the present paper we present such a methodology (Table 1, in
Section 5).

A probabilistic framework for detecting the locations of the pulse times, without know-
ing a priori the number or size of the pulses, would require that one do the computations
first, conditioned on a given choice, and then vary that choice (i.e., uncondition on the
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choice of locations and number). At present, this is computationally infeasible. An al-
ternative is to construct, based upon the data, a collection T of decreasing sets, each
set being a putative pulse time set. The challenging charge of determining whether and
where to add/remove a putative pulse is then directly implementable by moving up or
down within this collection. Let Θ be the parameter space of all the secretory and kinetic
parameters of interest. We assume that Θ = Θ ∪ ∂Θ is a compact, connected, oriented,
finite-dimensional Riemannian manifold with boundary. Manifold structure is assumed
for two reasons: first, and most importantly, evidence suggests possible nonlinear de-
pendencies among secretory and kinetic parameters, which future models could then
accommodate; secondly, normalized rates of secretion are most naturally described by
families of probability densities, and the latter are most appropriately modeled as mani-
folds. We place a prior probability measure on S = T×Θ. Incorporation of the observed
data (via a model) then results in a posterior probability measure on the parameters of
regulated hormone output.

The algorithm consists of two iterated steps. Step 1 (Metropolis): By the Metropolis
algorithm, decide to move within T, up or down one (add or remove a pulse) or stay
the same; Step 2 (Diffusion): “run” (for a fixed amount of time) a time-homogeneous
diffusion on Θ, with reflection in the normal direction at the boundary. Steps 1 and 2
are then iterated, and (asymptotically) the resulting θt is a realization from the posterior
probability measure. For each such realization one can then calculate the value of certain
functionals of interest, e.g., fast and slow rates of elimination, total secretion, number of
pulses, mass per pulse. Repeating this, one acquires the posterior distribution for these
structural entities, and the desired probabilities can then be calculated. Early uses of
simulation by diffusion in a linear space setting were presented in Grenander [5], Geman
and Hwang [4] and Grenander and Miller [6]. Simulation by diffusion on a compact
manifold with boundary was presented by Keenan and Shorter [12].

In the next section we briefly describe the physiology underlying our modeling of pulse
(secretory-burst), pulse time, pulse mass, secretion and elimination.

2. Physiological basis of hormone dynamics. Physiological stress is a general
term used to describe changes that disrupt the body’s homeostasis and elicit defensive
immune system responses. At the appropriate time, these defensive responses must be
reversed, with homeostasis restored. Cortisol, an adrenal gland steroid, is the body’s
primary mechanism for such restoration. Cortisol is controlled by ACTH, which in
turn is stimulated by the hypothalamic pulses of corticotropin-release hormone (CRH).
Cushing’s disease is the result of a pituitary tumor causing excessive release of ACTH
and in turn cortisol, which then greatly weakens the immune state. In male and female
reproduction, the steroids testosterone (male) and estrogen and progesterone (female)
are transcriptional regulators for a broad range of genes, especially those which are
anabolic in nature. They are regulated by the pituitary gland’s luteinizing hormone
(LH), with LH in turn being driven by hypothalamic pulses of gonadotropin-releasing
hormone (GnRH). Irregular GnRH or LH pulsing results in a loss of bodily anabolic
effects in the postmenopausal female and the male, and an inability to ovulate in the
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premenopausal female. In the present paper we are concerned with pituitary pulsatile-
secreting hormones (e.g., ACTH and LH).

CRH (and the same for GnRH) is secreted by a network of 1000–1500 specialized
neurons. Unlike the typical neuron which fires on a 10–100 millisecond scale, the time
between firings for these neurons is on the scale of 4–8 minutes. Most of the time,
these firings are not synchronized across the network, and the total overall amount of
neurotransmitter released is quite small. However, for reasons yet to be explained, on
the order of every 45–150 minutes, there is a synchronization of the firing frequencies, at
which time significant amounts of the given peptide are secreted (Veldhuis [20]). These
occurrences are the previously mentioned hypothalamic pulse (onset) times, with the
length of any individual CRH (or GnRH) pulse being quite short, on the order of 1–3
minutes. The small CRH peptide then travels bloodborne to the pituitary gland and
stimulates a pulsatile secretion of ACTH (and GnRH stimulates the secretion of LH).
CRH and GnRH are initially released into a blood volume of about 1.5 milliliters at the
pituitary. When they enter the general circulation (of approximately 5 liters), they are
not assayable because of the 3000-fold dilution.

There are multiple mechanisms by which various hormones are degraded and/or re-
moved from the system. In the case of the hypothalamic and pituitary proteins, first,
there are enzymes (proteases) in the blood which can reduce various proteins to inactive
metabolites. If the degradative cells have appropriate receptors for the given protein,
the protein may be internalized by the cell and degraded. A certain amount of protein,
depending on the size, charge, degree of glycosylation, may be excreted by the kidneys.
Hormones are secreted by their respective glands into interstitial fluid and then into
blood, by both advection and diffusion. This occurs quite rapidly (half-life of 1–10 min-
utes), whereas irreversible degradation is slower (half-life of 15–100 minutes). The two
rates of elimination are ordinarily called the fast and slow rates, respectively.

By pulsatile secretion, we mean that release is not a continuous release, but rather
at a pulse time, the rate of secretion rapidly increases, followed by a possibly not so
rapid decrease. Again, these are general patterns, and one must allow for flexibility, for
at times there may be large hypothalamic signals, but little or no pituitary response,
or vice-versa. The concepts which need to be quantified are: pulse (onset) times; pulse
mass; normalized rate of pulsatile secretion; basal (non-pulsatile) secretion; and, fast and
slow rates of elimination. These are formulated below.

3. Pulsatile-secreted hormone concentration model.
3.1. Construction of putative pulse time sets: T = {TN , . . . , Tp}. In image processing,

there is a long history of low-pass filtering being implemented by “running” the heat
equation. Perona and Malik [17] improved the edge detection theory by replacing the
heat equation by a nonlinear equation of the porous medium type, with data u0 as the
initial datum:

∂u

∂t
= div(g(|∇u|)∇u), u(x, 0) = u0(x), (3.1)

where g is a smooth nonincreasing function with g(0) = 1, g(x) ≥ 0 and g(x) tending
to 0 at infinity. The condition that sg(s) is nondecreasing turns out to be a necessary
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condition for existence and uniqueness of the solution. Alvarez, Lions and Morel [1] pro-
posed another anisotropic diffusion algorithm for selective smoothing and edge detection.
They proposed a partial differential equation of the kind

∂u

∂t
= g(|G ∗ Du|)|Du| div

Du

|Du| , u(0, x, y) = u0(x, y), (3.2)

where G is a smoothing kernel and g is a nonincreasing function such that lims→∞ g(s) =
0. The term |Du| div Du

|Du| = ∆u−D2u(Du, Du)/|Du|2 represents a degenerate diffusion
term, which diffuses u in the direction orthogonal to its gradient Du. The aim is to
smooth along an edge and not across it.

The above is meant to be motivation for our pulse detection method. See Mauger et al.
[16] for a review of pulse detection. The two settings, the above and ours, are different in
many respects. Fundamental to the above is that the data u are 2-dimensional, whereas
g is a function of one dimension. In our case, both are 1-dimensional.

For the moment suppose that “data” are given as {Y (t), 0 ≤ t ≤ 1}, where t represents
the observational time (e.g., over a day). The following algorithm produces a systematic
procedure to indicate whether and where to add or remove a pulse time. The equation is
run for 0 ≤ s ≤ S, where s refers to algorithmic time and t, again, is observational time:

u(t, 0) = Y (t), 0 ≤ t ≤ 1 (Initial condition),

u(0, s) = Y (0), u(1, s) = Y (1), 0 ≤ s ≤ S (Dirichlet boundary condition),

∂u(t, s)
∂s

= g

((
∂u(t, s)

∂t

)
+

)
∂2

∂t2
u(t, s) (Selective smoothing equation),

g(x) = C1/(1 + x/C2)2, 0 ≤ x ≤ C2, 0 < C1, 0 < C2,

where (y)+ = max(y, 0) and C2 adjusts for the scale. In the present case, the diffusion
coefficient g(·) is a function of the derivative. If the derivative is large positively, there
will be very little smoothing at that point (t); similarly, if the derivative is positively
small or nonnegative, there will be lots of smoothing. The condition that xg(x) be
nondecreasing is satisfied for the above choice. Also, we have tried other boundary
conditions (Neumann, mixed), but found the Dirichlet condition to work best. In the
discretization of the diffusion (stability conditions given in John [8]), applying it to 10
min. (1/6 hr.) data, we assumed �x = (1/6), �t = (1/6)2, C1 = .003, S = 2000
(usually) and C2 is the maximum positive derivative (difference) calculated for the data.

Heuristically, the algorithm is as follows. Suppose that the time series Y has N local
minima. As the selective smoothing proceeds, one of the local minima (‘the weakest’)
will be smoothed away and the set of local minima will comprise N − 1 points. As the
smoothing continues, additional local minima will be removed. In practice, some pulses
evolve with a stuttering onset, wherein an initial slight increase precedes a large rapid
increase; in the present method such points are not excluded from putative pulse-time
sets. For pragmatic implementation, smoothing evolves for some pre-specified number of
algorithmic cycles or until some pre-specified minimal number (e.g., p) of pulse times is
attained. The result is the collection of decreasing pulse time sets: T = {TN , . . . , Tp}. In
Figure 2 the constructed surfaces (u) are displayed, and in Figure 3 the four T collections
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Fig. 2. Application of Selective Smoothing Algorithm, determining Putative
Pulse Time Sets. The four subpanels correspond to the four profiles of Figure
1. The asterisks (*) denote the pulse times. The pulse time sets are progressively
decreasing as algorithmic time proceeds.

are displayed so that one can easily follow the progression from the maximum set to the
minimum set.
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Fig. 3. The Putative Pulse Time Sets, from Figure 2, displayed in
a more revealing manner. There are three subpanels for each: the
top and bottom subpanels show the relationship of the maximum
and minimum pulse sets to the concentration profile; the middle
subpanel shows the progression (as pulse times are removed) from
the maximum set to the minimum set.
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3.2. A model of concentration for a given pulse times set Tm. In Keenan, Veldhuis,
and Yang [15], Keenan and Veldhuis [14], and Keenan, Sun and Veldhuis [13], a model
of hormone secretion and concentration is presented, conditioned on the set of pulse
times Tm = (T1, ..., Tm). A biexponential elimination rate is used, where the fast rate α1

represents advection and diffusion, and the slower rate α2 represents elimination. The
fractional weights between the fast and slow rates, a(1) and a(2) = 1 − a(1) have been
reasonably well determined by clinical experiments.

Each pulse time Tj marks the onset of a secretory burst. Conceptually, a burst re-
flects abrupt exocytotic discharge of hormone-containing granules followed by less rapid
secretion of newly synthesized molecules. The mass of hormone secreted in any given
burst is assumed to be the sum of a finite amount of minimally available stores (η0), a
linear function (η1) of hormone accumulation over the preceding interpulse interval, and
an allowable flexibility (a random element Aj) in individual burst mass,

Mj = η0 + η1 × (Tj − Tj−1) + Aj . (3.3)

The Aj ’s are I.I.D. N(0, σ2
A) and describe the variation in pulse mass due to nonuni-

form cellular release. The mass contained in any given burst, Mj , is released according
to an adaptable (hormone-, subject- and condition-specific) waveform. The waveform
(evolution of the instantaneous secretion rate over time) is represented via the three-
parameter generalized Gamma (probability) density, which encapsulates the normalized
rate of secretion (mass units) over time (minutes) per unit distribution volume (L):

ψ(r) =
β3

Γ(β1)β
(β1β3)
2

r(β1β3)−1e−(r/β2)
β3

. (3.4)

This pulsatile release is superimposed on a continuous basal release β0. The instantaneous
secretion rate Z(r) and the resulting concentrations X(t) are then given as:

Z(r) = β0 +
∑
Tj≤r

Mj ψ(r − Tj),

X(t) = (a(1)e−α1t + a(2)e−α2t) X(0) +
∫ t

0

(a(1)e−α1(t−s) + a(2)e−α2(t−s)) Z(s) ds.

The secretory and kinetic parameter is θ = (γ, σ) = ((β0, α1, α2, η0, η1, β1, β2, β3),
(σA, σε)), and Θ represents the resulting parameter space. Estimation of the various
parameters is then implemented by way of a discretization of the model; the details
are given in Keenan, Veldhuis, and Yang [15], Keenan, Licinio and Veldhuis [11], Yang
[21], and Keenan, Alexander et al [9]. The discretization results in Y = (Y1, Y2, . . . , Yn)′

having a normal distribution with mean vector µ and covariance matrix Σ, which are
functions of θ and the pulse times Tm. The log-likelihood and the (minus) log-posterior
density then have the following forms:

lTm
(θ) = log L(θ) = −n

2
log 2π − 1

2
log |Σ| − 1

2
(Y − µ)′Σ−1(Y − µ),

H(Tm, θ) ∝ − lTm
(θ) − log(π1(Tm) × π2(θ)), (Tm, θ) ∈ T × Θ,

where π1 is the prior probability density on T, π2 is the prior probability density on Θ
and e−H is the posterior density. In applications we use a uniform (constant) prior on
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Θ, and the prior on T is π2(Tm) ∝ e−m, which corresponds to an Akaike Information
Criterion (AIC) penalization on the number of pulses.

4. Justification of the algorithm. We are given a function H(·, ·) defined over
T × Θ, where T is a discrete set {T1, T2, . . . , TN} and Θ is a compact, regular domain
(see Boothby [2]), in the sense that there exists a q-dimensional orientable manifold Q

of class C∞, with Θ being a d-dimensional domain in Q and whose closure Θ is compact
and whose boundary ∂Θ = Θ − Θ consists of a finite number of hypersurfaces each of
dimension d − 1 and of class C3. Let Θ be a compact, connected, oriented, smooth
d-dimensional Riemannian manifold with boundary and with metric g. We assume an
ordering ≺ in T, namely, T1 ≺ T2 ≺ · · · ≺ TN . In the algorithm the order is the subset
order. We also assume that H(Ti, ·) is a twice continuously differentiable function for each
fixed Ti, 1 ≤ i ≤ N . Let C∞(Θ) denote the class of real-valued infinitely differentiable
functions on Θ. Let Ω be the natural volume element of the oriented Riemannian manifold
Θ and let λ be the Borel measure associated with Ω. Integration of functions on Θ (which
is integration of d-forms on Θ) can be viewed as Lebesgue-Stieltjes integration on Θ with
respect to λ: ∫

Θ

f =
∫

Θ

f Ω =
∫

Θ

f(θ) λ(dθ) for all f ∈ C(Θ).

Let ∇ and ∆ denote the gradient and Laplacian on Θ, with respect to g. For a broad
class of operators A, including the particular case of A = 1

2 (∆−∇h) = 1
2∆− 1

2∇h, where
h ∈ C∞(Θ), S. Ito [7] considered the behavior of the fundamental solution to the Cauchy
problem for the following parabolic equation. For a given f ∈ C(Θ), find v such that

∂

∂t
v(t, x) = A v(t, x), t > 0, x ∈ Θ,

Lv(t, x) =
∂

∂n
v(t, x) = 0, t > 0, x ∈ ∂Θ (Boundary condition (reflecting barrier)),

lim
t↓0

v(t, x) = f(x) (uniformly in) x ∈ Θ (Initial condition).

It was shown that the fundamental solution is jointly continuous, and under the above
boundary condition (reflection at the boundary in the normal direction), is strictly pos-
itive: p(t, x, y) > 0, x, y ∈ Θ, t > 0. In Sato and Ueno [19], it is shown that this
fundamental solution is the transition density for the time-homogeneous Markov (Feller)
process with infinitesimal generator: A = 1

2∆ − 1
2∇h, where there is reflection at the

boundary. (In a linear space, the diffusion is dXt = − 1
2∇h(Xt)dt + dWt.) If the re-

flection were not in the normal direction, the Markov process would spend local time
on the boundary, and the density would not necessarily be strictly positive. In Keenan
and Shorter [12], in the context of a compact manifold with boundary, it is shown that
the process {Xt, t ≥ 0} converges weakly to the measure e−h. For the present setting,
h(·) = H(Tk, ·) plus a constant (so that e−h is the posterior conditional density of θ given
Tk). What is most important for our concern is that the transition density is strictly
positive: p(t, x, y) > 0, x, y ∈ Θ, t > 0. Let S denote the product space T × Θ, and F
and S the Borel σ-fields of subsets on Θ and S. Let P denote the powerset of T. By
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λ, c and ν we denote, respectively, the Borel measure associated with the natural volume
element on (Θ,F), counting measure on (T,P) and the product measure c×λ on (S,S).

We have two steps in each iteration of the algorithm. The first step is a jump in the
first argument of H(·, ·) where we keep the second argument fixed. The second step is a
diffusion in the second argument of H(·, ·) where we keep the first argument fixed. We
denote by (T (k), θ(k)) the point in T×Θ after k iterations. The starting point is denoted
by (T (0), θ(0)). In the k-th iteration (for k ≥ 1) we have the following two steps.

Step 1. (Jump): Suppose T (k−1) = Ti. If 2 ≤ i ≤ N − 1, then, as in the Metropo-
lis algorithm, either we move to Ti−1 with probability ξ min{1, exp[−(H(Ti−1, θ

(k−1)) −
H(Ti, θ

(k−1)))]} or to Ti+1 with probability ξ min{1, exp[−(H(Ti+1, θ
(k−1)) − H(Ti,

θ(k−1)))]} or we stay at Ti. Here ξ is a constant with 0 < ξ ≤ 1
2 . We denote by

T (k) the new T chosen in this way after the first step of the k-th iteration. So, we have
the following transition probabilities for a fixed value θ of θ(k−1). For 2 ≤ i ≤ N − 1,

Pθ(T (k) = Ti−1 | T (k−1) = Ti) = ξ min{1, exp[−(H(Ti−1, θ) − H(Ti, θ))]},

Pθ(T (k) = Ti | T (k−1) = Ti) = 1 − ξ min{1, exp[−(H(Ti−1, θ) − H(Ti, θ))]}
− ξ min{1, exp[−(H(Ti+1, θ) − H(Ti, θ))]},

Pθ(T (k) = Ti+1 | T (k−1) = Ti) = ξ min{1, exp[−(H(Ti+1, θ) − H(Ti, θ))]}.

We need to modify the above algorithm if i is 1 or N . If i = 1, we imagine T0 as
identically equal to T1. Then we have the following transition probabilities:

Pθ(T (k) = T1 | T (k−1) = T1) = 1 − ξ min{1, exp[−(H(T2, θ) − H(T1, θ))]},

Pθ(T (k) = T2 | T (k−1) = T1) = ξ min{1, exp[−(H(T2, θ) − H(T1, θ))]}.

When i = N , we modify the transition probabilities in a similar way. For |i − j| > 1,

Pθ(T (k) = Tj | T (k−1) = Ti) = 0.

Step 2. (Diffusion): For the fixed T (k) obtained in the above procedure, we run
a diffusion for (k − 1)t0 ≤ t ≤ kt0 with reflecting boundary. The value of t0 is fixed
and independent of k. The diffusion is that described above, with infinitesimal generator
A = 1

2∆ − 1
2∇h, h(·) = H(Tk, ·) plus a constant, and there is reflection in the inward

normal direction at the boundary. By θ(k) we denote θkt0 obtained in this way. This
completes one iteration.

One then repeats the above two steps alternately. By Xk we will denote the pair
(T (k), θ(k)) obtained using the above algorithm. Then {Xk : k ≥ 0} is a discrete time
parameter stochastic process. This process is a time homogeneous Markov chain with
state space T × Θ. The Markov property of Xk is easy to prove since we are defining
the process by transition from Xk−1 to Xk, which is not dependent on the values of X

before time k−1 except through the value of Xk−1. Time homogeneity is also clear from
the fact that the transition probabilities from Xk−1 to Xk do not depend on the value
of k. Being a time homogeneous Markov process, the diffusion in Step 2 has a transition
probability function Q(T (k), t, θ, B), which is the probability for going from θ ∈ Θ to
B ⊂ Θ if we run the diffusion for time t.
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From the results of Sato and Ueno [19] and Ito [7] that we have discussed earlier, it
follows that: For each fixed T (k) and t, Q(T (k), t, θ, ·) � λ and q(T (k), t, θ, θ′) is positive
for all θ, θ′ ∈ Θ and continuous in (θ, θ′), where q(T (k), t, θ, ·) denotes the density of
Q(T (k), t, θ, ·) with respect to λ.

Let Pn(x, A) denote the n-step transition probability of the process {Xk : k ≥ 0},
where x ∈ S and A ∈ S. When n = 1, we write the transition probability sim-
ply as P (x, A). Any S-measurable set A can be written as a union of disjoint sets
A1, A2, . . . , AN , A =

⋃N
i=1 Ai, where Ai = A ∩ ({Ti} × Θ) = {Ti} × Bi for some Bi ∈ F

for 1 ≤ i ≤ N . Therefore, if ν(A) = 0, then λ(Bi) = 0 for 1 ≤ i ≤ N and hence
Q(Ti, t0, θ

′, Bi) = 0 for 1 ≤ i ≤ N since Q(Ti, t0, θ
′, ·) � λ for 1 ≤ i ≤ N . Hence,

ν(A) = 0 implies P (x, A) = 0 for each x ∈ S, and P (x, ·) � ν for all x ∈ S. By in-
duction, since Pn(x, A) =

∫
S

Pn−1(x, dy)P (y, A) = 0 for all x ∈ S and n ≥ 2, it follows
that Pn(x, ·) � ν for each x ∈ S and n ≥ 1. Let pn(x, y) denote the density of Pn(x, ·)
with respect to ν. When n = 1, we write the density simply as p(x, y). Thus, we have
the transition density of the process {Xk : k ∈ N} as p((Ti, θ), (Tj, θ

′)) = Pθ(T (k) =
Tj | T (k−1) = Ti) · q(Tj , t0, θ, θ

′) and for n > 1, we have the n-step transition density
recursively defined as

pn((Ti, θ), (Tj , θ
′′)) =

N∑
l=1

∫
Θ

pn−1((Ti, θ), (Tl, θ
′)) · p((Tl, θ

′), (Tj , θ
′′))λ(dθ′). (4.1)

The following lemma will be useful in the course of proving ν-irreducibility and ape-
riodicity of the Markov chain Xk.

Lemma 4.1. Let A be a compact set in Θ. Suppose f and g are two continuous functions
from A × A to R. Define a function h : A × A → R as h(x, y) =

∫
A

f(x, z)g(z, y)λ(dz).
Then h is uniformly continuous on A × A.

Proof. Straightforward, elementary analysis argument. �

Lemma 4.2. For fixed integers i, j with 1 ≤ i ≤ N and 1 ≤ j ≤ N , and a positive integer
n, (i) pn((Ti, θ), (Tj , θ

′)) is positive for all θ, θ′ ∈ Θ and continuous in (θ, θ′) if |i− j| = n,
(ii) pn((Ti, θ), (Tj, θ

′)) = 0 for all θ, θ′ ∈ Θ if |i − j| > n, and (iii) for 1 ≤ i ≤ N ,
infθ,θ′∈Θ p2((Ti, θ), (Ti, θ

′)) > 0.

Proof. Results (i) and (ii) hold for n = 1, since Pθ(T (k) = Tj | T (k−1) = Ti) is positive
for |i−j| = 1 and zero for |i−j| > 1 and for each T (k) and t, q(T (k), t, θ, θ′) is continuous
in (θ, θ′) and positive for all θ, θ′ ∈ Θ. The proof is by induction on n. Result (iii) is a
consequence of compactness and Lemma 4.1. �

Definition 4.3. Suppose {Xn : n ≥ 0} is a time homogeneous Markov chain with the
state space S and S is a σ-field of subsets of S and Pn(x, A) denotes n-step transition
probability from x ∈ S to A ∈ S. {Xn : n ≥ 0} is called irreducible with respect to a
measure µ on S if for each A ∈ S with µ(A) > 0 and for each x ∈ S, there exists n ≥ 1
such that Pn(x, A) > 0.

Theorem 4.4. The process Xn is irreducible with respect to the measure ν.
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Proof. Any S-measurable set A can be written as A =
⋃N

i=1 Ai, a union of disjoint
sets A1, A2, . . . , AN where Ai = A∩ ({Ti}×Θ) for 1 ≤ i ≤ N . Therefore, each Ai can be
written as Ai = {Ti} ×Bi for some Bi ∈ F . Since ν(A) =

∑N
i=1 λ(Bi), ν(A) > 0 implies∑N

i=1 λ(Bi) > 0, which in turn implies that at least one of λ(Bi)’s must be positive;
assume that λ(Bj) > 0. Suppose x = (Tl, θ) and m = |l − j|. If m > 0, it follows
from the first part of Lemma 4.2 that Pm(x, A) > 0. If m = 0, from the third part of
Lemma 4.2 it follows that P2(x, A) > 0. �

To prove Harris recurrence, we introduce some notation and results, found in Revuz
[18]. Let P denote the operator associated with the transition probability defined as
P (f)(x) =

∫
S

P (x, dy)f(y), for measurable functions f on (S,S) for which at least one
of P (f+) and P (f−) is finite. For h : (S,S) → [0, 1], we define the operator Uh as
Uh =

∑∞
n=0(PM1−h)nP =

∑∞
n=0 P (M1−hP )n, where Mh denotes the operator of mul-

tiplication by the function h. If h is a constant functions, i.e., h ≡ c ∈ [0, 1], we denote
Uh by Uc. One can associate the operator Uh with a kernel Uh(·, ·), which is defined as
Uh(x, A) = Uh1A(x) for x ∈ S and A ∈ S. Then Uhf(x) =

∫
S

Uh(x, dy)f(y). We will
use the following resolvent equation in the course of proving Harris recurrence of the
chain Xk. For any two S-measurable functions h1 and h2 from S to [0, 1] with h1 ≤ h2,
Uh1 = Uh2 + Uh1Mh2−h1Uh2 = Uh2 + Uh2Mh2−h1Uh1 .

Lemma 4.5. (i) For 0 < c < 1, Uc(x, A) =
∑

n≥1(1 − c)n−1Pn(x, A) for all x ∈ S and
A ∈ S; (ii) for each c ∈ (0, 1) and x ∈ S, Uc(x, ·) � ν and the density bc(x, y) of Uc(x, ·)
with respect to ν is given by bc(x, y) =

∑
n≥1(1−c)n−1pn(x, y); and (iii) for all c ∈ (0, 1),

βc = infx,y∈S bc(x, y) is strictly positive.

Proof. Straightforward. �

Lemma 4.6. There is a constant h0 ∈ (0, 1) and a positive measure m0 equivalent to ν

such that Uh0 ≥ Uh0(h0) ⊗ m0, where ⊗ is defined as (a ⊗ µ)f(x) = a(x)
∫
E

f(y)µ(dy),
for a measurable function a on E and a measure µ on a σ-field E of subsets of E.

Proof. Let 0 < c′ < c′′ < 1. By part (iii) of Lemma 4.5, Uc′Uc′′ ≥ βc′βc′′ν(S)⊗ ν. Set
h0 = min( 1

2c′, βc′βc′′). Then by the resolvent equation,

Uc′ = Uc′′ + (c′′ − c′)Uc′Uc′′ ≥ (c′′ − c′)Uc′Uc′′ ≥ (c′′ − c′)βc′βc′′ν(S) ⊗ ν

≥ (c′′ − c′)ν(S) · h0 ⊗ ν.

Again by the resolvent equation,

Uh0 ≥ Uh0Mc′−h0Uc′ ≥
1
2
c′Uh0Uc′ ≥

1
2
c′(c′′ − c′)ν(S)Uh0(h0) ⊗ ν.

Now we set m0 = 1
2c′(c′′ − c′)ν(S)ν and the result of the lemma follows. �

Result 4.7 (Revuz [18]). A Markov chain {Yn} on (S,S) is recurrent in the sense of
Harris if there is a strictly positive S-measurable function h0 and a nonzero measure m0,
such that Uh0(h0) = 1 on S and Uh0 ≥ 1 ⊗ m0.

Theorem 4.8. The Markov chain {Xk : k ≥ 0} is recurrent in the sense of Harris.
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Proof. By Lemma 4.6, there is a constant h0 ∈ (0, 1) and a positive measure m0

equivalent to ν such that Uh0 ≥ Uh0h0 ⊗ m0. Since h0 is a constant and h0 ∈ (0, 1), we
have for x ∈ S,

Uh0h0 = Ex

⎡
⎣∑

n≥1

(1 − h0)n−1h0

⎤
⎦ =

∑
n≥1

{
(1 − h0)n−1 − (1 − h0)n

}
= 1 − lim

n→∞
(1 − h0)n = 1.

Hence, Uh0 ≥ 1 ⊗ m0. Therefore, by Result 4.7, Xk is Harris recurrent. �

Result 4.9 (Revuz [18]). For a Harris chain with n-step transition probability Pn(·, ·)
there are only two possibilities:
(i) either for any pair (ν1, ν2) of probability measures on S,

lim
n→∞

‖ν1Pn − ν2Pn‖ = 0, (4.2)

(ii) or there exists an integer d ≥ 2 and S-measurable sets C1, C2, . . . , Cd, F of S such
that

⋃d
i=1 Ci ∪ F = S, ν(F ) = 0 and P (x, Ci+1) = 1 for all x ∈ Ci for i = 1, . . . , d − 1

and P (x, C1) = 1 for all x ∈ Cd.

Definition 4.10. In the first case of Result 4.9 the chain is called aperiodic. In the
second case the chain is called periodic and the integer d is called the period.

Theorem 4.11. The Markov chain Xk is aperiodic.

Proof. By Theorem 4.8, Xk is Harris recurrent. We will show that the second case in
Result 4.9 cannot occur. We will prove it by contradiction.

Denote {T1} × Θ by S1. Suppose the second case of Result 4.9 holds. Then S1 ∩
(
⋃d

j=1 Cj) is not empty because otherwise S1 ⊂ F , which would imply that ν(S1) = 0
contradicting the fact that ν(S1) = λ(Θ) > 0. Suppose x ∈ S1 ∩ (

⋃d
j=1 Cj). Then

x ∈ Cj for some j. Without loss of generality assume that x ∈ Cd. Then P (x, C1) =
1 by the assumption of the second case of Result 4.9. Therefore, P (x, Cc

1) = 0 and
hence P (x, S1 ∩ Cc

1) = 0. We assert that ν(S1 ∩ Cc
1) = 0. We prove this assertion by

contradiction. Suppose ν(S1 ∩ Cc
1) > 0. Then S1 ∩ Cc

1 = {T1} × B for some B ∈ F
and λ(B) = ν(S1 ∩ Cc

1) > 0. Now p((T1, θ), (T1, θ
′)) > 0 for all θ, θ′ ∈ Θ because

Pθ(T (1) = T1 | T (0) = T1) > 0 for all θ ∈ Θ and q(T1, t0, θ, θ
′) > 0 for all θ, θ′ ∈ Θ.

Therefore,

P (x, S1 ∩ Cc
1) =

∫
S1∩Cc

1

p(x, (T1, θ
′))λ(dθ′) > 0.

Therefore, our assertion that ν(S1 ∩ Cc
1) = 0 is proved. Hence ν(S1 ∩ C1) = ν(S1) > 0.

Therefore, S1∩C1 is nonempty. So, there exists y ∈ S1∩C1. Again, by the assumption of
the second case of Result 4.9, P (y, C2) = 1. Similar arguments show that ν(S1∩Cc

2) = 0.
So we have

ν(S1 ∩ (C1 ∩ C2)c) ≤ ν(S1 ∩ Cc
1) + ν(S1 ∩ Cc

2) = 0.

So, ν(S1 ∩ (C1 ∩ C2)c) = 0 and hence ν(S1 ∩ (C1 ∩ C2)) = ν(S1) > 0. This is a
contradiction to our assumption that C1 and C2 are disjoint since in that case we would
have ν(S1 ∩ (C1 ∩ C2)) = 0. This completes the proof. �
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Theorem 4.12. The Markov chain Xk has an invariant probability measure π which is
absolutely continuous with respect to the measure ν = λ × c. The density of π with
respect to ν is given by

g(T , θ) =
exp(−H(T , θ))∑N

i=1

∫
Θ

exp(−H(Ti, θ′))λ(dθ′)
. (4.3)

Proof. Any set A ∈ S can be written as a disjoint union A =
⋃N

i=1 Ai of sets, where
Ai = A ∩ ({Ti} × Θ) for 1 ≤ i ≤ N . Then Ai = {Ti} × Bi for some Bi ∈ F .

So, the transition probability P ((Ti, θ), Aj) = 0 if |i − j| > 1. For (Ti, θ) ∈ S,
2 ≤ i ≤ N − 1 and A ∈ S, the transition probability of Xk can be written as

P ((Ti, θ), A) = ξ min{1, exp[−(H(Ti−1, θ) − H(Ti, θ))]}
∫

Bi−1

q(Ti−1, t0, θ, θ
′)λ(dθ′)

+ ξ min{1, exp[−(H(Ti+1, θ) − H(Ti, θ))]}
∫

Bi+1

q(Ti+1, t0, θ, θ
′)λ(dθ′)

+ [1 − ξ min{1, exp[−(H(Ti−1, θ) − H(Ti, θ))]}

− ξ min{1, exp[−(H(Ti+1, θ) − H(Ti, θ))]}]
∫

Bi

q(Ti, t0, θ, θ
′)λ(dθ′).

For i = 1, the above equation will be modified to the following form:

P ((T1, θ), A) = ξ min{1, exp[−(H(T2, θ) − H(T1, θ))]}
∫

B2

q(T2, t0, θ, θ
′)λ(dθ′)

+ [1 − ξ min{1, exp[−(H(T2, θ) − H(T1, θ))]}]
∫

B1

q(T1, t0, θ, θ
′)λ(dθ′).

Similarly, for i = N we have

P ((TN , θ), A) = ξ min{1, exp[−(H(TN−1, θ) − H(TN , θ))]}
∫

BN−1

q(TN−1, t0, θ, θ
′)λ(dθ′)

+ [1 − ξ min{1, exp[−(H(TN−1, θ) − H(TN , θ))]}]
∫

BN

q(TN , t0, θ, θ
′)λ(dθ′).

In order to show that the measure π with density g is invariant for the chain Xk, we
have to prove that the following equation holds for any A ∈ S:

π(A) =
N∑

i=1

∫
Θ

g(Ti, θ)P ((Ti, θ), A)λ(dθ). (4.4)

Suppose, d =
∑N

i=1

∫
Θ

exp(−H(Ti, θ
′))λ(dθ′). Then g(Ti, θ) = 1

d exp(−H(Ti, θ)).
For 1 ≤ i ≤ N and fixed θ, we denote

∫
Bi

q(Ti, t0, θ, θ
′)λ(dθ′) by vi and for 2 ≤ i ≤ N

and fixed θ, we define ui as

ui
def=

ξ

d
min{exp(−H(Ti, θ)), exp(−H(Ti−1, θ))}(vi−1 − vi).
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Then, for 2 ≤ i ≤ N − 1,

g(Ti, θ)P ((Ti, θ), A) =
ξ

d
min{exp(−H(Ti, θ)), exp(−H(Ti−1, θ))} · vi−1

+
ξ

d
min{exp(−H(Ti, θ)), exp(−H(Ti+1, θ))} · vi+1

+ [
1
d

exp(−H(Ti, θ)) − ξ

d
min{exp(−H(Ti, θ)), exp(−H(Ti−1, θ))}

− ξ

d
min{exp(−H(Ti, θ)), exp(−H(Ti+1, θ))}] · vi

= ui − ui+1 +
1
d

exp(−H(Ti, θ)) · vi.

(4.5)

Similarly, we have

g(T1, θ)P ((T1, θ), A) = −u2 +
1
d

exp(−H(T1, θ)) · v1

and

g(TN , θ)P ((TN , θ), A) = uN +
1
d

exp(−H(TN , θ)) · vN .

Since
∑N−1

i=2 (ui − ui+1) = u2 − uN , by its telescopic nature, we have

N∑
i=1

g(Ti, θ)P ((Ti, θ), A)

=
N−1∑
i=2

[(ui − ui−1) +
1
d

exp(−H(Ti, θ)) · vi] − u2

+
1
d

exp(−H(T1, θ)) · v1 + uN +
1
d

exp(−H(TN , θ)) · vN

=
N∑

i=1

1
d

exp(−H(Ti, θ)) · vi

=
N∑

i=1

1
d

exp(−H(Ti, θ)) ·
∫

Bi

q(Ti, t0, θ, θ
′)λ(dθ′).

(4.6)

For a fixed Ti, the diffusion process obtained in the diffusion step of our algorithm
has the invariant measure whose density with respect to λ is given by 1

c exp(−H(Ti, θ)),
where c =

∫
Θ

exp(−H(Ti, θ))λ(dθ) (see Keenan and Shorter [12]). Therefore, if we sample
from that process at a fixed time interval t0, the resulting Markov chain will have the
same invariant measure and∫

Θ

exp(−H(Ti, θ))q(Ti, t0, θ, θ
′)λ(dθ) = exp(−H(Ti, θ

′)). (4.7)
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From (4.6),
N∑

i=1

∫
Θ

g(Ti, θ)P ((Ti, θ), A)λ(dθ)

=
N∑

i=1

1
d

∫
Bi

∫
Θ

exp(−H(Ti, θ))q(Ti, t0, θ, θ
′)λ(dθ)λ(dθ′)

=
N∑

i=1

1
d

∫
Bi

exp(−H(Ti, θ
′))λ(dθ′) [using (4.7)]

=
N∑

i=1

∫
Bi

g(Ti, θ)λ(dθ)

= π(A).

Hence, we have proved that (4.4) holds for any A ∈ S and that proves π is an invariant
measure for the Markov chain Xk. Clearly, π is a probability measure. �

Theorem 4.13. The chain Xk is an ergodic chain with the stationary probability measure
π, i.e., for any probability measure µ on S,

lim
n→∞

‖µPn − π‖ = 0.

Proof. In Theorem 4.11 we have proved that the Markov chain Xk is aperiodic. Hence
(4.2) holds for any pair of probability measures (ν1, ν2) on S. According to Theorem 4.12,
π is an invariant probability measure for P . So πP = π and hence πPn = π. Now take
ν1 = µ and ν2 = π. �

Theorem 4.13 tells us that, under this transition described by our algorithm, any
probability measure evolves to a stationary measure whose density is given by (4.3).

5. Application of the methodology. Consider the four time-sampled concentra-
tion profiles displayed in Figure 1, depicting two fundamental biological phenomena:
disease (left) and aging (right). The concentrations are those of two pituitary-released
hormones: adrenocorticotropin hormone (ACTH) from both a healthy individual and a
subject with Cushing’s disease (a pituitary tumor), and luteinizing hormone (LH) from
both pre- and postmenopausal females. It is ACTH which regulates the levels of cortisol
which are produced and secreted by the adrenal gland, and it is LH which regulates the
levels of estrogen and progesterone resulting or not resulting in ovulation. The extrac-
tion from these concentrations of their unobserved secretion and elimination rates is a
necessary first step before clinical interpretation and decision-making. Cushing’s disease
occurs when a pituitary tumor develops, and the transformed ACTH-secreting cells not
only secrete excessive levels of ACTH, but they are unresponsive to the resulting elevated
cortisol levels. An immediate question is whether, in such a situation, an algorithm could
(automatically) detect that an inappropriate amount of ACTH was being secreted. Also
in Figure 1 are LH profiles for pre- and post-menopausal females. The premenopausal LH
was obtained during the beginning (early follicular) phase of the menstrual cycle, where
the levels of estrogen and progesterone are comparable to those of a postmenopausal
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female. Hence, the LH differences represent the effects of aging. An interesting second
question is whether an algorithm, based upon observed levels of LH concentration, could
assess how close a premenopausal female is to menopause (i.e., calculate a “biological
age”). In Figures 2-3 are displayed, for each of the four concentration profiles, the T (the
collections of putative pulse sets) and the surfaces from which they were constructed
(Section 3.1).

Let ŝ = (Tm̂, θ̂) be a realization from the posterior measure on S = T × Θ, so that
there are m̂ pulse times: Tm̂ and

θ̂ = (β̂0, α̂1, α̂2, η̂1, η̂2, β̂1, β̂2, β̂3, σ̂A, σ̂ε).

For this value, one can then calculate the conditional expectation of the unobserved
secretion rate Z(·), based upon the data Y :

Ẑ(ti)
def= Eŝ(Z(ti)|Y ) = β̂0+

∑
Tj≤ti

[η̂0+η̂1×(Tj−Tj−1) + Âj ]ψ̂(ti−Tj), for ti, i = 1, . . . , n,

where one first calculates: Âj = Eŝ(Aj |Y ), the “predicted” value of the random com-
ponent of the j-th pulse mass Mj , j = 1, . . . , m̂, and where ψ̂ is

ψ̂(r) =
β̂3

Γ(β̂1)β̂
(β̂1β̂3)
2

r(β̂1β̂3)−1e−(r/β̂2)
β̂3

.

From the estimated elimination rates α̂1, α̂2, one can then reconvolve Ẑ with a biexpo-
nential elimination rate and obtain the corresponding “fit” to the data:

X̂(t) = (a(1)e−α̂1t + a(2)e−α̂2t) X(0) +
∫ t

0

(a(1)e−α̂1(t−s) + a(2)e−α̂2(t−s)) Ẑ(s) ds.

In Figures 4-5 are displayed the results of this methodology for the ACTH and LH
data, respectively. For each of these, in the top panels are displayed the resulting 100
realizations, respectively, of X̂(·), Ẑ(·), ψ̂(·). Then, in the bottom panels are probability
distributions, based upon the 100 realizations, for various statistics of interest: # pulses,
half-lives of elimination, 24-hr total basal and total pulsatile secretions, and mass per
pulse. Also, there is a circadian rhythm influence on ACTH (via the hypothalamus),
with stronger ACTH secretion at night. In Cushing’s disease, the circadian rhythm
will be significantly lost; a measure of this was included in the estimation (a day/night
change in the ψ function). From such probability distributions, one can then calculate
the probability statements described in the Introduction. The results are summarized in
Table 1. Interestingly, Cushing’s disease doesn’t seem to induce a change in the pulse
frequency, but mainly in pulse mass. Menopause, on the other hand, appears to induce
an increase in both frequency and mass. Neither situation appears to affect the rates of
elimination. An additional application appears in Keenan, Chattopadhyay and Veldhuis
[10] and Chattopadhyay [3].

6. Summary. The brain signals to the pituitary gland intermittently, thereby gov-
erning the secretion of blood-borne hormones that regulate growth, metabolism, repro-
duction and stress-related adaptations throughout the human lifespan. Development,
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Table 1. ACTH and LH Posterior Distributions Summary Statistics

ACTH - Quantiles (.05, .25, .5, .75, .95) and (Mean, SD)
ACTH (Healthy) ACTH (Cushing’s Disease)

Slow half-life 8, 22, 24, 25, 25 13, 17, 18, 19, 21
(min) (21.6, 5.6) (18, 2)
Total basal secretion 0, 0, 14, 81, 631 3957, 4776, 5561, 6229, 7394
(pg/mL) (106, 199) (5525, 1024)
Total secretion 1106, 1130, 1163, 1283, 2960 7006, 7502, 7789, 8360, 10004
(pg/mL) (1406, 568) (8015, 838)
Number of pulses 19, 19, 19, 25, 28 19, 19, 24, 28, 32

(22, 4) (25, 4)
Mass per pulse 47, 53, 67, 74, 154 265.1, 296, 371, 420, 478
(pg/mL) (74, 32) (365, 74)
Change point 1213, 1229, 1238, 1248, 1270 1248.7, 1429, 1443, 1450, 1450
(min) (1237, 23) (1417, 87)

LH - Quantiles (.05, .25, .5, .75, .95) and (Mean, SD)
LH (Pre-M) LH (Post-M)

Slow half-life 46, 52, 54, 56, 60 109, 117, 120, 125, 148
(min) (54, 4) (122, 10)
Total basal secretion 14, 28, 34, 36, 41 161, 207, 231, 257, 314
(IU/L) (32, 8) (231, 53)
Total secretion 109, 116, 118, 122, 136 720, 826, 856, 886, 931
(IU/L) (119, 7) (853, 54)
Number of pulses 18, 18, 18, 19, 24 28, 28, 28, 28, 31

(19, 2) (28, 1)
Mass per pulse 6, 6, 7, 7, 7 28, 31, 32, 33, 36
(IU/L) (7, 1) (32, 2)

aging and disease modify neuroendocrine control. However, only pituitary output is ob-
servable in the human. In the present paper, a methodology was developed and justified
by which one can make probability statements about the underlying pulsing, secretion
and elimination parameters, based upon the pituitary output. The algorithm consisted
of two stages. In the first stage, the data (a hormone concentration time-profile) is “se-
lectively smoothed” by a nonlinear parabolic PDE whose diffusion coefficient is inversely
related to the degree of rapid increase. This process generates a collection of potential
pulse time sets (T). In the second stage, a prior probability measure is placed on T×Θ,
and via an algorithm which alternates between a Metropolis algorithm on T and a time-
homogeneous diffusion on Θ, simulation from the posterior measure is achieved. It was
then applied to ACTH and LH data.
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Fig. 4. Top: For ACTH, healthy subject (left) and Cushings’s disease (right), 100
samples from the posterior distribution, based upon the data. The resulting fits,
secretion rates, and the rates of release are displayed. Bottom: The estimated
posterior distributions of various parameters.
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Fig. 5. Top: For LH, Premenopausal (left) and Postmenopausal (right), 100 sam-
ples from the Posterior distribution, based upon the data. The resulting fits,
secretion rates, and the rates of release are displayed. Bottom: The estimated
posterior distributions of various parameters.
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