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Abstract. An Itô-Skorokhod bilinear equation driven by infinitely many independent
colored noises is considered in a normal triple of Hilbert spaces. The special feature of
the equation is the appearance of the Wick product in the definition of the Itô-Skorokhod
integral, requiring innovative approaches to computing the solution. A chaos expansion of
the solution is derived and several truncations of this expansion are studied. A recursive
approximation of the solution is suggested and the corresponding approximation error
bound is computed.

1. Introduction. Stochastic differential equations driven by Gaussian white noise
are well-studied; see, for example, the book [35] for ordinary differential equations and
the book [37] for equations with partial derivatives. The underlying stochastic process
in these equations is the standard Brownian motion W , which is a square-integrable
Gaussian martingale with continuous trajectories and independent increments. A lot
less is known about equations driven by colored noise, when the underlying process is
still Gaussian, but no longer has independent increments. An important example is the
fractional Brownian motion WH , H ∈ (0, 1), which coincides with the standard Brownian
motion W for H = 1/2 and is not a semi-martingale for all H �= 1/2. It is the lack of
the semi-martingale property that makes the analysis difficult at the very basic level,
the definition of the corresponding stochastic integral. Several versions of the stochastic
integral with respect to WH have been proposed [1, 12, 13, 14, 23, 26, 38]. Unlike
the standard Brownian motion, different approaches such as Itô-type vs. Stratonovich-
type integral or path-wise vs. mean-square definition, become much more difficult to
reconcile. The paper by V. Pipiras and M. Taqqu [36] describes the main difference
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between integration with respect to W and WH for H �= 1/2 and demonstrates the
resulting technical difficulty. Beside a purely theoretical interest, fractional Brownian
motion appears to be a natural replacement of the standard Brownian motion in certain
applied problems [3, 4, 5, 9, 19, 22]. In many such problems, it is possible to avoid most
of the technical issues related to the definition of the stochastic integral by considering
additive noise.

One way to streamline the analysis of differential equations driven by multiplicative
noise (also known as bilinear equations) is to use the Wick product. It is known [18]
that, with standard Brownian motion, the Wick product and the usual calculus lead to
the same results as the usual product and the Itô calculus. While the use of the Wick
product has been questioned as a modeling tool for certain applications in economics and
finance [8], it is still an effective tool for theoretical investigations, corresponding to the
Itô-Skorokhod integral in the white noise analysis.

A successful study of differential equations driven by multiplicative colored noise also
requires a convenient representation of the underlying Gaussian process. Traditionally, a
Gaussian process is defined by its mean and covariance functions, but then the definition
of the integral immediately leads to a number of technical conditions on these functions
[2]. An alternative definition is possible [29] by combining the ideas from the theory of
generalized Gaussian fields [15, 30], the white noise theory [17, 18], and the Malliavin
calculus [31, 34]. This approach to stochastic integration is used in this paper and is
outlined in Section 2

Numerical methods for stochastic ordinary differential equations driven by white noise
are a well-developed subject [24, 32]. Equations with partial derivatives have been mostly
studied in connection with optimal nonlinear filtering [6, 7, 16, 20, 21]. In the end, all
these numerical methods have obvious counterparts in the numerical analysis of the deter-
ministic equations (Galerkin method, Euler method, finite difference and finite element
methods, operator splitting method, etc.).

The main difficulty in the numerical analysis of equations driven by colored noise
is the use of the Wick product: unlike the usual product, the Wick product is not an
operation readily performed by a computer. Since the Wick product is relatively easy
to compute for Hermite polynomials of Gaussian random variables, an implementation
of this operation should be based on the chaos expansion, and then a truncation of this
expansion becomes a natural numerical approximation of the solution.

While a truncated chaos expansion has been investigated before as an approximation
of the solution of a stochastic equation, in particular, for equations of optimal nonlinear
filtering [10, 27, etc.], this approximation was always just another possibility of solving the
equation numerically. By contrast, for equations driven by colored noise, chaos expansion
appears to be the only possibility to compute the solution. The chaos expansion of the
solution of a bilinear equation driven by infinitely many independent colored noises is
studied below in Section 3; various truncations of this expansion are studied in Section
4.

2. Colored noise. Let (Ω,F , P) be a complete probability space.
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Definition 2.1. (a) A colored noise X on L2((0, T )) with the covariance operator
R is a collection of zero-mean Gaussian random variables X(f), f ∈ L2((0, T )), with the
property

E

(
X(f)X(g)

)
=
∫ T

0

(Rf)(s)g(s)ds, f, g ∈ L2((0, T )), (2.1)

where R is a bounded linear operator on L2((0, T )).
(b) A representation operator of X is a bounded linear operator K on L2((0, T ))

such that KK∗ = R, where K∗ is the adjoint of K.
Remark 2.2. (a) The white noise on L2((0, T )) corresponds to R = I, the identity

operator [17].
(b) Since R is a selfadjoint nonnegative operator, a representation operator always

exists.
For t > 0 let

χt(s) =

{
1, 0 ≤ s ≤ t,

0, otherwise,

denote the characteristic function of the interval [0, t].
Example 2.3. If X is white noise, then direct computations show that W (t) = X(χt)

is a standard Brownian motion and

X(f) =
∫ T

0

f(s)dW (s), f ∈ L2((0, T )). (2.2)

Example 2.4 (Ornstein-Uhlenbeck Noise). For b > 0 and t, s ∈ [0, T ] define

K(t, s) = −be−b(t−s).

Then the operator

K : f(t) �→ (Kf)(t) = f(t) +
∫ t

0

K(t, s)f(s)ds

is bounded on L2((0, T )):∫ T

0

|(Kf)(s)|2ds ≤ (1 +
√

bT )2
∫ T

0

|f(s)|2ds.

If X is the colored noise corresponding to the representation operator K, then a straight-
forward computation shows that X(χt), t ∈ (0, T ), is the Ornstein-Uhlenbeck process
with covariance

E
(
X(χt)X(χs)

)
= e−b|t−s|.

Accordingly, we call X the Ornstein-Uhlenbeck noise with parameter b.
Example 2.5 (Fractional White Noise). For H ∈ (1/2, 1) and t, s ∈ [0, T ] define

K(t, s) = CH

(
H − 1

2

)(
t

s

) 1
2−H

(t − s)H− 3
2 χt(s),

where

CH =

(
2HΓ

(
3
2 − H

)
Γ
(
H + 1

2

)
Γ(2 − 2H)

) 1
2
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and Γ is the Gamma function. Then the operator

K : f(t) �→ (Kf)(t) =
∫ t

0

K(t, s)f(s)ds

is bounded on L2((0, T )) [29, 33]:∫ T

0

|(Kf)(s)|2ds ≤
H(2H − 1) Γ

(
H − 1

2

)
Γ
(
H + 1

2

) T 2H−1

∫ T

0

|f(s)|2ds. (2.3)

If X is the colored noise corresponding to the representation operator K, then X(χt), t ∈
(0, T ), is the fractional Brownian motion with Hurst parameter H [33]. Accordingly, we
call X the H-fractional white noise.

In general, if X is a colored noise on L2((0, T )), then X(t) = X(χt) is a zero-mean
Gaussian process. Thus, one can interpret X as a collection of integrals

∫ T

0
f(s)dX(s)

for deterministic f ∈ L2((0, T )). Our study of bilinear equations (linear equations with
multiplicative noise) requires an extension of X to random f and is based on the following
generalization of (2.2).

Proposition 2.6. For every colored noise X on L2((0, T )) with a representation operator
K, there exists a unique standard Brownian motion W = W (t) such that

X(f) =
∫ T

0

(K∗f)(s)dW (s), f ∈ L2((0, T )). (2.4)

Proof. Relation (2.4) certainly defines a colored noise on L2((0, T )); we omit the
technical proof that the corresponding Brownian motion can be found for every colored
noise X [29]. �

Definition 2.7. A pair (K, W ), where K is a bounded linear operator on L2((0, T ))
and W is a standard Brownian motion, is called a representation of the colored noise
X if (2.4) holds.

For random f , we now define X(f) according to (2.4), where the stochastic integral is
understood in the Itô-Skorokhod sense [34]. An equivalent, but less convenient, defi-
nition of X(f) for random f is possible in intrinsic terms without using a representation
of X [29].

3. Chaos solution: Existence and regularity. Let (Ω,F , P) be a complete prob-
ability space and X�, � ≥ 1, a collection of independent colored noises on L2((0, T )).

In this section we study the equation

u(t) = u0 +
∫ t

0

(Au(s) + F (s))ds +
∞∑

�=1

X�(χtB�u + χtG�), (3.1)

t ∈ [0, T ], in a normal triple (X,H,X′) of Hilbert spaces. In particular, we assume that
A and each B� are bounded linear operators from X to X′, u0 ∈ L2(Ω;X′), F, G� ∈
L2(Ω; L2((0, T );X′)).

Remark 3.1. While it is tempting to rewrite (3.1) as

u(t) = u0 +
∫ t

0

(Au(s) + F (s))ds +
∞∑

�=1

∫ t

0

(B�u(s) + G�(s))dX�(s), (3.2)
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where X�(t) = X�(χt), we will use a more rigorous form (3.1).
By analogy with equations driven by white noise [37], we define a variational

solution of (3.1) as a random element u with values in L2(Ω; L2((0, T );X)) such that,
for every v ∈ X, the equality

(u(t), v)H = 〈u0, v〉 +
∫ t

0

〈(Au(s) + F (s)), v〉ds +
∞∑

�=1

X�(χt〈B�u + G�, v〉) (3.3)

holds in X′ on the same set of probability one for all t ∈ [0, T ]; by 〈·, ·〉 we denote the
duality between X′ and X relative to the inner product (·, ·)H of H.

Unfortunately, the current development of the colored noise calculus is not sufficient to
establish existence of a variational solution of (3.1). Accordingly, we introduce a weaker
notion of solution, called a chaos solution, using a Fourier series expansion in the space
of square integrable random processes.

We start with some auxiliary constructions. Let (K�, W�) be a representation of the
colored noise X� and let {hk, k ≥ 1} be an orthonormal basis in L2((0, T )). Define the
random variables

ξk� =
∫ T

0

hk(t)dW�(t). (3.4)

Let J be the collection of multi-indices α = {αk�, k, � ≥ 1}. Each α ∈ J has non-
negative integer elements αk� and

∑
k,� αk� < ∞. We will use the notation

|α| =
∑
k,�

αk�, α! =
∏
k,�

αk�!. (3.5)

By (0) we denote the multi-index α with |α| = 0 and by εij , the multi-index α with
|α| = 1 and αij = 1.

Remark 3.2. If there is only one colored noise, then the entries of α have only one
index: α = {αk, k ≥ 1}.

For α ∈ J define

ξα =
∏

k,�≥1

Hαk�
(ξk�)√

αk�!
, (3.6)

where, for an integer n ≥ 0, Hn = Hn(t) is the n-th Hermite polynomial

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2. (3.7)

Recall the definition of the Wick product [18]:

Hm(ξij) � Hn(ξk�) =

{
Hm+n(ξij), if i = k and j = �,

Hm(ξij)Hn(ξk�), otherwise.
(3.8)

In particular, for m ≥ 1,
Hm(ξk�) = ξk� � · · · � ξk�︸ ︷︷ ︸

m times

. (3.9)

Then every multi-index α is uniquely characterized by the collection{(k1,�1), . . . ,(kn,�n)},
called the characteristic set of α, such that k1 ≤ k2 ≤ · · · ≤ kn, �i ≤ �i+1 if ki = ki+1,
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and

ξα =
ξk1�1 � ξk2�2 � · · · � ξkn�n√

α!
. (3.10)

Proposition 3.3. (a) The collection {ξα, α ∈ J } is an orthonormal basis in the space
of square integrable random variables that are measurable with respect to the σ-algebra
FW generated by the Brownian motions W�, � ≥ 1, on [0, T ].

(b) Let η be a square-integrable FW -measurable random element with values in
L2((0, T )). Define

ηα(t) = E(ηk(t)ξα). (3.11)

Then

X�(η) =
∑
α∈J

⎛⎝∑
k≥1

√
αk�

∫ T

0

ηα−εk�
(s)(K�hk)(s)ds

⎞⎠ ξα (3.12)

as long as the series in α converges in the mean square (the inner sum always contains
finitely many nonzero terms).

Proof. Part (a) is a classical result of Cameron and Martin [11]. Part (b) follows from
the definition of the Itô-Skorokhod integral in terms of the Wick product [29].

�
Let us now assume that equation (3.1) has a variational solution u and

u(t) =
∑
α∈J

uα(t)ξα. (3.13)

Substituting this representation into (3.1) and using (3.12), we conclude that each uα,
which is nonrandom, satisfies

uα(t) = u0,α +
∫ t

0

(
Auα(s) + Fα(s)

)
ds

+
∞∑

k,�=1

√
αk�

∫ t

0

(
B�uα−εk�

(s) + G�,α−εk�
(s))(K�hk)(s)ds,

(3.14)

where u0,α = E(u0ξα), Fα(t) = E(F (t)ξα), G�,α(t) = E(G�(t)ξα). This observation
motivates the following definition of the chaos solution.

Definition 3.4. (a) The collection of functions {uα, α ∈ J } is called a chaos

solution of equation (3.1) if every uα is an element of L2((0, T );X) and the system
of equalities (3.14) holds in X′ for all t ∈ [0, T ]. The chaos solution is called square

integrable if
sup

0<t<T

∑
α∈J

‖uα(t)‖2
H < ∞. (3.15)

(b) The system of equalities (3.14) is called the S-system corresponding to equation
(3.1).

Remark 3.5. (a) If {uα, α ∈ J } is a square integrable chaos solution, then, for each
t ∈ [0, T ], u(t) =

∑
α∈J uα(t)ξα is an element of L2(Ω;H), but still there is no guarantee

that u is a variational solution.
(b) Uniqueness of the chaos solution implies uniqueness of the variational solution.
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To establish existence and uniqueness of the chaos solution, we look at (3.1) as a
system of equations. To solve this system, we make the following assumptions:

A1 The operator A is bounded linear from X to X′ and is strongly parabolic:
there exist a positive number δA and a real number CA such that, for all v ∈ X,

〈Av, v〉 + δA‖v‖2
X ≤ CA‖v‖2

H. (3.16)

A2 Each X�, � ≥ 1, is a colored noise on L2((0, T )) with a representation operator
K�, and each K� is a bounded linear operator on L2((0, T )) with the operator
norm K� :∫ T

0

|(K�f)(s)|2ds ≤ K
2
�

∫ T

0

f2(s)ds, f ∈ L2((0, T )). (3.17)

A3 The functions u0, F, G�, � ≥ 1, are nonrandom and the X�, � ≥ 1, are jointly
independent.

A4 Each B� is a bounded linear operator on H with the operator norm C�:

‖B�v‖H ≤ C�‖v‖H, v ∈ H. (3.18)

A5 The following regularity conditions hold:

I0 = ‖u0‖2
H +

2
δA

∫ T

0

‖F (t)‖2
X′dt +

∞∑
�=1

K
2
�

∫ T

0

‖G�(t)‖2
Hdt < ∞, (3.19)

CB =
∞∑

�=1

K
2
� C2

� < ∞. (3.20)

Theorem 3.6. Under Assumptions A1–A5, equation (3.1) has a unique chaos solution.
The solution is square integrable and satisfies

sup
0<t<T

E‖u(t)‖2
H ≤ Coe

(CA+CB)T I0, (3.21)

where CA > 0 is from (3.16) and 1 ≤ Co ≤ 3. In particular, Co = 1 if F = G� = 0.

Proof. Under Assumption A3, the S-system (3.14) corresponding to equation (3.1)
becomes

u(0)(t) = u0 +
∫ t

0

Au(0)(s)ds +
∫ t

0

F (s)ds, |α| = 0;

uεij
(t) =

∫ t

0

Auεij
(s)ds +

∫ t

0

(
Bju(0)(s) + Gj(s)

)
(Kjhi)(s)ds, |α| = 1;

uα(t) =
∫ t

0

Auα(s)ds +
∞∑

k,�=1

√
αk�

∫ t

0

B�uα−εk�
(s)(K�hk)(s)ds, |α| > 1.

(3.22)

Indeed, by Assumption A3, if |α| > 0, then E(u0ξα) = 0, E(F (t)ξα) = 0, and E(G�ξα) =
0.

The following proposition provides a key estimate for the solution of this system and
is the main step in the proof of Theorem 3.6.
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Proposition 3.7. Under Assumptions A1–A6, for every 0 ≤ t ≤ T and k ≥ 1,∑
α∈J
|α|=k

‖uα(t)‖2
H ≤ Coe

CAT

(
(CB T )k

k!

(
‖u0‖2

H +
2
δA

∫ T

0

‖F (s)‖2
X′ds

)

+
(CBT )k−1

(k − 1)!

∞∑
�=1

K
2
�

∫ T

0

‖G�(s)‖2
Hds

)
.

(3.23)

Proof. Given v0 ∈ H and ψ ∈ L2((0, T );X′), consider a deterministic evolution equa-
tion

v(t) = v0 +
∫ t

0

(Av(s) + ψ(s))ds. (3.24)

By definition, v ∈ L2((0, T );X) is a solution of (3.24) if equality (3.24) holds in X′ for
every t ∈ [0, T ].

It is known [37, Theorem 3.1.4] that, if the operator A is strongly parabolic, then:
• The operator A generates a semigroup Φ = Φt, t ≥ 0, in the space H.

• The semigroup Φ has the following properties:

‖Φtv‖2
H ≤ eCAt‖v‖2

H, v ∈ H; (3.25)

∥∥∥∥∫ t

0

Φt−sf(s)ds

∥∥∥∥2

H

≤ 2
δA

eCAt

∫ t

0

‖f(s)‖2
X′ds, f ∈ L2((0, T );X′). (3.26)

• The solution of (3.24) is unique and can be written as

v(t) = Φtv0 +
∫ t

0

Φt−sψ(s)ds. (3.27)

We use these results to study the system of equations (3.22). It follows by induction
on |α| that if |α| = k with the characteristic set {(i1, �1), . . . , (ik, �k)}, and Pk is the set
of all permutations of {1, 2, . . . , k}, then the solution of (3.22) is unique and is given by

uα(t) =
1√
α!

∑
σ∈Pk

∫ t

0

∫ sk

0

. . .

∫ s2

0

Φt−sk
B�σ(k) · · ·Φs2−s1

(
B�σ(1)u(0)(s1)

+ G�σ(1)(s1)
)
(K�σ(k)hiσ(k))(sk) · · · (K�σ(1)hiσ(1))(s1)ds1 . . . dsk.

(3.28)

We then rewrite (3.28) as

uα(t) =
∫

[0,T ]k
H(t, �(k); s(k))hα(s(k))ds1 . . . dsk, (3.29)

where

H(t, �(k); s(k)) =
1√
k!

∑
σ∈Pk

Φt−sσ(n)B�n
· · ·Φsσ(2)−sσ(1)

(
B�1u(0)(sσ(1))

+ G�1(sσ(1))
)
χsσ(2)(sσ(1)) · · ·χt(sσ(k))

(3.30)

and
hα(s(k)) =

1√
α! k!

∑
σ∈Pk

(K�1hi1)(sσ(1)) · · · (K�k
hik

)(sσ(k)). (3.31)
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From (3.29) and the definition of the function H, we conclude that

∑
α∈J
|α|=k

‖uα(t)‖2
H ≤

∞∑
�1,...,�k=1

⎛⎝ k∏
j=1

K
2
�j

⎞⎠∫ t

0

∫ sk

0

. . .

∫ s2

0

∥∥∥Φt−sk
B�k

· · ·Φs2−s1

(
B�1u(0)(s1) +G�1(s1)

)∥∥∥2

H
ds1 . . . dsk.

(3.32)

By (3.22) and (3.27),

u(0)(t) = Φtu0 +
∫ t

0

Φt−sF (s)ds, (3.33)

and then the properties (3.25) and (3.26) of the semigroup Φ imply that

‖B�u(0)(t) + G�(t)‖2
H ≤ Co

(
C2

� eCAt‖u0‖2
H +

2
δA

C2
� eCAt

∫ t

0

‖F (s)‖2
X′ds + ‖G�(t)‖2

H

)
,

where Co = 3, as the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) suggests. On the other
hand, Co = 1 if F = G� = 0. Applying (3.25) repeatedly, we find

‖Φt−sk
B�k

· · ·Φs2−s1

(
B�1u(0)(s1) + G�1(s1)

)
‖2
H

≤ C2
�k

eCA(t−sk)‖Φsk−sk−1B�k−1 · · ·Φs2−s1

(
B�1u(0)(s1) + G�1(s1)

)
‖2
H ≤ . . .

≤ Co

⎛⎝ k∏
j=2

C2
�j

⎞⎠ eCAt

(
C2

�1‖u0‖2
H +

2
δA

C2
�1

∫ T

0

‖F (s)‖2
X′ds + ‖G�1(s1)‖2

H

)
.

(3.34)

Inequality (3.23) now follows from (3.32).
Proposition 3.7 is proved. �
To complete the proof of Theorem 3.6 it remains to note that uniqueness of the chaos

solution is equivalent to uniqueness of the solution of (3.22) and is guaranteed by the
strong parabolicity of the operator A. Then∑

α∈J
‖uα(t)‖2

H = ‖u(0)(t)‖2
H +

∑
k≥1

∑
α∈J
|α|=k

‖uα(t)‖2
H, (3.35)

and (3.21) follows from (3.23). �
As a first step toward studying the approximation of the chaos solution, we get

Corollary 3.8. Let F = G� = 0 and, for N ≥ 1, define

uN (t) =
∑
α∈J
|α|≤N

uα(t)ξα. (3.36)

Then

sup
0<t<T

E‖u(t) − uN (t)‖2
H ≤ (CBT )N+1

(N + 1)!
e(CA+CB)T ‖u0‖2

H. (3.37)

Proof. We have
E‖u(t) − uN (t)‖2

H =
∑
α∈J

|α|≥N+1

‖uα(t)‖2
H, (3.38)
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because

E(ξαξβ) =

{
1 if α = β,

0 otherwise.
(3.39)

Then (3.37) follows from (3.23). �
Remark 3.9. The conclusions of the theorem are valid even if the operators A, B�

depend on time in a sufficiently regular way, as long as Assumptions A1 and A3 hold
uniformly in t ∈ [0, T ].

There are at least two open problems related to the chaos solution of equation (3.1):
(1) To find out whether the solution belongs to

L2(Ω; L2((0, T ); X)) ∩ L2(Ω; C((0, T ); H));

this is true when every X� is a white noise over L2((0, T )) [28, Theorem 3.8].
(2) To establish existence of the solution when the operators B� are unbounded on

H.

4. Approximation of the chaos solution.
4.1. One-step approximation.
4.1.1. Motivation. If V is a Hilbert space, f ∈ V, and {mk, k ≥ 1} is an orthonormal

basis in V, then ∑
k≥1

|(f, mk)V|2 < ∞,

but nothing can be said about the rate of this convergence, that is, about the rate at
which

∞∑
k=n

|(f, mk)V|2

tends to zero as n → ∞: taking V = L2((0, T )) with a trigonometric basis, one can
construct a function for which this convergence will be arbitrarily slow.

In the study of the chaos solution, we are facing a similar problem. In fact, the
underlying Hilbert space is the space of square integrable random processes, the study of
the rate of convergence for the “natural” approximations of the chaos solution is reduced
to the analysis of certain Fourier series in L2((0, T )).

As an illustration, consider the following equation:

u(t, x) = u0 +
∫ t

0

uxx(s, x)ds + X(χt h(·, x)u(·, x)), t ≥ 0, x ∈ R, (4.1)

where X is a colored noise on L2((0, T )) with representation (K, W ).
If u0 ∈ L2(R) is nonrandom, and h = h(t, x) is a bounded nonrandom function, then

Theorem 3.6 implies that (4.1) has a unique square-integrable chaos solution u(t, x) =∑
α∈I uα(t, x)ξα, where

∂u(0)

∂t
=

∂2u(0)

∂x2
, u(0)(0, x) = u0(x),

∂uα

∂t
=

∂2uα

∂x2
+

∞∑
k=1

√
αk huα−εk

Kmk, uα(0, x) = 0, |α| > 0,

(4.2)



CHAOS SOLUTIONS 509

and {mk, k ≥ 1} is an orthonormal basis in L2((0, T )); with only one colored noise
driving the equation, every multi-index has the form α = {α1, α2, . . .}.

Denoting the heat semigroup by Φt, we find

u(0)(t) = Φtu0(x) (4.3)

and

uεk
(t, x) =

∫ t

0

Φt−shΦsu0(s, x)(Kmk)(s)ds. (4.4)

Let us define an approximation un
1 (t, x) of u(t, x) by

un
1 (t, x) = u(0)(t, x) +

n∑
k=1

uεk
(t, x)ξk. (4.5)

What can we say about the quality of this approximation? For example, can we find a
bound on sup0<t<T E‖u − un

1‖2
L2(R)(t) in terms of n and T?

Since u(t, x) =
∑

α∈I uα(t, x)ξα and (3.39) holds, we have

E‖u − un
1‖2

L2(R)(t) =
∑

α∈I, |α|>1

‖uα‖2
L2(R)(t) +

∞∑
k=n+1

‖uεk
‖2

L2(R)(t). (4.6)

Using the properties of the heat semigroup on R and Corollary 3.8, we find

sup
0<t<T

∑
α∈I, |α|>1

‖uα‖2
L2(R)(t) ≤ (CBT )2eCBT , (4.7)

where CB = ‖K‖ sup
t,x

|h(t, x)|2.

As a result, to find the quality of the approximation, we need to find the rate of
convergence of the series

∑∞
k=1 ‖uεk

‖2
L2(R)(t). This rate of convergence is determined by

the rate of decay, as k → ∞, of ‖uεk
‖2

L2(R)(t), and, as equality (4.4) suggests, one way to
determine this rate is to integrate by parts. Accordingly, setting

M̃k(t) =
∫ t

0

(Kmk)(s)ds, (4.8)

and using the properties of the heat semigroup, we get

uεk
(t, x) = Φt−s(h(s, ·)u(0)(s, ·))(x)M̃k(s)

∣∣∣s=t

s=0

−
∫ t

0

(
Φt−sh(Φsu0)xx −

(
Φt−shΦsu0

)
xx

)
M̃k(s)ds.

(4.9)

Note that (4.8) and the Cauchy-Schwarz inequality imply

|M̃k(t)| ≤ C
√

t, (4.10)

and so M̃k(0) = 0. Still, to advance our study of the rate of convergence any further, we
need

(1) additional regularity of u0 and h;
(2) rather detailed information about the functions M̃k.
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If we indeed assume all the necessary regularity of u0 and h, then (4.9), together with
the Cauchy-Schwarz inequality, implies

‖uεk
‖2

L2(R)(t) ≤ C1‖u0‖2
L2(R)|M̃k(t)|2 + C2

∥∥∥∥∂2u0

∂x2

∥∥∥∥2

L2(R)

t

∫ t

0

|M̃k(s)|2ds. (4.11)

To continue, assume that

m1(s)=
1√
T

; mk(t)=

√
2
T

cos
(

π(k − 1)t
T

)
, k > 1; 0 ≤ t ≤ T. (4.12)

With this choice of the basis, we use (4.8) to find that, for k > 1:
(1) If X is white noise (K = I), then

M̃k(t) =
√

2T

π(k − 1)
sin
(

π(k − 1)t
T

)
. (4.13)

(2) If X is the Ornstein-Uhlenbeck noise with parameter b, then

M̃k(t) =

√
2T 3

b2T 2 + (k − 1)2π2

(
b cos

(
π(k − 1)t

T

)
− be−bt

+
(k − 1)π

T
sin
(

π(k − 1)t
T

))
.

(4.14)

(3) If X the H-fractional white noise and 1/2 < H < 1, then

|M̃k(t)| ≤ C(H)t2H−1T 1−H

k
3
2−H

(4.15)

for some number C(H) depending only on H.
Relation (4.11) suggests that the rate of convergence will be quite different for different
X, and we are essentially forced to make the following assumptions about the functions
M̃k:

sup
0<t<T

|M̃k(t)|2 ≤ C̃
T δ

kγ
for δ > 0, γ > 1, C̃ > 0, (4.16)

|M̃k(T )|2 ≤ C̃
T δ1

kγ1
for δ1 > 0, γ1 > 1, C̃ > 0. (4.17)

In both (4.16) and (4.17), the number C̃ should not depend on T or k.
It is enough to have (4.16) and (4.17) for some orthonormal basis {mk, k ≥ 1} in

L2((0, T )), but for now the cosine basis (4.12) is the only example when these assump-
tions can be verified. Below, we summarize the results for the white noise W , fractional
white noise WH , 1/2 < H < 1, and the Ornstein-Uhlenbeck noise Ub, b > 0, when the
cosine basis (4.12) is used.

Remark 4.1. (a) In the case of W , with mk as in (4.12), we have M̃k(T ) = 0 for all
k ≥ 2, and then indeed any choice of δ1, γ1 will work in (4.17).

(b) Inequality (4.11) shows that assumptions (4.16) and (4.17) are close to necessary
for the analysis of convergence of the chaos expansion.
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Table 1

δ γ δ1 γ1

W 1 2 Any Any

WH 2H 3 − 2H 2H 3 − 2H

Ub 1 2 3 4

(c) As equality (4.9) suggests, no further integration by parts will, in general, improve
the rate of convergence.

Under assumption (4.16), we conclude from (4.11) that, for n > 1,

sup
0<t<T

∞∑
k=n

‖uεk
‖2

L2(R)(t) ≤ C̃1‖u0‖2
L2(R)

T δ

nγ−1
+ C̃2

∥∥∥∥∂2u0

∂x2

∥∥∥∥2

L2(R)

T δ+2

nγ−1
. (4.18)

With assumption (4.17), we also get

∞∑
k=n

‖uεk
‖2

L2(R)(T ) ≤ C̃1‖u0‖2
L2(R)

T δ1

nγ1−1
+ C̃2

∥∥∥∥∂2u0

∂x2

∥∥∥∥2

L2(R)

T δ+2

nγ−1
. (4.19)

Inequality (4.18) establishes an approximation error bound uniformly over the time
interval (0, T ), while (4.19) gives the bound only at the end point. If T is small, and
if we can take δ1 > δ, γ1 > γ, which is the case for X = B and X = Ub, then (4.19)
provides a better error bound than (4.18) and is more suitable for analyzing a step-by-step
approximation.

By combining (4.7) with either (4.18) or (4.19), we will get the overall bound on
the approximation error; for white, fractional, or Ornstein-Uhlenbeck noise, we also use
Table 1. For example, when X = WH , 1/2 < H < 1, we have ‖K‖2 ≤ C(H)T 2H−1 (see
Example 2.5) and therefore, for T ≤ 1,

sup
0<t<T

E‖u − un
1‖2

L2(R)(t) ≤ C∗
(

T 4H +
T 2H

n2−2H

)
. (4.20)

In the next section, we extend this result to more general equations and more general
approximations.

4.1.2. Truncation of the S-system. Consider the following evolution equation:

u(t) = u0 +
∫ t

0

Au(s)ds +
∞∑

�=1

X�(χtB�u), (4.21)
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and assume that this equation has a unique square-integrable chaos solution u in a normal
triple (X,H,X′) of Hilbert spaces. We also assume that u has the chaos expansion

u(t) =
∑
α∈J

uα(t)ξα. (4.22)

As before, we assume that u0 is deterministic and every colored noise X� has a represen-
tation (K�, W�).

The first step is to find a general method of constructing an approximation of u given
the expansion (4.22). A natural approximation is

u(t) =
∑
α∈J

uα(t)ξα, (4.23)

where J is a finite subset of J . To control the size of this finite set, we use three
characteristics of a multi-index:

|α| =
∑
k,�

αk�, �(α) = max{k : αk� > 0}, d(α) = max{� : αk� > 0}.

For example, if

α =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 0 3 0 0 · · ·
0 0 0 1 0 0 0 2 0 · · ·
1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎠ ,

then |α| = 1+1+3+1+2+1 = 9, �(α) = 8, d(α) = 3. We call |α| the length of the

multi-index, �(α) the order of the multi-index, and d(α) the dimension of the

multi-index. Then the set

J n,r
N = {α ∈ J : |α| ≤ N, �(α) ≤ n, d(α) ≤ r}

is finite, with no more than (nr)N elements. Note that the sets JN = {α ∈ J : |α| ≤ N}
are always infinite, and the set J n

N = {α ∈ J : |α| ≤ N, �(α) ≤ n} is infinite if and
only if there are infinitely many noises in the equation. Accordingly, we define three
approximations of u:

uN (t) =
∑

α∈JN

uα(t)ξα, un
N (t) =

∑
α∈J n

N

uα(t)ξα, un,r
N (t) =

∑
α∈J n,r

N

uα(t)ξα. (4.24)

Of the three, only un,r
N (t) is computable, being a sum of finitely many terms. Conse-

quently, our goal is to find a bound on sup
0<t<T

E‖u(t)−un,r
N (t)‖H. Recall (see (3.14)) that

the coefficients uα satisfy the S-system

u(0)(t) = u0 +
∫ t

0

Au(0)(s)ds, |α| = 0;

uα(t) =
∫ t

0

Auα(s)ds +
∞∑

k,�=1

√
αk�

∫ t

0

B�uα−εk�
(s) (Kmk)(s)ds, |α| > 0.

(4.25)
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By orthogonality of ξα for different α, we have

E‖u(t) − un,r
N (t)‖2

H =
∑

α/∈J n,r
N

E‖uα(t)‖2
H =

∑
α∈J\JN

E‖uα(t)‖2
H

+
∑

α∈JN\Jn
N

E‖uα(t)‖2
H +

∑
α∈J n

N\J n,r
N

E‖uα(t)‖2
H,

(4.26)

where \ denotes the difference of two sets. In other words, we have an analogue of the
Pythagorean theorem:

E‖u(t) − un,r
N (t)‖2

H = E‖u(t) − uN (t)‖2
H + E‖uN (t) − un

N (t)‖2
H

+ E‖un
N (t) − un,r

N (t)‖2
H,

(4.27)

and Corollary 3.8 provides an estimate for E‖u(t) − uN (t)‖2
H.

As we saw in the previous section, to estimate E‖uN (t)−un
N (t)‖2

H, we need to assume
(4.16) and (4.17) together with additional regularity of the initial condition u0 and the
operators A, B�. To formulate this regularity we need some additional constructions.

Let Hr, r ∈ R be a scale of Hilbert spaces, or a Hilbert scale [25, Section VI.1.10]
with the property that H0 = H, H1 = X, H−1 = X′. A typical example of such a scale
is the collection of the Sobolev spaces

Hr(Rd) =
{

f :
∫

Rd

|f̂(y)|2(1 + |y|2)rdy < ∞
}

, (4.28)

where f̂ is the Fourier transform of f .
To generalize the computations that led to (4.11), we make the following assumptions:

E‖u0‖2
H2 < ∞, (4.29)

‖Av‖2
H ≤ C02‖v‖2

H2 , ‖Φtv‖2
Hj ≤ eCAt‖v‖2

Hj , j = 0, 2, (4.30)

B�Bn = BnB� for all �, n, (4.31)

‖B�v‖2
H2 ≤ C2

1,�‖v‖2
H2 , v ∈ H2, and

∞∑
�=1

C2
1,�K

2
� = C1,B < ∞, (4.32)

where Φt is the semigroup generated by A.

Theorem 4.2. Assume that
• A1–A5 hold (see page 505);
• F (t) = 0 and G� = 0;
• (4.16), (4.17) hold for all X� so that the numbers δ, δ1, γ, γ1, do not depend on �;
• (4.29)–(4.32) hold.

Then

sup
0<t<T

E‖uN (t) − un
N (t)‖2

H

≤ C1,Be(CA+CB)T

(
CB

T δ

nγ−1
E‖u0‖2

H + C02C1,B
T δ+2

nγ−1
E‖u0‖2

H2

)
(4.33)



514 S. V. LOTOTSKY AND K. STEMMANN

and

E‖uN (T ) − un
N (T )‖2

H

≤ C1,Be(CA+CB)T

(
CB

T δ1

nγ1−1
E‖u0‖2

H + C02C1,B
T δ+2

nγ−1
E‖u0‖2

H2

)
, (4.34)

where CB = max(CB, C1,B).

Proof. The argument is based on integration by parts in the representation of uα(t)
(see (3.29)); while the idea and the end result are essentially identical to (4.9), the
computations are rather long. An interested reader can recover these computations
following [27], where each X is white noise. �

Remark 4.3. Similar to [27], a bound on E‖uN (t)− un
N (t)‖2

H can be derived without
condition (4.31), that is, if the operators B� do not commute.

Finally, we derive a bound on E‖un
N (t) − un,r

N (t)‖2
H.

Theorem 4.4. Assume that
• A1–A5 hold;
• F (t) = 0 and G� = 0;

Define the sequence ε = ε(r), r = 1, 2, . . . by

∞∑
�=r+1

K
2
�C

2
� = ε(r). (4.35)

Then

sup
0<t<T

E‖un
N (t) − un,r

N (t)‖2
H ≤ ε(r)Te(CA+CB)T

E‖u0‖2
H. (4.36)

Proof. We have by (3.32),

E‖un
N (t) − un,r

N (t)‖2
H ≤

N∑
k=1

k∑
j=1

∞∑
�j=r+1

∑(j)

�1,...,�k≥1

∫ t

0

∫ sk

0

. . .

∫ s2

0

‖Φt−sk
B�k

· · ·Φs2−s1B�1u(0)(s1)‖2
Hds1 . . . dsk,

where the summation
∑(j)

�1,...,�k≥1 omits the index �j . Using the assumptions of the
theorem, we conclude that

E‖un
N (t) − un,r

N (t)‖2
H ≤ eCAt

( ∞∑
�=r+1

K
2
�C

2
�

)( ∞∑
k=1

k
Ck−1

B tk

k!

)
E‖u0‖2

H,

which implies (4.36). �
Remark 4.5. If there are finitely many X�, and all of them are included in the

approximation, then ε(r) = 0 and un
N (t) = un,r

N (t).
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Combining the results of Corollary 3.8 and Theorems 4.2 and 4.4, we get the overall
error bound:

sup
0<t<T

E‖u(t) − un,r
N (t)‖2

H ≤ C(T )

(
(TCB)N+1

(N + 1)!
E‖u0‖2

H

+
T δ

nγ−1
E‖u0‖2

H +
T δ+2

nγ−1
E‖u0‖2

H2 + Tε(r)E‖u0‖2
H

)
,

(4.37)

where limT→0 C(T ) > 0. A similar bound holds for E‖u(T ) − un,r
N (T )‖2

H:

E‖u(T ) − un,r
N (T )‖2

H ≤ C(T )

(
(TCB)N+1

(N + 1)!
E‖u0‖2

H

+
T δ1

nγ1−1
E‖u0‖2

H +
T δ+2

nγ−1
E‖u0‖2

H2 + Tε(r)E‖u0‖2
H

)
,

(4.38)

Example 4.6. Consider the equation

u(t) = u0 +
∫ t

0

uxx(s)ds + X(χtu), 0 ≤ t ≤ T, x ∈ R.

With only one noise driving the equation, we have un,r
N = un

N . Also, Hr = Hr(R) is the
Sobolev space (4.28) and H = L2(R).

(a) If X is an Ornstein-Uhlenbeck noise with parameter b, then CB = (1 +
√

bT )2,
δ = 1, γ = 2 (see Table 1). Inequality (4.37) becomes

sup
0<t<T

E‖u(t) − un,r
N (t)‖2

H

≤ Cb(T )

(
(1 +

√
bT )2N+2TN

(N + 1)!
E‖u0‖2

H +
T

n
E‖u0‖2

H +
T 3

n
E‖u0‖2

H2

)
, (4.39)

where lim supT→0 Cb(T ) > 0.
(b) If X is an H-fractional white noise with H ∈ (1/2, 1), then CB = C1(H)T 2H−1,

where

C(H) =
H(2H − 1) Γ

(
H − 1

2

)
Γ
(
H + 1

2

) ; (4.40)

see (2.3). Also, δ = 2H, γ = 3 − 2H (see Table 1). Inequality (4.37) becomes

sup
0<t<T

E‖u(t) − un,r
N (t)‖2

H

≤ CH(T )

(
(C1(H))N+1T 2H(N+1)

(N + 1)!
E‖u0‖2

H +
T 2H

n2−2H
E‖u0‖2

H +
T 2H+2

n2−2H
E‖u0‖2

H2

)
,

(4.41)

where lim supT→0 CH(T ) > 0.
4.2. Step-by-step approximation.
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4.2.1. Motivation. In the previous section, we constructed an approximate solution
for equation (4.21) on the time interval [0, T ] and derived an error bound. The error
bound suggests that the quality of the approximation improves for small values of T .
To construct the approximation for large values of T , it is natural to use a step-by-step
method.

The main idea of the step-by-step method is as follows. Let Ψt be the solution operator
for a homogeneous linear evolution equation; that is, given an initial condition u0, u(t) =
Ψtu0 is the solution of the equation at time t. If the equation is time-homogeneous (has
no explicit dependence on time, such as (4.21)) and the solution is unique, then the
solution operator has the semigroup property:

Ψtu0 = Ψt−su(s), t > s > 0. (4.42)

If, for each t > 0, u(t) is an element of an infinite-dimensional Hilbert space X with
norm ‖ · ‖, then a one-step approximate solution u(t) can be constructed by

u(t) = ΠNΨtu0,

where ΠN is an orthogonal projection on an N -dimensional subspace of X. Assume that
the approximation is of order p/2 in time for some p > 1:

‖u(t) − u(t)‖2 = ‖(I − ΠN )Ψtu0‖2 ≤ Ctp‖u0‖2, (4.43)

where I denotes the identity operator. To construct a multi-step approximation on [0, T ],
let 0 = t0 < t1 < . . . < tK = T be a uniform partition of [0, T ] with step τ . Then define
ui, i = 0, . . . , K, recursively as follows:

u0 = u0, ui+1 = ΠNΨτui. (4.44)

For simplicity, we assume that the initial condition is not approximated and concentrate
only on the effects of approximating the solution operator Ψt. Then, by linearity,

u(ti)− ui = Ψτu(ti−1)−ΠNΨτui−1 = (I −ΠN )Ψτuτi−1 + ΠNΨτ (uτi−1 − ui−1). (4.45)

By orthogonality, we find

‖u(ti) − ui‖2 = ‖Ψτu(ti−1) − ΠNΨτui−1‖2

= ‖(I − ΠN )Ψτuti−1‖2 + ‖ΠNΨτ (uti−1 − ui−1)‖2.
(4.46)

Let ∆i = ‖u(ti) − ui‖2. Then (4.46) and (4.43) imply

∆i ≤ Cτp‖uti−1‖2 + ‖Ψτ (uτi−1 − ui−1)‖2. (4.47)

In many situations, the semigroup Ψt satisfies

‖Ψtf‖ ≤ eat‖f‖ (4.48)

for some a > 0. In this case, ‖uti−1‖2 ≤ e2aT ‖u0‖2 and (4.47) implies

∆i ≤ C1τ
p‖u0‖2 + e2aτ∆i−1, (4.49)

or, after applying this inequality repeatedly,

∆i ≤ C1τ
p‖u0‖2

i∑
j=0

e2aτj . (4.50)
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Since
i∑

j=0

e2aτj ≤
K∑

j=0

e2aτj =
e2a(K+1)τ

e2aτ − 1
≤ e4aT

e2aτ − 1
, (4.51)

and e2aτ − 1 ≥ 2aτ , we conclude that

∆i ≤ C2τ
p−1‖u0‖2, (4.52)

that is,
max

0≤i≤K
‖u(ti) − ui‖2 ≤ C2τ

p−1‖u0‖2, (4.53)

where C2 depends only on T and the semigroup Ψt. In other words, the step-by-step
approximation has order (p− 1)/2 in time. The derivation of this result essentially relies
on the following:

(1) an approximation based on an orthogonal projection;
(2) the property (4.48) of the solution operator.

4.2.2. The chaos solution. Let us consider equation (4.21). The approximation un,r
N (t)

of the solution is based on an orthogonal projection in the space of square-integrable
processes and, by Theorem 3.6, the solution operator for the equation satisfies (4.48).
We can therefore use (4.53) to derive an error bound for the step-by-step approximation
of the solution of (4.21).

Let 0 = t0 < t1 < . . . < tK = T be a uniform partition of the interval [0, T ] with step
τ : tj = jτ , j = 0, . . . , K. Let {mk, k ≥ 1} be an orthonormal basis in L2((0, T )) and
mj

k(t) = mk(t − tj)(χtj+1(t) − χtj
(t)). We define

ξj
k� =

∫ tj

tj−1

mj
k(t)dW�(t), (4.54)

and then, for α ∈ J ,

ξj
α =

∏
k,�

Hαk�
(ξj

k�)√
αk�!

. (4.55)

Note that the random variables ξi
k� and ξj

pq are independent for different i, j.
If u = u(t; u0) is the square-integrable chaos solution of the homogeneous equation

(4.21) with initial condition u0, then, by uniqueness and time homogeneity, we have

u(tj ; u0) = u(τ ; u(tj−1, u0)), (4.56)

which is a particular case of the general relation (4.42). Also, by Theorem 3.6,

E‖u(t; u0)‖2
H ≤ e(CA+CB)t

E‖u0‖2
H, (4.57)

which is a particular case of (4.48).
Next, consider the following modification of the S-system (4.25):

uj
(0)(t; f) = f +

∫ t

tj−1

Au(0)(s; f)ds, |α| = 0;

uj
α(t; f) =

∫ t

tj−1

Auj
α(s; f)ds +

∞∑
k,�=1

√
αk�

∫ t

tj−1

B�u
j
α−εk�

(s; f) (Kmj
k)(s)ds

(4.58)
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for |α| > 0, where tj−1 ≤ t ≤ tj , E‖f‖2
H < ∞, and f is random but independent of

ξj
α, α ∈ J .

Theorem 4.7. Assume A1–A5. Then, for j = 1, . . . , K,

u(tj ; u0) =
∑
α∈J

uj
α(tj ; u(tj−1; u0))ξj

α (4.59)

and

E‖u(tj ; u0)‖2
H ≤ e(CA+CB)τ

E‖u(tj−1; u0)‖2
H. (4.60)

Proof. Since u(tj−1; u0) is independent of {ξj
α, α ∈ J }, Theorem 3.6 can be applied

on each interval [tj−1, tj ], j = 1, . . . , K, with u0 replaced by u(tj−1; u0). Then (4.56)
becomes (4.59) and (3.21) becomes (4.60). �

Define the multi-step approximation of u as follows:

un,r
N (tj) =

∑
α∈J n,r

N

uj
α(tj ; u

n,r
N (tj−1))ξj

α, j = 1, . . . , K, (4.61)

with un,r
N (t0) = u0. The following theorem provides an error bound for this approxima-

tion.

Theorem 4.8. Under the assumptions of Theorems 4.2 and 4.4,

max
j=1,...,K

E‖u(tj ; u0) − un,r
N (tj)‖2

H

≤ C(T )

(
(τCB)N

(N + 1)!
E‖u0‖2

H +
τ δ1−1

nγ1−1
E‖u0‖2

H +
τ δ + 1
nγ−1

E‖u0‖2
H2 + ε(r)E‖u0‖2

H

)
. (4.62)

Proof. Since un,r
N (τ ) is an orthogonal projection of u(τ ; u0) on the span of ξα, α ∈

J n,r
N , and (4.57) holds, the result follows from (4.38) and (4.53). �
Example 4.9. Consider the equation

u(t) = u0 +
∫ t

0

uxx(s)ds + X(χtu), 0 ≤ t ≤ T, x ∈ R.

With only one noise driving the equation, we have un,r
N = un

N . Also, Hr = Hr(R) is the
Sobolev space (4.28) and H = L2(R).

(a) If X is an Ornstein-Uhlenbeck noise with parameter b, then CB = (1 +
√

bτ )2,
δ = 1, γ = 2, δ1 = 3, γ1 = 4 (see Table 1), so that (4.62) becomes

max
j=1,...,K

E‖u(tj ; u0) − un,r
N (tj)‖2

H

≤ Cb(T )

(
(1 +

√
bτ )2N+2 τN

(N + 1)!
E‖u0‖2

H +
τ2

n3
E‖u0‖2

H +
τ2

n
E‖u0‖2

H2

)
. (4.63)

(b) If X is an H-fractional white noise with parameter H ∈ (1/2, 1), then CB =
C1(H)τ2H−1 (see (4.40)), δ = δ1 = 2H, γ = γ1 = 3 − 2H (see Table 1), so that (4.62)
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becomes

max
j=1,...,K

E‖u(tj ; u0) − un,r
N (tj)‖2

H ≤ CH(T )

(
(C1(H))N+1 τ2H(N+1)−1

(N + 1)!
E‖u0‖2

H

+
τ2H−1

n2−2H
E‖u0‖2

H +
τ2H+1

n2−2H
E‖u0‖2

H2

)
.

(4.64)
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