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Abstract. We give a short introduction to the white noise theory for multiparameter
Lévy processes and its application to stochastic partial differential equations driven by
such processes. Examples include temperature distribution with a Lévy white noise heat
source, and heat propagation with a multiplicative Lévy white noise heat source.

1. Introduction. The white noise theory was originally developed by T. Hida for
Brownian motion {B(t)}t≥0. See e.g. [7] and [8] and the references therein. The main
idea was that a rigorous mathematical foundation for the time derivative of B(t),

Ḃ(t) =
d

dt
B(t) (called white noise)

(which does not exist in the ordinary sense), would make it easier to handle stochastic
calculus involving Brownian motion in general. This turned out to be a fruitful idea,
both in connection with stochastic differential equations (see e.g. [9]) and Malliavin-
Hida calculus (see e.g. the forthcoming book [6]). In particular, for stochastic partial
diffferential equations (SPDEs) with multi-parameter noise, the white noise approach is
useful because it provides solutions (in a weak sense) also when classical solutions do not
exist.

In view of the success of the Brownian white noise theory, it has become natural to try
to extend it to the wider family of Lévy processes. Such an extension is also of interest
from the point of view of applications, because stochastic processes with jumps are useful
in mathematical modelling, in e.g. physics, biology and economics. A white noise theory
for Lévy processes was developed in the papers [5], [3], [14], [18] and [16].

In these papers applications were also given, e.g., to SPDEs or finance.
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The purpose of this paper is to give a short survey of this Lévy white noise theory and
its applications to SPDEs. For proofs and more details we refer to the papers above, or
to the exposition in Chapter 5 of [9] (Second Edition).

The outline of this paper is as follows. In Section 2 we briefly recall the basic defini-
tions and properties of Lévy processes. In Section 3 we give a short presentation of the
white noise theory for multi-parameter Lévy processes (sometimes called Lévy fields),
together with a general white noise solution method for SPDEs. Finally, in Section 4
some examples are given of SPDEs solved by this method.

2. Background on Lévy processes.
Definition 2.1. Let (Ω,F , P ) be a probability space. A Lévy process on this space

is a map
η : [0,∞) × Ω → R

with the following properties:
(i) η has stationary, independent increments;
(ii) η has càdlàg paths, i.e. t → η(t) is right continuous with left sided limits;
(iii) η is stochastically continuous; i.e., for all t ≥ 0, ε > 0 we have

lim
s→t

P (|η(s) − η(t)| > ε) = 0;

(iv) η(0) = 0.
The jump of η at time t is defined by

∆η(t) := η(t) − η(t−).

The jump measure of η is defined by

N((t1, t2], U) = the number of jumps of η in the time interval (t1, t2]

and jump size z = ∆η(s) ∈ U ; s ∈ (t1, t2].

Here 0 ≤ t1 < t2 < ∞ and U ∈ B(R0) := the family of Borel sets U with Ū ⊂ R0 :=
R\{0}.

The Lévy measure ν of η(·) is defined by

ν(U) := E[N((0, 1], U)], U ∈ B(R0),

where E denotes expectation with respect to P . In general we have∫
R0

min(1, z2)ν(dz) < ∞

(see e.g. [1], [4] or [21]) but note that we may have∫
R0

min(1, |z|)ν(dz) = ∞.

In particular, the process t → η(t) need not have a finite variation. Such Lévy processes
are important in financial modelling. See e.g. the disucssion of infinite activity models
in [4].

From now on we will assume that∫
R0

z2ν(dz) < ∞,
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which is equivalent to assuming that

E[η2(t))] < ∞ for all t ≥ 0.

The compensated jump measure (compensated Poisson random measure) of η(·) is defined
by

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt.

The Lévy-Itô representation theorem states that there exist constants a ∈ R, σ ∈ R such
that

η(t) = at + σB(t) +
∫ t

0

∫
R0

zÑ(ds, dz),

where B(t) = B(t, ω) is a Brownian motion, independent of the pure jump Lévy martin-
gale

η0(t) :=
∫ t

0

∫
R

zÑ(ds, dz).

In view of this we may regard Lévy processes as natural generalizations of Brownian
motion to discontinuous processes. Moreover, it becomes natural to consider stochastic
differential equations of the form

dX(t) = b(t, X(t))dt + σ(t, X(t))dB(t) +
∫

R0

γ(t, X(t), z)Ñ(dt, dz)

for given functions b : R × R → R, σ : R × R → R and γ : R × R × R0 → R satisfying
certain growth conditions. See e.g. [20], Chapter 1.

In the Brownian motion case it is well known that it is possible to define the time
derivative

Ḃ(t) :=
d

dt
B(t)

in a weak sense (distribution sense). There are 2 ways of doing this:
1) For a.a. ω the map t → Ḃ(t, ω) is a distribution on R (in the classical sense) [22].
2) t → Ḃ(t) is a map from [0,∞) into (S)∗, where (S)∗ is a space of stochastic

distributions [8], [9].
The advantage with the second interpretation is that it applies to nonlinear equations.

Indeed, we have ∫ T

0

ψ(t)dB(t) =
∫ T

0

ψ(t) � Ḃ(t)dt,

where the last integral is an (S)∗-valued integral, and � denotes the Wick product in (S)∗

(see [2], [15] and also [9]). Moreover, the approach 2) applies to the multiparameter case,
in the sense that we can define

Ḃ(x1, . . . , xk) =
dk

dx1 . . . dxk
B(x1, . . . , xk) ∈ (S)∗

(k-parameter Brownian white noise), where B(x1, . . . , xk) is k-parameter Brownian mo-
tion (the k-parameter Brownian sheet). This can be used to study SPDEs driven by the
white noise Ḃ(x1, . . . , xk) in the same way as in the 1-parameter case (k = 1). See [9].
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A natural question is: Can this approach be extended to Lévy processes? Can we
define the Lévy white noise

η̇(t) :=
d

dt
η(t) in (S)∗η,

where (S)∗η is a corresponding space of stochastic distributions, and more generally

η̇(x1, . . . , xk) =
dk

∂x1 . . . ∂xk
η(x1, . . . , xk)

(the k-parameter Lévy white noise) and apply it to study SPDEs driven by such noise?
Remark. Why bother with singular objects like the white noises

Ḃ(t) =
d

dt
B(t) and η̇(t) =

d

dt
η(t) ?

Why not use smoothed versions instead? We answer this by considering a simple example.
Example 2.2. Let Bn(t) be a smooth approximation to B(t). Then the equation

dXn(t) = µXn(t)dt + σXn
dBn

dt
dt, Xn(0) = x > 0

has the solution

Xn(t) = x exp(µt + σBn(t)) (µ, σ �= 0 constants).

On the other hand, the “singular white noise equation” (Itô equation)

dX(t) = µX(t)dt + σX(t)dB(t), X(0) = x > 0

has the solution

X(t) = x exp((µ − 1
2σ2)t + σB(t)).

Note that limn→∞ Xn(t) �= X(t) even though limn→∞ Bn(t) = B(t).
Thus we see that smoothing the noise gives a totally different equation!
Here are some examples of stochastic partial differential equations which are solvable

by the method discussed in this paper:
Example 2.3. Temperature distribution in a region with a Lévy white noise heat

source η̇(x): {
∆U(x) = −η̇(x); x ∈ D

U(x) = 0 ; x ∈ ∂D

where D is a given domain in Rd and ∆ =
∑d

i=1
∂2

∂x2
i

is the Laplacian operator.
Example 2.4. Waves in a medium subject to a Lévy white noise force:⎧⎪⎪⎨⎪⎪⎩

∂2U
∂t2 (t, x) − ∆U(t, x) = F (t, x); (t, x) ∈ [0,∞) × Rm

U(0, x) = G(x); x ∈ Rm

∂U
∂t (0, x) = H(x); x ∈ Rm

where F, G and H are Lévy white noise functionals, e.g. space-time or space white noise.
How do we solve such SPDEs?
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Example 2.5. Heat propagation in a domain with a (multiplicative) Lévy white noise
potential η̇(t, x):

∂U

∂t
(t, x) = ∆U(t, x) + ′′U(t, x) · η̇(t, x)′′.

How do we interpret this equation rigorously? How do we solve it?
We will use white noise theory to answer these questions.

3. White noise theory for a Lévy field. We now give a brief review of the white
noise theory for a d-parameter Lévy process. For details and proofs we refer to [9] (Second
Edition) and the references therein.

Let ν be a given measure on B0(R0) such that

M :=
∫

R

z2ν(dz) < ∞. (3.1)

We will construct a d-parameter Lévy process η(x); x = (x1, . . . , xd) ∈ R
d, such that ν

is the Lévy measure of η(·), in the sense that

ν(F ) = E[N(1, 1, . . . , 1; F )], (3.2)

where N(x; F ) = N(x, F, ω) : Rd ×B+(R0)×Ω → R is the jump measure of η(·), defined
by

N(x1, x2, . . . ,xd; F ) = the number of jumps ∆η(u) = η(u) − η(u−) of size

∆η(u) ∈ F when ui ≤ xi; 1 ≤ i ≤ n, u = (u1, . . . , ud) ∈ R
d. (3.3)

Let S(Rd) denote the Schwartz space of rapidly decreasing smooth functions on Rd and
let Ω = S ′(Rd) be its dual, called the space of tempered distributions.

Definition 3.1. The d-parameter Lévy white noise probability measure is the mea-
sure P = P (L) defined on the Borel σ-algebra B(Ω) of subsets of Ω by∫

Ω

ei〈ω,f〉dP (ω) = exp
(∫

Rd

ψ(f(y))dy
)
, f ∈ S(Rd), (3.4)

where
ψ(u) =

∫
R

(eiu·z − 1 − iu · z)ν(dz) (3.5)

and 〈ω, f〉 = ω(f) denotes the action of ω ∈ S ′(Rd) on f ∈ S(Rd).
The triple (Ω;B(Ω), P (L)) is called the (d-parameter) Lévy white noise probability

space.
For simplicity of notation we write P = P (L) from now on.
Remark. The existence of P follows from the Bochner-Minlos theorem: The map

F : f → exp
( ∫

Rd

ψ(f(y))dy
)
, f ∈ S(Rd)

is positive definite on S(Rd), i.e.
m∑

i=1

zj z̄kF (fj − fk) ≥ 0 for all zj ∈ C, fj ∈ S(Rd), 1 ≤ j ≤ m. m = 1, 2, . . ..

Lemma 3.2. Let g ∈ S(Rd) and put M :=
∫

R
z2ν(dz) < ∞. Then, with E = EP ,
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(i) E[〈·, g〉] = 0,
(ii) VarP [〈·, g〉] = E[〈·, g〉2] = M

∫
Rd g2(y)dy.

Using this we can extend the definition of 〈ω, f〉 from f ∈ S(Rd) to f ∈ L2(Rd) as
follows:

If f ∈ L2(Rd) choose fn ∈ S(Rd) s.t. fn → f in L2(Rd). Then the limit

lim
n→∞

〈ω, fn〉

exists in L2(P ) and is independent of the sequence chosen. This limit is denoted by
〈ω, f〉.

Theorem 3.3. For x = (x1, . . . , xd) ∈ Rd define

η̃(x) = η̃(x1, . . . , xd) = 〈ω, χ[0,x](·)〉,
where

χ[0,x](y) = χ[0,x1](y1) . . . χ[0,xd](yd), y = (y1, . . . , dd) ∈ R
d,

with

χ[0,xi](yi) =

{
1 if 0 ≤ yi ≤ xi or xi ≤ yi ≤ 0

0 otherwise.

Then η̃(x) has the following properties:
(i) η̃(x) = 0 if one of the components of x is 0;
(ii) η̃ has independent increments;
(iii) η̃ has stationary increments;
(iv) η̃(·) has a càdlàg version, denoted by η(·).

This version η(x), x ∈ Rd, is the pure jump Lévy field that we will work with from
now on.

Remark. If d = 1, then this process η(t) coincides with the classical Lévy process
with the given Lévy measure ν.

By our choice (3.5) of the function ψ it follows by the Lévy-Khintchine formula that
η(x) is a pure jump Lévy martingale of the form

η(x) =
∫ x

0

∫
R

zÑ(dy, dz),

where Ñ(dy, dz) = N(dy, dz) − ν(dz)dy and, by definition,∫ x

0

f(y)dy =
∫ xn

0

∫ xn−1

0

· · ·
∫ x1

0

f(y)dy1 . . . dyn

if x = (x1, . . . , xn). We may regard η(x) = η(x, ω) as a random measure η = η(ω) applied
to the rectangle [0, x1] × · · · × [0, xn]. As such it extends in a natural way to a random
measure on the Borel subsets of Rd. See [10].

If f = f(x(1), z1, . . . , x
(n), zn) : (Rd × R0)n → R we define the symmetrization

f̂ of f as the symmetrization with respect to the n variables y1 = (x(1), z1), y2 =
(x(2), z2), . . . , yn = (x(n), zn), i.e.

f̂(y1, . . . , yn) =
1
n!

∑
σ

f(yσ1 , . . . , yσn
), (3.6)



SPDES DRIVEN BY LÉVY WHITE NOISE 527

the sum being taken over all permutations σ of (1, 2, . . . , n). We let L̂2((λ× ν)n) denote
the set of all symmetric functions f ∈ L2((λ × ν)n), where λ denotes Lebesgue measure
on R

d. For f ∈ L̂2((λ × ν)n) we define

In(f) = n!
∫

Gn

f(x(1), z1, . . . , x
(n), zn)Ñ(dx(1), dz1) . . . Ñ(dx(n), dzn), (3.7)

where

Gn = {(x(1), z1, . . . , x
(n), zn) ∈ (Rd × R)n; x

(1)
j ≤ x

(2)
j ≤ · · · ≤ x

(n)
j for all j = 1, . . . , d}.

Theorem 3.4 (Chaos expansion I). (i) Every F ∈ L2(P ) has a unique representation

F =
∞∑

n=0

In(f) with fn ∈ L̂2((λ × ν)n), I0(f0) = E[F ]. (3.8)

(ii) Moreover, we have the isometry

‖F‖2
L2(P ) =

∞∑
n=0

n!‖fn‖2
L2((λ×ν)n). (3.9)

Example 3.5. F = η(x) has the expansion

η(x) =
∫ x

0

∫
R

zÑ(dy, dz) = I1(f1),

with

f1(y, z) = χ[0.x1](y1) . . . χ[0,xd](yd)z.

Definition 3.6 (Skorohod integrals). (d = 1 : Kabanov 1974 [11], [12]) Let Y (x) =∑∞
n=0 In(fn(·, x)), (x, ω) ∈ R

d × Ω, be a random field, with the property that

∞∑
n=0

(n + 1)!
∥∥f̃n

∥∥2

L2((λ×ν)n+1)
< ∞, (3.10)

where f̃n = f̃n(x(1), z1, . . . , x
(n), zn, x, z) is the symmetrization of hn := zfn with respect

to the n + 1 variables y1 = (x(1), z1), . . . , yn = (x(n), zn), yn+1 = (x, z) =: (x(n+1), zn+1).
Then the Skorohod integral of Y (·) with respect to η(·) is defined by∫

Rd

Y (x)δη(x) =
∞∑

n=0

In+1(f̃n). (3.11)

If Y (·) is adapted, in the sense that for all x the random variable Y (x) is measurable
w.r.t. the σ-algebra Fx generated by

{η(y); y1 ≤ x1, . . . , yd ≤ xd}

and E
[ ∫

Rd Y 2(x)dx
]

< ∞, then∫
Y (x)δη(x) =

∫
Y (x)dη(x) (= the Itô integral [10]).
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Assume from now on that the Lévy measure ν satisfies the following integrability
condition:

For all ε > 0 there exists λ > 0 such that∫
|z|≥ε

exp(λ|z|)ν(dz) < ∞. (3.12)

This condition implies that ν has finite moments of order n for all n ≥ 2. It is trivially
satisfied if ν is supported on [−R, R] for some R > 0.

The condition (3.12) implies that the polynomials are dense in L2(ρ), where

dρ(z) := z2(ν(dz) (3.13)

(see [17]).
Now let {
m}∞m=0 = {1, 
1, 
2, . . .} be the orthogonalization of {1, z, z2, . . .} with re-

spect to the inner product of L2(ρ). Define

pj(z) :=
∥∥
j−1

∥∥−1

L2(ρ)
z
j−1(z), j = 1, 2, . . . . (3.14)

Then {pj(z)}∞j=1 is an orthonormal basis for L2(ν). Note that p1(z) = m−1
2 z, or z =

m2p1(z), where m2 = (
∫

R0
z2ν(dz))1/2.

Let {ξi(t)}∞i=1 be the Hermite functions on R. For γ = (γ1, . . . , γd) ∈ N
d define

ξγ(x1, . . . , xd) = ξγ1(x1)ξγ2(x2) . . . ξγd
(xd),

i.e.,
ξγ = ξγ1 ⊗ ξγ2 ⊗ · · · ⊗ ξγd

.

Then {ξγ}γ∈Nd is an orthonormal basis for L2(Rd). We may assume that Nd is ordered,
Nd = {γ(1), γ(2), . . .}, such that

i < j ⇒ γ
(i)
1 + γ

(i)
2 + · · · + γ

(i)
d ≤ γ

(j)
1 + γ

(j)
2 + · · · + γ

(j)
d .

To simplify the notation we write from now on

ξi(x) := ξγ(i)(x), i = 1, 2, . . . , x ∈ R
d.

Define the bijective map
κ : N × N → N

by
κ(i, j) = j + (i + j − 2)(i + j − 1)/2. (3.15)

Let {ξi(x)}∞i=1 be the tensor products above. Then if k = κ(i, j) we define

δk(x, z) = δκ(i,j)(x, z) = ξi(x)pj(z), (i, j) ∈ N × N. (3.16)

Let J be the set of all multi-indices α = (α1, α2, . . . , αm) where αi ∈ N∪{0}, m = 1, 2, . . ..
We put

Index α = max{j; αj �= 0}
and

|α| = α1 + α2 + · · · + αj .
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For α ∈ J with Index α = j and |α| = m we define the function δ⊗α by

δ⊗α(x(1), z1, . . . , x
(m), zm) = δ⊗α1

1 ⊗ · · · ⊗ δ
⊗αj

j (x(1), z1, . . . , x
(m), zm) (3.17)

= δ1(x(1), z1) · · · δ1(x(α1), zα1)︸ ︷︷ ︸
α1 factors

· · · δj(x(m−αj+1), zm−αj+1) · · · δj(x(m), zm)︸ ︷︷ ︸
αj factors

(we set δ⊗0
i = 1).

Finally we define the symmetrized tensor product of the δk’s, denoted by δ⊗̂α, as
follows:

δ⊗̂α(x(1), z1, . . . , x
(m), zm) = (δ̂⊗α)(x(1), z1, . . . , x

(m), zm) (3.18)

= δ⊗̂α
1 ⊗̂ · · · ⊗̂δ

⊗̂αj

j (x(1), z1, . . . , x
(m), zm),

where ˆ denotes symmetrization.
For α ∈ J define

Kα = Kα(ω) = I|α|(δ⊗̂α)(ω), ω ∈ Ω, (3.19)

where I|α| is the iterated integral of order m = |α| with respect to Ñ(·, ·):

Im(f(x(1), z1, . . . , x
(m), zm))

= m!
∫

Gm

f(x(1), z1, . . . , x
(m), zm)Ñ(dx(1), dz1) . . . Ñ(dx(m), dzm),

where

Gm = {(x(1), z1, . . . ,x
(m), zm) ∈ (Rd × R)m;

x
(1)
j ≤ x

(2)
j ≤ · · · ≤ x

(m)
j for all j = 1, . . . , d}.

From now on we use the notation ε(k) = (0, 0, . . . , 1), with 1 in the kth place.
Example 3.7.

Kε(κ(i,j)) = K(0, 0, . . . ,

κ(i,j) place
↓

1 ) = I1(δ⊗̂ε(κ(i,j))
)

= I1(δκ(i,j)) = I1(ξi(x)pj(z))

=
∫

Rd

∫
R

ξi(x)pj(z)Ñ(dx, dz). (3.20)

Let
fn =

∑
|α|=n

aαδ⊗̂α ∈ L̂2((λ × ν)n)

and
gm =

∑
|β|=m

aβδ⊗̂β ∈ L̂2((λ × ν)m).

Then
fn⊗̂gm =

∑
|α|=n

∑
|β|=m

aαbβδ⊗̂(α+β) =
∑

|γ|=n+m

( ∑
α+β=γ

aαbβ

)
δ⊗̂γ (3.21)

and
In(fn) =

∑
|α|=n

aαIn(δ⊗̂α)) =
∑
|α|=n

aαKα (3.22)
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and
In+m(fn⊗̂gm) =

∑
|γ|=n+m

( ∑
α+β=γ

aαbβKα+β

)
. (3.23)

Combining (3.20) with (3.15)–(3.16) we get the following alternative chaos expansion:

Theorem 3.8 (Chaos expansion II). The family {Kα}α∈J constitutes an orthogonal
basis for L2(P ). Thus, every F ∈ L2(P ) has a unique representation

F =
∑
α∈J

cαKα, (3.24)

where cα ∈ R for all α ∈ J . Moreover, we have the isometry

‖F‖2
L2(P ) =

∑
α∈J

α!c2
α, (3.25)

where α! = α1! . . . αm! if α = (α1, . . . , αm) ∈ J .

Example 3.9. Choose F = η(x) =
∫ x

0

∫
R

zÑ(dy, dz). Then

F =
∫

Rd

∫
R

∞∑
i=1

(χ[0,x](·), ξi)L2(λ)ξi(x)zÑ(dx, dz)

=
∞∑

i=1

∫ xd

0

· · ·
∫ x1

0

ξi(y)dy1 . . . dyα

( ∫
Rd

∫
R

ξi(x)zÑ(dx, dz)
)

= m2

∞∑
i=1

∫ xd

0

· · ·
∫ x1

0

ξi(y)dy1 . . . dyd · Kεκ(i,1) . (3.26)

Definition 3.10 (The Hida/Kondratiev spaces for Lévy fields).
(i) The stochastic test function spaces.
Let 0 ≤ ρ ≤ 1. For an expansion F =

∑
α∈J cαKα ∈ L2(P ) define the norm

‖F‖2
ρ,k :=

∑
α∈J

(α!)1+ρc2
α(2N)kα, k ∈ N ∪ {0}, (3.27)

where

(2N)kα := (2 · 1)kα1(2 · 2)kα2 · · · (2m)kαm if α = (α1, . . . , αm). (3.28)

Let
(S)ρ,k := {F ∈ L2(P ); ‖F‖ρ,k < ∞} (3.29)

and define

(S)ρ :=
∞⋂

k=0

(S)ρ,k, with projective topology. (3.30)

(ii) The stochastic distribution spaces.
Let 0 ≤ ρ ≤ 1. For an expansion G =

∑
α∈J bαKα define the norm

‖G‖2
−ρ,−k :=

∑
α∈J

(α!)1−ρb2
α(2N)−kα, k ∈ N ∪ {0}. (3.31)

Let
(S)−ρ,−k := {G; ‖G‖−ρ,−k < ∞} (3.32)
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and define

(S)−ρ :=
∞⋂

k=0

(S)−ρ,−k, with the inductive topology. (3.33)

We can regard (S)−ρ as the dual of (S)ρ, by the action

(F, G) =
∑
α∈J

bαcαα!

Note that for general 0 ≤ ρ ≤ 1 we have

(S)1 ⊂ (S)ρ ⊂ (S)0 ⊂ L2(P ) ⊂ (S)−0 ⊂ (S)−ρ ⊂ (S)−1.

The spaces (S) := (S)0 and (S)∗ := (S)−0 are the Lévy versions of the Hida test function
space and the Hida stochastic distribution space, respectively. For arbitrary ρ ∈ [0, 1] the
spaces are called Kondratiev spaces.

Example 3.11. The d-parameter Lévy white noise η̇(x) of the Lévy process η(x) is
defined by the expansion

η̇(x) = m2

∞∑
i=1

ξi(x)Kεκ(i,1) . (3.34)

It is easy to see that

η̇(x) =
∂d

∂x1 . . . ∂xd
η(x) in (S)∗. (3.35)

This justifies the name Lévy white noise for η̇.
Definition 3.12. The Lévy Wick product F � G of two elements

F =
∑
α∈J

aαKα ∈ (S)−1, G =
∑
β∈J

bβKβ ∈ (S)−1

is defined by
F � G =

∑
α,β∈J

aαbβKα+β =
∑
γ∈J

( ∑
α+β=γ

aαbβ

)
Kγ . (3.36)

One can prove that all the spaces (S)ρ, (S)−ρ are closed under Wick multiplication.
Example 3.13. By (3.16) we have

Kε(κ(i,1)) � Kε(κ(i,1)) = K2ε(κ(i,1)) = K(0,0,...,2)

= I2(δ⊗̂2
κ(i,1)) = I2((ξi(x)z)⊗̂2)m−2

2 . (3.37)

More generally, by (3.23) we see that

In(fn) � Im(gm) =
∑
|α|=n

aαKα �
∑

|β|=m

bβKβ

=
∑

|γ|=n+m

( ∑
α+β=γ

aαbβ

)
Kα+β = In+m(fn⊗̂gm), (3.38)

for fn ∈ L̂2((λ × ν)n), gm ∈ L̂2((λ × ν)m).
One reason for the importance of the Wick product is the following result:

Theorem 3.14 ([2], [15]). Suppose Y (t) is Skorohod integrable, d = 1. Then∫
R

Y (t)δη(t) =
∫

R

Y (t) � η̇(t)dt. (3.39)
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Remark. For d > 1 the relation between the Skorohod integral and the Wick product
is more complicated than (3.39). See [9].

The Hermite transform gives a relation between elements of (S)−1 and analytic func-
tions of several complex variables:

Definition 3.15. Let F =
∑

α∈J aαKα ∈ (S)−1. Then the (Lévy) Hermite transform
of F , denoted by HF (ζ) or F̃ (ζ), is defined by

HF (ζ1, ζ2, . . .) =
∑
α∈J

aαζα ∈ C, (3.40)

where ζ = (ζ1, ζ2, . . .) ∈ (CN)c (the set of all finite sequences of complex numbers) and

ζα = ζα1
1 · ζα2

2 · · · ζαm
m if α = (α1, . . . , αm).

Example 3.16. Let η̇(x) = m2

∑∞
j=1 ξj(x)Kεκ(j,1)) . Then

H(η̇(x))(ζ) = m2

∞∑
j=1

ξj(x)ζε(κ(j,1))
= m2

∞∑
j=1

ξj(x)ζκ(j,1). (3.41)

Lemma 3.17. If F, G ∈ (S)−1, then

H(F � G)(ζ) = H(F )(ζ) · H(G)(ζ), ζ ∈ (CN)c . (3.42)

Define for 0 < R, q < ∞ the infinite-dimensional neighborhood Nq(R) in CN by

Nq(R) =
{

(ζ1, ζ2, . . .) ∈ C
N;

∑
α
=0

|ζα|2(2N)qα < R2
}
. (3.43)

Then we have the following characterization theorem:

Theorem 3.18 ([9], [14]). (i) If F =
∑

α∈J aαKα ∈ (S)−1, then there exist q, Mq < ∞
such that

|HF (ζ)| ≤
∑
α∈J

|aα| |ζα| ≤ Mq

( ∑
α∈J

(2N)qα|ζα|2
)1/2

(3.44)

for all ζ ∈ (CN)c.
In particular, HF is a bounded analytic function on Nq(R) for all R < ∞.
(ii) Conversely, assume that g(ζ) :=

∑
α∈J bαζα is a power series of ζ ∈ (CN)c such

that there exist q < ∞, δ > 0 with g(ζ) absolutely convergent and bounded on Nq(δ).
Then there exists a unique G ∈ (S)−1 such that HG = g, namely

G =
∑
α∈J

bαKα . (3.45)

Here is a general solution method for Wick type SPDEs in (S)∗ or (S)−1:

Theorem 3.19 ([9]). Consider a general Wick type SPDE of the form

A�(t, x, ∂t,∇x, U, ω) = 0 in (S)−1. (3.46)

Suppose u(t, x, ζ) is a solution of the Hermite transformed equation

Ã(t, x, ∂t,∇x, u, ζ) = 0, ζ ∈ Nq(R) (3.47)

for (t, x) in some bounded open set G ⊂ R × R
d, for some q, R. Moreover, suppose

that u(t, x, ζ) and all its partial derivatives involved in (3.46) are uniformly bounded for
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(t, x, ζ) ∈ G × Nq(R), continuous with respect to (t, x) ∈ G for each ζ ∈ Nq(R) and
analytic w.r.t. ζ ∈ Nq(R) for all (t, x) ∈ G. Then there exists U(t, x) ∈ (S)−1 s.t.
HU(t, x) = u(t, x, ·) and U(t, x) solves

A�(t, x, ∂t,∇x, U, ω) = 0 in (S)−1.

4. Applications. In this section we look at some specific SPDEs driven by Lévy
white noise and indicate how the general theory of the previous section can be used to
solve them.

Example 4.1. Temperature distribution in a region with a Lévy white noise
heat source.

Consider the SPDE in Example 2.3, i.e.

∆U(x) = −η̇(x), x ∈ D, (4.1)

U(x) = 0 , x ∈ ∂D, (4.2)

where η̇(x) = m2

∑∞
j=1 ξj(x)Kε(κ(j,1)) is d-parameter (space) white noise (see (3.34)) and

D ⊂ Rd is a given bounded domain with C1 boundary.
We regard this as an equation in (S)−1 and we seek a solution U : D̄ → (S)−1 such

that (4.1)–(4.2) hold pointwise in x.
To solve this equation we consider its H-transform:

∆u(x; ζ) = −m2

∞∑
j=1

ξj(x)ζκ(j,1)(= −Hη(ζ)), x ∈ D, (4.3)

u(x; ζ) = 0, x ∈ ∂D, (4.4)

where

ζ = (ζ1, ζ2, . . .) ∈ (CN)c .

We solve this equation for a given ζ ∈ (CN)c as a parameter and get

u(x, ζ) = m2

∞∑
j=1

(∫
D

G(x, y)ξj(y)dy
)
ζκ(j,1) , (4.5)

where G denotes the Green function for the Laplacian in D.
One can now verify that u(x, ζ) satisfies the requirement of Theorem 3.19, and hence

that there exists U(x) ∈ (S)−1 such that HU(x) = u(x) and U(x) solves (4.1)–(4.2).
This is the main idea of the proof of the following result:

Theorem 4.2 ([14]). There exists a unique stochastic distribution process U : D̄ → (S)∗

satisfying (4.1)–(4.2). The solution is C2 in (S)∗ and has the form

U(x) =
∫

D

G(x, y)η̇(y)dy = m2

∞∑
j=1

( ∫
D

G(x, y)ξj(y)dy
)
Kε(κ(j,1)) . (4.6)

In some cases the solution can be proved to belong to a smaller space than (S)∗:



534 BERNT ØKSENDAL

Corollary 4.3 ([14]). Suppose d ≤ 3. Then the solution U(x) ∈ L2(P ) for each x and
it is continuous in x. Moreover,

U(x) =
∫

D

G(x, y)δη(y)
(

=
∫

D

G(x, y)dη(y)
)
. (4.7)

For general d we have the following interpretation of our solution U(x) ∈ (S)∗: for each
x, U(x) is a stochastic distribution whose action on a stochastic test function f ∈ (S) is
given by

(U(x), f) =
∫

D

G(x, y)(η̇(y), f)dy, (4.8)

where

(η̇(y), f) =
∞∑

j=1

ξj(y)E[Kε(κ(j,1))f ]. (4.9)

Remark. Equation (4.1)–(4.2) can also be solved using the Fourier series in eigen-
functions of the Dirichlet Laplacian. The result would be the same. In fact, in this case
the solution also coincides with the solution one would obtain by using the Walsh method
[22].

Example 4.4 ([19]). Waves in a region with a Lévy white noise force.
Let D ⊂ Rm be a bounded domain with a C1 boundary. Consider the stochastic wave

equation

∂2U

∂t2
(t, x) − ∆U(t, x) = F (t, x) ∈ C

m+1
2 (R+ × R

m; (S)−1), (4.10)

U(0, x) = G(x) ∈ C
m+3

2 (Rm; (S)−1), (4.11)

∂U

∂t
(0, x) = H(x) ∈ C

m+1
2 (Rm; (S)−1). (4.12)

Here

F (·, ·) : R+ × R
m → (S)−1 (corresponding to d = m + 1),

G(·) : R
m → (S)−1 (corresponding to d = m),

and

H(·) : R
m → (S)−1

are given stochastic distribution processes.
By applying the Hermite transform, then solving the corresponding deterministic PDE

for each value of the parameter ζ ∈ (CN)c and finally taking the inverse Hermite transform
as in the previous example, we get an (S)−1-valued solution (in any dimension m). To
illustrate this we just give the solution in the case m = 1 and we refer to [19] for a
solution in the general dimension.
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Theorem 4.5 ([19], m = 1 case). If m = 1, then the unique solution U(t, x) of equation
(4.10)–(4.12) is

U(t, x) = 1
2 (G(x + t) − G(x − t)) + 1

2

∫ x+t

x−t

H(s)ds

+ 1
2

∫ t

0

∫ x+(t−s)

x−(t−s)

F (s, y)dy ds. (4.13)

Here the integrals are (S)∗-valued integrals.

In particular, if F (s, y) = η̇(s, y), then the last term can be written as
1
2η(Dt,x),

where Dt,x = {(s, y); x − t + s ≤ y ≤ x + t − s, 0 ≤ s ≤ t} is the domain of dependence
of the point (t, x).

Example 4.6. Heat propagation in a domain with a Lévy white noise po-
tential.

Consider the stochastic heat equation
∂U

∂t
(t, x) = 1

2∆U(t, x) + U(t, x) � η̇(t, x), (t, x) ∈ [0, T ] × R
d, (4.14)

U(0, x) = f(x), x ∈ R
d (f deterministic). (4.15)

We take the Hermite transform and get the following deterministic heat equation in
u(t, x; ζ) with ζ ∈ (CN)c as a parameter:

∂

∂t
u(t, x; ζ) = 1

2∆u(t, x; ζ) + u(t, x; ζ)Hη̇(t, x; ζ), (4.16)

u(0, x; ζ) = f(x). (4.17)

This equation can be solved by using the Feynman-Kac formula, as follows:
Let B̂(t) be an auxiliary Brownian motion on a filtered probability space (Ω̂, F̂ ,

{Ft}t≥0, P̂ ), independent of B(·). Then the solution of (4.16)–(4.17) can be written

u(t, x; ζ) = Êx
[
f(B̂(t)) exp

( ∫ t

0

Hη̇(s, B̂(s); ζ)ds
)]

, (4.18)

where Êx denotes expectation with respect to P̂ when B̂(0) = x. Taking inverse Hermite
transforms we get:

Theorem 4.7. The unique (S)−1-solution of (4.14)–(4.15) is

U(t, x) = Êx
[
f(B̂(t)) exp�

( ∫ t

0

η̇(s, B̂(s))ds
)]

, (4.19)

where exp�(·) denotes the Wick exponential, defined in general by

exp� F =
∞∑

n=0

1
n!

F �n, F ∈ (S)−1,

where
F �n = F � F � · · · � F (n times).

We refer to [9] for more details.
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Final remarks. From the examples above one might get the impression that the
white noise theory can only be used to solve the linear SPDEs. This is not the case. In
fact, in [13] it is shown how white noise theory (for Brownian motion) can be used to
find a remarkable explicit solution formula for the general nonlinear stochastic differential
equation

dX(t) = b(X(t))dt + σ(X(t))dB(t), 0 ≤ t ≤ T, (4.20)

X(0) = x ∈ R (fixed), (4.21)

where b and σ are given functions satisfying the usual Lipschitz conditions. They assume
that

σ(x) > 0 for all x and σ ∈ C1(R) (4.22)

and
b(x)
σ(x)

is bounded on R. (4.23)

Define

Λ(y) =
∫ y

x

1
σ(u)

du . (4.24)

Let ϕ : R → R be a given measurable function and let B̂ be as above. Define

Y (s) = Ḃ(s) − b(Λ−1(B̂(s)))
σ(Λ−1(B̂(s)))

+ 1
2σ−1(Λ−1(B̂(s))) (4.25)

and

M�
T = exp�

( ∫ T

0

Y (s)dB̂(s) − 1
2

∫ T

0

Y �2(s)ds
)
. (4.26)

Here Ḃ(s) = dB(s)
ds is the white noise in (S ′(R),F , P ) as before and

∫ T

0
Ḃ(s)dB̂(s) is the

(S)∗-valued stochastic integral with respect to dB̂(s), while � is the Wick product with
respect to B. Then we have the following amazing result:

Theorem 4.8 ([13] (General solution formula for SDEs)). Let X(t) be the unique
strong solution of (4.20)–(4.21). Assume that (4.22) and (4.23) hold. Then

ϕ(X(t)) = Ê[ϕ(Λ−1(B̂(t)))M�
T ], (4.27)

where Ê denotes expectation with respect to P̂ .
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