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Abstract. We consider the stability of traveling waves for the Leray-type regulariza-
tion of the Burgers equation that was recently introduced and analyzed by the authors in
Bhat and Fetecau (2006). These traveling waves consist of “fronts,” which are monotonic
profiles that connect a left state to a right state. The front stability results show that the
regularized equation mirrors the physics of rarefaction and shock waves in the Burgers
equation. Regarded from this perspective, this work provides additional evidence for the
validity of the Leray-type regularization technique applied to the Burgers equation.

1. Introduction. The following regularization for the Burgers equation was intro-
duced and analyzed by the authors in [BF]:

vt + uvx = 0, (1.1a)

v = u − α2uxx, (1.1b)

where α > 0 is a constant that has dimension of length. Subscripts denote differentiation.
By introducing the Helmholtz operator

H = Id−α2∂2
x, (1.2)

we may rewrite (1.1a) as
vt +

[
H−1v

]
vx = 0.

If one thinks of the inviscid Burgers equation vt + vvx = 0 as a transport equation with
local transport velocity equal to v itself, then the regularization (1.1) consists of using a
smoothed or filtered version of v—specifically H−1v—in place of v. This regularization
idea was first employed by Leray in 1934 [Ler34]. Working in the context of the incom-
pressible Navier-Stokes equations, Leray proposed replacing the nonlinear term (v · ∇)v
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with a term (u · ∇)v. Here u = Kε ∗ v for some smoothing kernel Kε. Leray’s program
consisted of proving existence of solutions for his modified equations and then showing
that these solutions converge, as ε ↓ 0, to weak solutions of Navier-Stokes—see [Ler34]
for details. The idea of using a Leray-type regularization in lieu of dissipation, for the
purposes of capturing shocks in the Burgers equation, was suggested independently by
J. E. Marsden, K. Mohseni [MZM06], and E. S. Titi.

As we demonstrated in [BF], system (1.1) is globally well-posed with initial data
v(x, 0) in the Sobolev space1 W 2,1(R). Using a combination of analysis and numerics, we
showed that solutions uα(x, t) of (1.1) converge strongly, as α → 0, to entropy solutions
of the inviscid Burgers equation. In the present paper we prove stability (in some sense)
for monotone decreasing fronts and instability for monotone increasing fronts. These
two types of traveling fronts correspond, respectively, to viscous shocks and rarefaction
waves. Our results match existing results regarding the stability of viscous shock profiles
in hyperbolic conservation laws [Sat76, Goo86]. However, the existing literature on the
stability of traveling waves does not deal with system (1.1). Our purpose here is to remedy
this gap, and thereby strengthen the connection between the Leray-type regularization
(1.1) and standard viscous regularizations of vt + vvx = 0.

System (1.1) also appears in the works of Holm and Staley [HS03a, HS03b] as a model
for one-dimensional nonlinear wave dynamics in fluids. More precisely, system (1.1) is
the b = 0 member of the b-family of fluid transport equations,

vt + uvx + buxv = 0, (1.3a)

u = G ∗ v. (1.3b)

In (1.3), u(x, t) stands for velocity, v(x, t) for momentum density, and G(x) for an even
kernel function that relates v and u by convolution.

Specifically, the b-family (1.3) includes the effects of convection, represented by the
term uvx, and stretching, represented by uxv. The dimensionless parameter b measures
the relative strength of these effects. When linear dispersion and viscosity terms are
added, (1.3) appears in asymptotic studies of the shallow water equations, and we refer
the reader to [DGH01, DGH03, DGH04] for further discussions in this direction. One
common point of such physically motivated studies is that the kernel G takes the form

G(x) =
1
2

exp(−|x|/α), (1.4)

which implies that u and v are related by (1.1a).
Let us remind the reader that the b = 2 case of (1.3) is the Camassa-Holm equation

[CH93], while the b = 3 case is the Degasperis-Procesi equation [DP99]. At the time of
writing, there have been hundreds of papers written on these equations, and we will not
attempt a review of that literature here. It is sufficient to say that quite a lot of the
interest behind these equations stems from their complete integrability, and, related to
this, their peakon solutions. Peakons are the spatially localized, peaked, traveling wave
solutions of (1.3) given by u(x, t) = exp(−|x − ct|/α); interactions between N peakons

1In fact, what we showed is slightly stronger than this. Initial data v0(x) that is continuously
differentiable, with two weak derivatives v′

0, v′′
0 ∈ L1(R), yields global well-posedness. It is not necessary

for v0 itself to be a member of L1(R).
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are governed by a completely integrable finite-dimensional dynamical system. Stability
of Camassa-Holm peakons and solitary waves was considered in [CS00, CS02].

Here we focus exclusively on non-peakon solutions of the b = 0 case of (1.3a), which
take the form of traveling fronts : monotone waves u(x, t) = f(x− ct) that connect a left
state u(−∞, t) = uL to a right state u(+∞, t) = uR, with uL �= uR. Such front solutions
were derived and studied numerically in [HS03a, HS03b]; our contribution here is the first
analytical treatment of their stability. We treat, in turn, questions of linear, spectral,
and nonlinear stability. We also carry out a numerical study of the orbital stability of
the fronts.

There are some intriguing difficulties for non-local nonlinear PDE such as (1.1). We
say the PDE is non-local because it can be written in the convective form

ut + uux = −3
2
α2∂xH−1u2

x, (1.5)

with the Helmholtz operator H defined by (1.2).
Though it is known that the b-family has a non-local Poisson structure [DHH03,

HW03, HH05], we have shown [BF] that there are no Casimirs associated to the b = 0
version of this structure. Furthermore, though the quantities∫

R

u(x, t) dx,

∫
R

v(x, t) dx, ‖v(·, t)‖L∞ , ‖vx(·, t)‖L1 (1.6)

are constant on solutions of (1.1), none of these invariants help us frame the traveling
fronts as critical points of an appropriate functional. We are unaware of invariants besides
the ones mentioned in (1.6), and also unaware of the Lagrangian/variational counterpart
to the non-local Poisson structure underlying (1.1).

The upshot is that certain standard methods for proving stability for nonlinear systems
may not be applicable for system (1.1). Also, the front traveling waves (defined below in
(1.8)) are only weak (distributional) solutions of (1.1) and this fact makes the stability
study non-standard and challenging.

Our analysis makes use of the following symmetries of (1.1):
• Dilation: for any α > 0, the function U(x, t) solves (1.1) if and only if

u(x, t) = U(αx, αt)

solves the system

vt + uvx = 0, (1.7a)

v = u − uxx. (1.7b)

In what follows we consider the “α = 1” system (1.7) only.
• Galilean invariance: first let us step back and note that all traveling front solu-

tions of (1.7) are given by

u0(x, t) =

{
uL + d exp(x − ct) x < ct

uR − d exp(−(x − ct)) x > ct,

where c is the speed of the front and uL = c − d, uR = c + d are the boundary
values at x = −∞ and x = ∞, respectively.
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System (1.7) is Galilean invariant2, i.e. invariant under the mapping (x, u) �→
(x + u0t, u + u0). In precise terms, if u(x, t) solves (1.7a), then so does u(x, t) =
u(x−u0t, t)+u0, for any u0 ∈ R. Hence we can eliminate the wave speed c from
the proceedings and consider the stationary solutions (c = 0) only, i.e.

u0(x) = dū0(x) = d

{
−1 + exp(x) x < 0,

1 − exp(−x) x > 0.
(1.8)

Here ū0 is the “normalized” standing wave solution.
• Parity: as noted in [HS03b, §3.4], system (1.7) is invariant under the reflections

u(x, t) �→ −u(−x, t). Assuming existence and uniqueness of solutions, this im-
plies that odd initial data u(x, 0) evolves into a solution u(x, t) that remains odd
for all t > 0. We reserve further discussion on this symmetry for later when we
actually utilize it.

We also make use of the non-local form (1.5) together with the method of characteristics,
especially when looking into nonlinear stability of fronts.

Overview and roadmap. In this paper, we prove the following results regarding the
stationary front solutions (1.8) of (1.7).

• Linear stability of the d < 0 (monotone decreasing) fronts.
• Linear instability of the d > 0 (monotone increasing) fronts.
• Nonlinear asymptotic stability of the d < 0 fronts with respect to perturbations

f such that u0 + f is strictly decreasing and odd.
Additionally, we provide numerical evidence that:

• The d < 0 fronts are orbitally stable.
The paper is organized as follows: in Section 2, we formulate precisely the stability
problem under investigation. Stability/instability in the linearized problem is covered in
Section 3, while nonlinear stability is discussed in 4. In Section 5, we study numerically
the orbital stability of traveling fronts. The Appendix contains the detailed computation
regarding the solution presented in Section 3.1.

2. Problem formulation.
2.1. Regularity of traveling waves. Before looking into stability questions, we must

mention that the traveling front solutions (1.8) are actually global-in-time weak solutions
of (1.7). The weak form of (1.7a) follows naturally from the conservation law

vt +
(

1
2
u2 − uuxx +

1
2
u2

x

)
x

= 0. (2.1)

The traveling fronts u0(x) cannot be classical solutions of (1.7), because such solutions
must be thrice-differentiable with respect to x, as can be seen from the single equation

ut − uxxt + uux − uuxxx = 0, (2.2)

obtained by substituting (1.7b) into (1.7a). For the traveling fronts, two ordinary (clas-
sical) derivatives u0

x and u0
xx exist, but the second derivative is discontinuous at x = 0,

2As noted in [HS03b, §3.8], the b = 0 equation is the only member of the b-family that is Galilean

invariant.
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so u0
xxx exists only in the weak sense. Nevertheless, one may verify that u0(x) satisfies

the weak form of (2.1). Alternatively, one may view u0(x) as a classical solution of the
non-local convective form of the equation given in (1.5).

Finally, note that the traveling wave solution in the v variable (see (1.7b)) is given by

v0(x) = Hu0(x) =

{
−d x < 0

d x > 0.
(2.3)

Again, v0 is a global-in-time weak solution of (1.7).
2.2. Admissible perturbations. As of yet we do not have existence/uniqueness results

for weak solutions of (1.7), so our stability analysis will proceed in a careful way. Let us
consider perturbations around the stationary front solutions:

u(x, t) = u0(x) + g(x, t), (2.4)

or equivalently,
v(x, t) = v0(x) + f(x, t), (2.5)

where
f = Hg. (2.6)

Unless stated otherwise, we restrict attention to perturbations f such that the perturbed
initial data v(x, 0) is smooth enough so that the well-posedness theory from [BF] applies.
An admissible perturbation f(x, 0) is one such that v(x, 0) as defined in (2.5) is continu-
ously differentiable, with two weak derivatives vx(x, 0) and vxx(x, 0) in the space L1(R).
In this case, the theory [BF] guarantees the existence of a unique solution v(x, t) globally
in time. Note that one implication of this definition is that an admissible perturbation
f is going to be initially discontinuous at the origin (as v0 is discontinuous at x = 0 and
v(x, 0) is smooth).

As boundary conditions at spatial infinity, we take, for all t ≥ 0:

u(−∞, t) = v(−∞, t) = −d, and u(∞, t) = v(∞, t) = d.

This yields vanishing at infinity boundary conditions for g and f :

g(−∞, t) = g(∞, t) = 0, t ≥ 0, (2.7)

f(−∞, t) = f(∞, t) = 0, t ≥ 0. (2.8)

Within this admissible class of perturbations, we study the linear, spectral, and non-
linear stability of the stationary front solutions u0 (or v0). By this we mean precisely
that we choose an admissible perturbation f(x, 0) (as described above) and study the
growth/decay in time of the quantity ‖v(·, t) − v0(·)‖ for a suitable choice of norm.

2.3. Norms. Let us make two remarks regarding the norms in which we might expect
to find stability. By explicitly writing out the convolution (1.3b) using the kernel (1.4)
with α = 1, we obtain

u(x, t) = (G ∗ v) (x, t) =
1
2

∫
R

e−|x−y|v(y, t) dy. (2.9)

With this equation and Hölder’s inequality, we may derive

‖u − u0‖L∞ ≤ 1
2
‖v − v0‖L1 . (2.10)
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Therefore, L1 (asymptotic) stability of v0 yields (asymptotic) stability in the maximum
norm for u0.

In contrast, by defining the characteristics η(X, t) as the solution of

∂tη(X, t) = u(η(X, t), t)

η(X, 0) = X,

one finds that (1.7a) reduces to the statement

v(η(X, t), t) = v0(X),

implying that the values of v are conserved along characteristics. Thus the initial values
v(x, 0) are retained in the solution v(x, t) for all t > 0, and we cannot hope for asymptotic
stability of v0 in the maximum norm.

3. Linearized stability. Consider (2.5), a perturbation about the stationary trav-
eling front solution v0. After substituting v into the original system (1.7) and ignoring
the quadratic term we find the following linearized equation for the perturbation f(x, t):

ft(x, t) + 2dδ(x)g(x, t) + u0(x)fx(x, t) = 0. (3.1)

Here we used v0
x(x) = 2dδ(x). Note that we can write (3.1) in the form

ft(x, t) = Lf(x, t), (3.2)

where the linear operator L is defined as

L = −d
[
2δ(x)H−1 + ū0∂x

]
. (3.3)

Purely from the form of (3.3) we may expect the dynamics of (3.2) to depend significantly
on the sign of d.

Using the boundary conditions (2.8), the linearized stability problem on the real line
can be summarized as

ft + 2dδ(x)g(0, t) + u0fx = 0 (3.4a)

f(x, 0) = f0(x) (3.4b)

f(−∞, t) = f(∞, t) = 0. (3.4c)

We assume that (3.4), with admissible initial data f0 that is discontinuous at x = 0 and
smooth elsewhere, possesses a unique global (in time) solution f(x, t). We expect that
for t > 0, the solution f(x, t) is still discontinuous at x = 0 and smooth elsewhere.

3.1. Odd initial data. It turns out that the behavior of (3.4) can be worked out exactly
for odd initial data f0. One can check that if f(x, t) solves the problem (3.4) with f0

odd, then f̃(x, t) = −f(−x, t) solves the same initial value problem with the same initial
data. By uniqueness, we must have f = f̃ . This implies that odd initial data f0, evolving
forward in time via (3.4), results in a solution f(x, t) that stays odd for all times.

We could in fact have deduced this from the parity symmetry of (1.7) mentioned
earlier; just note that odd initial data f0, together with the fact that v0 is odd, implies
by (2.5) that v(x, 0) is odd.
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Since f(x, t) is odd for all times, we have

g(0, t) =
1
2

∫
R

exp(−|x|)f(x, t) dx = 0, for t ≥ 0.

Hence, the PDE (3.4a) reduces to the following first-order transport equation with non-
constant speed on the real line:

ft(x, t) + u0(x)fx(x, t) = 0. (3.5)

Also note that the values f(0−, t) and f(0+, t) stay constant in time. One obtains this
by evaluating the transport equation at (0−, t) and (0+, t), respectively, to get

∂tf(0±, t) = 0.

Here we used u0(0) = 0.
The upshot of this is that, for odd initial perturbations v(x, 0), we can determine the

linear stability of the traveling waves v0 merely by solving (3.5) on a half-line only, and
then taking the odd extension of the solution.

Proposition 3.1. When d < 0, the traveling wave v0 is linearly asymptotically stable
with respect to admissible odd perturbations f0(x). When d > 0, the traveling wave v0

is linearly unstable with respect to the same class of perturbations f0(x).

Proof. For odd initial data f0, we solve (3.5) on the half-line using the method of
characteristics; details are given in the Appendix. As discussed above, the odd extension
of this half-line solution is the full solution of (3.5), which we record here:

f(x, t) =

{
f0 [− log (1 + exp(−dt)[exp(−x) − 1])] x < 0,

f0 [log (1 + exp(−dt)[exp(x) − 1])] x > 0.
(3.6)

(1) Case d < 0. As t → ∞, exp(−dt) → +∞. For x < 0, [e−x − 1] > 0. So for
arbitrary x < 0, we have the limit

lim
t→∞

f(x, t) = lim
y→0+

f0(log y) = lim
x→−∞

f0(x).

Because f0 was chosen such that f0(−∞) = 0 (see (3.4c)), we then have, for all
x < 0,

lim
t→∞

f(x, t) = 0. (3.7)

One can easily check that, provided f0(+∞) = 0, (3.7) also holds for x > 0,
implying asymptotic stability.

(2) Case d > 0. As t → ∞, exp(−dt) → 0 and for arbitrary x < 0, we have

lim
t→∞

f(x, t) = lim
y→1−

f0(log y) = f0(0−).

Due to the continuity and the oddness of v, v(0−, 0) = 0 and hence,

f0(0−) = −v0(0−) = d.

Therefore, for arbitrary x < 0,

lim
t→∞

f(x, t) = d.
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Similarly, for any x > 0 fixed,

lim
t→∞

f(x, t) = −d,

which shows linear instability.
�

Remark 3.2. The behavior as t → ∞ for a fixed x is very intuitive. For instance,
let us restrict the attention to the left half-line x < 0 only. The variable wave speed
−d + dex is positive for all x < 0 if d < 0 and negative for all x < 0 if d > 0. Also, the
wave speed vanishes at x = 0 and has value −d at −∞. The values of f are propagated
along characteristics (see the Appendix) and constrained to satisfy f(−∞, t) = 0 at the
left boundary and f(0−, t) = d at the right boundary. For x < 0 fixed and d < 0
(positive wave speed) when taking t → ∞ we obtain 0 (the value propagated from −∞).
We will see later that we can prove a version of this statement in the fully nonlinear
setting. Similarly, for d > 0 (negative wave speed), as t → ∞ we will obtain d (the value
propagated from 0).

Remark 3.3. Generally speaking, when we analyze stability/instability of equilibrium
solutions for nonlinear PDE’s, we should not dwell on linearized results by themselves,
since these results are neither necessary nor sufficient for the corresponding nonlinear
stability/instability results. However, for both d > 0 and d < 0 cases, the above linearized
results seem to correspond rather well to the fully nonlinear picture.

3.2. Arbitrary initial data. We now turn to linear stability with respect to arbitrary
admissible perturbations f0. Let us remind the reader that we have assumed well-
posedness of (3.4) in a function space where f(x, t) is discontinuous at x = 0 but smooth
elsewhere. In this case, we can prove

Proposition 3.4. When d < 0, the traveling wave v0 is linearly stable in the L1 norm
with respect to any admissible perturbation f0, i.e., any f0 such that

v(x, 0) = v0(x) + f0(x)

is smooth.

Proof. Multiply the equation (3.4a) by sgn(f(x, t)) and integrate over (−∞, +∞). We
obtain

d

dt

∫ ∞

−∞
|f(x, t)| dx +

∫ 0

−∞
(−d + dex) |f(x, t)|x dx +

∫ ∞

0

(
d − de−x

)
|f(x, t)|x dx

+ 2d

∫ ∞

−∞
δ(x)g(x, t) sgn(f(x, t)) dx = 0. (3.8)

First we integrate by parts the second integral on the left-hand side of (3.8), obtaining∫ 0

−∞
(−d + dex) |f(x, t)|x dx =

∫ 0

−∞
[(−d + dex) |f(x, t)|]x −

∫ 0

−∞
dex|f(x, t)| dx

= −d

∫ 0

−∞
ex|f(x, t)| dx.
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To write the last equality, we used f(−∞, t) = 0 and −d + dex |x=0= 0. Integrating by
parts the third integral on the left-hand side of (3.8) results in∫ ∞

0

(
d − de−x

)
|f(x, t)|x dx = −d

∫ ∞

0

e−x|f(x, t)| dx.

The only remaining term on the left-hand side of (3.8) can be evaluated using properties3

of the δ distribution:

2d

∫ ∞

−∞
δ(x)g(x, t) sgn(f(x, t)) dx = 2dg(0, t)

1
2

[sgn(f(0−, t)) + sgn(f(0+, t))] .

Gathering all the results, we may rewrite (3.8):

d

dt

∫ ∞

−∞
|f(x, t)| dx = d

(∫ ∞

−∞
e−|x||f(x, t)| dx − g(0, t) [sgn(f(0−, t)) + sgn(f(0+, t))]

)
.

Using

g(0, t) =
1
2

∫ ∞

−∞
e−|x|f(x, t) dx,

we may estimate

g(0, t) [sgn(f(0−, t)) + sgn(f(0+, t))] ≤
∫ ∞

−∞
e−|x||f(x, t)| dx.

Hence,
d

dt

∫ ∞

−∞
|f(x, t)| dx = dM,

with M ≥ 0. This gives
d

dt

∫ ∞

−∞
|f(x, t)| dx ≤ 0,

when d < 0. Therefore, for any ε > 0, we may choose any admissible f0 such that
‖f0‖L1 < ε. The above calculation shows that for all t > 0,

‖f(·, t)‖L1 ≤ ‖f0‖L1 < ε. �

Corollary 3.5. Using (2.10), we conclude that for d < 0, linear stability of v0 in the
L1 norm implies linear stability of u0 in the maximum norm. The stability of u0 is with
respect to perturbations g0 such that f0 = Hg0 is admissible.

3As shown in [Kur96], the distribution δ(x) can be applied to a function Φ(x) that is discontinuous
at 0 with the result

1

2
[Φ(0−) + Φ(0+)] .

Roughly speaking, δ(x) is the weak limit a → 0 of the function 1
2a

1[−a,a], where 1A represents the
characteristic function of the set A. Now, for Φ discontinuous,

〈δ, Φ〉 = lima→0
1

2a

∫ a

−a
Φ(x) dx

= lima→0
1

2a

(∫ 0

−a
Φ(x) dx +

∫ a

0
Φ(x) dx

)

=
1

2
[Φ(0−) + Φ(0+)] .
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3.3. Spectral instability. To show instability of the linearized problem in the d > 0
case, we solve the eigenvalue problem

Lf = λf,

with L defined in (3.3). We show that when d > 0, there exist eigenvalue-eigenfunction
pairs (λ, fλ) such that λ has positive real part and fλ ∈ L1(R). To see that this im-
plies linear instability, consider linearized dynamics along an unstable eigenfunction, i.e.,
consider (3.4) with initial data

f0(x) = Kfλ(x).

By choosing K, we can make ‖f0‖L1 as small as we wish. The solution of (3.2) with
initial data f0 is then given by

f(x, t) = Kfλ(x)eλt,

and because λ has positive real part, ‖f(·, t)‖L1 → ∞ as t → ∞.
Definition 3.6. By a real solution f of the eigenvalue problem Lf = λf , we mean a

function f : R → R such that
• For x �= 0, f satisfies the pointwise equality

−dū0(x)f ′(x) = λf(x). (3.9)

• For ε > 0 sufficiently small, f satisfies the jump condition

−d

∫ ε

−ε

[
2δ(x)

(
H−1f

)
(x) + ū0(x)f ′(x)

]
dx = λ

∫ ε

−ε

f(x). (3.10)

An L1 eigenfunction of L is a solution in the above sense that also satisfies f ∈ L1(R).
With this definition, we note the following remarkable fact:

Lemma 3.7. Any odd function f ∈ L1 automatically satisfies the jump condition (3.10)
in Definition 3.6 for any 0 < ε ≤ ∞.

Proof. Fix ε > 0. Because f is odd, the right-hand side of (3.10) is zero. Similarly, the
integral of the second term on the left-hand side of (3.10) vanishes due to the fact that
the integrand is odd (ū0 is odd and f ′ is even, so their product is odd). As regards the
integral of the first term on the left-hand side of (3.10), this can be evaluated as follows:

−d

∫ ε

−ε

2δ(x)
(
H−1f

)
(x) dx = −2d

(
H−1f

)
(0)

= −2d

∫ ∞

−∞
G(x)f(x) dx.

The last integral is also zero as the integrand is odd (G is even and f is odd).
Hence, for any f odd, the jump condition (3.10) is automatically satisfied. Note that

f ∈ L1 implies that we could have taken ε = ∞ and all relevant integrals exist, so the
lemma holds. �

With this lemma in mind, we solve (3.9) for an odd, real function f ∈ L1. The steps
involved in the solution are entirely elementary, so we skip ahead to the eigenfunctions,
given below:
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Proposition 3.8. For any d �= 0, the function

f(x) =
sgn x

(−1 + e|x|)σ
, with 0 < σ < 1, (3.11)

is an L1 eigenfunction of L with eigenvalue λ = σd.

Proof. We need to check that (3.11) satisfies (3.9), (3.10) and that f ∈ L1. For x > 0,

f(x)
f ′(x)

= − 1
σ

(−1 + ex) e−x = − 1
σ

ū0.

Similarly, for x < 0,
f(x)
f ′(x)

= − 1
σ

(
1 − e−x

)
ex = − 1

σ
ū0.

Hence for σ = λ/d, the equation (3.9) is satisfied for all x �= 0.
Because f as defined in (3.11) is an odd, real function, we use Lemma 3.7 to con-

clude that the jump condition (3.10) is automatically satisfied. Therefore, f solves the
eigenvalue problem Lf = λf with eigenvalue λ = σd.

Next we show that 0 < σ < 1 implies f ∈ L1(R). Making the substitutions x = log φ,
y = φ − 1, and a = 1 − σ, we obtain∫ ∞

0

dx

(−1 + ex)σ
=

∫ ∞

1

dφ

φ(φ − 1)σ
=

∫ ∞

0

ya−1

y + 1
dy = π csc σπ. (3.12)

The last equality is valid only for 0 < a < 1, and can be derived via contour integration4.
Symmetry of |f | then implies that

‖f‖L1 = 2π csc σπ. �
Remark 3.9. It is now clear that for d > 0, there exist real, odd L1 eigenfunctions

(3.11). Moreover, the eigenvalues associated to these eigenfunctions, when d > 0, are
given by λ = σd > 0. This means that the d > 0 traveling waves v0 are linearly unstable
in L1.

Remark 3.10. The same calculation shows that if we seek f ∈ L1(R) ∩ Lp(R), with
p > 1, we simply choose σ such that 0 < σ < 1/p. This says that the d > 0 traveling
waves v0 are linearly unstable in every Lp norm for 1 ≤ p < ∞.

4. Nonlinear stability. In the previous section we showed that if d is negative
(respectively, positive), then the equilibrium is linearly stable (respectively, unstable)
with respect to admissible perturbations. One strategy would be to attempt to extend
these results on the linearized equation (3.2) to the fully nonlinear equation

ft = Lf − ε
(
H−1f

)
fx,

which is what one obtains by substituting v = v0 + εf into (1.7a). We emphasize that
this is not the path pursued here.

Instead, we work with (1.7) directly and make heavy use of the characteristic form of
equation (1.7a). We will show that for the d < 0 waves, if the perturbed initial data is

4This particular integration is explained in many complex analysis texts—see, for example, Titch-

marsh’s The Theory of Functions, 1939, computation 3.123 on pp. 105-106.
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strictly decreasing and odd, then the solution must tend toward the traveling wave exact
solution, asymptotically in time.

4.1. Characteristics. Let us briefly review5 some of the theory regarding characteris-
tics of (1.7). We first define the characteristic curves η(X, t) as solutions of

∂tη(X, t) = u(η(X, t), t) (4.1a)

η(X, 0) = X. (4.1b)

Hence (1.7a) evaluated at x = η(X, t) can be rewritten as

d

dt
[v(η(X, t), t)] = 0,

implying

v(η(X, t), t) = v0(X), (4.2)

for all X and t. We assume that

v0 ∈ C1(R) and v′0, v
′′
0 ∈ L1(R). (4.3)

Then by results in [BF], a unique solution v(·, t) exists globally in time and retains its
initial smoothness. We may differentiate both sides of (4.2) to obtain

vx(η(X, t), t)ηX(X, t) = v′0(X). (4.4)

Because u(·, t) = H−1v(·, t) ∈ C2(R), and because η solves (4.1a), the existence and
uniqueness theorem for ODE’s implies that η(·, t) ∈ C2(R) for all t ≥ 0.

4.2. Asymptotic stability. Before giving a detailed statement and proof of our theorem
on asymptotic stability, we present an abbreviated sketch. First we restrict attention to
odd and strictly decreasing initial data v0. In this case, we can show through the method
of characteristics and local analysis that v(x, t), u(x, t), ux(x, t), η(X, t), and ∂tη(X, t)
must all converge pointwise in x as t → ∞.

Note that if η and ∂tη are both converging as t → ∞, then ∂tη must converge pointwise
to zero—no other limit is possible. By (4.1a), this implies that for each X, u(η(X, t), t) →
0 as t → ∞. Using this together with the fact that ‖ux‖L∞ is bounded uniformly in
time, we can show the following: if there exists Y > 0 such that η(Y, t) converges
as t → ∞ to a positive number P > 0, then for x ∈ [−P, P ], u(x, t) converges to zero
as t → ∞. We also show that if ū(x) = limt→∞ u(x, t), then limt→∞ ux(x, t) = ū′(x).
Therefore, under the above boldfaced assumption, we may conclude that ux(0, t) → 0 as
t → ∞.

In the proof of the theorem that follows, we will carefully derive the following formula:

ux(0, t) =
1
2

∫
R

e−|η(Y,t)|v′0(Y ) dY.

Having already established that η(Y, t) converges to a bounded function as t → ∞, we
deduce by the above formula that ux(0, t) cannot converge to zero, so the above boldfaced
assumption is false.

5For more details, see [BF].
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Since η is odd and increasing for all t, we have shown that for all Y > 0, η(Y, t)
converges to 0. This implies that η−1(x, t) diverges pointwise to sgn(x) · ∞. Then

v(x, t) = v0

(
η−1(x, t)

)
tells us that v(·, t) approaches the exact solution v0, pointwise in x and asymptotically
as t → ∞.

Theorem 4.1. Suppose that v0 satisfies (4.3) and is odd and strictly decreasing (v′0 < 0),
with boundary values v0(±∞) = ±d where d < 0. Then, as t → ∞, the solution v(x, t)
converges (pointwise in x) to the traveling wave solution (2.3), v0(x) = d sgn(x).

Proof. The proof proceeds in several stages.
Claim 1. The solution stays odd for all t > 0. In the Introduction, we mentioned

that odd initial data u(x, 0) for (1.7) results in a solution u(x, t) that is odd for all t.
Note that u(x, t) is an odd function of x if and only if v(x, t) is an odd function of x. The
forward direction is easy: if u is odd, then ux is even, and uxx is odd. Hence v = u−uxx

must be odd. To show the reverse direction we use u = G ∗ v. Assuming that v is odd
then u is also odd as a convolution of an even and an odd function (the kernel G is even).

Therefore, taking v0 to be odd guarantees that both u(x, t) and v(x, t) are odd for all
t ≥ 0.

Claim 2. For all t > 0, we have ηX > 0, vx < 0, and ux < 0. Initially we have
ηX(X, 0) = 1. Suppose there exists (X0, t0) such that ηX(X0, t0) = 0. The regularity
theory [BF] guarantees that the characteristics do not cross in finite time, which implies
vx(η(X0, t0), t0) < ∞. Then it is clear from (4.4) that v′0(X0) = 0, a contradiction.
Therefore ηX > 0 for all t > 0. We may rewrite (4.4) as

vx(x, t) =
v′0(η

−1(x, t))
ηX(η−1(x, t), t)

,

and it is clear that vx < 0 for all t > 0. Then ux = G ∗ vx implies that ux < 0 for all
t > 0.

Claim 3. At every t > 0, η(X, t) is an odd diffeomorphism of R onto itself. Since
vx < 0, for each t, v(·, t) is a diffeomorphism of R onto the open interval (d,−d) where
d < 0. Hence we may invert (4.2) and write η(X, t) = v−1(v0(X), t). Using Claim 1
we infer that v−1 is odd (as the inverse of an odd function). Then, η is odd (as the
composition of two odd functions).

Now consider (4.2) for an arbitrary t > 0. Clearly the right-hand side of (4.2) has the
limits ±d as X → ±∞. Therefore,

lim
X→±∞

v(η(X, t), t) = ±d.

Let us put together (i) the boundary conditions on v, (ii) the fact that v is one-to-one
for all t, and (iii) the fact that ηX > 0 always. Based on these three facts, we conclude
that

lim
X→±∞

η(X, t) = ±∞.
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Claim 4. η(X, t) converges, pointwise in X, as t → ∞. Because η is odd, we have
η(0, t) = 0. Since ηX > 0 always, we have η(X, t) > 0 for X > 0. Because ux < 0 always,
we know u(x, t) < 0 for x > 0. Putting these facts together inside (4.1a), we conclude
that X > 0 implies

∂tη(X, t) = u(η(X, t), t) < 0.

For each X > 0, η(X, t) is a bounded monotone sequence in t, and hence must converge
as t → ∞ to some finite limit which we denote by η̄(X), i.e.

η̄(X) = lim
t→∞

η(X, t). (4.5)

Claim 5. v(x, t) converges pointwise as t → ∞ to a monotone function. For all t > 0
and x > 0, we have the bounds (with d < 0)

d < u(x, t) < 0,

d < v(x, t) < 0.

Note that
vt(x, t) = −u(x, t)vx(x, t) < 0,

so again for each x, v(x, t) is a bounded monotone sequence in t, and therefore must
converge to some finite limit which we label as v̄(x). Note in particular that we have the
estimates, for all t > 0,

x > 0 ⇒ 0 > v(x, t) > v̄(x) ≥ d

x < 0 ⇒ 0 < v(x, t) < v̄(x) ≤ −d.

It is obvious upon taking the appropriate limits that (with d < 0)

lim
x→±∞

v̄(x) = ±d.

Then because for each finite t > 0, we have vx(x, t) < 0, it is clear that v̄ is monotonic:

x < y ⇒ v̄(x) ≥ v̄(y).

Any bounded monotonic function has finite total variation, so v̄ ∈ BV (R), and therefore6

v̄ is differentiable almost everywhere, and discontinuous at most on a countable subset
of R.

Claim 6. u(x, t) and ux(x, t) converge, pointwise in x, as t → ∞. Fix x, y ∈ R. Then
note that pointwise convergence of v(y, t) → v̄(y) implies pointwise convergence:

G(x − y)v(y, t) → G(x − y)v̄(y).

Moreover, this sequence is bounded uniformly in t by an integrable function:

|G(x − y)v(y, t)| ≤ |d|G(x − y).

Then by Lebesgue’s dominated convergence theorem, we know that G ∗ v → G ∗ v̄ as
t → ∞, implying pointwise convergence of u(x, t). Let us denote

ū(x) = lim
t→∞

u(x, t) = (G ∗ v̄) (x). (4.6)

It is clear from the properties of v̄ established above that ū is everywhere differentiable.

6See Folland, Real Analysis, Theorems 3.23 and 3.27.
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For ux(x, t), we use ux = G ∗ vx = G′ ∗ v. As G′ is integrable, the same arguments as
above work to obtain

lim
t→∞

ux(x, t) = (G′ ∗ v̄) (x)

= ū′(x). (4.7)

Claim 7. ∂tη(X, t) converges to zero, pointwise in X, as t → ∞. First note that

lim
t→∞

u(η(X, t), t) = ū(η̄(X)). (4.8)

Equation (4.8) follows from

|u(η(X, t), t) − ū(η̄(X))| ≤ |u(η(X, t), t)− u(η̄(X), t)| + |u(η̄(X), t) − ū(η̄(X))|
≤ ‖ux‖L∞ |η(X, t) − η̄(X)| + |u(η̄(X), t) − ū(η̄(X))|,

where one uses (4.5), (4.6) and the uniform estimate:

‖ux‖L∞ ≤ ‖Gx‖L1‖v‖L∞ = ‖v0‖L∞ .

The last equality above comes from the characteristic form of the equation (1.7a) (the
values of v are conserved along characteristics).

Now, from (4.1a) and (4.8) we conclude that ∂tη(X, t) must converge pointwise as
t → ∞. Since η(X, t) is also converging (and is bounded), the only possible limit value
is, for all X,

lim
t→∞

∂tη(X, t) = 0.

Also, from (4.1a),

lim
t→∞

u(η(X, t), t) = 0. (4.9)

Claim 8. η(X, t) converges to zero, pointwise in X, as t → ∞. We will prove this
claim by contradiction. Suppose that there exists some Y > 0 such that limt→∞ η(Y, t) =
P > 0. We have

|u(η(Y, t), t) − u(P, t)| ≤ ‖ux‖L∞ |η(Y, t) − P |,

which together with (4.9) and the observation about the uniform bound on ‖ux‖L∞ yields

lim
t→∞

u(P, t) = 0.

Because for each t > 0, the function u(x, t) is a strictly decreasing and odd function of
x, we see that for x ∈ [−P, P ], we must have

ū(x) = lim
t→∞

u(x, t) = 0.

Therefore, by using (4.7), we get

lim
t→∞

ux(0, t) = 0. (4.10)

Consider

ux(0, t) =
1
2

∫ ∞

−∞
e−|y|vy(y, t) dy.
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Because η is a diffeomorphism of R onto itself (see Claim 3), we can make the change of
variables y = η(X, t), and obtain the equivalent integral

ux(0, t) =
1
2

∫ ∞

−∞
e−|η(X,t)|vy(η(X, t), t)ηX(X, t) dX.

Using (4.4), we have

ux(0, t) =
1
2

∫ ∞

−∞
e−|η(X,t)|v′0(X) dX < 0, for all t . (4.11)

By (4.10), we must have, for almost every X,

|η(X, t)| → +∞, as t → ∞,

contradicting the boundedness of η (see Claim 4). Therefore, for all Y > 0,

lim
t→∞

η(Y, t) = 0.

By oddness of η, the claim is established.
Claim 9. v(x, t) converges pointwise to the traveling wave solution ( 2.3), determined

completely by the boundary data of v0. Since η converges to zero, it is clear by reflecting
η across the line Y = X that η−1 must diverge to ±∞, i.e.,

lim
t→∞

η−1(x, t) =

{
+∞ x > 0

−∞ x < 0.

Therefore,

lim
t→∞

v(x, t) = lim
t→∞

v0(η−1(x, t)) =

{
d x > 0

−d x < 0,

proving the theorem. �

5. Numerical results. We numerically solve (1.7) by using a hybrid Lagrangian/
Eulerian scheme. Below we briefly describe the numerical scheme and then discuss various
numerical results regarding the nonlinear stability/instability of the traveling waves for
both d < 0 and d > 0 cases.

5.1. Numerical scheme. We are interested in solving (1.7) with initial data

v(x, 0) = v0(x),

and boundary conditions

v(−∞, t) = −d, and v(∞, t) = d, for all times t.

Solving this initial boundary value problem for (1.7) is equivalent to computing the
Lagrangian map η, as defined by (4.1), and then setting

v(η(X, t), t) = v0(X). (5.1)

Here, X denotes the generic Lagrangian variable (the particle label), while x represents
the Eulerian variable.

For numerical purposes we truncate the spatial domain to [−a, a], with a large enough,
and impose artificial boundary conditions: v(x, t) = −d for x < −a and v(x, t) = d for
x > a. We discretize the domain [−a, a] using an equispaced grid with N grid points.
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Let us denote this grid by xi = −a+(i−1)∆x, where i = 1, . . . , N , and the grid spacing
is given by ∆x = 2a/(N − 1). We consider N “particles” Xi located initially at xi,
i = 1, . . . , N . We store the initial values v0(Xi) in a vector v0; these values will be
preserved along the characteristics originating from Xi, i = 1, . . . , N . To update the
solution in time we use a fixed timestep ∆t and a sequence of discrete times tn = n∆t.

Let x = (x1, . . . , xN ) and X = (X1, . . . , XN ). We numerically track the positions of
the particles Xi at the discrete times tn; i.e., we compute ηn(X) = (ηn(X1), . . . , ηn(XN )),
where ηn(Xi) ≈ η(Xi, tn), i = 1, . . . , N . On the Eulerian grid we compute vn =
(vn

1 , . . . , vn
N ), where vn

i ≈ v(xi, tn), i = 1, . . . , N . Analogously, un denotes the numerical
approximation on the discrete spacetime grid of u(x, t).

We will write down step n of the algorithm, which presupposes that we have computed
ηn−1(X), vn−1, and un−1.

(1) Step forward one unit of time ∆t, from ηn−1(X) to ηn(X), using the evolution
equation (4.1a). Numerically, we have a vector un−1 which tells us u evaluated
at each of the Eulerian grid points xi, i = 1, . . . , N . We can interpolate these
values at ηn−1(X) and use the forward Euler method 7 for (4.1a) to step forward
in time and compute ηn(X).

(2) Due to (5.1), we know the numerical values of v at ηn(X); these are given by
v0, as they have been preserved along the characteristics. We interpolate these
values at x to compute vn.

(3) Numerically invert the Helmholtz operator on the Eulerian grid and compute un

from vn (see details below).
Let us briefly describe how we numerically invert the Helmholtz operator H, as needed
in step 3 of the algorithm. Define the following operator on R

N :

z �→ ∆2
0z,

(
∆2

0z
)
k

= zk+1 − 2zk + zk−1. (5.2)

Here we use the convention that zk = −d for k < 1 and zk = d for k > N . This
corresponds to the artificial boundary conditions discussed above. The operator (5.2) is
a linear transformation of R

N and may be written in matrix form. Now consider the
following standard finite-difference approximation to the second-derivative operator ∂2

x

(see [Ise96]):

D2 =
1

∆x2

[(
∆2

0

)
− 1

12
(
∆2

0

)2
+

1
90

(
∆2

0

)3
]

+ O(∆x6). (5.3)

With this notation, the discrete form of u = H−1v reads

u =
(
Id − α2D2

)−1
v.

Remark 5.1. As usual with Lagrangian methods, it is necessary to perform regridding
after a certain number of time steps; otherwise the particles tend to cluster together
and/or move away from each other. In the examples presented in Figures 1 and 3–5, for
instance, the particles cluster in a very narrow region where the shock forms.

7Of course, we could use a much better time-stepper than forward Euler. To generate the numerical

results presented in this section we used standard Runge-Kutta methods.



490 H. S. BHAT AND R. C. FETECAU

-15 -10 -5 0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Case d = −1 < 0 (asymptotic stabil-
ity). The initial profile (5.4) (dash-dot line) will

approach the traveling wave solution v0 (see
(2.3)) as t → ∞. The solid lines represent the
solution at t = 3, 6, 9, and 12, respectively. See
also Table 1.
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Fig. 2. Case d = 1 > 0 (instability). The ini-
tial profile (5.4) (dash-dot line) “rarefacts,” i.e.

approaches, as t → ∞, a line that connects the
left and right states uL = −1, uR = 1 at −∞
and ∞, respectively. The solid lines represent
the solution at t = 3, 6, 9, and 12, respectively.

5.2. Odd initial data. In Section 4, we showed nonlinear asymptotic stability with
respect to strictly decreasing odd perturbations of the traveling wave solution for d < 0.
We present below a numerical test that confirms this analytical result. We also consider
the d > 0 case and take perturbed initial states that are odd and strictly increasing.
The numerical results in the latter case indicate that the d > 0 waves are nonlinearly
unstable, as suggested by the analytical results on the linearized problem from Section
3.3.

We take as initial data,

v0(x) = d tanh
(

x

w

)
, (5.4)

with d = −1, d = 1 and w = 4, w = 0.5, respectively. The numerical results are
presented in Figures 1 and 2. For d < 0 (see Figure 1), the numerics confirm that the
traveling waves are asymptotically stable with respect to perturbations resulting from
odd, strictly decreasing perturbed initial states v0. Table 1 shows how ‖v(·, t)− v0(·)‖L1

and ‖u(·, t) − u0(·)‖L∞ decay over time. For d > 0 (see Figure 2), the numerics suggest
that the traveling waves are nonlinearly unstable.

We also experimented with other odd initial data for d < 0. The numerical results
indicate that the traveling waves v0 are asymptotically stable in the L1 norm. We
considered for instance:

v0(x) = − tanh
(

x

w1

)
− 2

x/w2

(x/w2)6 + 1
, (5.5)

with w1 = 3 and w2 = 4. The numerical results for initial data (5.5) are presented in
Figure 3.

Remark 5.2. Note that for d < 0, the odd initial perturbations (5.4) and (5.5) that we
considered are quite large, yet we still have numerical evidence of nonlinear asymptotic
stability, which is quite remarkable.
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Table 1. The decay over time of the L1 norm ‖v(·, t) − v0(·)‖L1

and the L∞ norm ‖u(·, t) − u0(·)‖L∞ . Here, v (and u) represent
the numerical solution corresponding to the initial data (5.4) with
d = −1. Computations using more spatial resolution and larger
times confirm the decay to 0 of the two norms as t → ∞. See also
Figure 1.

Time ‖v − v0‖L1 ‖u − u0‖L∞

0 5.5408 0.4489
3 2.8500 0.2434
6 0.9015 0.0618
9 0.1801 0.0108
12 0.0338 0.0022
15 0.0054 4.2 × 10−4

18 3.6 × 10−4 7.6 × 10−6
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Fig. 3. Numerical results for d = −1 and the initial data given by
(5.5). The initial profile (dash-dot line) approaches the traveling
wave solution v0 a.e. as t → ∞. The solid lines represent the
solution at t = 1.5 and 3. Numerical experiments with more spatial
resolution confirm that the widths of the two symmetric bumps will
become infinitesimally small, while the bumps keep constant values
at their peaks.

5.3. Other initial data for the d < 0 case. Inspired by the extensive prior work on the
stability of viscous profiles [Sat76, Goo86], we expect that the stationary traveling waves
should be at best “orbitally stable;” that is, if v(x, 0) ≈ v0(x), then v(x, t) → v0(x + x0)
as t → ∞, where x0 is some constant shift. To see this more clearly, take a perturbation
around a steady traveling wave,

v(x, t) = v0(x) + f(x, t),
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where v(x, t) is a solution of (1.7). One can check that
d

dt

∫
R

f(x, t) dx = 0,

which implies that for all t, we have∫
R

f(x, t)dx =
∫

R

f(x, 0) dx.

Suppose that we have orbital stability, i.e.,

v(x, t) → v0(x + x0), as t → ∞.

Then ∫
R

(v0(x + x0) − v0(x)) dx =
∫

R

f(x, 0) dx.

Denote
Ψ(x0) =

∫
R

(v0(x + x0) − v0(x)) dx.

We have Ψ(0) = 0 and

Ψ′(x0) =
∫

R

(v0)′(x + x0) dx = 2d.

Hence,
Ψ(x0) = 2dx0,

and
x0 =

1
2d

∫
R

f(x, 0) dx. (5.6)

Therefore, provided we have orbital stability, the shift x0 is determined entirely by the
initial perturbation f(x, 0) at t = 0, and by the value of d.

Our next step is to present numerical tests of orbital stability that take into account
(5.6). We considered the following two choices of non-odd initial data (d = −1):

v0(x) = − tanh
(

x

w1

)
+ 0.2

(
2 (x/w2)

2 − 1
)

exp
(
− (x/w2)

2
)

, (5.7)

and

v0(x) = − tanh
(

x

w1

)
+

0.2
(x/w2)4 + 1

, (5.8)

with w1 = 1 and w2 = 2.
The initial data given by (5.7) has zero integral, i.e.

∫ ∞
−∞ v0(x) dx = 0 and hence we

are interested in checking numerically if this profile approaches, as t → ∞, the unshifted
traveling wave v0(x).

On the other hand, the initial data given by (5.8) has a non-zero integral; in this case,
we check numerically whether the profile approaches, as t → ∞, a shifted traveling wave
v0(x+x0). The shift x0 can be computed using (5.6)—for the initial data (5.8), we have
x0 ≈ −0.4443.

The numerical results for initial data (5.7) and (5.8) are presented in Figures 4–
6. Tables 2 and 3 show how ‖v(·, t) − v0(·)‖L1 and ‖u(·, t) − u0(·)‖L∞ decay over time.
There is strong numerical indication that the traveling waves are orbitally asymptotically
stable.
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Table 2. The decay over time of ‖v(·, t) − v0(·)‖L1 and ‖u(·, t) −
u0(·)‖L∞ , where v (and u) represent the numerical solution corre-
sponding to the initial data (5.7). The norms decay to 0 as t → ∞.
Computations using more spatial resolution and larger times con-
firmed the result. See also Figure 4.

Time ‖v − v0‖L1 ‖u − u0‖L∞

0 1.6527 0.2026
2 0.6540 0.0815
4 0.2005 0.0154
6 0.0399 0.0011
8 0.0061 1.1 × 10−4

Table 3. The decay over time of the L1 norm ‖v(·, t) − v0(·)‖L1

and the L∞ norm ‖u(·, t) − u0(·)‖L∞ . Here, v (and u) represent
the numerical solution corresponding to the initial data (5.8) and
ṽ0 and ũ0 denote the shifted traveling waves ṽ0(x) = v0(x + x0),
ũ0(x) = u0(x + x0) with x0 ≈ −0.4443. The norms decay to 0 as
t → ∞. Computations using more spatial resolution and larger times
confirmed the result. See also Figures 5 and 6.

Time ‖v − ṽ0‖L1 ‖u − ũ0‖L∞

0 1.6446 0.1948
2 0.5832 0.0606
4 0.1570 0.0145
6 0.0411 0.0044
8 0.0126 0.0018
10 0.0037 7.5 × 10−4

6. Appendix.
6.1. The transport equation on the half-line. Consider the first-order transport equa-

tion on the negative real axis:

ft + (−d + dex) fx = 0, t > 0, −∞ < x < 0, (6.1)

with the following initial and boundary conditions:

f(x, 0) = f0(x), −∞ < x < 0, (6.2)

f(−∞, t) = 0, f(0, t) = d, for all t > 0. (6.3)

We have an initial-value problem of the type

ft + c(x)fx = 0, f(x, 0) = f0(x) (6.4)

on the domain x ∈ (−∞, 0). For the choice

c(x) = −d + dex,

we shall show that the general solution is given by

f(x, t) = f0

[
log

(
1

1 + e−dt[e−x − 1]

)]
. (6.5)
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Fig. 4. Orbital stability for non-odd initial data. The dash-dot line
represents the initial data (5.7). The profile will approach the un-
shifted traveling wave v0 a.e. as t → ∞. The two solid lines represent
the solution at t = 2 and t = 4. The results are confirmed by higher
resolution and longer time computations. See also Table 2.
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Fig. 5. Orbital stability for non-odd initial
data. The dash-dot line represents the ini-
tial data (5.8). The profile will approach the
shifted traveling wave ṽ0(x) = v0(x+x0), with
x0 ≈ −0.4443, a.e as t → ∞. The two solid
lines represent the solution at t = 2 and t = 4.
See also Table 3.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 6. Orbital stability, zoomed around
−x0 ≈ 0.4443—see Figure 5. The initial data
(5.8) is the dash-dot line. The three solid lines
represent the solution at t = 2, t = 4, and
t = 6, respectively.

In particular, we note that this solution gives

f(0, t) = f0(0−),

and
lim

x→−∞
f(x, t) = lim

y→0+
f0(log y) = lim

x→−∞
f0(x).
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If f0(−∞) = 0 and f0(0−) = d, then for all t > 0, we would have f(−∞, t) = 0 and
f(0, t) = d.

6.2. Derivation of (6.5). The solution of (6.4) may be derived using the method of
characteristics. We define η(X, t) to be the solution of

∂tη(X, t) = c(η(X, t)), η(X, 0) = X. (6.6)

One may verify that f(η(X, t), t) is constant for all t, which implies

f(η(X, t), t) = f(X, 0) = f0(X). (6.7)

Given c(x), we solve (6.6) for η(X, t). If η(X, ·) is a diffeomorphism of (−∞, 0), i.e., if
there exists a smooth map η−1(x, t) such that η(η−1(x, t), t) ≡ x, then by evaluating
(6.7) at X = η−1(x, t), we may derive

f(x, t) = f0(η−1(x, t)),

the solution of the initial-value problem.
Let c(x) = −d + dex. Then, with gX(t) = η(X, t), we may write (6.6) as

dg

dt
= d(eg − 1).

Integration gives ∫ gX(t)

gX(0)

dg

eg − 1
= d · t.

(We use d · t to denote the constant d multiplied by the variable t, to avoid confusion
with the differential dt.) Let g = log y, note that gX(0) = X, and then compute

d · t =
∫ yX (t)

exp X

dy

y(y − 1)
= log

∣∣∣∣ 1 − 1/yX(t)
1 − 1/ expX

∣∣∣∣ .

Using yX(t) = exp gX(t) = exp[η(X, t)], we have, after some algebra,

η(X, t) = log
(

1
1 − edt[1 − e−X ]

)
.

Now a quick computation shows that

∂Xη(X, t) =
edte−X

1 + edt[e−X − 1]
.

Hence we have the following facts:

lim
X→−∞

η(X, t) = −∞,

η(0, t) = 0,

For all X < 0, ∂Xη(X, t) > 0.

This is enough to guarantee that for each t, η(X, t) is a diffeomorphism of (−∞, 0). So
it is perfectly fine to invert η, which we may do algebraically, resulting in:

η−1(x, t) = log
(

1
1 + e−dt[e−x − 1]

)
.

We then set f(x, t) = f0(η−1(x, t)), which is precisely the solution given in (6.5).



496 H. S. BHAT AND R. C. FETECAU

Acknowledgement. We thank Michael I. Weinstein, Tai-Ping Liu, and Joe Keller
for discussions and questions regarding this work.

References

[BF] H. S. Bhat and R. C. Fetecau, A Hamiltonian regularization of the Burgers equation, J.
Nonlinear Sci. 16 (2006), no. 6, 615–638. MR2271428

[CH93] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys.
Rev. Lett. 71 (1993), 1661–1664. MR1234453 (94f:35121)

[CS00] A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000),
no. 5, 603–610. MR1737505 (2001b:35252)

[CS02] , Stability of the Camassa-Holm solitons, J. Nonlinear Sci. 12 (2002), no. 4, 415–422.
MR1915943 (2003e:35250)

[DGH01] H. R. Dullin, G. A. Gottwald, and D. D. Holm, An integrable shallow water equation with
linear and nonlinear dispersion, Phys. Rev. Lett. 87 (2001), no. 19, 194501-1-4.

[DGH03] , Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations
for shallow water waves, Fluid. Dynam. Res. 33 (2003), 73–95. MR1995028 (2004g:76022)

[DGH04] , On asymptotically equivalent shallow water wave equations, Phys. D 190 (2004),
1–14. MR2043789 (2005e:76017)

[DHH03] A. Degasperis, D. D. Holm, and A. N. W. Hone, Integrable and non-integrable equations with
peakons, Nonlinear physics: theory and experiment, II (Gallipoli, 2002), World Sci. Publishing,
River Edge, NJ, 2003, pp. 37–43. MR2028761

[DP99] A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturbation the-
ory (Rome, 1998), World Sci. Publishing, River Edge, NJ, 1999, pp. 23–37. MR1844104
(2002f:37112)

[Goo86] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws,
Arch. Rational Mech. Anal. 95 (1986), no. 4, 325–344. MR853782 (88b:35127)

[HH05] D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions, J.
Nonlinear Math. Phys. 12 (2005), no. suppl. 1, 380–394, With an appendix by H. W. Braden
and J. G. Byatt-Smith. MR2117993 (2005h:37145)

[HS03a] D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of
solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett.
A 308 (2003), 437–444. MR1977364 (2004c:35345)

[HS03b] , Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J.
Appl. Dyn. Sys. 2 (2003), 323–380. MR2031278 (2004k:76046)

[HW03] A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian operators for peakon
equations, Inverse Problems 19 (2003), 129–145. MR1964254 (2004a:37090)

[Ise96] Arieh Iserles, A first course in the numerical analysis of differential equations, Cambridge
University Press, Cambridge, 1996. MR1384977 (97m:65003)

[Kur96] P. Kurasov, Distribution theory for discontinuous test functions and differential operators with
generalized coefficients, J. Math. Anal. Appl. 201 (1996), 297–323. MR1397901 (97g:46050)

[Ler34] J. Leray, Essai sur le mouvement d’un fluide visqueux emplissant l’space, Acta Math. 63
(1934), 193–248. MR1555394

[MZM06] K. Mohseni, H. Zhao, and J. E. Marsden, Shock regularization for the Burgers equation,
44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), January 2006, AIAA Paper
2006-1516.

[Sat76] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math.
22 (1976), no. 3, 312–355. MR0435602 (55:8561)

http://www.ams.org/mathscinet-getitem?mr=2271428
http://www.ams.org/mathscinet-getitem?mr=1234453
http://www.ams.org/mathscinet-getitem?mr=1234453
http://www.ams.org/mathscinet-getitem?mr=1737505
http://www.ams.org/mathscinet-getitem?mr=1737505
http://www.ams.org/mathscinet-getitem?mr=1915943
http://www.ams.org/mathscinet-getitem?mr=1915943
http://www.ams.org/mathscinet-getitem?mr=1995028
http://www.ams.org/mathscinet-getitem?mr=1995028
http://www.ams.org/mathscinet-getitem?mr=2043789
http://www.ams.org/mathscinet-getitem?mr=2043789
http://www.ams.org/mathscinet-getitem?mr=2028761
http://www.ams.org/mathscinet-getitem?mr=1844104
http://www.ams.org/mathscinet-getitem?mr=1844104
http://www.ams.org/mathscinet-getitem?mr=853782
http://www.ams.org/mathscinet-getitem?mr=853782
http://www.ams.org/mathscinet-getitem?mr=2117993
http://www.ams.org/mathscinet-getitem?mr=2117993
http://www.ams.org/mathscinet-getitem?mr=1977364
http://www.ams.org/mathscinet-getitem?mr=1977364
http://www.ams.org/mathscinet-getitem?mr=2031278
http://www.ams.org/mathscinet-getitem?mr=2031278
http://www.ams.org/mathscinet-getitem?mr=1964254
http://www.ams.org/mathscinet-getitem?mr=1964254
http://www.ams.org/mathscinet-getitem?mr=1384977
http://www.ams.org/mathscinet-getitem?mr=1384977
http://www.ams.org/mathscinet-getitem?mr=1397901
http://www.ams.org/mathscinet-getitem?mr=1397901
http://www.ams.org/mathscinet-getitem?mr=1555394
http://www.ams.org/mathscinet-getitem?mr=0435602
http://www.ams.org/mathscinet-getitem?mr=0435602

	1. Introduction
	Overview and roadmap

	2. Problem formulation
	2.1. Regularity of traveling waves
	2.2. Admissible perturbations
	2.3. Norms

	3. Linearized stability
	3.1. Odd initial data
	3.2. Arbitrary initial data
	3.3. Spectral instability

	4. Nonlinear stability
	4.1. Characteristics
	4.2. Asymptotic stability

	5. Numerical results
	5.1. Numerical scheme
	5.2. Odd initial data
	5.3. Other initial data for the d<0 case

	6. Appendix
	6.1. The transport equation on the half-line
	6.2. Derivation of (6.5)

	Acknowledgement
	References

