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Abstract. We review the derivation of stochastic ordinary and quasi-linear stochastic
partial differential equations (SODE’s and SPDE’s) from systems of microscopic deter-
ministic equations in space dimension d ≥ 2 as well as the macroscopic limits of the
SPDE’s. The macroscopic limits are quasi-linear (deterministic) PDE’s. Both noncoer-
cive and coercive SPDE’s, driven by Itô differentials with respect to correlated Brownian
motions, are considered. For the solutions of semi-linear noncoercive SPDE’s with smooth
and homogeneous diffusion kernels we show that these solutions can be obtained as so-
lutions of first-order SPDE’s, driven by Stratonovich differentials and their macroscopic
limit, and are solutions of a class of semi-linear second-order parabolic PDE’s. Further,
the space-time covariance structure of correlated Brownian motions is described and for
space dimension d ≥ 2 the long-time behavior of the separation of two uncorrelated
Brownian motions is shown to be similar to the independent case.

1. From microscopic to mesoscopic and macroscopic equations. Einstein [6]
develops a model of Brownian motions to describe the displacement of large solute parti-
cles as the result of the interaction (collisions) with the small solvent particles. Einstein
assumes that the motions of the large particles are statistically independent, provided
they are sufficiently far separated. In the rigorous mathematical framework of several
Brownian motions (or “Wiener processes”) the assumption of independence, irrespective
of the distance, has become a widely accepted model in stochastic analysis and the asso-
ciated parabolic partial differential equations. In applications, however, it is well known
that at short distances the depletion effect generates an attractive force between the
large particles (cf. Kotelenez, Leitman and Mann [22] and the references therein), where
depletion refers to the fact that the number of small particles per small volume between
two large particles drops if the distance between the two large particles becomes small.
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In particular, if the distance between the two large particles is less than a critical positive
parameter,

√
ε, then the surrounding medium of small particles can no longer be homo-

geneous and isotropic and the two large particles must become statistically correlated.√
ε will be called the “correlation length”.
Traditionally, there are three levels to describe the time evolution of particle distri-

butions: microscopic, mesoscopic and macroscopic (cf., e.g., Haken [13] or van Kampen
[16]).

On a microscopic level, Newtonian mechanics governs the equations of motion of the
individual atoms or molecules.1 For our system of large (solute) and small (solvent)
particles we can describe the model as follows: Suppose there are N large particles and
infinitely many small particles distributed in the Euclidean state space Rd.2 The position
of the (center of the) ith large particle at time t will be denoted ri(t) and its velocity
vi(t). The corresponding position of the (center of the) λth small particle and its velocity
will be denoted qλ(t) and wλ(t), respectively. m̃ is the mass of a small particle and m

the mass of a large particle. The empirical distributions of large and small particles are
(formally) given by

XN (dr, t) := m
N∑

j=1

δrj(t)(dr), Y(dq, t) := m̃
∑

λ

δqλ(t)(dq).

1a) Transition from microscopic to mesoscopic equations. To simplify the
transition from microscopic to mesoscopic a mean-field interaction between large and
small particles is assumed, where spatially extended particles are replaced by point par-
ticles and “large” and “small” refer to the mass of a particle. Further, the interaction
between small particles is assumed to be negligible, and the interaction between large
particles can be (temporarily) neglected.3 Denote the potential governing the interac-
tion between large and small particles by Uε(µ, r − q) on a space-time continuum, and
let µ > 0 be a friction coefficient for the large particles (cf. the following (1.1)). Set-
ting Gε(µ, r) := −∇Uε(µ, r), the interaction between small and large particles can be
described by the following infinite system of nonlinear coupled oscillators:

d
dtr

i(t) = vi(t), ri(0) = ri
0,

d
dtv

i(t) = −µvi(t) + 1
m

∫
Gε(µ, ri(t) − q)Y(dq, t), vi(0) = vi

0,
d
dtq

λ(t) = wλ(t), qλ(0) = qλ
0 ,

d
dtw

λ(t) = 1
m

∫
Gε(µ, qλ(t) − r)XN (dr, t), wλ(0) = wλ

0 .

⎫⎪⎪⎬⎪⎪⎭ (1.1)

Here and in what follows, the integration domain will be over all of Rd if no integration
domain is specified. Observe that Gε(µ, r − q) has the dimensions �

T 2 (length over time
squared).

On the “mesoscopic” level the motion of the large particles is stochastic and the ran-
domness of the motion is determined by the surrounding medium, which is obtained from

1I.e., we restrict ourselves to classical physics.
2Infinitely many small particles are needed to generate independent increments in the limiting Brow-

nian motion. Cf. our Comment, Part (i) at the end of this section and Kotelenez [19].
3As the interaction between large particles occurs on a much slower time scale than the interaction

between large and small particles, it can be included after the mesoscopic scaling limit, employing

fractional steps (cf. Goncharuk and Kotelenez [12]).
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the system of small particles. Observe that for only one large particle the surrounding
medium can be assumed to be homogeneous and isotropic. Therefore, given the pre-
ceding simplifying assumptions, the marginal motion of any given large particle must
be Brownian (a Wiener process), and if large particles are sufficiently separated (dilute
system), their motions should be approximately independent. However, if the distance
between two large particles becomes smaller than (a multiple of) the correlation length√

ε, then the particles need to be correlated and have a tendency to attract one another.
We will call such a system of N large particles N “correlated Brownian motions” (cf. also
Definition 3.2). Following Kotelenez [18]–[20], a model of correlated Brownian motions
can be defined as follows: Let w(dq, ds) be the standard Gaussian white noise on Rd×R+

(which is a space-time generalization of the time increments of a standard scalar-valued
Brownian motion, β(ds)).4 w(dq, ds) is defined on the same probability space as the
initial positions (r1(0), ..., rN(0)) and assumed to be independent of the initial positions.
Assume for the kernel that

Gε(r) ≈
1
µ

Gε(µ, r), as µ −→ ∞ .

Then the positions of the large particles are the solutions of the stochastic integral
equations:

ri(t) = ri(0) +
∫ t

0

∫
Gε(ri(u) − q)w(dq, du), i = 1, ..., N. (1.2)

The equations (1.2) are coupled only through the Gaussian space-time white noise
w(dq, du), which has the units of time. For a large class of kernels Gε, (1.2) has a unique
solution and the d-dimensional components are square integrable continuous martingales.
Moreover, for each i = 1, ..., N , ri(·)−ri(0) are Brownian motions (cf. Section 3 for more
details and an analysis of the correlations between the motions of two different particles).

Next, we give sufficient conditions for the transition from the microscopic description
(1.1) to the mesoscopic (i.e., stochastic) description (1.2):

• Formation of small clusters (ensembles) of particles if their initial positions and
velocities are similar (coarse graining in space).5

• Replace the time derivative in (1.1) by an Euler scheme (coarse graining in time).
• Randomization of the initial distribution of clusters, where the probability distribu-

tion is determined by the relative sizes of the clusters. Assume statistical independence
of initial distributions of different clusters.

• The initial average velocity, 〈w0〉, of the small particles and the friction coefficient
µ for the large particles tend to infinity such that

√
εµ 	 〈w0〉.

4If A is a Borel subset of [0,∞) of finite Lebesgue measure |A|,
∫
A β(dt) is normally distributed

with mean 0 and variance |A| and if A1 ∩ A2 = ∅ for two Borel subsets of [0,∞) of finite Lebesgue
measure, then

∫
A1

β(dt) and
∫
A2

β(dt) are independent. Similarly, let B, B1, B2 be Borel subsets of Rd of

finite Lebesgue measure. Then A×B is a Borel set of finite Lebesgue measures. Then
∫
A

∫
B w(dq, dt) is

normally distributed with mean 0 and variance |A|·|B| and if A1×B1∩A2×B2 = ∅, then
∫
A1

∫
B1

w(dq, dt)

and
∫
A2

∫
B2

w(dq, dt) are independent (cf. Walsh [37]).
5In a spatially coarse grained model, particles whose initial positions and velocities are almost iden-

tical are considered a cluster and are treated as one small particle.
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• Allow the small particles to escape to infinity after having interacted with the
large particles for a macroscopically small time, assuming that the space dimension is
d ≥ 2.6

Under these assumption, Kotelenez [19] (in addition to a suitable convergence of the
initial conditions) derives a “mesoscopic” limit theorem in which the positions of the
large particles in a sequence of coarse grained versions of (1.1) tend to the solutions of
(1.2) weakly in the Skorohod space of cadlag functions with values in RdN for d ≥ 2.

Comments.
(i) The escape to infinity after a short period of interaction with the large particles is

necessary to generate independent increments in the limit. This can be seen as follows.
The small time steps induce a partition of the time axis into small time intervals. Further,
denote the domain of concentration of the large particles by D. Since the number of large
particles is finite, D may be assumed to be bounded and expands slowly due to the slow
motion of the large particles. In each of the small time intervals the large particles are
being displaced by the interaction with clusters of small particles being in D during that
small time interval. Note that the vast majority of small particles had previously not
interacted with the large particles prior to entering D. After that time step most small
particles leave D and outside D their velocities remain unchanged. Hence, they escape
to infinity, i.e. their distance to D tends to infinity. This is true for every small time
interval. Since clusters have started independently, this implies almost independence of
the displacements of the large particles in different time intervals. In a scaling limit,
as the initial velocities of the small particles and the friction coefficient for the large
particles tend to infinity, the motions of the large particles have orthogonal increments.7

It is the orthogonal increments in time, where an infinite system of small particles and
the escape to infinity are needed. We can obtain a similar result if there is no friction
in the equations for the large particles. In this case the limit would be an Ornstein-
Uhlenbeck model (described by stochastic second-order equations), where the velocities
perform correlated Brownian motions. For the case of one large particle we refer to
results obtained by Dürr, Goldstein and Lebowitz [4], Sinai and Soloveichik [33], Szász
and Tóth [34] and the references therein.

(ii) Suppose that small particles move with different velocities. If most of the small
particles, moving in the direction of a large particle, can avoid collisions with other small
particles (as, e.g., in a rare gas or in the PHS model), fast small particles coming from
“far away” can collide with a given large particle at approximately the same time as slow
small particles which were close to the large particle before the collision. If, in repeated
microscopic time steps, collisions of a given small particle with the same large particle
are negligible, then in a mesoscopic time unit δσ, the collision dynamics can be replaced
by long-range mean field dynamics. Dealing with a wide range of velocities, as in the

6This hypothesis seems to be acceptable if for spatially extended particles the interparticle distance is
considerably greater than the diameter of a typical particle. The assumption holds for a gas (cf. Lifshits
and Pitayevskii [28], Ch.1, §3 ), but not for a liquid, like water. For a liquid, we refer to the PHS model,

reviewed in Section 2 of Kotelenez, Leitman and Mann (loc. cit.).
7The marginal motion of each large particle has independent increments. But the mean field inter-

action with the medium of small particles correlates their motions, which leads to a weaker property of

orthogonal increments of the system of large particles.
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Maxwellian case, and working with discrete time steps, a long range force is generated. If
we assume that the empirical velocity distribution of the small particles is approximately
Maxwellian, the aforementioned mean field force can be given by the following expression
(cf. Kotelenez [21], (1.2)):

Gε,M (µ, R − q) ≈ cε(R − q)µe−
|R−q|2

2ε . (1.3)

Here, µ is the friction coefficient for the large particles and cε is a positive constant with
the unit 1

T . cε has to be defined such that, choosing

Gε,M (r) := cεre
− |r|2

2ε

in the kinetic stochastic equation (1.2), |Gε,M (r)|2 must approximate the δ-function, as
ε ↓ 0, where | · | denotes the Euclidean norm in Rd.

Obviously, this example can be immediately generalized to an arbitrary velocity field
of the small particles. A more realistic model would be some (possibly nonlinear) trans-
formation of the velocity field, taking into account collisions between small particles, etc.
For the purpose of our paper, it suffices to work with a general mean-field force kernel
Gε as in (1.2) and show that for certain kernels the right-hand side of (1.2) behaves
according to our requirements, stated at the beginning of this section. �

As a result of the mesoscopic limit theorem, the small particles become a Brownian
random medium which drives the motion of the N large point particles in Rd, d ≥
2. In what follows we will drop the epithet “large” and study the motion of the N

particle system under the influence of additional forces. As in (1.2), the position of
the i-th particle at time t will be denoted ri(t) and its mass mi. Then the empirical
mass distribution (also called the “empirical process”) at time t is given by XN (t) :=∑N

i=1 miδri(t), where δr is the point measure concentrated in r. To make the arguments
more transparent we will choose mi = 1

N for i = 1, .., N in what follows.
For the “macroscopic” description we refer to the following (1.7) and the transition

from mesoscopic to macroscopic in Theorem 1.3.
1b) Transition from mesoscopic to macroscopic equations. (Ω,F ,Ft, P ) is a

stochastic basis with right continuous filtration. All our stochastic processes are assumed
to live on Ω and to be Ft-adapted (including all initial conditions in SODE’s and SPDE’s).
The stochastic component of the displacement of ri(t) in a short time increment should
be Brownian (multiplied by some diffusion coefficient, which may depend both on ri(t)
and on XN (t)). Before precisely formulating the appropriate generalization of (1.2), we
first need to comment on a more traditional perturbation of the position of the i-th
particle by Brownian noise.

(I) Denote the space of Borel probability measures on Rd by M1, endowed with a
suitable Wasserstein metric (cf. (2.2)). F0(r, µ, t) is a “nice” Rd-valued function on Rd×
M1×[0,∞), jointly measurable in all arguments and where “nice” in this introduction will
refer to appropriate Lipschitz and linear growth assumptions. The subscript 0 indicates
that there is no correlation between the Brownian noises for different particles. Md×d

denotes the d × d matrices over R. Further, let J0(r, µ, t) be a “nice” Md×d-valued
function, depending on the positions of a particle, the empirical distribution X0,N (t) with
weights mi := 1

N and time t. Finally, {βi(·)} is a system of i.i.d. Rd-valued standard
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Brownian motions. Consider the stochastic ordinary differential equations (SODE’s) in
the sense of Itô for the displacement of ri of the following type (cf., e.g., Oelschläger [30]
and Gärtner [9]):

dri
0,N (t) = F0(ri

0,N (t),X0,N (t), t)dt + J0(ri
0,N (t),X0,N (t), t)dβi(t),

ri
0,N (s) = qi

0, i = 1, . . . , N, X0,N (t) :=
∑N

i=1
1
N δri

0,N (t).

}
(1.4)

We next give an intuitive argument why the empirical processes in (1.4) converge to a
macroscopic (i.e., deterministic) quantity. Let 0 ∈ Md×d be the matrix with all entries
being equal to 0. The two-particle diffusion matrix of the noise is given by

D̃0(ri, rj , µ, t) :=

{
J0(ri, µ, t)J T

0 (rj , µ, t), if i = j,

0, if i �= j,
(1.5)

where “AB” denotes the matrix multiplication of matrices A and B and BT is the
transpose of a matrix B. Further, “Ak�” will denote the entries of the matrix A. Choose a
twice continuously differentiable function ϕ on Rd and denote by 〈·, ·〉 the duality between
measures and continuous functions. Under nontrivial assumptions on the coefficients in
(1.4), Itô’s formula yields the following incremental quadratic variations for the empirical
process associated with (1.4):

d[〈X0,N (t), ϕ〉] =
∑N

i=1
1

N2

∑d
k,�=1(∂kϕ)(ri

0,N (t))(∂�ϕ)(ri
0,N (t))

×D̃0,k,�(ri
0,N (t), ri

0,N (t),X0,N (t), t)dt

= Oϕ

(
1
N

)
dt,

⎫⎪⎬⎪⎭ (1.6)

since we have N terms in the sum (1.6), divided by N2. Here and in what follows,
∂k, ∂2

k,� denote the first and second partial derivatives with respect to the coordinates of
r. Employing Doob’s inequality, we obtain from (1.6) that the noise must converge to 0,
as N → ∞. Set D(r, µ, t) := D̃(r, r, µ, t) and let “=⇒” denote weak convergence on some
topological space and “•” the scalar product on Rd. One can show that X0,N (·) =⇒
X0,∞, as N −→ ∞, where now X0,∞ is the solution of the following quasi-linear parabolic
partial differential equation (PDE) of McKean-Vlasov type (cf. Oelschläger (loc. cit.)
and Gärtner (loc. cit.)):

∂
∂tX0,∞ = 1

2

∑d
k,�=1 ∂2

k�(D0,k�(·, X0,∞, t)X0,∞) −� • (X0,∞F0(·, X0,∞, t)),
X0,∞(0) = µ.

}
(1.7)

(II) The generalization of (1.2) was analyzed by Kotelenez [17]–[18]. Take i.i.d. Gauss-
ian standard white noise random fields w�(dq, dt) on Rd ×R+, � = 1, . . . , d, as a stochas-
tic perturbation for the positions of the particles. Further, let Jε(r, q, µ, t) be a “nice”
Md×d-valued function, jointly measurable in all arguments, depending on the position
of the particle, the spatial noise coordinate, the empirical distribution, time t and a cor-
relation parameter ε > 0 (cf., e.g., (1.3)). In addition to Lipschitz and measurability
assumptions, “nice” means here that the one-dimensional components of Jε(r, q, ..., t)
have to be square integrable in p with respect to the Lebesgue measure dp. Fε is as in
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(1.4). Consider the following system of Itô-SODE’s driven by w(dr, dt):8

ri
ε,N = Fε(ri

ε,N (t),Xε,N (t), t)dt +
∫
Jε(ri

ε,N (t), q,Xε,N (t), t)w(dq, dt),
ri
ε,N (0) = qi

ε, i = 1, . . . , N, Xε,N (t) :=
∑N

i=1
1
N δri

ε,N (t).

}
(1.8)

Under appropriate Lipschitz conditions (cf. (2.4)) Kotelenez [18] shows that (1.11)
has a unique strong Itô solution which is an RdN -valued diffusion process.

Adjusting the notation of approach (I) to the setting of (1.8), we obtain the two-
particle diffusion matrix:

D̃ε(ri, rj , µ, t) :=
∫

Jε(ri
ε, q, µ, t)J T

ε (rj
ε, q, µ, t)dq ∀ i, j = 1, ..., N. (1.9)

Differently from (1.5), the pair correlations do not disappear for i �= j. We obtain for
the empirical process Xε,N (t) from (1.9) the following incremental quadratic variations:

d[〈Xε,N (t), ϕ〉] =
∑N

i,j=1
1

N2

∑d
k,�=1(∂kϕ)(ri

ε,N (t))(∂�ϕ)(ri
ε,N (t))

×D̃ε,k,�(ri
ε,N (t), rj

ε,N (t),Xε,N (t), t)dt,

= Oϕ (1) dt,

⎫⎪⎬⎪⎭ (1.10)

because we now have N2 terms in the sum, divided by N2. Consequently, the noise does
not disappear in the limit as N → ∞. To better understand the limit, let us first derive
an equation for the empirical process. Choose a smooth test function ϕ. Applying Itô’s
formula to ϕ(ri

N (t)) and integrating by parts in the generalized sense yields

〈dXε,N (t), ϕ〉 = 〈 1
2

∑d
k,�=1 ∂2

k�(Dε,k�(·,Xε,N , ·, t)Xε,N (t))dt, ϕ〉
−〈� • (XN (t)Fε(·,Xε,N , t))dt, ϕ〉
−〈� • (XN (t)

∫
J (·, p,Xε,N , t)w(dp, dt)), ϕ〉,

⎫⎪⎬⎪⎭ (1.11)

where we abbreviated

Dε(r, µ, t) := D̃ε(r, r, µ, t). (1.12)

Hence, the empirical process itself is a weak solution (in the sense of PDE’s) of the
following quasi-linear stochastic partial differential equation (SPDE) (1.13), where the
derivatives are taken in the distributional sense. In what follows a “solution” of an
SPDE is by definition a weak solution in the sense of PDE’s but strong in the sense
of stochastic analysis; i.e., all quantities are defined on the same probability space with
the same noise, etc. Assuming global Lipschitz assumptions on the coefficients in the
variables (r, µ), Kotelenez [18] shows that we can pass to the limit, as N → ∞, provided
that the initial conditions Xε,N converge suitably to a measure-valued initial condition
Xε,0. As convergence in the Wasserstein metric is stronger than weak∗ convergence with
respect to smooth test functions, we obtain that the limit is also a solution of (1.13).

8 The mean field kernel Gε from (1.2) describes only the interaction between small and large particles.
On the coarser mesoscopic time scale we include also interaction between large particles and the possible
dependence of the stochastic term on the mass distribution of the large particles, leading to F and the
more general kernel Jε. A precise mathematical way of doing this is the method of fractional steps. Cf.

Goncharuk and Kotelenez [12].
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(For more details cf. the following Section 4.)

dXε = { 1
2

∑d
k,�=1 ∂2

k�(Dε,k�(·,Xε, t)Xε) −� • (XεFε(·,Xε, t))}dt

−� •(Xε

∫
Jε(·, p,Xε, t)w(dp, dt)),

Xε(0) = Xε,0.

⎫⎪⎬⎪⎭ (1.13)

Remark 1.1. (i) For smooth (i.e., density-valued) initial conditions and smooth coeffi-
cients, Kotelenez [18] obtains smooth solutions of (1.13). Under appropriate assumptions
on the initial conditions and the coefficients, Kotelenez and Kurtz [23] show that for d ≥ 2
the solutions of (1.13) converge weakly to the solution of (1.7), as ε → 0; i.e., the solutions
of (1.13) become macroscopic in the limit as the correlation length tends to 0.

(ii) Let us call the limit N → ∞ in both (I) and (II) a “continuum limit” because most
of the time this limit leads to a continuous mass distribution. Accordingly, in approach
(I) the continuum limit and the macroscopic limit are performed simultaneously. In
contrast, the particle approach taken in (II) performs first the continuum limit and then
the macroscopic limit. The advantage of (II) is the mesoscopic equation (1.13) on a
continuum, whose stochastic term is small for small correlation length

√
ε. Note that

the correlation length incorporates into the mesoscopic continuum model depletion and
other effects of the underlying discrete microscopic model (cf. our Section 3 for qualitative
results).

Next we comment on models related to (II).
Borkar [1] uses a Gaussian random field, called a “Brownian medium”, as a driving

term for stochastic ordinary differential equations (SODE’s). Kunita’s approach ([26] and
the references therein) is similar, but he goes beyond Borkar’s work by considering flows
of SODE’s and bilinear SPDE’s generated by those flows. The coefficients in Kunita’s
approach do not depend on the empirical distribution. Moreover, Kotelenez and Kurtz
(loc. cit.) show that Kunita’s space-time Gaussian random field can be represented by
the convolution of a diffusion kernel (similar to Gε in (1.2)) with the space-time field
w(dq, dt).

For approaches similar to (II), where the coefficients depend on the empirical distribu-
tion, we first derive an alternative formulation of the noise in (1.8). Let H0 be the space
of measurable functions on Rd which are square integrable with respect to the Lebesgue
measure and let | · |0 be the usual L2-norm, which is induced by the scalar product

〈f, g〉0 :=
∫

f(q)g(q)dq (1.14)

for f, g ∈ H0. Let {φn}n∈N be a complete orthonormal system (CONS) in H0 and define
an Md×d-valued function φ̂n whose entries on the main diagonal are all φ̂n and whose
other entries are all 0. Set

βn(t) :=
∫ t

0

∫
φ̂n(p)w(dp, ds). (1.15)

Then the βn(·) are i.i.d. standard Rd-valued Wiener processes. Moreover, for any
continuous, adapted square integrable process z(·) and continuous adapted M1-valued
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measure process Ỹ ,∫
J (z(t), p, Ỹ(t), t)w(dp, dt) =

∞∑
n=1

∫
J (z(t), p, Ỹ(t), t)φ̂n(p)dpdβn(t) (1.16)

(cf. Jetschke [15] and Kotelenez [17]–[18]). Abbreviating

σε,n(r, µ, t) :=
∫

Jε(r, q, µ, t)φ̂n(q)dq, (1.17)

(1.8) becomes equivalent to the following N -system of Itô SODE, driven by infinitely
many i.i.d. Brownian motions:

dri
ε,N = Fε(ri

ε,N (t),Xε,N (t), t)dt +
∑∞

n=1 σε,n(ri
ε,N (t),Xε,N (t), t)dβn(t),

ri
ε,N (0) = qi

ε, i = 1, . . . , N, Xε,N (t) :=
∑N

i=1
1
N δri

ε,N (t).

}
(1.18)

Vaillancourt [36] essentially considers stochastic ordinary differential equations
(SODE’s) of type (1.18) where only the first N Brownian motions are used for the
perturbation of N particles. As N → ∞, the empirical process converges to an SPDE
solution of a martingale problem. Choosing our kernel Jε such that the Fourier expan-
sion (1.16)/(1.17) yields only N terms we obtain for each N a system equivalent to the
case in Vaillancourt. (Cf. also Dawson, Vaillancourt and Wang [2].)

Recall that (1.13) was derived through the Itô formula (i.e., the extended chain rule),
applied to ϕ(ri

N (t)), where ϕ was a smooth test function and ri
N (t) the position of the

i-th particle, described by the SODE’s (1.8). This procedure begs the question whether
a change of (1.8) into Stratonovich form would yield a first-order SPDE as a result of the
usual chain rule for ϕ(ri

N (t)). Typically the Stratonovich integral requires the integrands
to be semi-martingales; i.e., it requires more regularity than the Itô integral (cf., e.g.,
Ikeda and Watanabe [14]). If Jε(r,X (t), t) were a semi-martingale we could derive the
correction term through the Itô-Wentzell formula (cf. Rozovsky [32], Ch. 1, Theorem 9
or Kunita [26], Section 3.3). However, due to the dependence on the measure process,
it is not easy to give nontrivial conditions for Jε(r,X (t), t) to be a semi-martingale
(cf. Kotelenez [21], Section 15, for some partial results). Therefore, we now consider a
special case of the system of SODE’s (1.8), where the diffusion kernel does not depend
on a measure process:

dri
ε,N = Fε(ri

ε,N (t),Xε,N (t), t)dt +
∫
Jε(ri

ε,N (t), q, t)w(dq, dt),
ri
ε,N (0) = qi

ε, i = 1, . . . , N, Xε,N (t) :=
∑N

i=1
1
N δri

ε,N (t).

}
(1.19)

Based on Itô’s formula, the empirical process and the limiting measure process give a
PDE-weak solution of the semi-linear SPDE for the mass distribution (cf. (1.13)):

dXε = { 1
2

∑d
k,�=1 ∂2

k�(Dε,k�(·, t)Xε) −� • (XεFε(·,Xε, t))}dt

−� •(Xε

∫
Jε(·, p,Xε, t)w(dp, dt)),

Xε(0) = Xε,0.

⎫⎪⎬⎪⎭ (1.20)

Assume additional smoothness of the diffusion kernel Jε and that the diffusion coef-
ficients are homogeneous ((4.5)) and that the divergence of D̃ at (0, t) equals 0 for all t

((5.7)). Under these assumptions we obtain in Section 5, Theorem 5.3, a Stratonovich
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representation for (1.19),9 whence by the usual chain rule the empirical process and its
measure limit, satisfying the second-order Itô SPDE (1.20), are solutions of the first-order
Stratonovich SPDE:

dXε = −� •(XFε(·,Xε, t))dt −� • (Xε

∫
Jε(·, p, t))w(dp, ◦dt),

X (0) = X0.
(1.21)

Here “◦” denotes the Stratonovich differential whose definition for Brownian motions
can be extended to w(dp, ◦dt) through the Fourier expansion (1.16) (cf. (5.6)).

We assume in what follows that (1.7) is itself semi-linear with J0 independent of r and
µ and that (4.5), (5.5) and (5.7) hold. The Kotelenez-Kurtz assumptions on the special
case of (1.20), with σε(t) the nonnegative square root of Dε(0, t), are as follows (where
we refer to Kotelenez and Kurtz (loc. cit.) for examples):

Hypothesis 1.2.
(i) Suppose that for each t ≥ 0, σε(t) is invertible and, for d = 2, σε(t) is twice

continuously differentiable.
(ii) Suppose that for any compact subset K of Rd, any compact subset C ⊂ M1, any

T :> 0 and any δ > 0 the following holds:10

lim
ε↓0

sup
r∈K

sup
0≤t≤T

sup
µ∈C

(|Fε(r, µ, t) − F0(r, µ, t)| + |σε(t) − J0(t)|) = 0 ;

sup
1≥ε>0,0≤t≤T,µ∈C

|σ−1
ε (t)| < ∞ ;

lim
ε↓0

sup
|r|>δ

sup
0≤t≤T,µ∈C

|D̃ε(r, t)| = 0 ;

lim
η↓0

sup
r∈K

sup
µ∈C

sup
0≤s,t≤T,|t−s|≤η

|F0(r, µ, t) − F0(r, µ, s)| + |J0(t) − J0(s)| = 0.

(iii) Given the solution X0,∞(t) of (1.7), suppose that D0,k�(·, ·) and F0,k(·, X0,∞(·), ·)
as functions of (r, t) are both twice continuously differentiable, where k, � = 1, ..., d. �

For m ∈ N set

Λm := {(p1, . . . , pm) ∈ Rd·m : ∃i �= j, i, j ∈ {1, ..., m}, with pi = pj}.

Infinite sequences in Rd will be denoted by either (r1, r2, ....) or r(·). The corresponding
state space, (Rd)∞, will be endowed with the metric

d∞(r(·), q(·)) :=
∞∑

k=1

2−kρ(rk − qk).

C([0,∞);M) denotes the space of M-valued continuous functions, where M is some
metric space.

9Under the additional assumption (5.7) in the following Section 5, the Stratonovich form of (1.19)
does not produce a correction term. However, the chain rule becomes the simple chain rule and leads to
the first-order SPDE (1.21).

10The third assumption in what follows requires that the correlation matrix D̃ε(q − p, t)|q−p=r must

tend to 0, as the correlation length ε tends to 0. (Cf. (1.9) for a more general correlation matrix.) That

is, in the limit the noise is spatially uncorrelated. The other assumptions are technical.



ITÔ AND STRATONOVICH STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 549

Theorem 1.3. Let Xε(·) denote the solution of (1.21). Suppose (2.4) in addition to
Hypothesis 1.2, (4.5), (5.5) and (5.7). Further, suppose that d ≥ 2 and that {q1

ε , q2
ε , .....}

is a sequence of exchangeable initial conditions in (1.13) and (1.4), respectively, such that
for all m ∈ N and ε ≥ 0,

P{(q1
ε , ..., qm

ε ) ∈ Λm} = 0,

where q1
ε , ..., qm

ε are the initial conditions in (1.13) for ε > 0 and in (1.4) for ε = 0,
respectively. Finally, suppose

(Xε(0), q1
ε , q2

ε , .....) ⇒ (X0,∞(0), q1
0 , q

2
0 , .....) in M1 × (Rd)∞, as ε ↓ 0 ,

where Xε(0) are the initial values for (1.21) and X0,∞(0) = limN→∞
1
N

∑N
j=1 δqj

0
is the

initial condition of (1.7). Then

Xε(·) ⇒ X0,∞(·) in C([0,∞);M1) as ε ↓ 0. (1.22)

Proof. The main steps in the proof of the Kotelenez-Kurtz result are:
• Relative compactness criteria, established in Ethier and Kurtz (loc. cit.);
• In dimension d ≥ 2, with probability 1, the limiting Brownian motions do not

intersect (cf. Friedman [8]);
• A generalization of de Finnetti’s theorem due to T. Kurtz.
• The representation of the Itô SPDE (1.19) as the Stratonovich SPDE (1.21), derived

in our Theorem 5.3 of Section 5. �
Remark 1.4. (i) The importance of Theorem 1.3 comes from the well-known Wong-

Zakai approximation result (cf. Wong and Zakai [38]) SODE’s, replacing the driving
Brownian motion by piecewise linear approximations. We expect that this result can
be generalized to the Stratonovich SPDE (1.21) uniformly in ε. Assuming that this is
possible, we can obtain a semi-linear second-order parabolic PDE as the limit of first
order random PDE’s as the random drift (associated with Jε) tends to ∞.

(ii) Most of the results mentioned in this section have been obtained in much more
generality by numerous authors. We just mention the following: The SPDE (1.13) has
been solved Kotelenez [18] for finite signed measures (Kotelenez [18] and also for a class
of σ-finite measures (Kotelenez [21]). Kurtz and Xiong [27] also employ the particle
approach where the mass is not conserved.

(iii) The extension of the macroscopic limit theorem to finite positive measures, given
mass conservation, is trivial. An extension of this result to signed measures is planned.
Such an extension would establish the stochastic Navier Stokes equation for the vorticity
distribution in 2D fluid mechanics, studied in Kotelenez [17], as a mesoscopic equation,
converging to the solution of the corresponding macroscopic PDE.

(iv) Under certain assumptions the limit ε → 0 for d = 1 yields a measure diffusion
process with clumping of the large particles. Cf. Dorogovtsev [3] and the references
therein.

Sections 2 and 4 contain some additional facts and definitions with respect to SODE’s
and SPDE’s. respectively. Section 3 provides qualitative results on correlated Brownian
motions, which can be represented as solutions of a somewhat generalized form of (1.2)
(cf. (3.1) and Proposition 3.1). In Section 5 we derive the Stratonovich form SODE’s,
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driven by correlated Brownian motions and prove a chain rule representation, leading to
the first-order SPDE’s (1.21).

2. Stochastic ordinary differential equations. We define a metric on Rd, d ≥ 1,
by

ρ(r − q) := |r − q| ∧ 1, (2.1)

where r, q ∈ Rd, |r − q| is the Euclidean distance on Rd and “∧” denotes “minimum”.
We define a Wasserstein metric on M1 as follows:

The space of all continuous Lipschitz functions f from Rd into R will be denoted
by CL(Rd;R). Further, CL,∞(Rd;R) is the space of all uniformly bounded Lipschitz
functions f from Rd into R. Abbreviate

|‖f |‖ := sup
q

|f(q)|; ‖f‖L := sup
{r �=q,|r−q|≤1}

|f(r) − f(q)|
ρ(r − q)

; ‖f‖L,∞ := ‖f‖L + |‖f |‖.

For µ, ν ∈ M1, we set

γ(µ − ν) := sup
‖f‖L,∞≤1

|
∫

f(q)(µ(dq) − ν(dq))|. (2.2)

Note that (M1, γ) is a complete and separable metric space. (1.4) and (1.8) can be
linked by defining an Md×d-valued function σ⊥(r, µ, t) and a family of i.i.d. standard
Rd-valued Brownian motions, {β⊥,n(·)}n∈N, which is independent of {w�}�=1,..,d.11 En-
dowing the domains and ranges of F , J and σ⊥ with the Borel σ-algebras, we assume
F , J and σ⊥ to be jointly measurable in all variables. Then the motion of N particles
is described by the following system of SODE’s:

dri
ε,N = Fε(ri

ε,N (t),Xε,N (t), t)dt

+
∫
Jε(ri

ε,N (t), q,Xε,N (t), t)w(dq, dt) + σ⊥(ri
ε,N (t),Xε,N (t), t)dβ⊥,i,

ri
ε,N (0) = qi

ε, i = 1, . . . , N, Xε,N (t) :=
∑N

i=1
1
N δri

ε,N (t).

⎫⎪⎬⎪⎭
(2.3)

Let cF , cJ , cσ ∈ (0,∞) and assume globally Lipschitz and boundedness conditions:12

|F (r1, µ1, t) − F (r2, µ2, t)| ≤ cF {ρ(r1 − r2) + γ(µ1 − µ2)},∑d
k,�=1[

∫
(Jk�(r1, p, µ1, t) − Jk�(r2, p, µ2, t))2dp + |σ⊥

k�(r1, µ1, t) − σ⊥
k�(r2, µ2, t)|2]

≤ c2
J ,σ{ρ2(r1 − r2) + γ2(µ1 − µ2)},

|Fε(r, µ, t)|2 +
∑d

k,�=1

∫
J 2

ε,k�(r, p, µ, t)dp ≤ cF,J ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.4)

where (r�, µ�, t) ∈ Rd × M1 × R, � = 1, 2. For examples of kernels satisfying the
above assumptions we refer to Kotelenez [18], [21]. Along with (2.3) we also consider
the following system of SODE’s, where the empirical process is replaced by an adapted,

11We consider σ⊥ and {β⊥,n(·)}n∈N different from the corresponding quantities in (1.4) since the
latter ones will be needed to describe the macroscopic limit for (1.11).

12For alternative assumptions including linear growth, cf. Kotelenez [21].
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continuous M1-valued process Ỹ :

dri
ε,N = Fε(ri

ε,N (t), Ỹ(t), t)dt

+
∫
Jε(ri

ε,N (t), q, Ỹ(t), t)w(dq, dt) + σ⊥(ri
ε,N (t), Ỹ(t), t)dβ⊥,i,

ri
ε,N (0) = qi

ε, i = 1, . . . , N.

⎫⎬⎭ (2.5)

Obviously, the equations for the particle positions in (2.5) are coupled only through
the noise term w(dr, dt) and do not depend on N . We can, of course, start the equations
at some point s ≥ 0, and we denote such a solution of (2.5), if it exists, by rN (t,Y , rN,s, s)
and its k-th component by rk

ε .
Let Gs,t (resp. Gt) be the σ-algebra generated by w(dp, du) between s and t (resp. 0

and t) for t ≥ s. By analogy, for t ≥ s, G⊥
s,t and G⊥

t are the σ-algebras generated by
{dβ⊥,n(u)}n∈N between s and t and 0 and t, respectively. The cylinder set filtrations on
C([0,∞);M1) are denoted FM,s,t , respectively FM,t, if s = 0. Completed σ-algebras
will be denoted with a bar on top of the σ-algebra, e.g. Ḡs,t. Further, if f is a stochastic
process on [s,∞) with values in some metric space, we set for t ≥ s,

(πs,tf)(u) := f(u ∧ t), (u ≥ s).

Theorem 2.1. Assume (2.4). Then:
1) (2.5) has a unique solution rk

ε (·, Ỹ, rk
0 , 0) ∈ C([s,∞);Rd) a.s.

2) Let Ỹi be continuous adapted measure processes and rk
s,i be adapted initial condi-

tions, i = 1, 2. Then for any T ≥ s,

E sups≤t≤T∧τ ρ2(rk
ε (t, Ỹ1, r

k
s,1, s), rk(t, Ỹ2, r

k
s,2, s))

≤ cT,F,J ,σ{E(ρ2(rk
s,1, r

k
s,2)) + E

∫ T∧τ

s
(γ2(Ỹ1(u) − Ỹ2(u))du}.

}
(2.6)

Further, with probability 1 uniformly in t ∈ [s,∞),

rk
ε (t, Ỹ, rk

s,1, s) ≡ rk(t, πs,tỸ, rk
s,1, s). (2.7)

3) For any N ∈ N there is an RdN -valued map in the variables (t, ω, µ(·), rN , s),
0 ≤ s ≤ t < ∞ such that for any fixed s ≥ 0,

rN (·, . . . , ·, s) : Ω × C([s, T ]);M1) × RdN → C([s, T ];RdN ),

and the following holds:
(i) For any t ∈ [s, T ], rN (t, ·, . . . , ·, s) is Gs,t ⊗G⊥,[1,N ]

s,t ⊗FM,s,t ⊗BdN ⊗B[s,t] −BdN -
measurable.

(ii) The i-th d-vector of rN = (r1, . . . , ri, . . . rN ) depends only on the i-th d-vector
initial condition ri

s ∈ Rd
2,s and the Brownian motion β⊥,i(·) in addition to its dependence

on w(dq, dt) and Ỹ , and with probability 1 (uniformly in t ∈ [s,∞))

ri
N (t, ·, Ỹ, ri

s, s) ≡ ri
ε(t, Ỹ, ri

s, s). (2.8)

(iii) If u ≥ s is fixed, then with probability 1 (uniformly in t ∈ [u,∞)),

rN (t, ·, πu,tỸ, rN (u, ·, πs,uỸ, rN,s, s), u)
≡ rN (t, ·, πs,tỸ , rN,s, s).

}
(2.9)



552 PETER M. KOTELENEZ

Proof. By our global Lipschitz assumptions we obtain existence, uniqueness and (2.6)
from the usual iteration, employing Gronwall’s inequality and the contraction mapping
principle. (2.7) follows immediately from the construction. Statement 3 is proved in
Section 6 of Kotelenez [21], following the construction of Markov solutions which are
jointly measurable in (ω, q, t) for SODE’s, as given in Dynkin [5], Ch. 11, Section 2. �

Next, we consider the RdN -valued system of coupled SODE’s (2.3). We endow RdN

with the metric

ρN (rN , qN ) := max
1≤i≤N

ρ(ri, qi),

where rN := (r1, ..., rN ), qN := (q1, ..., qN ) ∈ RdN .

Theorem 2.2. Assume (2.4). Then, to each adapted initial condition rN (0) ∈ RdN ,
(2.3) has a unique solution rN (·, rN (s)) ∈ C([s,∞);RNd) a.s. which is a Markov process
on RdN .

Proof. The proof is a simple alteration of the proof of Theorem 2.1. �

3. Correlated Brownian motions. Recall the N -particle motion described by
(1.2). Assuming Lipschitz conditions on Gε as in (2.4), Theorem 2.1 or (2.2) imply
that (1.2) has a unique solution for every adapted and square integrable initial condition
ri(0), i = 1, ...., N. Let us now generalize (1.2) to the following system of SODE’s in
integral form which is a special case of equations (2.5) and (2.3):

r(t, ri
0) = ri

0 +
∫ t

0

∫
Γε(r(s, ri

0), q, t)w(dq, dt), i = 1, ..., N. (3.1)

As in (2.3) and (2.5), w(dq, dt) is a d-dimensional space-time white noise and Γε(r, q) is
an Md×d-valued function such that (2.4) holds with Γε replacing Jε. Denote the square
integrable continuous martingales from the right-hand side of (3.1) by

Mε(t, ri
0) :=

∫ t

0

∫
Γε(r(u, ri

0), q)w(dq, du), i = 1, ..., N. (3.2)

We may use the increments of Mε(t, ri
0) as a stochastic perturbation of a deterministic

ODE. Of particular interest are the special cases of (2.3) or (2.5) if we replace J by Γε and
assume σ⊥ ≡ 0. We may simplify the set of SODE’s even further, assuming the initial
conditions to be deterministic points ri

0 at time t = 0 and ri
0 �= rj

0 if i �= j. We next
describe the correlations of Mε(·, r0) from (3.2), where the second variable is the initial
condition from the continuum Rd, which is assumed to be deterministic. To this end,
we recall the definition of the tensor quadratic variation of a vector-valued martingale,
as given by Metivier and Pellaumail [29], Section 2.3. In the case of finite-dimensional
martingales, the tensor quadratic variation reduces to the mutual quadratic variations
of all components of the vector-valued martingale. The tensor quadratic variation of the
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R2d-valued continuous square integrable martingale (M(t, r0), M(t, r̃0)) is given by

[Mk(t, r0), M�(t, r̃0)] =
∫ t

0

∫ d∑
m=1

Γε,km(r(u, r0), q)Γε,�m(r(u, r̃0), q)dqdu,

k, � = 1, ..., d, r0, r̃0 ∈ Rd. (3.3)

(3.3) has a derivative in t. It follows from Itô’s formula that this derivative serves as
the diffusion matrix in an equation for the mass distribution associated with (3.1):

Dε,k�(r, r̃) :=
∫ d∑

m=1

Γε,km(r, q)Γε,�m(r̃, q)dq, where r(t, r0) = r, r(t, r̃0) = r̃. (3.4)

The diffusion matrix in M(2d)×(2d), the space of (2d × 2d)-matrices, consists of 4
(d× d)-matrices which describe the spatial pair correlations between the motions of two
given particles, indexed by r0 and r̃0, at a given time. Of special interest are the block
diagonal (d × d)-matrices, i.e., when r0 = r0 or r̃0 = r̃0, in particular, for the case of
spatially homogeneous diffusion coefficients, i.e., when the diffusion coefficients satisfy

Dε,k�(r, q) = Dε,k�(r − q) ∀r, q. (3.5)

If r0 = r̃0 and the diffusion matrix is homogeneous, the uniqueness of the solutions
implies that the tensor quadratic variation for one given particle is a constant matrix
times t. By (3.4) a sufficient (but not necessary) condition for the diffusion matrix to be
homogeneous is that the kernel function Γε be spatially homogeneous, i.e.,

Γε(r, q) = Γε(r − q) ∀r, q. (3.6)

Proposition 3.1. Suppose the diffusion matrix associated with (3.1) is spatially ho-
mogeneous. Then, for each r0, M(·, r0), defined by (3.2), is a d-dimensional Brownian
motion with diffusion matrix with entries

Dε,k�(0), k, � = 1, ..., d. (3.7)

Proof. The proposition is a direct consequence of a d-dimensional generalization of
Paul Levy’s theorem (cf. Ethier and Kurtz [7], Chapter 7, Theorem 1.1). �

Henceforth we will assume that the diffusion matrix, associated with (3.1), is spatially
homogeneous, i.e., that (3.5) holds. To derive the space-time correlations for d

dtM(·, r0),
treated as a generalized space-time random field, we generalize the classical analysis of
Brownian motion and its generalized derivative by Gel′fand and Vilenkin [10]. It follows
that d

dtM(·, ·, ω) ∈ S ′(Rd+1), which is the dual of the infinitely often, rapidly decreasing
real-valued functions on Rd+1, denoted S(Rd+1) (cf. Kotelenez [21], Section 15). Choos-
ing ϕd, ψd ∈ S(Rd) and ϕ, ψ ∈ S(R), we obtain the following random covariance for the
space-time random field d

dtM(·, ·):

Covd+1,ω[(ϕdϕ,
d

dt
Mε(·, ·))(ψdψ,

d

dt
Mε(·, ·))]

=
∫ ∫ ∫ ∞

0

∫ ∞

0

ϕd(r0)ψd(r̃0)ϕ(t)ψ(s)δ0(t − s)
∫ d∑

m=1

Γε,km(r(t, r0, ω), q)

× Γε,�m(r(s, r̃0, ω), q)dqdsdtdr0dr̃0.
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Hence, the random covariance is an Md×d-valued bilinear functional on S(Rd+1):

Covd+1,ω = δt−s ⊗ Dε(r(t, r0, ω) − r(s, r̃0, ω)). (3.8)

The space-time correlations for M(·, ·), Covd+1, are obtained by taking the mathe-
matical expectation in (3.8):

Covd+1 = δt−s ⊗ E(Dε(r(t, r0) − r(s, r̃0))). (3.9)

Observe that the joint motion of (M(·, r0), M(·, r̃0)) for r0 �= r̃0 is not Gaussian. We
are now ready to formulate the main concept of this section:

Definition 3.2. Suppose the diffusion matrix associated with (3.1) is spatially ho-
mogeneous. The system of N d-dimensional martingales M(·, ri), defined by (3.2),
i = 1, ..., N are be called “N d-dimensional correlated Brownian motions starting at
0” and the pair space-time correlation is given by (3.9). If, in addition, the initial con-
ditions in (3.1) are deterministic, the system of solutions r(·, ri

0), i = 1, ..., N, are called
“N d-dimensional correlated Brownian motions starting at (r1

0, ...., r
N
0 )”.

In the following proposition we allow adapted random initial conditions. We then
show that particles, performing correlated Brownian motions and starting with positive
probability at the same point, will stick together with the same probability.

Proposition 3.3. Let A := {ω : ri(0, ω) = rj(0, ω)} and assume 1 > P (A) > 0. Then
∀t ≥ 0,

r(t, ω, ri
0) = r(t, ω, rj

0) if ω ∈ A, and r(t, ω, ri
0) �= r(t, ω, rj

0) ∀t if ω /∈ A. (3.10)

Proof. The solutions of (3.1) are unique, which implies that starting at the same point,
the positions of the particles will not separate. That particles with starts in different
positions never collide follows from a similar statement and a proof provided by N. Krylov
[24]. �

We need the following result about shift and rotational invariance. Denote by O(d)
the orthogonal (d × d)-matrices over Rd, i.e., O(d) := {Q ∈ Md×d : det(Q) = ±1}. Let
h ∈ Rd and Q ∈ O(d). Let A be a bounded Borel set in Rd and define the spatially
shifted (resp. rotated) space-time white noise by:∫

A
w−h(dq, ds) :=

∫
A+h

w(dq, ds),∫
A

wQ−1(dq, ds) :=
∫

QA
w(dq, ds).

}
(3.11)

Kotelenez [21], Section 5.2, proves that the following (generalized) random fields are
equivalent in distribution. Denoting this equivalence by “∼”, we have∫ ·

0

w(dq, ds) ∼
∫ ·

0

wQ−1(dq, ds) ∼
∫ ·

0

w−h(dq, ds). (3.12)

�
We will now restrict our analysis to two correlated Brownian motions, r(·, ri

0), i = 1, 2,

as described by (1.2). Setting Gε = Γε,·1 and assuming that the other column vectors of
Γε are identically 0 in addition to spatial homogeneity of Gε, (3.1) reduces to (1.2), where
we now use the notation w(dq, dt) to denote a scalar-valued space-time white noise.

We denote the solutions of (1.2) with initial conditions ri
0, i = 1, 2, and driving

noise w(dr, dt) by r1(·) := r(·, r1
0, w) and r2(·) := r(·, r2

0, w)), respectively. By the shift
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invariance of the kernel Gε, (3.12) implies the shift invariance of the solutions if the
initial conditions are shifted by the same vector h ∈ Rd. To obtain a similar statement
for rotations we follow Truesdell and Knoll [35], Sec. 17, and call functions ϑ : Rd −→ R,
G : Rd −→ Rd and A : Rd −→ Md×d “frame-indifferent” if

ϑ(Qr) = ϑ(r), G(Qr) = QG(r), A(Qr) = QA(r)QT ∀r ∈ Rd, Q ∈ O(d). (3.13)

To describe the structure of matrix-valued frame-indifferent functions, we first denote
the subspace spanned by r, {r}, and the subspace orthogonal to {r}, we denote {r}⊥.
Let Id be the identity matrix in Rd. Then we define the projection operators

P (r) := rrT

|r|2 , P⊥(r) := Id − P (r), (3.14)

where rrT is the matrix product between the column vector r and the row vector rT ,
resulting in the (d×d)-matrix with entries rkr�, k, � = 1, ..., d. Assuming A is symmetric,
a proof by M. Leitman (cf. Kotelenez, Leitman and Mann [22]) shows that these functions
are frame-indifferent if and only if there are scalar functions α, β, λ, λ⊥ : R+ −→ R such
that

ϑ(r) ≡ α(|r|2), G(r) ≡ β(|r|2)r, A(r) ≡ λ(|r|2)P (r) + λ⊥(|r|2)P⊥(r)

∀r ∈ Rd, Q ∈ O(d). (3.15)

We easily verify that the kernel in (1.3), associated with a Maxwellian velocity field,
is shift-invariant and, by (3.15), also frame-indifferent.

We quote from Kotelenez, Leitman and Mann [22] (cf. also Kotelenez [21]).

Proposition 3.4.

(r(·, r1
0, w) + h, r(·, r2

0, w) + h) ∼ (r(·, r1
0 + h, w), r(·, r2

0 + h, w)),
and, if Gε is frame-indifferent, also

(Qr(·, r1
0, w), Qr(·, r2

0, w)) ∼ (r(·, Qr1
0, w), r(·, Qr2

0, w)),

⎫⎬⎭ (3.16)

where the pair processes are considered as C([0,∞);R2d)-valued random variables. �

Note that (3.16) is only correct if we shift both r1 and r2 by the same d-dimensional
vector h, or rotate them by the same orthogonal matrix Q.

We are interested in effects of the diffusion coefficient on the motion |r2(t) − r1(t)|,
which will be called the “magnitude of the separation”. An initial step in this direction
is a change of coordinates. First we will employ the shift invariance to obtain a Markov
representation for r(·, r2

0) − r(·, r1
0). Set

D̄ε,k�(
√

2q) := [D̃ε,k�(0) − D̃ε,k�(
√

2q)],
D̃ε,k�(

√
2q) :=

∫
Gε,k(q − q̃)Gε,�(−q̃)dq̃, k, � = 1, .., d.

}
(3.17)

Kotelenez, Leitman and Mann (loc. cit.) show that the frame-indifference implies the
existence of scalar functions

αε, α⊥,ε : R+ → R; ξ �→ αε(ξ), α⊥,ε

such that there is a constant cε > 0 and the following holds:

αε(0) = 0 = α⊥,ε(0) and lim
|r|→∞

αε(|r|2) = cε = lim
|r|→∞

α⊥,ε(|r|2) (3.18)
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and

D̄ε(
√

2r) = α⊥,ε(|r|2)P⊥(r) + αε(|r|2)P (r). (3.19)

Employing this representation and Proposition 3.3, Kotelenez, Leitman and Mann
(loc. cit.) prove the following.

Theorem 3.5. Set x0 : |r2
0−r1

0| and suppose d > 1. Then the magnitude of the separation
process is equivalent in distribution to the solution of the following stochastic ordinary
differential equation:

dx = 1
2 (d − 1)α⊥,ε(x2)

x dt +
√

αε(x2)β(dt), x(0) = x0, (3.20)

where β(·) is a one-dimensional standard Brownian motion.

We first want to describe the long-time behavior of the magnitude of the separation
and then briefly comment on its short-time behavior. For x > 0 define functions

ψ(x) ∈ {log(x + e), 1(x)}, (3.21)

where 1(x) ≡ 1, log(·) is the natural logarithm and log(e) = 1. Suppose∫
|Gk�(−p)|2ψ2(|p|)dp < ∞ ∀k, �. (3.22)

Recall in the following theorem that for d ≥ 2, x(t, x0) ∼ |r(t, r2)−r(t, r1)|{x0=|r2−r1|},
where r(·, ri), i = 1, 2, are solutions of (2.9). For d = 1, we have r(t, q) ∼
(r(t, r2) − r(t, r1)){q=r2−r1}

Theorem 3.6. 13 Suppose (3.22) with ψ(x) ≡ 1 if d �= 2 and ψ(x) = log(x + e) if d = 2.
Further, suppose that the diffusion matrix with entries D̄ε(

√
2r) is positive definite for

r �= 0. Finally, assume for d = 2 that αε(ξ) > 0 ∀ξ > 0. Then the following holds:
(i) {0} is a.s. an attractor for the r(·) if d = 1.
(ii) For d = 2 and x0 �= 0 the solution of (3.20) is recurrent.
(iii) For d ≥ 3 and x0 �= 0 the solution of (3.20) is transient.
As a consequence, if d = 1, the two Brownian particles r(·, ri), i = 1, 2, will eventually

clump. Further, if d = 2, the two Brownian particles r(·, ri), i = 1, 2, will attract and
repel each other infinitely often and, if d ≥ 3, the distance between the particles will
tend to ∞ with probability 1, as t −→ ∞.

Proof. Case d = 1 was proved by Kotelenez [20].
Case d ≥ 2.
Assuming αε(ξ) > 0 ∀ξ ≥ ρ ≥ 0, the following functional (3.23) was used by Gikhman

and Skorokhod [11], Ch. 4, Section 16, to study the asymptotic behavior of solutions of

13The cases d ≥ 2 essentially state that for large t, correlated Brownian motions behave like uncor-
related (or independent) Brownian motions. This is possible since for d ≥ 2 the limiting uncorrelated
Brownian motions do not intersect. See the sketch of the proof of Theorem 1.3. The long-time behavior
for d = 1 is different from the long-time behavior of uncorrelated Brownian motions, as correlated Brow-
nian motions for d = 1 clump. This observation is consistent with the behavior of the corresponding

SPDE’s studied by Dorogovtsev [3]. See our preceding Remark 1.4, (iv).
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one-dimensional stochastic ordinary differential equations. For the notation, cf. Ikeda
and Watanabe (loc. cit.), Ch. VI.3:

s(x, ρ) :=
∫ x

ρ

exp
[
−

∫ y

ρ

(d − 1)α⊥,ε(z2)
zαε(z2)

dz

]
dy. (3.23)

It follows that there are −∞ < s− ≤ s+ < ∞ such that

s(x, ξ) −→ ±∞, as x −→ ±∞ if d = 2,
s(x, ξ) −→ s±, as x −→ ±∞ if d > 2.

}
(3.24)

Evoking Theorem 3.1 in Ikeda and Watanabe (loc. cit.) completes the proof. �
Remark 3.7. Generalizing the notion of probability flux in one dimension (cf. van

Kampen [16]) to the divergence of the diffusion matrix D̄ε(
√

2r) from (3.19), Kotelenez,
Leitman and Mann (loc. cit.) show that for d ≥ 2 that two correlated Brownian motions
at close distance show attractive behavior for short times, which is in agreement with
the depletion phenomenon.

4. Stochastic partial differential equations. For notational convenience we will
drop the subscript “ε” in this section. Recalling the definition of Dk�(r, µ, t) from (1.12),
we set

D(r, µ, t) = D(r, µ, t) + (σ⊥(r, µ, t))2. (4.1)

Theorem 4.1. In addition to (2.4), suppose that

XN (0) :=
1
N

N∑
i=1

δri
0
→ X0, in Eγ2(· − ·), as N → ∞ .

Then there is a unique continuous adapted M1-valued process X (·) such that

E sup
0≤t≤T

γ(X (t) −XN (t)) → 0 ∀T > 0,

where XN (·) is the empirical process associated with (2.3). Further, X (·) is the solution
of the following SPDE:

dX = ( 1
2

∑d
k,�=1 ∂2

k�,r(Dk�(·,X , t)X ) −� • (XF (·,X , t)))dt

−� •(X
∫
J (·, p,X , t)w(dp, dt)),

X (0) = X0.

⎫⎪⎬⎪⎭ (4.2)

Sketch of Proof. (i) Let ϕ ∈ C2
c (Rd;R), the real-valued twice continuously differen-

tiable functions with compact support in Rd. Integrating by parts in the generalized
sense, we obtain by Itô’s formula the generalization of (1.11):

〈dXN (t), ϕ〉 = 〈 1
2

∑d
k,�=1 ∂2

k�(Dk�(·,XN , t)XN (t))dt, ϕ〉
+〈 1

2

∑d
k,�=1 ∂2

k�((σ
⊥)2k�(·,XN , t)XN (t))dt, ϕ〉

−〈� • (XN (t)F (·,XN , t))dt, ϕ〉
−〈� • (XN (t)

∫
J (·, p,XN , t)w(dp, dt)), ϕ〉

+
∑N

j=1
1
N (�ϕ)(rj(t)) • (σ⊥(rj(t),XN , t)β⊥,j(dt)).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.3)
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Exactly as in (1.6), Doob’s inequality yields for the last term in (4.3):

E sup
0≤t≤T

(
∫ t

0

N∑
j=1

1
N

(�ϕ)(rj(s)) • (σ⊥(rj(s),XN , s)β⊥,j(ds)))2 ≤ OT,σ⊥,ϕ(
1
N

). (4.4)

Therefore, if there is a limit X (·) in the Wasserstein metric, uniformly on compact
intervals, it must be a solution of (4.2).

(ii) To establish the existence of the continuum limit we analyze the behavior of
the pair processes ({r1(·), ..., rN (·)},XN (·)). We embed finite Rd-valued sequences into
infinite Rd-valued sequences, using the one-point compactification R̂d of Rd. Then, we
extend the metric � to R̂d, defining the distance between the added element � and r to be
1. Hence, we can define a suitable product metric on (R̂d)N×M1. Based on our Lipschitz
assumption (2.4) we can show that the pair processes ({r1(·), ..., rN(·), �, ...},XN (·)) ∈
C([0, T ]; (R̂d)N ×M1) are flows whose dependence on the initial conditions is uniformly
continuous. Extension by continuity and projection onto the M1-valued processes yields
the existence of a unique limit X (·) (cf. Kotelenez [21]).

Alternatively, we can follow the procedure of Kurtz and Xiong (loc. cit.) which under
exchangeability assumptions of the initial conditions of (2.3) evokes de Finnetti’s theorem
to establish the limit of XN (·). �

To obtain smooth solutions of (4.2), the calculations are simpler if we assume that the
diffusion matrix from (1.9)/(1.12) is spatially homogeneous,14 i.e.,

D̃(r, q, µ, t) = D̃(r − q, µ, t),

D(r, µ, t) ≡ D̃(0, µ, t).

⎫⎬⎭ (4.5)

Spaces of interest for densities associated with smooth solutions of (4.2) include
Lp(Rd; dr) for p = 1, 2, the p-integrable real-valued functions with dr the Lebesgue mea-
sure, where H0 := L2(Rd; dr) was already introduced in Section 1. Under the assumption
that the diffusion terms, determined by D̃(r, µ, t) and σ⊥((r, µ, t), have bounded contin-
uous partial derivatives up to order 3 and the drift F has bounded first-order partial
derivatives, we obtain smooth solutions, i.e., solutions which are in H0∩L1(Rd; dr), pro-
vided the initial conditions are in H0∩L1(Rd; dr) . It follows from the duality relation of
weak solutions that these densities are themselves solutions of (4.2). Under an additional
smoothness and Lipschitz assumption on the coefficients we also obtain uniqueness. Fur-
ther, under more smoothness assumptions on the coefficients and the initial conditions,
we obtain solutions with values in the classical Hilbert-Sobolev spaces over Rd, including
Sobolev spaces with weights. We refer to Kotelenez [21] and Kurtz and Xiong (loc. cit.)
for the general case and to Kotelenez [18] for the case where σ⊥ ≡ 0. Let us now just
assume there is a smooth solution X(·) in H0 which is in the domain of the operator

A(t, X) := A(t, X) + Ã(t, X), where
A(t, X) := 1

2

∑d
k,�=1 ∂2

k�,r(Dk�(·, X, t)X),
Ã(t, X) := 1

2

∑d
k,�=1 ∂2

k�,r(((σ
⊥(·, X, t))2)k�X).

⎫⎪⎬⎪⎭ (4.6)

14Cf. (3.5).
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Similarly to the classical variational approach by Pardoux [31] and Krylov and
Rozovski [25] we can derive an Itô formula for the square of the L2-norm (Kotelenez
[18], [21]):

|X(t)|20 = |X(0)|20
+

∫ t

0
{〈2Ã(s, X(s)), X(s)〉0 − 1

2

∑d
k,�=1

∫ t

0

∫
|X(s)|20(∂2

k�D̃)k�(0, s)ds

+
∑d

�=1

∫ t

0

∫
X2(s, r)∂�F�(r, X, s)drds

+
∫ ∫ t

0
X2(s, r)

∫
� • (J (r, p,X , t)w(dp, ds)))dr,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.7)

where, as before, the partial derivatives are taken with respect to r. Following the
terminology of Krylov and Rozovski (loc. cit.), we see that the pair consisting of the
sum of the second-order drift operators and the first-order diffusion operators in (4.2) is
coercive if σ⊥ is invertible. In what follows we will call an SPDE “coercive” if the pair
is coercive. Otherwise the SPDE will be called “noncoercive”. So, we also see that (4.3)
is noncoercive if

σ⊥ ≡ 0, (4.8)

which is equivalent to saying that (1.13) is noncoercive.
Remark 4.2. Under the conditions of Theorem 4.1 we obtain the flow representation

of the solution of (4.2),

X (t) =
∫

δ(r(t,X ,0,q))X (0, dq) = X (0)(r−1(t,X , q, 0)), (4.9)

where r(·,X , q, 0) is the solution of (2.5) with input process Ỹ(·) := X (·) and start q at
0.

Remark 4.3. Consider the SPDE’s (4.2) and suppose that both J and σ⊥ do not
depend on the measure variable in addition to the conditions of Theorem 4.1. Further
suppose that σ⊥ has bounded continuous second-order partial derivatives and suppose
(5.5) and (5.7) from the following Section 5. Let X (·) := X (·,X0) be the Itô solution of
the SPDE (4.2). Then X (·) is a weak solution of the following SPDE in Stratonovich
form:

dX = 1
2

∑d
k,�=1 ∂2

k�,r(((σ
⊥(·, t))2)k�X )

−� •(XF (·,X , t))dt −� • (X
∫
J (·, p, t))w(dp, ◦dt),

X (0) = X0,

⎫⎪⎬⎪⎭ (4.10)

where, as before, “◦” denotes Stratonovich differentials.
Proof. By the same argument as for (1.21) we obtain a first-order SPDE contribu-

tion from the noncoercive part and the assumptions imply that the tagged noise term
disappears in the limit. �

5. Appendix: Stratonovich differentials. Let ã(·) = b̃(·)+m̃(·) and a(·) = b(·)+
m(·) be continuous locally square integrable real-valued semi-martingales, adapted to
the filtration Ft, such that b̃(·) and b(·) are processes of bounded variation and m̃(·) and
m(·) are martingales. Further, let {tn0 < tn1 < · · · < tnk < · · · } be a sequence of partitions



560 PETER M. KOTELENEZ

of [0,∞) whose mesh tends to zero, as n → ∞. Set

Sn(t, ã, a) :=
∑

k

1
2
{ã(tnk) + ã(tnk−1)}(a(tnk) − a(tnk−1)).

Ikeda and Watanabe show that Sn(t, ã, a) converges in probability, uniformly on compact
intervals [0, T ]. The proof of this statement is very similar to the proof of the Itô formula.
Thus, we obtain the “Stratonovich integral of ã(·) with respect to a(ds)”:∫ t

0

ã(s) ◦ a(ds) := lim
n→∞

Sn(t, ã, a). (5.1)

The representation of the approximating sequence immediately implies the following
transformation rule:∫ t

0

ã(s) ◦ a(ds) ≡
∫ t

0

ã(s)a(ds) + [m̃, m](t) a.s., (5.2)

where the stochastic integral on the right-hand side is the Itô integral. The mutual
quadratic variation [m̃, m](·) in (5.2) is called the “correction term”, which we have to add
to the Itô integral to obtain the corresponding Stratonovich integral. The generalization
to multidimensional semi-martingales follows from the real case componentwise. Let us
recall the chain rule. Suppose a(·) := (a1(·), ...., ad(·)) is an Rd-valued continuous locally
square integrable semi-martingale and ϕ ∈ C3(Rd;R). Then,

ã(·) := ϕ(a(·))

is a real-valued continuous square integrable semi-martingale and the following represen-
tation holds:

ã(t) ≡ ϕ(a(0)) +
d∑

i=1

∫ t

0

(
∂

∂ri
ϕ)(a(s)) ◦ ai(ds). (5.3)

In what follows we will apply the Stratonovich integral to the study of a special case
of semi-martingales, given by the solutions of (1.19), where for notational convenience
we replace Xε,N by an adapted continuous measure-valued process Ỹ(·) and drop the
subscript “ε” at the coefficients and solutions. More precisely, we consider

dr(t) = F (r(t), Ỹ(t), t)dt +
∫
J (r(t), p, t)w(dp, dt),

r(0) = r0,

}
(5.4)

assuming the conditions of (2.4) and (4.5). Next, let z(·) be a continuous square integrable
Rd-valued semi-martingale. Further, suppose that, in addition to (2.4), J (r, q, s) is twice
continuously differentiable with respect to r such that

sup
r∈Rd

d∑
i,j,k,�=1

∫ T

0

∫
(

∂2

∂ri∂rj
Jk,�)2(r, q, s)dqds < ∞. (5.5)

Employing the representation (1.16)/(1.17) and applying Itô’s formula to

ϕ(r, t) := σn,k�(r, µ, t), k, � = 1, ..., d,

we obtain that all n entries of σn,k�(z(·), µ, ·) are continuous square integrable Rd-valued
semi-martingales and the same holds for the sum. Consequently, we can define the
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Stratonovich integral of J (z(s), q, s) with respect to w(dq, ds) as a series of Stratonovich
integrals ∫ t

0

∫
J (z(s), q, s)w(dq, ◦ds) :=

∞∑
n=1

∫ t

0

σn(z(s), s) ◦ βn(ds). (5.6)

Proposition 5.1. Let r(·) be the solution of (5.4). In addition to (2.4) and (5.5) suppose
that the diffusion matrix D̃k�, associated with the diffusion kernel Jk,�(r, q, s), is spatially
homogeneous and that the divergence of the diffusion matrix equals 0 at (0, t) ∀t, i.e.,

d∑
k=1

(∂kD̃)k�(0, t) ≡ 0 ∀�. (5.7)

Then ∫ t

0

∫
J (r(s), q, s)w(dq, ◦ds) =

∫ t

0

∫
J (r(s), q, s)w(dq, ds); (5.8)

i.e., the Stratonovich and the Itô integrals coincide in this particular case.

Proof. The solution of (5.4), r(·), is obviously a continuous square integrable Rd-
valued semi-martingale. Itô’s formula provides the representation of σn,ij(r(·), ·) as con-
tinuous square integrable semi-martingales. Hence, the correction term

[σn,ij(r(t), t),
∫ t

0

βn
j (ds)]

satisfies

[σn,ij(r(t), t),
∫ t

0
βn

j (ds)] ≡
∑d

k=1[
∫ t

0
(∂kσn,ij)(r(s), s)rk(ds),

∫ t

0
βn

j (ds)]
≡

∑d
k=1[

∫ t

0

∫
(∂kσn,ij)(r(s), s){

∑
m

∑d
�=1 σm,k�(r(s), s)βm

� (ds)},
∫ t

0
βn

j (ds)]
≡

∑d
k=1

∫ t

0

∫
(∂kσn,ij)(r(s), s)σn,kj(r(s), s)ds,

⎫⎪⎬⎪⎭ (5.9)

where the last line follows from the independence of βn
j and βm

� if (n, j) �= (m, �). Sum-
ming up the correction terms and using a more traditional notation for partial derivatives,
we obtain for the correction term,

d∑
k=1

(∂k

∑
n

d∑
j=1

σn,ij(r, t)σn,kj(q, t)|q=r) =
d∑

k=1

(
∂

∂rk

∫
(J (r, p, t)J (q, p, t))ikdp)|q=r).

However, ∫
(J (r, p, t)J (q, p, t))ikdp = D̃ik(r − q, t).

Hence,

d∑
k=1

∑
n

d∑
j=1

(∂kσn,ij)(r, t))σn,kj(q, t)|q=r ≡
d∑

k=1

(∂kD̃)ik(r − q, t)|q=r ≡ 0, (5.10)

by assumption (5.7). We conclude that the sum of all correction terms equals 0, which
implies (5.8). �
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Lemma 5.2. Let ϕ ∈ C3(Rd;R) and assume the conditions and notation of Proposition
5.1. Then∑

n

∫ t

0

(∇ϕ(r(s))) • (◦ σn(r(s), s)βn(ds)) =
∑

n

∫ t

0

(∇ϕ(r(s))) • (σn(r(s), s) ◦ βn(ds)).

(5.11)

Proof. As in the proof of Proposition 5.1 we first analyze the one-dimensional coor-
dinates of (5.11). Since the deterministic integral

∫ t

0
F (r(s), Ỹ, s)ds is the same for Itô

and Stratonovich integrals, we may in what follows assume, without loss of generality,
F ≡ 0. By (5.2),∑d

j=1

∫ t

0
(∂kϕ)(r(s)) ◦ σn,kj(r(s), s)βn

j (ds)
=

∑d
j=1

∫ t

0
(∂kϕ)(r(s))σn,kj(r(s), s)βn

j (ds)
+1

2 [(∂kϕ)(r(t)),
∑d

j=1

∫ t

0
σn,kj(r(s), s)βn

j (ds)].

⎫⎪⎬⎪⎭ (5.12)

As before, we employ Itô’s formula to obtain the martingale part of ∂
∂rk

ϕ(r(t)). Then,
as in (5.9),

1
2
[(∂kϕ)(r(t)),

d∑
j=1

∫ t

0

σn,kj(r(s), s)βn
j (ds)]

=
1
2

d∑
j,�=1

∫ t

0

(∂2
k�ϕ)(r(s))σn,�j(r(s), s)σn,kj(r(s), s)ds. (5.13)

Summing up over all n yields for the left-hand side of (5.11):

1
2
[(∂kϕ)(r(t)),

∑
n

d∑
j=1

∫ t

0

σn,kj(r(s), s)βn
j (ds)] =

1
2

d∑
�=1

∫ t

0

(∂2
k�ϕ)(r(s))D�k(0, s)ds.

(5.14)
For the right-hand side of (5.11) we have∑d

j=1

∫ t

0
(∂kϕ)(r(s))σn,kj(r(s), s) ◦ βn

j (ds)
=

∑d
j=1

∫ t

0
(∂kϕ)(r(s))σn,kj(r(s), s)βn

j (ds)
+1

2

∑d
j=1[(∂kϕ)(r(t))σn,kj(r(t), t),

∫ t

0
βn

j (ds)].

⎫⎪⎬⎪⎭ (5.15)

By Itô’s formula, the martingale term of (∂kϕ)(r(t))σn,kj(r(t), t) equals∫ t

0

σn,kj(r(s), s)(∇∂kϕ)(r(s)) •
∫

J (r(s), p, s)w(dp, ds)

+
∫ t

0

(∂kϕ)(r(s))(∇σn,kj(r(s), s)) •
∫

J (r(s), p, s)w(dp, ds),

whence the correction term in (5.15) satisfies the following equation:

1
2

∑d
j=1[(∂kϕ)(r(t))σn,kj(r(t), t),

∫ t

0
βn

j (ds)]
= 1

2

∑d
�,j=1

∫ t

0
(∂2

k�ϕ)(r(s))σn,kj(r(s), s)σn,�j(r(s), s)ds

+1
2

∑d
�,j=1

∫ t

0
(∂kϕ)(r(s))(∂�σn,kj)(r(s), s))σn,�j(r(s), s)ds.

⎫⎪⎬⎪⎭ (5.16)
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The sum of the second terms over all n equals 0 by (5.10). Summing up the first terms
over all n in the right-hand side of (5.16) yields

1
2

∑d
�,j=1

∫ t

0
(∂2

k�ϕ)(r(s))
∑

n σn,kj(r(s), s)σn,�j(r(s), s)ds

= 1
2

∑d
�=1

∫ t

0
(∂2

k�ϕ)(r(s))Dk�(0, s)ds.

}
(5.17)

Since the diffusion matrix Dk� is symmetric, we obtain that the correction terms for
both sides of (5.11) are equal. �

We can now make the following important observation:

Theorem 5.3. Suppose that the conditions of Proposition 5.1 hold and let ϕ ∈
C3(Rd;R). Denoting by r(·), the solution of the (Itô) SODE (5.4), the following holds:

ϕ(r(t)) ≡ 1
2

∑d
k,�=1(∂

2
k�ϕ)(r(s))Dk�(0, s)ds

+
∑d

k=1

∫ t

0
(∇ϕ(r(s)) •

∫
Jk,�(r(s), q, s)w�(dq, ds) +

∫ t

0
(∇ϕ)(r(s)) • F (r(s), Ỹ(s), s)ds

=
∑d

k=1

∫ t

0
(∇ϕ(r(s))•

∫
Jk,�(r(s), q, s)w�(dq, ◦ds)+

∫ t

0
(∇ϕ)(r(s))•F (r(s), Ỹ(s), s)ds.

⎫⎪⎬⎪⎭
(5.18)

Proof. By assumption (4.5), the diffusion matrix D(·, t) ≡ D(0, t). Hence, the Itô
formula yields the the first part of (5.18). The chain rule for Stratonovich integrals in
addition to Lemma 5.2 implies that ϕ(r(t)) equals the right-hand side of (5.18). �
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