
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXVI, NUMBER 3

SEPTEMBER 2008, PAGES 423–435

S 0033-569X(08)01118-7

Article electronically published on June 6, 2008

OVERLAPPING DOMAIN PROBLEMS IN THE CRACK THEORY
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Abstract. The paper is concerned with the analysis of a new class of overlapping
domain problems for elastic bodies having cracks. Inequality type boundary conditions
are imposed on the crack faces. We prove an existence of invariant integrals and analyze
the asymptotic behavior of the solution. It is shown that the limit problem describes an
equilibrium state for the elastic body with a thin inclusion.

1. Introduction. It is well known that the linear crack theory is characterized by
linear boundary conditions on crack faces [1], [2], [3]. Usually linear models lead to
inconsistency with applications since, in the frames of such models, opposite crack faces
may penetrate each other. In recent years the crack theory with possible contact between
crack faces has been advanced very much (see [4]). In particular, solvability of boundary
value problems was established for different constitutive laws, shape sensitivity problems
were analyzed including differentiability of energy functionals with respect to a crack
length, new approaches (such as the smooth domain method and the fictitious domain
method) for investigation of similar problems were elaborated, and so on. Nonlinear
boundary conditions considered in this theory describe a mutual nonpenetration between
crack faces. Consequently, from the standpoint of applications, this theory is more
suitable.

In this paper, an overlapping domain problem in the crack theory with possible contact
between crack faces is considered, which allows us to analyze a new class of models useful
in applications. A different approach we employ to the problem is that we can, in fact,
consider a Riemann surface having two sheets with glue and nonpenetration boundary
conditions on the crack faces.
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A number of crack problems require overlapping domain approaches for their mathe-
matical modeling in applications.

Fig. 1

To consider an example, we may imagine two flat sheets of ice, which we label ω1 and
ω2; see Fig. 1. The sheet ω1 has a cut (crack) γ with crack faces γ±. Assuming that the
ice sheets are elastic, we are looking for in-plane displacement fields u = (u1, u2) in ω1

and v = (v1, v2) in ω2. In applications it is interesting to impose glue conditions between
displacement fields u, v defined on γ+, γ−, respectively. Simultaneously, nonpenetration
conditions on γ+, γ− for fields v, u, respectively, are imposed. To simplify the geometry of
the problem, in the paper we consider coinciding domains ω1, ω2 with both glue conditions
and inequality type conditions on γ± describing a mutual nonpenetration between the
crack faces.

2. Problem formulation. Let Ω ⊂ R2 be a bounded domain with Lipschitz bound-
ary Γ, and let γ ⊂ Ω be a smooth curve (crack) without selfintersections. Denote
Ωγ = Ω \ γ̄.

Assume that γ can be extended up to a closed curve Σ of the class C1,1 belonging
to Ω. In this case Ω is divided into two subdomains, Ω1 and Ω2. The boundary of Ω1

coincides with Σ, and the boundary of Ω2 is Σ∪ Γ; see Fig 2. It is supposed that γ does
not contain its tip points and can be extended in such a way that Ω is divided into two
subdomains ω1, ω2 with Lipschitz boundaries ∂ω1, ∂ω2, and meas(∂ωi ∩ Γ) > 0, i = 1, 2.

Denote by ν = (ν1, ν2) a unit normal vector to γ and to Σ, directed to the domain Ω2.
We first provide a variational formulation of the problem. Introduce the Sobolev space

H1
Γ(Ωγ) = {w ∈ H1(Ωγ) | w = 0 on Γ }

and a set of admissible displacements

K = {(u, v) ∈ (H1
Γ(Ωγ))2 × (H1

Γ(Ωγ))2 |
u+ = v−, u−ν ≤ v+ν a.e. on γ}.
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Fig. 2

Here u±, v± fit to the positive and negative crack faces γ± with respect to the normal
vector ν; u = (u1, u2), v = (v1, v2).

Consider the functional

Π(u, v) =
1
2

∫

Ωγ

{p(u)ε(u) + P (v)ε(v)} −
∫

Ωγ

{gu + hv}

and the minimization problem

inf
(u,v)∈K

Π(u, v). (1)

Here ε(u) = {εij(u)}, ε(v) = {εij(v)} are strain tensor components, εij(u) = 1
2 (ui,j +

uj,i), ui,j = ∂ui

∂xj
, i, j = 1, 2, (x1, x2) ∈ Ωγ ; p(u) = {pij(u)}, P (v) = {Pij(v)}, i, j = 1, 2,

are stress tensor components,

p(u) = Aε(u), P (v) = Bε(v),

where A = {aijkl}, B = {bijkl}, i, j, k, l = 1, 2, are given elasticity tensors with the usual
properties of symmetry and positive definiteness,

aijkl = ajikl = aklij , aijklξklξij ≥ c|ξ|2, c > 0, ∀ξij , ξij = ξji.

For simplicity we assume that A, B are constant tensors. All functions with two lower
indices are assumed to be symmetric in those indices, i.e. pij(u) = pji(u), etc. The
functions g = (g1, g2) ∈ L2(Ωγ), h = (h1, h2) ∈ L2(Ωγ) are given.

The problem (1) has a unique solution satisfying the variational inequality

(u, v) ∈ K, (2)∫

Ωγ

{p(u)ε(ū − u) + P (v)ε(v̄ − v)} (3)

−
∫

Ωγ

{g(ū − u) + h(v̄ − v)} ≥ 0 ∀(ū, v̄) ∈ K.

Below we provide a differential formulation of the problem (2), (3). In particular, a
complete system of boundary conditions on γ will be determined.
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Substitute in (3) test functions of the form (ū, v̄)=(u, v)±(ϕ, ψ), (ϕ, ψ)∈ C∞
0 (Ωγ), ϕ =

(ϕ1, ϕ2), ψ = (ψ1, ψ2). It provides the equations

−divp(u) = g in Ωγ , (4)

−divP (v) = h in Ωγ , (5)

holding in the sense of distributions.
Substitute next in (3) test functions of the form (ū, v̄) = (u, v) + (ϕ, ψ), (ϕ, ψ) ∈ K.

This implies the inequality∫

Ωγ

{p(u)ε(ϕ) + P (v)ε(ψ)} −
∫

Ωγ

{gϕ + hψ} ≥ 0. (6)

We can change the integration domain Ωγ by Ω1 ∪Ω2 here and integrate by parts which,
by (4), (5), yields the relation

−〈p(u+)ν, ϕ+〉1/2,Σ + 〈p(u−)ν, ϕ−〉1/2,Σ (7)

−〈P (v+)ν, ψ+〉1/2,Σ + 〈P (v−)ν, ψ−〉1/2,Σ ≥ 0 ∀ (ϕ, ψ) ∈ K.

Here 〈·, ·〉1/2,Σ means a duality pairing between H1/2(Σ) and its dual H−1/2(Σ). In
deriving (7) we use Green’s formula for the domains Ω1, Ω2 with boundaries ∂Ω1, ∂Ω2

(see [4])

−
∫

Ωi

w · divσ =
∫

Ωi

ε(w) · σ − 〈σn, w〉1/2 , ∂Ωi
, i = 1, 2,

valid for all σ = {σij}, i, j = 1, 2; σ, divσ ∈ L2(Ωi), w = (w1, w2) ∈ H1(Ωi), where
n = (n1, n2) is a unit external normal vector to ∂Ωi, i = 1, 2, and σn = (σ1jnj , σ2jnj).

Notice that if ϕ = ψ = 0 on γ, the inequality (7) can be written in the form of equality

〈[p(u)ν], ϕ〉001/2,Σ\γ̄ + 〈[P (v)ν], ψ〉001/2,Σ\γ̄ = 0, (8)

where [q] = q+−q− is a jump of q through γ, and 〈·, ·〉001/2,Σ\γ̄ is a duality pairing between

H
−1/2
00 (Σ \ γ̄) and H

1/2
00 (Σ \ γ̄). The norm in the space H

1/2
00 (Σ \ γ̄) is introduced by the

following formula:

‖w‖00
1/2,Σ\γ̄ =

⎛
⎜⎝‖w‖2

1/2,Σ\γ̄ +
∫

Σ\γ̄

w2

ρ

⎞
⎟⎠

1/2

,

where ‖w‖1/2,Σ\γ̄ is the norm in the space H1/2(Σ \ γ̄) and ρ(x) = dist(x, ∂(Σ \ γ̄)).
Consequently, taking into account an arbitrariness of ϕ, ψ in (8), it follows that

[p(u)ν] = 0, [P (v)ν] = 0 in the sense of H
−1/2
00 (Σ \ γ̄). (9)

Now take ϕ = ψ ∈ C∞
0 (Ω) in (7), ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2), which gives

[p(u)ν + P (v)ν] = 0 in the sense of H−1/2(Σ). (10)
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It is possible to take in (3) test functions of the form (ū, v̄) = (0, 0), (ū, v̄) = 2(u, v)
and sum the relations obtained. This provides the equality∫

Ωγ

{p(u)ε(u) + P (v)ε(v)} −
∫

Ωγ

{gu + hv} = 0.

By (4), (5), the integration by parts can be performed here. Hence we derive

−〈p(u+)ν, u+〉1/2,Σ + 〈p(u−)ν, u−〉1/2,Σ (11)

−〈P (v+)ν, v+〉1/2,Σ + 〈P (v−)ν, v−〉1/2,Σ = 0.

This relation means that the left-hand side of inequality (7) is equal to zero provided
that (ϕ, ψ) = (u, v).

Notice that the above relations (7)–(11) hold for any closed curve Σ extending γ and
satisfying the required smoothness C1,1.

Consider next a neighborhood Vx0 of a point x0 ∈ γ. We take (ϕ, ψ) ∈ K such that
supp ϕ ⊂ V̄ +

x0
, supp ψ ⊂ V̄ −

x0
, ϕ+ = ψ− on γ. Here V +

x0
= Vx0 ∩ Ω2, V

−
x0

= Vx0 ∩ Ω1.
Substitution of (ϕ, ψ) into (7) implies that

−〈p(u+)ν, ϕ+〉1/2,Σ + 〈P (v−)ν, ψ−〉1/2,Σ = 0.

Consequently,

〈p(u+)ν − P (v−)ν, ϕ〉001/2,γ = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H
1/2
00 (γ),

which means

p(u+)ν = P (v−)ν in the sense of H
−1/2
00 (γ). (12)

Similarly, if supp ϕ ⊂ V̄ −
x0

, supp ψ ⊂ V̄ +
x0

, ϕ− = ψ+ on γ, from (7) it follows that

〈p(u−)ν, ϕ−〉1/2,Σ − 〈P (v+)ν, ψ+〉1/2,Σ = 0

and hence

p(u−)ν = P (v+)ν in the sense of H
−1/2
00 (γ). (13)

Now we can take a smooth function ϕ = (ϕ1, ϕ2) such that supp ϕ ⊂ V̄ −
x0

, ϕ−ν ≤ 0
on γ. In this case (ϕ, 0) ∈ K, and (7) implies

〈p(u−)ν, ϕ−〉1/2,Σ ≥ 0 ∀ϕ ∈ (H1
Γ(Ωγ))2, ϕ−ν ≤ 0 on γ, supp ϕ ⊂ V̄ −

x0
.

Consequently

〈p(u−)ν, ϕ〉001/2,γ ≥ 0 ∀ϕ = (ϕ1, ϕ2) ∈ H
1/2
00 (γ), ϕν ≤ 0 on γ. (14)

Due to the representation

p(u−)ν = pν(u−)ν + pτ (u−) (15)

with pν(u−) = pij(u−)νjνi, pτ (u−) = (p1
τ (u−), p2

τ (u−)), from (14) it follows that

pν(u−) ≤ 0 in the sense of H
−1/2
00 (γ), (16)

pτ (u−) = 0 in the sense of H
−1/2
00 (γ). (17)
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By repeating the above arguments we can derive

Pν(v+) ≤ 0 in the sense of H
−1/2
00 (γ), (18)

Pτ (v+) = 0 in the sense of H
−1/2
00 (γ). (19)

The values Pν(v+), Pτ (v+) are introduced similar to those of (15). In virtue of (13), we
also obtain

pν(u−) = Pν(v+) on γ. (20)

By (9), (12), (13), (17), (19), (20) and by the equality u+ = v− on γ, the relation (11)
formally can be written as pν(u−)(u−ν − v+ν) = 0 on γ.

Therefore, now we are in a position to give a differential formulation of the problem
(2), (3). Namely, it is necessary to find functions u = (u1, u2), v = (v1, v2), such that

−divp(u) = g in Ωγ , (21)

−divP (v) = h in Ωγ , (22)

p(u) = Aε(u), P (v) = Bε(v) in Ωγ , (23)

u = v = 0 on Γ, (24)

u+ = v−, u−ν ≤ v+ν on γ, (25)

p(u+)ν = P (v−)ν on γ, (26)

pν(u−) = Pν(v+) ≤ 0, pτ (u−) = Pτ (v+) = 0 on γ, (27)

pν(u−)(u−ν − v+ν) = 0 on γ. (28)

Notice that if a solution of (21)–(28) is quite smooth, then the variational inequality
(2), (3) can be derived from (21)–(28). Hence, the system of boundary conditions (24)–
(28) is complete. We know that boundary conditions (26)–(28) are, in fact, fulfilled in
the sense of (7), (11).

We should remark that (21)–(22) are equilibrium equations, and (23) represents the
Hooke law. Relations (24) provide the bodies clamping on Γ. The first equality (25) and
(26) describe the glue condition on γ. The inequality in (25) with (27), (28) describes
the nonpenetration condition between the crack faces with zero friction.

It is interesting to notice a fulfillment of the equation

−div(p(u) + P (v)) = g + h in Ω

in the sense of distributions. Remember that Ω is the domain with smooth boundary Γ.
Indeed, consider the distribution div(p(u)+P (v))+g+h in Ω. Let ϕ = (ϕ1, ϕ2) ∈ C∞

0 (Ω)
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be any function. By (10), (21), (22), we have

(div(p(u) + P (v)) + g + h, ϕ)Ω

= −
∫

Ω1

(p(u) + P (v))ε(ϕ) −
∫

Ω2

(p(u) + P (v))ε(ϕ) +
∫

Ω

(g + h)ϕ

=
∫

Ω1

div(p(u) + P (v))ϕ +
∫

Ω2

div(p(u) + P (v))ϕ +
∫

Ω

(g + h)ϕ

+〈[p(u)ν + P (v)ν], ϕ〉1/2,Σ = 0,

which proves the assertion.

3. Differentiation of energy functionals. Invariant integrals. In this section
we assume γ = (0, 1)×{0}; g = (g1, g2) ∈ C1(R2), h = (g1, g2) ∈ C1(R2). For convenience
the domain Ωγ will be denoted by Ω0. In what follows a perturbation of the geometrical
domain Ω0 is considered. In the perturbed domain, a problem similar to that of (2), (3)
is formulated. The perturbation is characterized by a parameter δ. We differentiate the
energy functional with respect to δ at the point δ = 0. It turns out that the derivative of
the energy functional can be written as an integral over closed curves surrounding crack
tips. Moreover, the integral does not depend on the chosen curves. The only requirement
is the sufficient smoothness of the curves.

Now consider a transformation of the domain Ω0,

y = Φδ(x), x ∈ Ω0, y ∈ Ωδ, (29)

where

Φδ(x) = x + δF (x), F (x) = (F 1(x), 0),

and F 1 ∈ W 1,∞
loc (R2) is a given function. For small δ the transformation (29) establishes

a one-to-one mapping between Ω0 and Ωδ. Denote Γδ = Φδ(Γ), γδ = Φδ(γ) and assume
that for a small δ the normal ν to γ is transformed into the normal vector ν to γδ.

Let us formulate a family of problems perturbed with respect to (21)–(28) (or to
(2),(3)). We have to find functions uδ = (uδ1, uδ2), vδ = (vδ1, vδ2), such that

−divp(uδ) = g in Ωδ, (30)

−divP (vδ) = h in Ωδ, (31)

p(uδ) = Aε(uδ), P (vδ) = Bε(vδ) in Ωδ, (32)

uδ = vδ = 0 on Γδ, (33)

u+
δ = v−δ , u−

δ ν ≤ v+
δ ν on γδ, (34)

p(u+
δ )ν = P (v−δ )ν on γδ, (35)

pν(u−
δ ) = Pν(v+

δ ) ≤ 0, pτ (u−
δ ) = Pτ (v+

δ ) = 0 on γδ, (36)

pν(u−
δ )(u−

δ ν − v+
δ ν) = 0 on γδ. (37)
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The problem (30)–(37) for a small δ can be written in the variational form. Namely,
denote

Kδ = {(u, v) ∈ (H1
Γδ

(Ωδ))2 × (H1
Γδ

(Ωδ))2 | u+ = v−,

u−ν ≤ v+ν a.e. on γδ}.

Then the problem (30)–(37) corresponds to the following variational inequality having a
unique solution

(uδ, vδ) ∈ Kδ, (38)∫

Ωδ

{p(uδ)ε(ū − uδ) + P (vδ)ε(v̄ − vδ)} (39)

−
∫

Ωδ

{g(ū − uδ) + h(v̄ − vδ)} ≥ 0 ∀(ū, v̄) ∈ Kδ.

We see that the problem (38), (39) coincides with (2), (3) as δ = 0. To simplify the
notations in the sequel, the solution (u0, v0) will be denoted by (u, v).

Now consider the energy functional for the problem (38), (39):

E(uδ, vδ; Ωδ) =
1
2

∫

Ωδ

{p(uδ)ε(uδ) + P (vδ)ε(vδ)} −
∫

Ωδ

{guδ + hvδ}.

Since the transformation (29) provides a one-to-one correspondence between K and Kδ,
we can use a technique of differentiation of energy functionals developed in [5], [6] for
finding the derivative

I =
d

dδ
E(uδ, vδ; Ωδ)|δ=0.

Moreover, the following formula is valid:

I =
∫

Ω0

{1
2
F 1

,1(p(u)ε(u) + P (v)ε(v)) − (pij(u)ui,1 + Pij(v)vi,1)F 1
,j} (40)

−
∫

Ω0

{(F 1gi),1ui + (F 1hi),1vi},

where (u, v) is the solution of the problem (38), (39) corresponding to δ = 0, i.e. of the
problem (2), (3).

We should remark that the solution u, v of the problem (2), (3) has an additional
regularity up to points of γ. Namely, for any point x0 ∈ γ, there exists a neighborhood
Vx0 such that u, v ∈ H2(V ±

x0
) (see [4], page 100). This implies that we can perform an

integration by parts in (40). For many concrete fields F = (F 1, 0) this integration may
lead to the so-called invariant integrals over closed curves. Consider an example. Let a
support of a smooth function θ belong to a small neighborhood U1 of the point (1, 0),
and θ = 1 in a neighborhood U2 of the point (1, 0), U2 ⊂ U1. Denote by n = (n1, n2) a
unit internal normal vector to the boundary ∂U2. Assume that boundaries ∂Ui, i = 1, 2,

satisfy the Lipschitz condition. Transformation (29) is chosen as follows:

y1 = x1 + δθ(x1, x2), y2 = x2,
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where (x1, x2) ∈ Ω0, (y1, y2) ∈ Ωδ. In this case F (x) = (θ(x), 0). The formula (40) can be
rewritten in the following form:

I =
∫

Ω0

{1
2
θ,1(p(u)ε(u) + P (v)ε(v)) − (pij(u)ui,1 + Pij(v)vi,1)θ,j} (41)

−
∫

Ω0

{(θgi),1ui + (θhi),1vi}.

Fig. 3

Assume that g = h = 0 in U2 and perform an integration by parts in (41) by using
(21), (22). This leads to the integration over the closed curve (∂U2) ∩ Ω̄0:

I =
∫

C

{1
2
n1(p(u)ε(u) + P (v)ε(v)) − (pij(u)ui,1 + Pij(v)vi,1)nj}. (42)

Here (∂U2) ∩ Ω̄0 is denoted by C; see Fig. 3.
In deriving (42) from (41) we have used the relations

pi2(u+)u+
i,1 = Pi2(v−)v−i,1 on γ, (43)

pi2(u−)u−
i,1 = Pi2(v+)v+

i,1 on γ. (44)

It is clear that (43) follows from (26) and the first relation of (25). Let us prove (44).
First note that the second relation of (25) has the form u−

2 − v+
2 ≤ 0 on γ. By (28), we

have

p22(u−)(u−
2 − v+

2 ) = 0 on γ. (45)

As we remarked, the functions u, v have H2-regularity up to points of γ; hence u, v are
continuous up to points of γ±. On the set

N = {x ∈ γ | u−
2 (x) − v+

2 (x) < 0},
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in view of (45), we have p22(u−) = 0, and hence

p22(u−)(u−
2,1 − v+

2,1) = 0. (46)

On the complement to N , i.e. on the set γ \ N, the equality u−
2 − v+

2 = 0 holds, and
consequently u−

2,1 − v+
2,1 = 0 (see [7], Chapter 2, Th. A.1) which implies (46) on γ \ N .

Therefore, the following equality takes place:

p22(u−)(u−
2,1 − v+

2,1) = 0 on γ

which, by the first relation of (27), is equivalent to

p22(u−)u−
2,1 = P22(v+)v+

2,1 on γ. (47)

This completes the proof of (44) since, by (27), the relation (47) coincides with (44).
If a part of the curve C coincides with any part of γ (as is shown in Fig. 3), we can

take the function values on the positive crack face γ+ or on the negative crack face γ−

in the formula (42). To prove this statement it suffices to take into account (43), (44).
It is important that the integral (42) does not depend on C since the integral is equal

to the derivative I. In the crack theories similar integrals are called invariant integrals.

Fig. 4

We can interpret the problem (21)–(28) in terms of Riemann surfaces. The functions
u, v are determined in Ωγ with boundary conditions (25)–(28) on γ. Hence we can consider
the Riemann surface with two sheets. If the function u is understood to be defined on
the lower sheet, and, respectively, v is defined on the upper sheet, the invariant integral
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(42) can be presented as a sum of two integrals:

I = I−(u) + I+(v),

I−(u) =
∫

C−

{1
2
n1p(u)ε(u) − pij(u)ui,1nj}, (48)

I+(v) =
∫

C+

{1
2
n1P (v)ε(v) − Pij(v)vi,1nj}, (49)

where C−, C+ belong to the lower and upper sheets, respectively. In such a case we must
simultaneously choose the function values on the positive or negative crack faces γ± in
(48), (49); see Fig. 4.

To conclude the section, note that linear crack problems were analyzed in [8]. The
results related to linear perturbed crack problems can be found in [9], [10], [11].

4. Asymptotic analysis. Thin inclusions. From the standpoint of applications
it is interesting to analyze passages to limits when parameters of the model (21)–(28)
change. Instead of the second relation of (23), in this section we consider a family of
Hooke’s laws

Pλ(v) =
1
λ

Bε(v), λ > 0,

and perform a passage to the limit as λ → 0. This passage to the limit means that the
stiffness of the upper elastic body (upper sheet of the Riemann surface) tends to infinity.
Hence, in the limit we can expect an appearance of the upper rigid body (upper rigid
sheet). As for the lower body, we obtain a thin inclusion γ in it, with suitable boundary
conditions on the inclusion faces γ±.

Now we go back to the general setting of Section 2 (i.e., we do not assume a rectilinear
crack geometry accepted in Section 3) and for λ > 0 we consider the functional

Πλ(u, v) =
1
2

∫

Ωγ

{p(u)ε(u) +
1
λ

P (v)ε(v)} −
∫

Ωγ

{gu + hv},

where p(u), P (v) are defined by the formulae (23).
The minimization problem

inf
(u,v)∈K

Πλ(u, v) (50)

has a solution satisfying the variational inequality

(uλ, vλ) ∈ K, (51)∫

Ωγ

{p(uλ)ε(ū − uλ) +
1
λ

P (vλ)ε(v̄ − vλ)} (52)

−
∫

Ωγ

{g(ū − uλ) + h(v̄ − vλ)} ≥ 0 ∀(ū, v̄) ∈ K.
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It is clear that the differential formulation of the problem (51), (52) is as follows: find
functions uλ = (uλ1, uλ2), vλ = (vλ1, vλ2), such that

−divpλ(uλ) = g in Ωγ , (53)

−divPλ(vλ) = h in Ωγ , (54)

pλ(uλ) = Aε(uλ), Pλ(vλ) =
1
λ

Bε(vλ) in Ωγ , (55)

uλ = vλ = 0 on Γ, (56)

u+
λ = v−λ , u−

λ ν ≤ v+
λ ν on γ, (57)

pλ(u+
λ )ν = Pλ(v−λ )ν on γ, (58)

pλ
ν (u−

λ ) = Pλ
ν (v+

λ ) ≤ 0, pλ
τ (u−

λ ) = Pλ
τ (v+

λ ) = 0 on γ, (59)

pλ
ν (u−

λ )(u−
λ ν − v+

λ ν) = 0 on γ. (60)

The notations used are similar to those of (21)–(28); for instance,

Pλ
ν (vλ) = Pλ

ij(vλ)νjνi, Pλ(vλ)ν = Pλ
ν (vλ)ν + Pλ

τ (vλ).

Substitution of the test functions (ū, v̄) = (0, 0), (ū, v̄) = 2(uλ, vλ) in (52) provides the
equality

∫

Ωγ

{p(uλ)ε(uλ) +
1
λ

P (vλ)ε(vλ)} =
∫

Ωγ

{guλ + hvλ}. (61)

By the first Korn inequality, from (61) the following estimates are derived:

‖uλ‖H1
Γ(Ωγ) ≤ c1,

1
λ
‖vλ‖2

H1
Γ(Ωγ) ≤ c2,

with constants c1, c2 being uniform with respect to λ, 0 < λ < λ0. Hence, for a subse-
quence, still denoted by (uλ, vλ), we can assume that as λ → 0,

uλ → u weakly in H1
Γ(Ωγ),

vλ → 0 strongly in H1
Γ(Ωγ).

We introduce the notation

M = {w ∈ (H1
Γ(Ωγ))2 | w+ = 0, w−ν ≤ 0 on γ}

and substitute in (52) the test function of the form (ū, 0), ū ∈ M. Note that (ū, 0) ∈ K.

This implies the inequality
∫

Ωγ

p(uλ)ε(ū) −
∫

Ωγ

g(ū − uλ) +
∫

Ωγ

hvλ

≥
∫

Ωγ

p(uλ)ε(uλ) +
1
λ

∫

Ωγ

P (vλ)ε(vλ).
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Consequently, by passing the lower limit here, we obtain

u ∈ M, (62)∫

Ωγ

p(u)ε(ū − u) −
∫

Ωγ

g(ū − u) ≥ 0 ∀ū ∈ M. (63)

The limit problem (62), (63) describes an elastic behavior of the two-dimensional body
Ωγ with the thin inclusion γ. Differential formulation of the problem (62), (63) is as
follows: find a function u = (u1, u2) such that

−divp(u) = g in Ωγ , (64)

p(u) = Aε(u) in Ωγ , (65)

u = 0 on Γ, (66)

u+ = 0, u−ν ≤ 0 on γ, (67)

pν(u−) ≤ 0, pτ (u−) = 0 on γ, (68)

pν(u−)u−ν = 0 on γ. (69)

We omit a derivation of boundary conditions (68), (69), since it can be done in a simpler
way as compared to (26)–(28).
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