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Abstract. The existence of solutions describing the turbulent flow in rivers is proven.
The existence of an associated invariant measure describing the statistical properties of
this one-dimensional turbulence is established. The turbulent solutions are not smooth
but Hölder continuous with exponent 3/4. The scaling of the solutions’ second structure
(or width) function gives rise to Hack’s law (1957), stating that the length of the main
river, in mature river basins, scales with the area of the basin l ∼ Ah, h = 0.568 being
Hack’s exponent.

1. Introduction. The flow of water in streams and rivers is a fascinating problem
with many applications that has intrigued scientists and laymen for many centuries; see
Levi [21]. Surprisingly it is still not completely understood even in one or two-dimensional
approximations of the full three-dimensional flow. Erosion by water seems to determine
the features of the surface of the earth, up to very large scales where the influence of
earthquakes and tectonics is felt; see [33, 34, 32, 6, 4, 36]. Thus water flow and the
subsequent erosion give rise to the various scaling laws known for river networks and
river basins; see [12, 8, 9, 10, 11].

One of the best known scaling laws of river basins is Hack’s law [16], which states
that the area of the basin scales with the length of the main river to an exponent known
as Hack’s exponent. Careful studies of Hack’s exponent, see [11], show that it actually
has three ranges, depending on the age and size of the basin, apart from very small
and very large scales where it is close to one. The first range corresponds to a spatial
roughness coefficient of one half for small channelizing (very young) landsurfaces. This
has been explained, see [4] and [13], as Brownian motion of water and sediment over the
channelizing surface. The second range with a roughness coefficient of 2/3 corresponds
to the evolution of a young surface forming a convex (geomorphically concave) surface,
with young rivers that evolve by shock formation in the water flow. These shocks are
called bores (in front) and hydraulic jumps (in rear); see Welsh, Birnir and Bertozzi [36].
Between them sediment is deposited. Finally there is a third range with a roughness
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coefficient 3/4. This range, which is the largest by far and is associated with what is
called the mature landscape, or simply the landscape because it persists for a long time,
is what this paper is about. This range is associated with turbulent flow in rivers, and
we will develop the statistical theory of turbulent flow in rivers that leads to Hack’s
exponent.

Starting with the three basic assumptions on river networks: that their structure is
self-similar, that the individual streams are self-affine, and that the drainage density is
uniform, see [8], river networks possess several scaling laws that are well documented;
see [31]. These are self-affinity of single channels, which we will call the meandering
law, Hack’s law, Horton’s laws [17] and their refinement Tokunaga’s law, the law for
the scaling of the probability of exceedance for basin areas and stream lengths, and
Langbein’s law. The first two laws are expressed in terms of the meandering exponent
m, or fractal dimension of a river, and Hack’s exponent h. Horton’s laws are expressed
in terms of Horton’s ratios of link numbers and link lengths in a Strahler ordered river
network, Tokunaga’s law is expressed in term of the Tokunaga’s ratios, the probability of
exceedance is expressed by decay exponents, and Langbein’s law is given by Langbein’s
exponents, [8].

In a series of papers, Dodds and Rothman [12, 8, 9, 10, 11] showed that all the above
ratios and exponents are determined by m and h, the meandering and Hack’s exponents;
see [16], [12]. The origin of the meandering exponent m is still a mystery, but in this
paper we show how Hack’s exponent is determined by the scaling exponent of turbulent
one-dimensional flow. Specifically, it is determined by the scaling exponent of the second
structure function, see [14], in the statistical theory of the turbulent flow.

Two dimensionless numbers, the Reynolds number and the Froude number, are used
to characterize turbulent flow in rivers and streams. If we model the river as an open
channel with x parameterizing the downstream direction, y the horizontal depth and U

is the mean velocity in the downstream direction, then the Reynolds number

R =
fturbulent

fviscous
=

Uy

ν

is the ratio of the turbulent and viscous forces whereas the Froude number

F =
fturbulent

fgravitational
=

U

(gy)1/2

is the ratio of the turbulent and gravitational forces. ν is the viscosity and g is the
gravitational acceleration. Other forces such as surface tension, the centrifugal force and
the Coriolis force are insignificant in streams and rivers.

The Reynolds number indicates whether the flow is laminar or turbulent with the
transition to turbulence starting at R = 500 and the flow usually being fully turbulent at
R = 2000. The Froude number measures whether gravity waves, with speed c = (gy)1/2

in shallow water, caused by some disturbance in the flow, can overcome the flow velocity
and travel upstream. Such flows are called tranquil flows, c > U , in distinction to rapid
or shooting flows, c < U , where this cannot happen; they correspond to the Froude
numbers

(1) F < 1, subcritical, c > U ,
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(2) F = 1, critical, c = U ,
(3) F > 1, supercritical, c < U .

Now for streams and rivers the Reynolds number is typically large, O = 105 − 106,
whereas the Froude number is small, typically O = 10−1 − 10−2; see [19]. Thus the flows
are highly turbulent and ought to be tranquil, but this is not the whole story as we will
now explain.

In practice streams and rivers have varied boundaries which are topologically equiv-
alent to a half-pipe. These boundaries are rough and resist the flow and this has led to
formulas involving channel resistance. The most popular of these are Chézy’s law,

V = ucCr1/2s1/2
o , uc = 0.552m/s,

and Manning’s law,

V = um
1
n

r2/3s1/2
o , um = 1.0m/s,

where so is the slope of the channel and r is the hydraulic radius. C is called Chézy’s
constant and measures inverse channel resistance. n is Manning’s roughness coefficient;
see [19]. We get new effective Reynolds and Froude numbers with these new averaged
velocities V ,

R∗ =
g

3u2
cC

2
R, F ∗ =

(
g

u2
cC

2so

)1/2

F.

It turns out that in real rivers the effective Froude number is approximately one and
the effective Reynolds number is also one; when R = 500 for typical channel roughness,
C = 73.3. Thus the transition to turbulence typically occurs in rivers when the effective
turbulent forces are equal to the viscous forces.

In this paper we will ignore the boundaries of the river. The point is that in a straight
segment of a reasonably deep and wide river the boundaries do not influence the details
of the river current in the center, except as a source of flow disturbances. We will simply
assume that these disturbances exist, in the flow in the center of the river and not be
concerned with how they got there. For theoretical purposes we will conduct a thought
experiment where we start with an unstable uniform flow and then put the disturbances
in as small white noise. Then the mathematical problem is to determine the statistical
theory of the resulting turbulent flow.

The details of the flow close to the boundary are obviously important and give rise
to the Prandtl-von Karman universal velocity distribution law for smooth boundaries
and the Chézy’s and Manning’s roughness coefficients for rough boundaries. However,
these properties of the flow at the boundaries are a separate problem that will not be
addressed in this paper.

The outline of the paper is as follows. In Section 2 we pose the problem. It turns out to
be a stochastic initial value problem. In Section 3 we derive a priori estimates necessary
for the existence theory and pose the one-dimensional problem solved in this paper. The
existence of unique solutions that are Hölder continuous stochastic processes, with Hölder
exponent 3/4, is proven in Section 4. The global existence, based on a useful estimate of
these solutions, is derived in Subsection 4.1. The existence of a unique invariant measure
on the space L2(T 1), where the solutions reside, is proven in Section 5, following McKean
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[23] and Da Prato and Zabczyk [30]. The scaling of the second structure function (3/2)
is found in Section 6, and the derivation of Hack’s law is recalled from [6] and [4].

2. The initial value problem. Consider the Navier-Stokes equation

wt + w · ∇w = ν∆w + ∇p, (1)

w(x, 0) = wo,

where ν is the kinematic viscosity, with the incompressibility conditions

∇ · w = 0. (2)

Eliminating the pressure p using (2) gives the equation

wt + w · ∇w = ν∆w + ∇{∆−1[trace(∇w)2]}. (3)

We want to consider turbulent flow in the center of a wide and deep river and to do that
we consider the flow to be in a box and impose periodic boundary conditions on the box.
Since we are mostly interested in what happens in the direction along the river we take
our x-axis to be in that direction.

We will assume that the river flows fast and pick an initial condition of the form

w(0) = Uoe1, (4)

where Uo is a large constant and e1 is a unit vector in the x direction. Clearly this
initial condition is not sufficient because the fast flow will be unstable and the white
noise, ubiquitous in nature, will grow into small velocity and pressure oscillations; see
for example [1]. But we perform a thought experiment where white noise is introduced
into the fast flow at t = 0. This experiment may be hard to perform in nature but it is
easily done numerically. This means that we should look for a solution of the form

w(x, t) = Uoe1 + u(x, t), (5)

where u(x, t) is smaller that Uo but not necessarily small. However, in a small initial
interval [0, to] , u is small and satisfies the equation (3) linearized about the fast flow Uo,

ut + Uo∇u = ν∆u + f, (6)

u(x, 0) = 0,

driven by the noise
f =

∑
k �=0

h
1/2
k dβk

t ek.

The ek = e2πik·x are (three-dimensional) Fourier components and each comes with its
own independent Brownian motion βk

t . None of the coefficients of the vectors h
1/2
k =

(h1/2
1 , h

1/2
2 , h

1/2
3 ) vanishes because the instabilities are seeded by truly white noise (white

both is space and in time). f is not white in space because the coefficients h
1/2
k must have

some decay in k so that the noise term in (6) makes sense. However to determine the
decay of the h

1/2
k s will now be part of the problem. The form of the noise expresses the

fact that in turbulent flow there is a continuous source of small white noise that grows
and saturates into turbulent noise that drives the fluid flow. The decay of the coefficients
h

1/2
k expresses the spatial coloring of this larger noise in turbulent flow.
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The justification for considering the initial value problem (6) is that for a short time
interval [0, to] we can ignore the nonlinear terms

−u · ∇u + ∇{∆−1[trace(∇u)2]}

in the equation (3). But this is only true for a short time to; after this time we have to
start with the solution of (6),

uo(x, t) =
∑
k �=0

h
1/2
k

∫ t

0

e−(4π2νk2+2πiUok)(t−s)dβk
s ek(x), (7)

as the first iterate in the integral equation

u(x, t) = uo(x, t) +
∫ t

to

K(t − s) ∗ [−u · ∇u + ∇∆−1(trace(∇u)2)]ds, (8)

where K is the (oscillatory heat) kernal in (7). In other words, to get the turbulent
solution we must take the solution of the linear equation (6) and use it as the first term
in (8). It will also be the first guess in Picard iteration. The solution of (6) can be
written in the form

uo(x, t) =
∑
k �=0

h
1/2
k Ak

t ek(x),

where the

Ak
t =

∫ t

0

e−(4π2νk2+2πiUok)(t−s)dβk
s (9)

are independent Orstein-Uhlenbeck processes with mean zero; see for example [30].
Now it is easy to see that the solution u(x, t) of the integral equation (8) satisfies the

driven Navier-Stokes equation

ut + Uo∇u = ν∆u − u · ∇u + ∇∆−1(trace(∇u)2) +
∑
k �=0

h
1/2
k

dβk
t

dt
ek,

(10)

u(x, 0) = u0(x),

and the above argument is the justification for studying the initial value problem (10).
We will do so from here on. The solution u of (10) still satisfies the periodic boundary
conditions and the incompressibility condition

∇ · u = 0. (11)

The mean of the solution uo of the linear equation (6) is zero by the formula (7), and
this implies that the solution u of (10) also has mean zero,

ū(t) =
∫

T3
u(x, t)dx = 0, (12)

if the initial data also has mean zero, u0 = 0.
If we take the initial data equal to zero in (10), then the undriven f = 0 linear problem

(6) is stable and one may have to wait a while until the driving in (10) destabilizes
the initial conditions u0 = 0, corresponding to the uniform flow solution (6) of the
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Navier-Stokes equation (3). However, in turbulent flow the uniform flow is immediately
destabilized due to large fluctuations; see [2] for a discussion of this mechanism.

3. A priori estimates. In this section we will explain the probabilistic setting and
prove the a priori estimates necessary for the existence proof. The problem to be solved
will also be posed.

We let (Ω,F , P ), Ω is a set (of events) and F a σ algebra on Ω, denote a probability
space with P the probability measure of Brownian motion and Ft a filtration generated
by all the Brownian motions βk

t on [t,∞). We denote by V [0, T ] the space having the
following properties; see Oksendal [27].

Definition 1. V [0, T ] is the space of functions satisfying the conditions:
(1) f(ω, t) : Ω×R+ → R is measurable with respect to F×B where B is the σ-algebra

of the Borel sets on [0,∞), ω ∈ Ω,
(2) f(ω, t) is adapted to the filtration Ft,
(3)

E(
∫ T

0

f2(ω, t)dt) < ∞.

We denote by W [0, T ] the space of functions, whose W (m,p) Sobolev norm
‖u‖(m,p)(ω, t) lies in V [0, T ], and we let L2

(m,p) denote the space of functions in W (m,p)

whose Sobolev norm lies in L2(Ω, P ). The norm in the space L2
(m,p) is[

E(‖u‖2
(m,p))

]1/2

.

In particular for p = 2, we get the norm

‖u‖2
L2

(m,2)
= E(|(1 − ∆2)m/2u|22).

Here E denotes the expectation in L2(Ω, P ) and | · |2 denotes the L2(T3) norm. We will
proved the existence of solutions in the subspace of continuous functions C([0, T ];L2

(m,p))
in W [0, T ].

Let 〈·, ·〉 denote the inner product in L2(T3). The following a priori estimates provide
the foundation of the probabilistic version of Leray’s theory.

Lemma 1. The L2 norms |u|2(ω, t) and |∇u|2(ω, t) satisfy the identity

d|u|22 + 2ν|∇u|22dt = 2
∑
k �=0

〈u, h
1/2
k ek〉dβk

t +
∑
k �=0

hkdt (13)

and the bounds

|u|22(ω, t) ≤ |u|22(0)e−2νλ1t + 2
∑
k �=0

∫ t

0

e−2νλ1(t−s)〈u, h
1/2
k ek〉dβk

s (14)

+
1 − e−2νλ1t

2νλ1

∑
k �=0

hk,

∫ t

0

|∇u|22(ω, s)ds ≤ 1
2ν

|u|22(0) +
1
ν

∑
k �=0

∫ t

0

〈u, h
1/2
k ek〉dβk

s +
t

2ν

∑
k �=0

hk, (15)
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where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on the
box [0, 1]3 and hk = |h1/2

k |2. The expectations of these norms are also bounded:

E(|u|22)(t) ≤ E(|u|22(0))e−2νλ1t +
1 − e−2νλ1t

2νλ1

∑
k �=0

hk, (16)

E(
∫ t

0

|∇u|22(s)ds) ≤ 1
2ν

E(|u|22(0)) +
t

2ν

∑
k �=0

hk. (17)

Proof. The identity (13) follows from Leray’s theory and Ito’s Lemma. We apply Ito’s
Lemma to the L2 norm of u squared,

d

∫
T3

|u|2dx = 2
∫

T3

∂u

∂t
· udxdt + 2

∑
k �=0

∫
T3

u · h1/2
k ekdxdβk

t +
∑
k �=0

hk

∫
T3

dxdt, (18)

where k ∈ Z3 and h
1/2
k ∈ R

3. Now by use of the Navier-Stokes equation (3),

d|u|2 = 2
∫

T3
ν∆u · u + (−u · ∇u + ∇∆−1(trace(∇u)2) · udx

+2
∑
k �=0

∫
T3

u · h1/2
k ekdxdβk

t +
∑
k �=0

hkdt

= −2ν|∇u|22dt + 2
∑
k �=0

∫
T3

u · h1/2
k ekdxdβk

t +
∑
k �=0

hkdt

since the divergent-free vector u is orthogonal both to the gradient ∇∆−1(trace(∇u)2)
and u · ∇u by the divergence theorem. The first term in the last expression is obtained
by integration by parts. This is the identity (13). The inequality (14) is obtained by
applying Poincaré’s inequality

λ1|u|22 ≤ |∇u|22, (19)

where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on the
cube [0, 1]3. By Poincaré’s inequality,

d|u|22 + 2νλ1|u|22dt ≤ d|u|22 + 2ν|∇u|22dt

= 2
∑
k �=0

〈u, h
1/2
k ek〉dβk

t +
∑
k �=0

hkdt.

Solving the inequality gives (14). (15) is obtained by integrating (13),

|u|22(t) + 2ν

∫ t

0

|∇u|22(s)ds = |u|22(0) + 2
∑
k �=0

∫ t

0

〈u, h
1/2
k ek〉dβk

s + t
∑
k �=0

hk

and dropping |u|22(t) > 0.
Finally we take the expectations of (14) and (15) to obtain respectively (16) and (17),

using that the function 〈u, h
1/2
k ek〉(ω, t) is adapted to the filtration Ft. �
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3.1. The model of river flow. In a deep and wide river it is reasonable to think that
the directions transverse to the main flow, y the direction across the river, and z the
horizontal direction, play a secondary role in the generation of turbulence. As a first
approximation to the flow in the center of a deep and wide, fast-flowing river we will now
drop these directions. Of course y and z play a role in the motion of the large eddies in
the river, but their motion is relatively slow compared to the smaller scale turbulence.
Thus our initial value problem (10) becomes

ut + Uoux = uxx − uux + ∂−1
x ((ux)2) − b +

∑
k �=0

h
1/2
k

dβk
t

dt
ek,

(20)

u(x, 0) = u0(x),

where the constant

b =
∫ 1

0

∂−1
x ((ux)2)dx (21)

keeps the mean of u equal to zero. The problem we pose is to find a Sobolev space
determining the decay of the (turbulent) noise coefficients h

1/2
k so that there exists a

unique solution of (20) in this space. This solution will necessarily be a stochastic process
and we want to determine the statistical theory associated with this stochastic process.

We still have periodic boundary conditions on the unit interval, but the incompress-
ibility condition can be dropped. Recall from Equation (12) that the mean ū is still zero.
This equation now describes the turbulent flow in the center of a relatively straight sec-
tion of a fast river. The full three-dimensional pressure term is modeled by the pressure
variations in the downstream directions only. This is a model

∇p ≈ ∂−1
x ((ux)2) − b

of the pressure gradient in the river flow. The full three-dimensional flow will be treated
in a subsequent publication [3].

The one-dimensional version of Lemma 1 is

Corollary 1. In one dimension the L2 norms of u and ux satisfy

|u|22(ω, t) ≤ |u|22(0)e−2νλ1t + 2
∑
k �=0

∫ t

0

e−2νλ1(t−s)〈u, h
1/2
k ek〉dβk

s (22)

+
1 − e−2νλ1t

2νλ1

∑
k �=0

hk,

∫ t

0

|ux|22(ω, s)ds ≤ 1
2ν

|u|22(0) +
1
ν

∑
k �=0

∫ t

0

〈u, h
1/2
k ek〉dβk

s +
t

2ν

∑
k �=0

hk, (23)
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where λ1 is the smallest eigenvalue of −∂2
x with vanishing boundary conditions on the

interval [0, 1]. The expectations of these norms are also bounded:

E(|u|22)(t) ≤ E(|u|22(0))e−2νλ1t +
1 − e−2νλ1t

2νλ1

∑
k �=0

hk, (24)

E(
∫ t

0

|ux|22(s)ds) ≤ 1
2ν

E(|u|22(0)) +
t

2ν

∑
k �=0

hk. (25)

4. Existence of turbulent solutions. In this section we prove the existence of the
turbulent solutions of the initial value problem (20). The following theorem states the
existence of turbulent solutions in one dimension. First we write the initial value problem
(20) as an integral equation,

u(x, t) = uo(x, t) + K(t) ∗ u0 +
∫ t

0

K(t − s) ∗ [−1
2
(u2)x + ∂−1

x (ux)2) − b]ds. (26)

Here K is the oscillatory heat kernal (7) in one dimension and

uo(x, t) =
∑
k �=0

h
1/2
k Ak

t ek(x),

the Ak
t s being the Orstein-Uhlenbeck processes from Equation (9).

4.1. An estimate of the turbulent solution. The mechanism of the turbulence produc-
tion is fast oscillations driving large turbulent noise, which was initially seeded by small
white noise. These fast oscillations are generated by the fast constant flow Uo and their
velocity increases with Uo. The larger Uo is the more efficient this mechanism becomes.
The following lemma plays a key role in the proof of the useful estimate of the turbulent
solution. It is a version of the Riemann-Lebesgue lemma, which captures the averaging
effect (mixing) of the oscillations.

Lemma 2. Let the Fourier transform in time be

w̃ =
∫ T

0

w(s)e−2πikUosds,

where w and w̃ are vectors with three components, periodic with period T = n
kUo

, n ∈ Z.
Then

w̃ = ð̃w, (27)

where

ðw =
1
2
(w(s) − w(s +

1
2kUo

)) =
1
2

∫ s

s+ 1
2|kUo|

∂w

∂r
dr

and ðw satisfies the estimate

|ðw| ≤ 1
4|kUo|

ess sup[s,s+ 1
2|kUo| ]

|∂w

∂s
|. (28)
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Proof. The proof is similar to the proof of the Riemann-Lebesgue lemma for the
Fourier transform in time:

w̃(k) =
∫ T

0

w(s)e−2πikUosds

= −
∫ T

0

w(s)e−2πikUo(s− 1
2kUo

)ds

= −
∫ T

0

w(s +
1

2kUo
)e−2πikUosds.

Taking the average of the first and the last expression we get

w̃ =
1
2

∫ T

0

(w(s) − w(s +
1

2kUo
))e−2πikUosds = ð̃w.

Now

|ðw| =
1
2
|(w(s) − w(s +

1
2kUo

))|

≤ 1
2

∫ s+ 1
2kUo

s

|∂w

∂r
|dr

≤ 1
4|kUo|

ess sup[s,s+ 1
2|kUo| ]

|∂w

∂s
|. �

The lemma allows us to estimate the Fourier transform (in t) of w in terms of the
time derivative of w, with a gain of (kUo)−1. The next lemma gives a similar estimate
with w multiplied by the oscillatory exponential.

Lemma 3.

|
∫ T

0

we−2πikUo(T−s)dt| ≤ 1
2|kUo|

∫ T

0

ess supr∈[s,s+ 1
2kUo

]|
∂(we−2πikUo(T−r))

∂r
|ds. (29)

Proof. We take the complex conjugate of the equality (27) in Lemma 2 and multiply
by e−2πikUoT to get the equality∫ T

0

we−2πikUo(T−s)ds =
1
2

∫ T

0

∫ s

s+ 1
2kUo

∂w

∂r
dr e−2πikUo(T−s)ds.

This is equivalent to the equality∫ T

0

(w + πikUo

∫ s

s+ 1
2kUo

∂w

∂r
dr)e−2πikUo(T−s)ds

=
1
2

∫ T

0

∫ s

s+ 1
2kUo

∂we−2πikUo(T−r)

∂r
e2πikUo(T−r)dr e−2πikUo(T−s)ds.

Now∫ s

s+ 1
2kUo

∂w

∂r
dre−2πikUo(T−s) = w(s)e−2πikUo(T−s) + w(s +

1
2kUo

)e−2πikUo(T−(s+ 1
2kUo

))

= 2w(s)e−2πikUo(T−s) +
∫ s

s+ 1
2kUo

∂w(r)e−2πikUo(T−r)

∂r
dr.
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Substituting into the formula above we obtain the identity

(1 + 2πikUo)
∫ T

0

we−2πikUo(T−s)ds

=
1
2

∫ T

0

∫ s

s+ 1
2kUo

∂we−2πikUo(T−r)

∂r
(2πikUo + e2πikUo(s−r))dr ds.

Then taking the absolute value and applying the triangle inequality we get

(1 + 4π2k2U2
o )

1
2 |

∫ T

0

we−2πikUo(T−s)dt|

≤ (1 + 2π|kUo|)
4|kUo|

∫ T

0

ess supr∈[s,s+ 1
2kUo

]|
∂(we−2πikUo(T−r))

∂r
|ds.

Dividing the last inequality by (1 + 4π2k2U2
o )

1
2 and using the inequality (a + b)2 ≤

2(a2 + b2) gives the result. �
We will also need the following technical lemma.

Lemma 4. The integral ∫ t

0

(2π|k|)pe−(4π2νk2+2πikUo)(t−s)ds

is bounded by

(2π)p

∫ t

0

|k|pe−4π2νk2(t−s)ds ≤ C t1−
p
2 (30)

for 0 ≤ p < 2, where C is a constant. In particular,∫ t

t−δ

(2π|k|)pe−(4π2νk2+2πikUo)(t−s)ds ≤ C δ1− p
2 (31)

and ∫ t−δ

0

(2π|k|)pe−(4π2νk2+2πikUo)(t−s)ds ≤ C δ1− p
2 . (32)

Proof. We estimate the integral∫ t

0

|k|pe−4π2νk2(t−s)ds =
∫ t

0

|k|pe−4π2νk2rdr

≤ (
p

8π2ν
)

p
2 e−p

∫ t

0

r−
p
2 dr = Ct1−

p
2 ,

where

k =
1
2π

√
p

2νr

is the value of k where the integrand achieves its maximum. The second estimate (32)
is obtained by first integrating and then computing the maximum of |k|pe−4π2νk2δ. �

If q
p is a rational number, let q

p
+ denote any real number s > q

p .
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Theorem 1. If the velocity Uo of the uniform flow is sufficiently large and the initial
function uo(x, t) and the initial condition u0(x) in the integral equation (26) satisfy

E(‖uo‖2
5
4
+) + E(‖K ∗ u0‖2

5
4
+)

=
1
2

∑
k �=0

(1 + (2π|k|)(5/2)+)
(2π|k|)2 hk + E(‖K ∗ u0‖2

5
4
+)

≤ 1
24

C|Uo| −
1
16

, (33)

then the solution of the integral equation (26) is uniformly bounded in L2
( 5
4
+, 2)

. Namely,

ess supt∈[0,∞)E(‖u‖2
5
4
+)(t) < C|Uo|, (34)

where C is a constant and K is the oscillating heat kernel from (7).

Corollary 2 (Onsager’s Conjecture). The solutions of the integral equation (26) are
Hölder continuous with exponent 3/4.

Remark 1. The hypothesis (33) is the answer to the question we posed in Section 2
and Subsection 3.1, namely how fast the coefficients h

1/2
k had to decay in Fourier space.

They have to decay sufficiently fast for the expectation of the H
5
4
+

= W ( 5
4
+, 2) Sobolev

norm of the initial function uo to be finite. In other words the L2
( 5
4
+, 2)

norm of the initial
function uo has to be finite.

We now prove the theorem with the help of one more lemma in addition to those
above.

Proof. We write the integral equation (26) in the form

u(x, t) =
∑
k �=0

[h1/2
k Ak

t +
1
2

∫ t

0

e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds]ek(x),

where ek = e2πikx are the Fourier components and the Ak
t are the Ornstein-Uhlenbeck

processes (9). We have used that the constant b in (26) keeps the k = 0 Fourier coefficient
of u equal to zero, and we omit the initial conditions to begin with. They will be added
in the last step of the estimates.

By the orthogonality of the eks the L2 norm of u is

|u|22 =
∑
k �=0

[hk|Ak
t |2 +

1
4
|
∫ t

0

e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2].

We split the t integral into the integral from 0 to t − δ, where δ is a small number,
and the integral from t− δ to t. This is done to first avoid the singularities of the spatial
derivatives of the heat kernel at s = t and then to deal with these singularities in the
latter integral. First we estimate the integral from t−δ to t. The L2 norm of this integral
is ∑

k �=0

1
4
|
∫ t

t−δ

e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2,
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and it is estimated by

≤ δ2 ess sup
[t−δ,t]

(
∑
k �=0

4| ̂∂−1
x (ux)2|22(k) +

∑
k �=0

|ûux|22(k))

≤ δ2 E ess sup
[t−δ,t]

4|∂−1
x (ux)2 − b|22 + |uux|22)

≤ Cδ2 ess sup
[t−δ,t]

(|ux|44 + |u|2∞|ux|22)

≤ Cδ2 ess sup
[t−δ,t]

(|ux|44 + |ux|42) (35)

by Plancherel’s identity and by the Gagliardo-Nirenberg inequalities,

|u|∞ ≤ C‖u‖ 1
2
+ ≤ C|ux|2,

in the space L2 with mean zero, where δ is independent of Uo and C is a constant.
The integral from 0 to t − δ,∑

k �=0

1
4
|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2,

is estimated by use of Lemmas 2, 3 and 4. First consider∑
k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s)∂̂xu2(k, s)ds|2

=
∑
k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s)2πikû ∗ ûds|2.

We write

e−(2πikUo)(T−s)û ∗ û = e−(2πikUo)(T−s)
∑

l �=k,0

û(k − l)û(l)

=
∑

l �=k,0

e−(2πi(k−l)Uo)(T−s)û(k − l)e−(2πilUo)(T−s)û(l)

= ûe−(2πikUo)(T−s) ∗ ûe−(2πikUo)(T−s).

Then Fourier transforming the Navier-Stokes equation and multiplying it with an expo-
nential gives

∂(e−(2πikUo)(T−s)û)
∂s

= −4π2νk2ûe−(2πikUo)(T−s)

−1
2
∂̂xu2e−(2πikUo)(T−s) + ̂∂−1

x (ux)2e−(2πikUo)(T−s). (36)

We are now ready to apply the main estimate (29) in Lemma 3. By use of Lemma 3
we get that ∫ t−δ

0

πike−(4π2νk2+2πikUo)(t−s)û ∗ ûds (37)

≤ C
|kUo|

∫ t−δ

0

π|k| ess sup
[s,s+ 1

2kUo
]

|∂(e−(4π2νk2+2πikUo)(t−s)û∗û)
∂s |ds.
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Now

∂(e−(4π2νk2+2πikUo)(t−s)û ∗ û)
∂s

= 4π2νk2e−(4π2νk2+2πikUo)(t−s)û ∗ û

+2e−(4π2νk2)(t−s)(ûe−2πikUo)(t−s)) ∗ ∂(ûe−2πikUo)(t−s))
∂s

.

By using the Fourier transform of the Navier-Stokes equation (36) we get that

∫ t−δ

0

πike−(4π2νk2+2πikUo)(t−s)û ∗ ûds

≤ π
Uo

∫ t−δ

0

ess sup
[s,s+ 1

2kUo
]

(νk2|e−(4π2νk2+2πikUo)(t−s)û ∗ û|

+2|e−(4π2νk2)(t−s)(ûe−2πikUo)(t−s)) ∗ ∂(ûe−2πikUo)(t−s))
∂s |)ds

≤ π
Uo

∫ t−δ

0

ess sup
[s,s+ 1

2kUo
]

(4π2νk2|e−(4π2νk2+2πikUo)(t−s)û ∗ û|

+2|e−(4π2νk2)(t−s)û ∗ (−4π2νk2ûe−(2πikUo)(T−s)

−1
2 ∂̂xu2e−(2πikUo)(T−s) + ̂∂−1

x (ux)2e−(2πikUo)(T−s))|)ds.

Now we square the last expression above and sum in k. Then using the Plancherel
identity we get that

∑
k �=0

|
∫ t−δ

0

πike−(4π2νk2+2πikUo)(t−s)û ∗ ûds|2

≤
∑
k �=0

|12π3ν
Uo

∫ t−δ

0

e−4π2νk2(t−s)|û2|(k)ds

+2π2

Uo

∫ t−δ

0

|k|e−4π2νk2(t−s)|û3|(k)ds

+ 1
Uo

∫ t−δ

0

1
|k|e

−4π2νk2(t−s)|û(ux)2|(k)ds|2

= C
U2

o
ess sup
[0,t−δ]

(|u|44 + |u|2∞|u|44 + |u|2∞|ux|44)

= C
U2

o
ess sup
[0,t−δ]

(1 + |u|2∞)(|u|44 + |ux|44),

where we have used Lemma 4 to estimate the integrals and pulled u, in the sup norm,
out of the (last two) L2 norms in the last step. This finally produces the inequality

∑
k �=0

|
∫ t−δ

0

πike−(4π2νk2+2πikUo)(t−s)û∗ ûds|2 ≤ C

U2
o

ess sup[0,t−δ]((1+ |u|2∞)(|u|44 + |ux|44)).

(38)
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Secondly consider the term

∑
k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s)2 ̂∂−1
x (ux)2(k, s)ds|2

=
∑
k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s) ûx ∗ ûx

πik
ds|2.

We write

e−(2πikUo)(T−s)ûx ∗ ûx = e−(2πikUo)(T−s)
∑

l �=k,0

ûx(k − l)ûx(l)

=
∑

l �=k,0

e−(2πi(k−l)Uo)(T−s)ûx(k − l)e−(2πilUo)(T−s)ûx(l)

= ûxe
−(2πikUo)(T−s) ∗ ûxe

−(2πikUo)(T−s)
.

Fourier transforming the x derivative of the Navier-Stokes equation and multiplying it
with an exponential gives

∂(e−(2πikUo)(T−s)ûx)
∂s

= −4π2νk2ûxe−(2πikUo)(T−s)

+2π2k2û2e−(2πikUo)(T−s) + 2πik ̂∂−1
x (ux)2e−(2πikUo)(T−s). (39)

Then we apply the main estimate (29) in Lemma 3. By use of Lemma 3 we get that

∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s) ûx∗ûx

πik ds (40)

≤ 1
2Uo

∫ t−δ

0

1
πk2 ess sup

[s,s+ 1
2kUo

]

|∂(e−(4π2νk2+2πikUo)(t−s)ûx∗ûx

∂s |ds.

Now

∂(e−(4π2νk2+2πikUo)(t−s)ûx ∗ ûx)
∂s

= 4π2νk2e−(4π2νk2+2πikUo)(t−s)ûx ∗ ûx

+2e−(4π2νk2)(t−s)(ûxe−2πikUo)(t−s)) ∗ ∂(ûxe−2πikUo(t−s))
∂s

.
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By using the Fourier transform of the Navier-Stokes equation (39) we get that∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s) ûx∗ûx

πik ds

≤ 1
2πUo

∫ t−δ

0

1
k2 ess sup

[s,s+
1

2kUo
]

(4π2νk2|e−(4π2νk2+2πikUo)(t−s)ûx ∗ ûx|

+2|e−(4π2νk2)(t−s)(ûxe−2πikUo)(t−s)) ∗ ∂(ûxe−2πikUo)(t−s))
∂s |)ds

≤ 1
2πUo

∫ t−δ

0

ess sup
[s,s+ 1

2kUo
]

(4π2ν|e−(4π2νk2+2πikUo)(t−s)ûx ∗ ûx|

+2|e−(4π2νk2)(t−s)ûx ∗ (−4π2νûxe−(2πikUo)(T−s)

−2π2û2e−(2πikUo)(T−s) − 4π2

2πik
̂∂−1

x (ux)2e−(2πikUo)(T−s))|)ds.

Now we square the last expression above and sum in k. Then using the Plancherel
identity we get that ∑

k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s) ûx∗ûx

πik ds|2

≤
∑
k �=0

|2νπ
Uo

|
∫ t−δ

0

e−4π2νk2(t−s)|(̂ux)2|(k)ds

+ π
2Uo

∫ t−δ

0

e−4π2νk2(t−s)|ûxu2|(k)ds

+ 2π
Uo

∫ t−δ

0

e−4π2νk2(t−s)| ̂∂−1
x [ux∂−1

x (ux)2]|(k)ds|2

= C
U2

o
ess sup
[0,t−δ]

(|ux|44 + |u|2∞(|u|24|ux|24 + |ux|44))

= C
U2

o
ess sup
[0,t−δ]

(1 + |u|2∞)(|u|24 + |ux|24)|ux|24,

where we have used Lemma 4 to estimate the integrals, pulled u in the sup norm out of
the (last two) L2 norms in the last step and integrated by parts to get

∂−1
x [ux∂−1

x (ux)2] = ∂−1
x [u(ux)2].

This finally produces the inequality∑
k �=0

|
∫ t−δ

0

e−(4π2νk2+2πikUo)(t−s) ûx ∗ ûx

πik
ds|2≤ C

U2
o

ess sup
[0,t−δ]

((1+|u|2∞)(|u|24+|ux|24)|ux|24).

(41)
Combining the estimates (38) and (41) gives the L2 estimate

|u|22 ≤ 9
∑
k �=0

hk|Ak
t |2 +

C

|Uo|2
ess sup
s∈[0,t]

(1 + ‖u‖2
5
4
+)‖u‖4

5
4
+

+δ2C ess sup
s∈[0,t]

‖u‖4
5
4
+ (42)
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by use of Sobolev’s inequality
|ux|4 ≤ C‖u‖ 5

4
+ (43)

and the Gagliardo-Nirenberg inequalities.
We now act on the integral equation with the operator ∂

(5/4)+

x to estimate the deriv-
ative ∂

(5/4)+

x u:

∂(5/4)+

x u(x, t) =
∑

k

[(2πik)(5/4)+h
1/2
k Ak

t

+
1
2

∫ t

0

(2πik)(5/4)+e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds]ek(x)

where ek = e2πikx are the Fourier components and the Ak
t are the Ornstein-Uhlenbeck

processes (9).
By the orthogonality of the eks the L2 norm of u is

|∂(5/4)+

x u|22 =
∑
k �=0

[(2π|k|)(5/2)+hk|Ak
t |2

+
1
4
|
∫ t

0

(2πik)(5/4)+e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2].

(44)

First we estimate the integral from t − δ to t. The L2 norm of this integral is∑
k �=0

1
4
|
∫ t

t−δ

(2πik)(5/4)+e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2,

and it is estimated by

≤ δ(3/4)−ess sup[t−δ,t](
∑
k �=0

4| ̂∂−1
x (ux)2|22(k) +

∑
k �=0

|ûux|22(k))

≤ Cδ(3/4)− ess sup[t−δ,t](|ux|44 + |ux|42) (45)

by Plancherel’s identity, the Gagliardo-Nirenberg inequalities and Lemma 4.
The integral from 0 to t − δ,∑

k �=0

1
4
|
∫ t−δ

0

(2πik)(5/4)+e−(4π2νk2+2πikUo)(t−s)( ̂2∂−1
x (ux)2 − ∂̂xu2)(k, s)ds|2

≤ C

U2
o

ess sup
[0,t−δ]

(|ux|44 + |u|2∞(|u|24 + |ux|24)|ux|24), (46)

is estimated by similar computations as above. We need to work a little harder than
above to get rid of the k2 terms stemming from the Laplacian in the Navier-Stokes
equation. Combining the two estimates (45) and (46) we get

|∂(5/4)+

x u|22 ≤ 9
∑
k �=0

(2π|k|)(5/2)+hk|Ak
t |2 +

C

|Uo|2
ess sup
s∈[0,t]

(1 + ‖u‖2
5
4
+)‖u‖4

5
4
+

+δ(3/4)−C ess sup
s∈[0,t]

‖u‖4
5
4
+ (47)

by Sobolev’s inequality (43) and the Gagliardo-Nirenberg inequalities.
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Now we combine the inequalities (42) and (47) to get

‖u‖2
5
4
+ ≤ 9

∑
k �=0

(1 + (2π|k|)(5/2)+)hk|Ak
t |2 +

C

|Uo|2
ess sup
s∈[0,t]

(1 + ‖u‖2
5
4
+)‖u‖4

5
4
+

+δ(3/4)−C ess sup
s∈[0,t]

‖u‖4
5
4
+ (48)

and finally adding the term with the initial condition u0 to the integral equation (26) we
get the estimate

‖u‖2
5
4
+ ≤ 16

∑
k �=0

(1 + (2π|k|)(5/2)+)hk|Ak
t |2 + 16‖K ∗ u0‖2

5
4
+

+
C

|Uo|2
ess sup
s∈[0,t]

(1 + ‖u‖2
5
4
+)‖u‖4

5
4
+ + δ(3/4)−C ess sup

s∈[0,t]

‖u‖4
5
4
+ . (49)

Thus by Lemma 5,

E( ess sup
[0,t]

‖u‖2
5
4
+) ≤ |Uo|√

C
(50)

if

16
∑
k �=0

(1 + (2π|k|)(5/2)+)hk

8π2k2
+ 16E(‖K ∗ u0‖2

5
4
+) ≤ 2|Uo|

3
√

C
− 1

by making δ arbitrarily small. We set 1√
C

equal to a new constant C and conclude that
(33) imples (34). �

Lemma 5. Consider the inequality

x(t) − (bx3(t) + cx2(t)) ≤ a + d, x(0) = x0,

where E(d) = 0 and b > 0, c > 0 are deterministic. If

E(a) <
2
3
(1 +

c2

3b
)xmax − c

9b
,

where xmax = c
3b (

√
3b
c2 + 1 − 1) and E(x(0)) < xmax, then E(x(t)) ≤ xmax.

Proof. f(x) = x− bx3 − cx2 obtains its maximum at xmax; thus if E(a) = E(a + d) <
2
3 (1 + c2

3b )xmax − c
9b = f(xmax), then E(x(t)) must stay below the value xmax where f(x)

obtains its maximum, assuming that E(x(0)) < xmax. �
Remark 2. Corollary 2 is the resolution of a famous question in turbulence: Is turbu-

lence always caused by the blow-up of the velocity u? The answer according to Theorem 2
is no; the solutions are not singular. However, they are not smooth either, contrary to
the belief, stemming from Leray’s theory [20], that if solutions are not singular, then they
are smooth. By Corollary 2 the solutions are Hölder continuous with exponent 3/4 in
one dimension. This confirms a conjecture made by Onsager [28] in 1945. In particular
the gradient ∂xu is not continuous in general.

We can now prove that ess supt∈[0,∞) ‖u(t)‖2
5
4
+ is bounded with probability one.
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Lemma 6. For all ε > 0 there exists an R such that

P( ess sup
t∈[0,∞)

‖u(t)‖2
5
4
+ < R) > 1 − ε. (51)

Proof. By Chebychev’s inequality and the estimate (34) we get that

P( ess sup
t∈[0,∞)

‖u(t)‖2
5
4
+ ≥ R) <

C|Uo|
R

< ε

for R sufficiently large. �
4.2. Existence of global turbulent solutions. In this section we prove the existence of

the turbulent solutions of the initial value problem (20). The following theorem states
the existence of turbulent solutions in one dimension.

Theorem 2. If

E(‖uo‖2
5
4
+) + E(‖K ∗ u0‖2

5
4
+)

=
1
2

∑
k �=0

(1 + (2π|k|)(5/2)+)
(2π|k|)2 hk + E(‖K ∗ u0‖2

5
4
+)

≤ 1
24

C|Uo| −
1
16

, (52)

where the uniform flow Uo is sufficiently large so that the a priori bound (34) holds, then
the integral equation (26) has a unique global solution u(x, t) in the space
C([0,∞);L2

( 5
4
+,2)

), u is adapted to the filtration generated by the stochastic process

uo(x, t) =
∑
k �=0

h
1/2
k Ak

t ek

and

E(
∫ t

0

‖u‖2
5
4
+ds) < C|Uo| t. (53)

Proof. We let w = u−v and α = u+v where u and v are two solutions of the integral
equation. We start by writing

w(x, t) = −
∑
k �=0

[
∫ t

0

e−(4νπ2k2+2πikUo)(t−s)(ŵ · αx + α̂ · wx − α̂xwx

2πik
)(k, s)ds]ek(x),

where ek = e2πikx. Then by Lemma 4,

|w|22 ≤
∑
k �=0

|
∫ t

0

e−(4νπ2k2+2πikUo)(t−s)(ŵαx + α̂wx − α̂xwx

2πik
)(k, s)ds|2

≤ C t2 ess sup
[0,t]

(|w|2∞|αx|22 + |α|2∞|wx|22 + |αx|44|wx|44)

≤ C t2 ess sup
[0,t]

‖α‖4
5
4
+‖w‖4

5
4
+ .
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Similarly

|∂
5
4
+

x w|22 ≤
∑
k �=0

|
∫ t

0

(2π|k|) 5
4
+
e−(4νπ2k2+2πikUo)(t−s)(ŵαx + α̂wx)(k, s)ds|2

≤ C t
1
6
−

ess sup
[0,t]

‖α‖4
5
4
+‖w‖4

5
4
+

by Lemma 4. Combining those two estimates we get that

ess sup
[0,t]

‖wn+1‖2
5
4
+ ≤ C t

1
6
−

ess sup
[0,t]

‖αn‖4
5
4
+ ess sup

[0,t]

‖wn‖4
5
4
+ (54)

for the iteration based on the integral equation (26), and t small. Now the expectation
of ‖αn‖4

5
4
+‖wn‖2

5
4
+ can be taken to be bounded by a constant, independent of n. This

implies that the ‖αn‖4
5
4
+‖wn‖2

5
4
+ norms are bounded with probability one, by an argument

similar to that in Lemma 6. Thus

E( ess sup
[0,t]

‖wn+1‖2
5
4
+) ≤ C t

1
6
−

E( ess sup
[0,t]

‖wn‖2
5
4
+), (55)

with probability one, but a constant C that depends on functions in the set

E(‖αn‖4
5
4
+‖wn‖2

5
4
+) ≤ K

in L2
( 5
4
+, 2)

. By an application of the contraction mapping principle we get that there

exists a random variable τ taking its values almost surely in the interval (0, t], with t

small, such that the integral equation (26) defines a contraction on C([0, τ ];L2
( 5
4
+, 2)

).

This proves the local existence of unique solutions to (26). The global existence uses the
bound (34) in Theorem 1, which does not depend on the above set in L2

( 5
4
+, 2)

. Namely,

since the norm of u in L2
( 5
4
+, 2)

is bounded a priori for all t, the interval of local existence

can be extended to the whole positive t-axis R+. �
Next we prove an estimate analogous to a Gronwall estimate, which will be used

in later sections and also gives an alternative method to prove the uniqueness of the
solutions.

Lemma 7. Let u1 and u2 be two solutions of (26) with initial functions uo
1(x, t) =∑

k �=0(h
1
k)1/2Ak

t ek and uo
2(x, t) =

∑
k �=0(h

2
k)1/2Ak

t ek, and initial conditions u0
1(x) and

u0
2(x). Then with probability one,

E(‖u1 − u2‖ 5
4
+(t)) ≤

[
1 −

√
1 − 4C(t

1
12

−
+ t)‖w0‖ 5

4
+)

]
2C(t

1
12

−
+ t)

, (56)

where

‖w0‖ 5
4
+ = E(‖u0

1 − u0
2‖ 5

4
+)

+ [
∑
k �=0

(1 + (2π|k|) 5
2
+
)

2(2πk)2
|(h1

k)1/2 − (h2
k)1/2|2] 1

2 t1/2. (57)
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Proof. We let u and v be two different solutions of the Navier-Stokes equation w = u−v

and α = u + v with distinct initial functions uo and vo and write the integral equations
for w as

w(x, t) = w0(x) −
∑
k �=0

[
∫ t

0

e−(4νπ2k2+2πikUo)(t−s)(ŵ · αx + α̂ · wx − α̂xwx

2πik
)(k, s)ds]ek(x).

The same estimates as in the proof of Theorem 2 give the estimate

ess sup
[0,t]

‖wn+1‖ 5
4
+ ≤ ‖wo‖ 5

4
+ + C (t

1
12

−
+ t) ess sup

[0,t]

‖wn‖2
5
4
+ (58)

with probability one. An iteration of this inequality gives the bound (56). �

5. The existence of the invariant measure. In this section we will consider the
stochastic Navier-Stokes equation

dw = (νwxx − wwx + ∂−1
x (wx)2 − b)dt +

∑
k �=0

h
1/2
k dβk

t ek (59)

with initial data

w(x, 0) = Uo + u0(x),

where u ∈ L̇2(T1), the dot indicating that the mean is equal to zero and b is the constant
(21) keeping the mean equal to zero. We will use that the solutions u(x, t), where
w(x, t) = Uo + u(x, t), exist in L( 5

4
+, 2), by Theorem 2, and that the mean flow Uo is

constant. Since, by Theorem 2 , we can even take the initial data u0(x) ∈ L̇2(T1), the
equation (59) defines a flow on L̇2(T1). The reasoning is that if u0(x) ∈ L̇2(T1), then
K ∗ u0 ∈ Ẇ ( 5

4
+, 2)(T1), for t > 0. This is the physical situation we are interested in,

namely fully developed turbulence with nontrivial mean flow, and it applies to most
rivers and streams; see [24, 25].

More concretely, we can consider the initial value problem on L̇2(T1),

du = (νuxx − Uoux − uux + ∂−1
x (ux)2 − b)dt +

∑
k �=0

h
1/2
k dβk

t ek,

u(x, 0) = u0(x), (60)

where

Uo =
12
C

∑
k �=0

(1 + (2π|k|)(5/2)+)
(2π|k|)2 hk +

24
C

E(‖K ∗ u0‖2
5
4
+) +

3
2

+ δ,

δ being arbitrarily small and C being the constant in Theorem 1. This stochastic initial
value problem is equivalent to the integral equation (26). Then by Theorem 2 the initial
value problem (60) defines a flow on L̇2(T1).

If φ is a bounded function on L̇2(T1), then the invariant measure dµ for the SPDE
(60) is given by the limit

lim
t→∞

E(φ(u(ω, t))) =
∫

L̇2(T1)

φ(u)dµ(u). (61)
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In this section we prove that this limit exists and is unique. We prove below that the
limit exists in the Ẇ ( 5

4
+, 2)(T1) norm, but since these dominate the L̇2(T1) norm the

conclusions will follow for L̇2(T1).

Theorem 3. The integral equation (26) possesses a unique invariant measure.

Corollary 3. The invariant measure dµ is ergodic and strongly mixing.

The corollary follows immediately from Doob’s Theorem on invariant measures; see
for example [30].

We prove the theorem in three lemmas. First we define a transition probability

Pt(u0, Γ) = L(u(u0, t))(Γ), Γ ⊂ E ,

where L is the law of u(t), u0 is the initial condition and E is the natural σ-algebra of
L̇2(T1). Then

RT (u0, ·) =
1
T

∫ T

0

Pt(u0, ·)dt

is a probability measure on L̇2(T1). By the Krylov-Bogoliubov theorem, see [30], if the
sequence of measures RT is tight, then the invariant measure dµ is the weak limit

dµ(·) = lim
T→∞

1
T

∫ T

0

Pt(u0, ·)dt.

Namely,

R∗
T dν(Γ) =

∫
L̇2(T1)

RT (u0, Γ)dν(u0)

and
〈R∗

T ν, φ〉 =
∫

L̇2(T1)

φ(u0)RT (u0, Γ)dν(u0) →
∫

L̇2(T1)

φ(u0)dµ(u0)

as T → ∞.

Lemma 8. The sequence of measures

1
T

∫ T

0

Pt(u0, ·)dt

is tight.

Proof. By the inequality (34),

1
T

∫ T

0

E(‖u‖2
5
4
+)(t)dt ≤ CUo.

The space Ḣ
5
4
+
(T1) = Ẇ ( 5

4
+, 2) is relatively compact in L̇2(T1), so it suffices to show

that u(t) lies in a bounded set in Ḣ
5
4
+
(T1) almost surely, or for all ε > 0, there exists an

R such that
1
T

∫ T

0

P(‖u(t)‖2
5
4
+ < R)dt > 1 − ε

for T ≥ 1. But this follows from Chebychev’s inequality, similarly as in Lemma 6, namely,

1
T

∫ T

0

P(‖u(t)‖ 5
4
+ ≥ R)dt ≤ 1

R
CUo < ε
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for R sufficiently large. By Theorem 2 we can take the initial data in L̇2(T1). This proves
that the sequence of measures is tight. �

Next we prove the strong Feller property; see [30].

Lemma 9. The Markovian semigroup Pt generated by the integral equation (26) is
strongly Feller.

Proof. We compare the operators

S =
ν

2
∂2

x

and
A = −2∂−1

x ux∂x

on L̇2(T 1), the L2 space of functions with mean zero. The operator A is S bounded, see
Kato [18],

‖Av‖ ≤ a‖v‖ + b‖Sv‖;
with the coefficients a = 0 and b = 4

ν
√

λ1
|ux|2, we have

‖Av‖2 = 4‖∂−1
x uxvx‖2 ≤ 4|ux|22|vx|22 ≤ 16

ν2λ1
|ux|22|

ν

2
∂2

xv|22 =
16

ν2λ1
|ux|22‖Sv‖2

by Poincaré’s inequality, since vx = 0 has mean zero, where λ1 = 4π2. Taking the
expectation we get that

E(‖Av‖2) =
16

ν2λ1
E(|ux|22)‖Sv‖2

since S is deterministic. Now S generates a contraction semi-group and that A is S

bounded implies that S + A also generates a contraction semi-group; see Theorem 2.4,
page 499 in Kato [18]. Moreover, it will be shown by a direct computation below that
the operator

B =
ν

2
∂2

x − (Uo + u)∂x − ux

also generates a contraction semi-group, and thus by Theorem 2.7, page 501 in Kato [18],
the operator

T = B + S + A

generates a contraction semi-group that we will denote

V (t) = eTt.

This semi-group satisfies the estimate, Kato [18],

‖V (t)‖ ≤ 1, (62)

and the first spatial derivative of V is also bounded by a constant M .
We will now solve the equation

vt = Bv

where B is the operator above. The initial value problem

wt = νwxx − (Uo + u)wx − wux,

w(0) = δ(x)
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for the functional derivative w(x, t) = ∂u(x,t)
∂u(y,0) is solved by a combination of Feynmann-

Kac and Cameron-Martin; see McKean [23]. Namely, after a reversal of time t − s → s,
w can be written as

w(x = xt, t) = e
∫ t
0 (Uo+u(s,xs))·dxs− 1

2

∫ t
0 |Uo+u(s,xs)|2dsK(x, t)

∣∣
x=xt

where K(x, t) is the periodic heat kernel in one dimension. Thus following McKean [23],

φt(u) − φt(v) =
∫

T1

∫
T1

BM

∫ 1

0

∇φ(h) · (u − v)(y, t)w(x = xt, t)drdxdy,

where h = v +(u− v)r and φt(u) = E(φ(u(t)). BM denotes the Brownian mean over the
individual motions. Thus by Lemma 10 and the Schwarz inequality,

|φt(u) − φt(v)| ≤ 2( lim
t→∞

|xt|
t

+ |Uo| + |u|∞)‖φ‖∞|u − v|2,

where xt ∈ T1, since

BM(e
∫ t
0 (Uo+u(s,xs))·dxs− 1

2

∫ t
0 |Uo+u(s,xs)|2ds)=E(e

∫ t
0 (Uo+u(s,xs))·dxs−1

2

∫ t
0 |Uo+u(s,xs)|2ds)=1

or

|φt(u) − φt(v)| ≤ C(|Uo| + ‖u‖ 5
4
+)|φ|∞|(u − v)|2

≤ C(|Uo| + ‖u‖ 5
4
+)|φ|∞‖(u − v)‖ 5

4
+ (63)

by the Gagliardo-Nirenberg inequalities. This implies that the Markovian semi-group Pt

is strongly Feller, both in L̇2 and in Ẇ ( 5
4
+, 2), since ‖u‖ 5

4
+ is bounded, with probability

one, by Lemma 6.
Now repeating this argument with the operator

T = ν∂2
x + 2∂−1

x ux∂x − (Uo + u)∂x − ux

instead of B, we get the inequality

φt(u) − φt(w) =
∫ 1

0

∫ 1

0

TM

∫ 1

0

∇φ(h) · (u − w)(y, t)v(x, t)drdxdy,

where TM denotes the mean over the densities of the semi-group V (t) generated by
T . We do not know these densities explicitly as those above but we can still estimate
them and their derivatives with respect to x using the estimates (62) on V (t) above. By
estimates similar to the above and integration by parts combined with Itô’s lemma we
get the estimate

|φt(u) − φt(w)| ≤ C|φ|∞‖u − w‖

either in L̇2 or Ẇ ( 5
4
+, 2). This proves the strong Feller property. �

Lemma 10. ∫
T1

∇φ(h) · (u − v)(y, t)w(x = xt, t)dx (64)

=
∫

T1
(
xt

t
+ Uo + u(t, xt))φ(h) · (u − v)(y, t)w(x = xt, t)dx.
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Proof. Extending u and w to all of R by use of periodicity we can write∫
T1

∇φ(h) · (u − v)(y, t)w(x = xt, t)dx

=
∫

R

∇φ(h) · (u − v)(y, t)e
∫ t
0 (Uo+u(s,xs))·dxs− 1

2

∫ t
0 |Uo+u(s,xs)|2ds e−

x2
2νt

(2πνt)
1
2
|x=xt

dx

=
∫

R

(
xt

t
+ Uo + u(t, xt))φ(h)(u − v)(y, t)

×e
∫

t
0 (Uo+u(s,xs))·dxs− 1

2

∫
t
0 |Uo+u(s,xs)|2ds e−

x2
2νt

(2πνt)
1
2
|x=xt

dx

=
∫

T1
(
xt

t
+ Uo + u(t, xt))φ(h) · (u − v)(y, t)w(x = xt, t)dx

by integration by parts and Itô’s formula, and folding back to T1 again by use of peri-
odicity. �

Finally we prove irreducibility, see [30], of Pt. The proof of this lemma is an application
of stochastic control theory.

Lemma 11. The Markovian semigroup Pt generated by the integral equation (26) is
irreducible.

Proof. We first consider the linear deterministic equation

zt + Uozx = νzxx + w(x, t),

z(x, 0) = 0, z(x, T ) = b(x) (65)

and the deterministic equation

yt + Uoyx = νyxx − yyx + ∂−1
x (yx)2 − b + Qh(x, t),

y(x, 0) = 0, y(x, T ) = b(x), (66)

where Q : Ḣ−1 → Ẇ ( 5
4
+,2), both spaces have mean zero, b keeps the mean equal to zero

as in (21) and the kernel Q is empty. We will define the operator Q by coefficients in
the sum

∑
k �=0 h

1/2
k Ak

t ek, where the Ak
t are the Ornstein-Uhlenbeck processes from (9).

Then it is easy to check that if Qf =
∑

k �=0 h
1/2
k fkek = 0, then f = 0 since h

1/2
k �= 0 for

all k �= 0.
We can pick a function w ∈ C([0, T ]; Ẇ ( 5

4
+,2)) such that z(x, T ) = b(x) and a corre-

sponding function h ∈ L2([0, T ]; Ḣ−1(T1)). Namely, Qh = zzx − ∂−1
x (zx)2 + w, since the

kernel of Q is empty; then y = z is a solution of the deterministic Navier-Stokes equation
(66) above. This means that (66) is exactly controllable; see Curtain and Zwart [7].

Now we compare y and the solution u of the integral eqution (26). By the same
estimate as in Lemma 7, we get the inequality

E(‖u − y‖ 5
4
+) ≤ E(‖uo(x, t) − yo(x, t)‖ 5

4
+)t

1
2
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as long as w0 = uo(x, t) − yo(x, t) is sufficiently small. Here y satisfies the integral
equation

y = yo +
∫ t

0

K ∗ (−yyx + ∂−1
x (yx)2 − b)ds,

where K is the oscillatory heat kernal in (7) and yo =
∫ t

0
K ∗ wds. Now the inequality

(56) implies that for t ≤ T and δ < 1,

E(‖u − y‖ 5
4
+) ≤ E(‖uo(x, t) − yo(x, t)‖ 5

4
+)

√
T <

εδ

2
(67)

since we can pick h such that

E(‖uo(x, t) − yo(x, t)‖ 5
4
+) ≤ εδ

2
√

T

for t ≤ T . We are using here that the support of the law of uo is the same in Ẇ ( 5
4
+, 2)(T1)

as in L̇2(T1), since the former space is smoothly embedded in the latter, see [29]; and
that the closure of the image of Q, in the C0 (sup in t) norm, is dense in the support of
the law of uo; compare Theorems 7.4.1 and 7.4.2 in [30]. This implies that the probability

P(‖u(T ) − b‖ 5
4
+ ≤ ε) ≥

P

(
‖u(T ) − y(T )‖ 5

4
+ ≤ ε

2
and ‖y(T ) − b(T )‖ 5

4
+ ≤ ε

2

)
≥ 1 − δ > 0

by (67) and Chebychev’s inequality, since (66) is exactly controllable. �

6. Hack’s law. We now use the invariant measure in Section 5 to derive the scaling
of the second structure function of the turbulent flow that solves Equation (26).

Lemma 12. The second structure function of the turbulent flow that solves the integral
equation (26) scales as

s2(x) =
∫

L2(T 1)

|u(y + x) − u(y)|2dµ(u) ≤ C|x| 32
+
.

Proof. By Corollary 2 the solutions of (26) are Hölder continuous with exponent 3/4.
Thus

|u(y + x) − u(y)| ≤ C‖u‖( 5
4
+,2)|x|

3
4
+
.

Moreover, by Theorem 2, u satisfies the bound

E(‖u‖2
( 5
4
+,2)

) ≤ C|Uo|

by Equation (34). Substituting these bounds into the integral and using that

E(‖u‖2
( 5
4
+,2)

) =
∫

L2
‖u‖2

( 5
4
+,2)

dµ

gives the estimate. �
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The scaling of the structure functions depends on the dimensions, see [14], in three
dimensions s2(x) ∼ x

2
3 corresponding to Kolmogorov’s scaling.

Hack’s law describes how the length l of a main river in a river basin scales with the
area A of the basin, see Hack [16],

l = c A0.568,

where c is a constant that varies from basin to basin; see Gray [15]. Hack’s law describes
the fact that most river basins have an oval shape; that is, they are longer along the
direction of the main river than perpendicular to it. As discussed in the introduction
there are several ranges in Hack’s law depending on the size of the river basin, but we
restrict our discussion here to basins which are large, say > 200 km2, but not too large,
say < 25, 000 km2; see Mueller [26].

Now Hack’s law is proven in the following manner. In [4] the equations describing the
sediment flow are linearized about convex (concave in the terminology of geomorphology)
surface profiles describing mature surfaces. Then the colored noise generated by the
turbulent flow drives the linearized equations and the solutions obtain the same color
(scaling); see Theorem 5.3 in [4]. The resulting variogram (second structure function)
of the surfaces scales with the roughness exponent χ = 3

4 ; see Theorem 5.4 in [4]. This
determines the roughness coefficient χ of mature landsurfaces. This roughness applies
to the transport limited landsurfaces studied in [4] and is in excellent agreement with
numerical simulations [6] and empirical results from Digital Elevation Models [35], of
areas where the transport limited assumption applies.

Hack’s law is a universal statistical law and applies to detachment limited landsurfaces
as well as transport limited ones. In the former case we have to wait for the rock to
weather before it can be eroded, whereas in the latter case all the sediment can be
eroded if sufficient water is available. There are good reasons to believe that the theory
developed in [4] will apply to the detachment limited situation as well but this remains
to be shown. However, a question still remained, namely how the spatial roughness
χ = 3/4 of a channel or a riverbed, caused by the turbulent flow eroding the bed, is
transported to the whole surface? This question is answered in the paper [5], which
studies the meanderings of an experimental stream on an acrylic plate. It is shown in [5]
that the meanderings of this experimental stream are caused by noise in the water flow
that gives rise to turbulence, and the meandering coefficient of the experimental stream
is exactly the roughness coefficient of the turbulent flow or χ = 3/4. Since the meanders
of the experimental stream are expected to reflect exactly the roughness of the flow, this
constitutes the first direct verification of the theory presented in this paper. Moreover,
the question posed above is answered: The roughness of the meanderings implies that the
scaling of the area covered by them is in accordance with Hack’s law; see the argument
below. This indicates that the river meanderings cover the whole river basin over time,
thus endowing the surface of the whole basin with the same spatial roughness as the river
channel.

The final step in the following derivation of Hack’s law is copied from [6].
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6.1. The origin of Hack’s law. The preceding results allow us to derive some of the
fundamental scaling results that are known to characterize fluvial landsurfaces. In par-
ticular, the avalanche dimension computed in [6] and derived in [4], given the roughness
coefficient χ, allows us to derive Hack’s law relating the length of a river l to the area
A of the basin that it drains. This is the area of the river network that is given by the
avalanche dimensions

A ∼ lD (68)

and the avalanche dimension is D = 1 + χ. This relation says that if the length of the
main river is l, then the width of the basin in the direction perpendicular to the main
river is lχ. Notice that if L|| ∼ L is the diameter of the basin along the main river and
L⊥ ∼ Lχ is the width of the basin perpendicular to this direction, then the relation
above simply says that the area of the basin is proportional to their product

A ∼ L||L⊥ = L1+χ.

However, this does not take into account the sinuosity of the river

l ∼ Lα
|| ,

where α is the meandering exponent or sinuosity (fractal dimension) of real rivers. Taking
sinuosity into account gives

A ∼ L
D
α = L

1+χ
α

by substitution into Hack’s law (68). It turns out that for real rivers, α ≈ 1.1 [22] is
small, so it does not make much difference whether l or L is used in Hack’s law. The
origin of the statistical law for sinuosity

l ∼ Lα
||

of real rivers is still a mystery. It is clear from [5] that turbulent flow in the river con-
tributes, but it does not provide the complete explanation for the meandering exponent
α, as it does for the roughness exponent χ and Hack’s law (68).

Stable scalings for the surface emerge together with the emergence of the separable
solutions describing the mature surfaces; see [6] and [4]. We note that in this case, χ = 3

4

as shown in Lemma 12 above; hence we obtain

l ∼ A
1

1+χ (69)

≈ A0.571,

a number that is in excellent agreement with observed values of the exponent of Hack’s
law of 0.568; see [15].
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