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Abstract. We investigate the existence and stability of a thermoelastic contact prob-

lem with second sound. Previous results established the existence and stability of a

solution of the corresponding classical system in the case of radial symmetry. However,

recent works have shown that sometimes stability can be lost when the classical Fourier

heat conduction is substituted by Cattaneo’s Law. We show that also in this case this

substitution does indeed lead to a loss in regularity that proves to be a major problem

prohibiting the transfer of the existence proof for the classical problem to the problem

with second sound, leaving the existence of a solution an open question. We then prove

that, if a viscoelastic term is added to the equations, providing additional regularity,

then existence and exponential stability (the second, as can be expected, only in the case

of radial symmetry) will follow.

1. Introduction. We consider a thermoelastic system that can come into contact

with a rigid foundation. In particular, consider the equations of thermoelasticity with

second sound on a bounded set Ω ⊂ R
n with smooth boundary ∂Ω = ΓC ∪ΓN ∪ΓD. On

ΓD, the body is held fix, while on ΓN tractions are zero. On ΓC , the body is free, albeit

its extension is limited by a rigid foundation. The temperature is held fixed at the entire

boundary. If u = u(t, x), θ = θ(t, x) and q = q(t, x) describe the displacement, relative

temperature and heat flow, respectively, then our equations take the form

∂2
t ui − (Cijkluk,l),j − µ∂tui,jj +mijθ,j = 0, (1.1)

∂tθ + div q +mij∂tui,j = 0, (1.2)

τ0∂tqi + qi +Kijθ,j = 0. (1.3)
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On [0, T ]× Ω, we define the initial values

u(0, ·) = u0, ut(0, ·) = u1, θ(0, ·) = θ0, q(0, ·) = q0 (1.4)

satisfying

u0 ∈ (H1
ΓD

(Ω))n, u1 ∈ (L2(Ω))n, θ0 ∈ L2(Ω), q0 ∈ (L2(Ω))n (1.5)

and the boundary conditions

θ|∂Ω = 0, (1.6)

u|ΓD
= 0, σT |ΓN

= 0,

σν ≤ 0; uν ≤ 0; σν(uν − g) = 0, σT = 0 on ΓC , (1.7)

where

σij = Cijkluk,l + µui,j −mijθ

is the stress tensor and (with ν being the exterior normal vector),

σν = σijνiνj , σT = σν − σνν

are its normal and tangential components. We assume the elasticity module C =

(Cijkl)i,j,k,l and that the thermal expansion tensor m and the heat conduction tensor K

satisfy

Cijkl ∈ L∞(Ω), ∃dC > 0∀η ∈ R
n×n : ηijCijklηkl ≥ dC |η|2, Cijkl = Cjikl = Cklij ,

kij ∈ L∞(Ω), ∃dk > 0∀ξ ∈ R
n : ξikijξj ≥ dk|ξ|2, kij = kji,

mij ∈ L∞(Ω), mij ≥ 0, mij = mji,

where k = K−1 in the sense of matrix inversion and µ ≥ 0 is (for now) an arbitrary

constant.

A few remarks are needed on notation. We denote ∂ju = u,j , || · || := || · ||(L2)m ,

where m is either 1, n or n2, which will be clear from the context. In addition,

L∞(H1) := L∞([0, T ], H1(Ω)) and likewise. H1
ΓC

(Ω) denotes the space of weakly dif-

ferentiable functions satisfying u|ΓC
= 0 in a weak sense. The technical problem in the

handling of these equations lies in the boundary conditions for u on ΓC , which do not al-

low the well-known semi-group theoretic approach. Problems of this form arise naturally

in the manufacturing of casts and pistons; cf. [8].

On the classical problem, i.e τ0 = µ = 0, there are a number of papers available. In

particular, Muñoz Rivera and Racke [6] studied the corresponding classical problem and

derived existence and stability under the condition of radial symmetry. In the case of one

space dimension, there are several results: Elliott and Tang [2] gave an existence result

for more general boundary conditions; Muñoz Rivera and Jiang [5] gave an existence

and stability result for a contact problem of two rods, and Gao and Muñoz Rivera [3]

gave an existence and stability result for the semilinear case. Dropping the ∂2
t u term in

the first equation, one arrives at the quasi-statical case, where Shi and Shillor [8] proved

the existence of a solution and Ames and Payne [1] gave a uniqueness result. Muñoz

Rivera and Racke [6] also prove the existence of a unique solution to the corresponding

classical quasi-static problem and its exponential stability. One would (and, in fact, has

for quite some time) expect these results to carry over to the fully hyperbolic problem,
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especially since the critical equation for the displacement u, where the difficult boundary

conditions, arise remains unchanged. However, in a recent work, Racke and Ferñandez

Sare [7] showed that for a damped Timoshenko system, exponential stability is lost when

substituting the Fourier Law of heat conduction by Cattaneo’s Law. In this light, the

investigation of the behaviour of this particular system under a transition from classical

to hyperbolic heat conduction poses an interesting question. We shall indeed see that

this transition leads to a loss in regularity that is not easily compensated, thus requiring

the additional viscoelastic term (µ > 0).

This paper is organized as follows: In Section 2, we will give a proof for the existence

of a weak solution. We will start by following the approach of Muñoz Rivera and Racke

[6] and then show why it cannot be extended to this problem. To this end we will

approximate the difficult boundary conditions on ΓC and obtain a penalized problem. We

will then show that this penalized problem has a solution and give a sufficient condition

for the convergence of this solution to a solution of our original problem. This is where

the loss of regularity from the changed heat equation leaves its mark, as the conditions

derived by Muñoz Rivera and Racke will no longer be sufficient. Finally, in section 3,

we will prove a stability result in the radially symmetrical case, that is, the solutions to

our problem decay to 0 exponentially. We will use a Lyapunov functional, similar to [6],

although some changes are required to compensate for the different heat equation.

2. Existence. We will prove the existence of a solution in the following sense:

Definition 2.1. (u, θ, q) is a solution to (1.1)–(1.7) iff

u ∈ W 1,∞((L2)n) ∩ L∞((H1
ΓD

)n), θ ∈ L∞(L2), q ∈ L∞((L2)n), (2.1)

∂tu(T, ·), q(T, ·) ∈ (L2(Ω))n; θ(T, ·) ∈ L2(Ω); ∇u(T, ·) ∈ L2(Ω), (2.2)

∀w ∈ W 1,∞((L2)n) ∩ L∞((H1
ΓD

)n), wν ≤ g on ΓC :

−
∫ T

0

〈∂tu, ∂tw〉dt+ 〈u(T, ·), ∂tw(T, ·)− ∂tu(T, ·)〉 − 〈u0, ∂tw(0, ·)− u1〉

+ µ

∫ T

0

〈∂tui,j , wi,j〉dt+
∫ T

0

〈Cijkluk,l, wi,j〉dt−
∫ T

0

〈mijθ, wi,j〉dt

+

∫ T

0

〈∂tu, ∂tu〉dt−
∫ T

0

〈Cijkluk,l, ui,j〉dt−
µ

2
(||∇u(T, ·)||2 − ||∇u0||2)

+

∫ T

0

〈mijθ, uij〉dt ≥ 0; (2.3)

∀z ∈ W 1,∞(H1
0 ) :

−
∫ T

0

〈θ, z〉dt+ 〈θ(T, ·), z(T, ·)〉 − 〈θ0, z(0, ·)〉 −
∫ T

0

〈qi, z,i〉dt

−
∫ T

0

〈mijui,j , ∂tz〉dt+ 〈mijui,j(T, ·), z(T, ·)〉 − 〈miju0i,j , z(0, ·)〉 = 0; (2.4)

∀y ∈ W 1,∞((H1)n) :
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−τ0

∫ T

0

〈kijqi, ∂tyj〉dt+ τ0〈kijqi(T, ·), yj(T, ·)〉 − τ0〈kijq0i, yj(0, ·)〉

+

∫ T

0

〈kijqi, yj〉dt−
∫ T

0

〈θ, yi,i〉dt = 0, (2.5)

u|ΓC
≤ g a.e. (2.6)

We remark that all boundary conditions are represented in a weak sense in the above

definiton. Also, we need the unusual condition (2.2) for condition (2.3) to make sense.

This will be seen from the context in section 2.

To better handle the difficult boundary conditions in u, we consider the following

penalized problem:

∂2
t u

ε
i − (Cijklu

ε
k,l),j − µuε

i,jj +mijθ
ε
,j = 0, (2.7)

∂tθ
ε + div qε +mij∂tu

ε
i,j = 0, (2.8)

τ0∂tkijq
ε
j + kijq

ε
j + θε,i = 0, (2.9)

with initial conditions

u(0, ·) = u0, ut(0, ·) = u1, θ(0, ·) = θ0, q(0, ·) = q0 (2.10)

and boundary conditions

θ|∂Ω = 0,

u|ΓD
= 0, σT |ΓN

= 0,

σε
ν = −1

ε
(uε

ν − g)+ − ε∂tuν , σT = 0 on ΓC . (2.11)

Note that only the boundary conditions on ΓC have been changed; everything else is

identical to the original problem. We will see that σε
ν is bounded and therefore by (2.11),

(uε
ν − g)+ → 0 as ε → 0, satisfying (2.6). Next, we give a definition of a solution to the

penalized problem. Let wp
p, y

p
p ⊂ H1(Ω) be bases of (L2(Ω))n and zpp ⊂ H1

0 (Ω) be a

basis of L2(Ω).

Definition 2.2. Let

uε
0, u

ε
1 ∈ (H2,2(Ω) ∩H1

0 (Ω))
n,

qε0 ∈ (H1(Ω))n,

θε0 ∈ H1
0 (Ω).

Then (uε, θε, qε) is a solution to (2.7)–(2.11) iff

uε ∈ W 2,∞((L2)n) ∩W 1,∞((H1
ΓD

)n); θε ∈ W 1,∞(L2) ∩ L∞(H1
0 );

qε ∈ W 1,∞((L2)n) ∩ L∞(D1); (2.12)

uε(0, ·) = uε
0; ∂tu

ε(0, ·) = uε
1; θε(0, ·) = θε0; qε(0, ·) = qε0 (2.13)
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and for almost all t ∈ [0, T ],

∀p ∈ N : 〈∂2
t u

ε(t, ·), wp〉+ µ〈∂tuε
i,j(t, ·), w

p
i,j〉+ 〈Cijklu

ε
k,l(t, ·), w

p
i,j〉

− 〈mijθ
ε(t, ·), wp

i,j〉 = −1

ε

∫
ΓC

(uε
ν(t, ·)− g)+wpdΓ− ε

∫
ΓC

∂tu
ε
ν(t, ·)wpdΓ, (2.14)

∀p ∈ N : 〈∂tθε(t, ·), zp〉+ 〈div qε(t, ·), zp〉+ 〈mij∂tu
ε
i,j(t, ·), zp〉 = 0, (2.15)

∀p ∈ N : τ0〈kij∂tqεi (t, ·), y
p
j 〉+ 〈kijqεi (t, ·), y

p
j 〉+ 〈∇θε(t, ·), ypi 〉 = 0. (2.16)

To construct a solution to the penalized problem, we will use a Faedo-Galerkin method.

Note that, if (v, ψ, h) satisfy

v(0, ·) = ∂tv(0, ·) = ψ(0, ·) = h(0, ·) = 0,

〈∂2
t v, w

p〉+ 〈(Cijklvk,l), w
p
i,j〉+ µ〈∂tvi,j , wp

i,j〉 − 〈mijψ,w
p
i,j〉

= 〈f, wp〉 − 1

ε

∫
ΓC

(vν − g)+wp
νdΓ− ε

∫
ΓC

(∂tvν)w
p
νdΓ, (2.17)

〈∂tψ, zp〉+ 〈div h, zp〉+ 〈mij∂tvi,j , z
p〉 = 〈b, zp〉, (2.18)

〈τ0kij∂thj , yi〉+ 〈kijhj , yi〉+ 〈∇ψ, y〉 = 〈e, yp〉, (2.19)

with

fi := Cijkl(u
ε
0k,l − tuε

1k,l)),j + µuε
1i,jj − (mijθ

ε
0),j (i = 1, . . . , n),

b := −qε0i,i +miju
ε
1i,j ,

e := −kijq
ε
0j − θε0,j ,

then u := v + u0 + tu1, θ := ψ + θ0 and q := h + q0 are a solution to the penalized

problem. To find such (v, ψ, h), consider the following set of equations on [0, T ]:

〈∂2
t v

m, wp〉n + 〈Cijklv
m
k,l, w

p
i,j〉+ µ〈∂tvmi,j , w

p
i,j〉 − 〈mijψ,w

p
i,j〉

= 〈f, wp〉n − 1

ε

∫
ΓC

(vmν − g)+wp
νdΓ− ε

∫
ΓC

∂tv
m
ν wp

νdΓ (p = 1, ...,m), (2.20)

〈∂tψm, zp〉+ 〈div hm, zp〉+ 〈mij∂tv
m
i,j , z

p〉 = 〈b, zp〉 (p = 1, ...,m), (2.21)

τ0〈kij∂thm
i , ypj 〉+ 〈kijhm

i , ypj 〉+ 〈∇ψm, yp〉n = 〈e, yp〉n (p = 1, ...,m), (2.22)

v(0, ·) = ∂tv(0, ·) = ψ(0, ·) = h(0, ·) = 0, (2.23)

where vm(t, x) = amp (t)wp(x), ψm(t, x) = bmp (t)zp(x) and hm(t, x) = cmp (t)yp(x) with

unknown coefficents (amp , bmp , cmp ). Then (2.20)–(2.23) is a set of ordinary differential

equations for (amp , bmp , cmp ), thus possessing a solution with the regularity

vm ∈ W 3,∞((H1
ΓD

)n), ψm ∈ W 2,∞(H1
0 ), hm ∈ W 2,∞((H1)n).

Note that the initial conditions are arbitrarily smooth and that f, g, e are polynomial in

t, allowing for a solution with the required smoothness.
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Lemma 2.3. There exist (v, ψ, h) such that

(vm)m
∗
⇀ v in W 2,∞((L2)n) ∩W 1,∞((H1

ΓC
)n),

(ψm)m
∗
⇀ ψ in W 1,∞(L2),

(hm)m
∗
⇀ h in W 1,∞((L2)n).

Proof. Multiplying (2.20) by d
dta

m
p , (2.21) by bmp and (2.22) by cmp , respectively, we

obtain after summarizing from 1 to m:

1

2

d

dt

(
||∂tvm||2 + 〈Cijklv

m
k,l, v

m
i,j〉+

1

ε

∫
ΓC

|(um
ν − g)+|2dΓ + ||ψm||2 + τ0||hm||2

)

+ µ||∂t∇vm||2 + ε

∫
ΓC

|∂tvmν |2dΓ + 〈kijhm
i , hm

j 〉+ 〈div hm, ψm〉+ 〈∇ψm, hm〉

= 〈f, ∂tvm〉+ 〈b, ψm〉+ 〈e, hm〉,
(2.24)

where we used that ∫
ΓC

(vmν − g)+∂tv
mdΓ =

d

dt

∫
ΓC

|(vmν − g)+|2dΓ.

As one easily checks by partial integration,

〈div hm, ψm〉+ 〈∇ψm, hm〉 = 0

and therefore, after integrating (2.24) on (0, t), we obtain by Gronwall’s inequality,

||∂tvm(t, ·)||n ≤ C,

〈Cijklv
m
k,l(t, ·), vmi,j(t, ·)〉 ≤ C,

1

ε

∫
ΓC

|(vmν (t, ·)− g)+|2dΓ ≤ C,

||hm(t, ·)||n ≤ C,

ε

∫ t

0

∫
ΓC

|∂tvmν (t, ·)|2dΓdt ≤ C, (2.25)

∫ t

0

〈kijhm
i (t, ·), hm

j (t, ·)〉dt ≤ C. (2.26)

Using the smoothness of the functions (vm, ψm, hm), we see that they satisfy the time-

derivated system

〈∂3
t v

m, wp〉n + 〈Cijkl∂tv
m
k,l, w

p
i,j〉+ µ〈∂2

t v
m
i,j , w

p
i,j〉 − 〈mij∂tψ,w

p
i,j〉

= −1

ε

∫
ΓC

∂t(v
m
ν − g)+wp

νdΓ− ε

∫
ΓC

∂2
t v

m
ν wp

νdΓ + 〈∂tf, wp〉n, (2.27)

〈∂2
t ψ

m, zp〉+ 〈∂t div hm, zp〉+ 〈mij∂
2
t v

m
i,j , z

p〉 = 0, (2.28)

τ0〈kij∂2
t h

m
i , ypj 〉+ 〈kij∂thm

i , ypj 〉+ 〈∂t∇ψm, yp〉n = 0. (2.29)
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Multiplying (2.27) by d2

dt2 a
m
p , (2.28) by d

dtb
m
p and (2.29) by d

dtc
m
p , respectively, we obtain

similar to (2.24),

1

2

d

dt

[
||∂2

t v
m||2n + 〈Cijkl∂tv

m
k,l, ∂tv

m
i,j〉+ ||∂tψm||2 + τ0||∂thm||2n

]
+ µ||∂2

t∇vm||2n×n + 〈kijhm
i , hm

j 〉

= 〈∂tf, ∂2
t v

m〉 − 1

ε

∫
ΓC

∂t(v
m
ν − g)+∂2

t v
mdΓ− ε

∫
ΓC

∂2
t v

m
ν ∂2

t v
m
ν dΓ.

Observe that in general it is not

∂t |∂t(vmν − g)+|2 = 2∂t(v
m
ν − g)+∂2

t v
m a.e.

since the distributional second derivative of (vmν − g)+ need not be regular. However,

using (2.25),

1

2

d

dt

[
||∂2

t v
m||2n + 〈Cijkl∂tv

m
k,l, ∂tv

m
i,j〉+ ||∂tψm||2 + τ0||∂thm||2n

]
+ µ||∂2

t∇vm||2n×n + 〈kijhm
i , hm

j 〉

≤ 〈∂tf, ∂2
t v

m〉n +
1

2ε3

∫
ΓC

|∂tvmν |2dΓ− ε

2

∫
ΓC

|∂2
t v

m
ν |2dΓ

≤ 〈∂tf, ∂2
t v

m〉n + Cε,

(2.30)

where Cε → ∞ as ε → 0. For constant ε we conclude, using Gronwall’s inequality again,

that

(vm)m is bounded in W 2,∞((L2)n) ∩W 1,∞((H1
ΓD

)n),

(ψm)m is bounded in W 1,∞(L2),

(hm)m is bounded in W 1,∞((L2)n),

from which the claimed convergence follows. �
We can now show

Theorem 2.4. There is a solution to the penalized problem.

Proof. Take (v, ψ, h) as in Lemma 2.3. Define

u := v + u0 + tu1,

θ := ψ + θ0,

q := h+ q0.

Then it is clear that (u, θ, q) have the desired regularity (2.12) and fulfill the initial

conditions (2.13). Using Lemma 1.4 from [4], we obtain the convergence

uε → u in C1([0, T ], (L2(ΓC))
n).

It then follows from the convergence proved in Theorem 2.3 that (u, θ, q) satisfy (2.14)–

(2.16). �
Now we will prove the convergence of solutions to the penalized problem. As we can

see in the proof of Lemma (2.3), we cannot use the second energy level to gain estimates

on the convergence of (uε, θε, qε), as ε is now no longer constant. Therefore, we lose one
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level of regularity in time. This loss is grave, since we will no longer have convergence

of some terms in the equations; i.e., it is generally unknown if the limits (u, ψ, q) are

solutions to the original problem. However, if µ > 0, the viscoelastic term will provide

us with the missing regularity and an existence proof is possible. This will be shown in

detail in the proof of Theorem 2.7.

Lemma 2.5. There exist (u, θ, q) such that

uε ∗
⇀ u in W 1,∞((L2)n) ∩ L∞(H1

ΓC
),

θε
∗
⇀ θ in L∞(L2),

qε
∗
⇀ q in L∞((L2)n).

If µ > 0, then

uε ⇀ u in W 1,2((H1
ΓC

)n).

Proof. By the regularity of (uε, θε, qε), we can subsitute them for (wp, zp, yp) in (2.14),

(2.15) and (2.16) respectively and obtain

d

dt

(
||∂tuε||2 + 〈Cijklu

ε
k,l, u

ε
i,j〉+ ||θε||2 + 〈kijqεi , qεj 〉+

1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ

)

+ µ||∂t∇uε||2 + 〈kijqεi , qεj 〉+ ε

∫
ΓC

|∂tuε
ν |2dΓ = 0,

(2.31)

where we again used that

〈div q, θ〉+ 〈∇θ, q〉 = 0.

Integrating from 0 to t and using Gronwall’s inequality, we conclude the existence of a

constant C = C(||uε
0||, ||θε0||, ||qε0||) such that for all t > 0,

||∂tuε(t, ·)||n ≤ C,

〈Cijklu
ε
k,l(t, ·), uε

i,j(t, ·)〉 ≤ C,

||θε(t, ·)|| ≤ C,

〈kijqεi (t, ·), qεj (t, ·)〉 ≤ C,

1

ε

∫
ΓC

|(uε
ν(t, ·)− g(·))+|2dΓ ≤ C,

µ

∫ t

0

||∂t∇uε(s, ·)||2nds ≤ C,

∫ t

0

〈kijqεi (s, ·), qεj (s, ·)〉ds ≤ C,

ε

∫ t

0

∫
ΓC

|∂tuε
ν(s, ·)|2dΓds ≤ C.

This implies the desired convergence. �
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Lemma 2.6. Let (u, θ, q) be the functions from Lemma 2.5. Then

uε(T, ·) ∗
⇀ u(T, ·) in L∞(H1

ΓC
),

uε
t (T, ·)

∗
⇀ ut(T, ·) in L∞(L2),

θε(T, ·) ∗
⇀ θ(T, ·) in L∞(L2),

qε(T, ·) ∗
⇀ q(T, ·) in L∞(L2).

Proof. Note that due to the regularity of the solutions to the penalized problem,

uε, uε
t, θ

ε and qε are continuous in time by Sobolev’s Imbedding Theorem. Therefore, the

asserted convergence holds by the estimates gained in the proof for Theorem 2.5. �

Theorem 2.7. Let µ > 0. Let (u0, u1, θ0, q0) ∈ (H1
ΓD

(Ω))n × (L2(Ω))2n+1. Then there

exists a solution to (1.1)–(1.7).

Proof. Let

(uε
0)ε, (uε

1)ε ⊂ (H1
0 (Ω) ∩H2,2(Ω))n,

(qε0)ε ⊂ (H1(Ω))n,

(θε0)ε ⊂ H1(Ω)

with

uε
0 −→ u0 in (H1

ΓD
)n, (2.32)

uε
1 −→ u1 in (L2(Ω))n, (2.33)

θε0 −→ θ0 in L2(Ω), (2.34)

qε0 −→ q0 in (L2(Ω))n. (2.35)

Let (uε, θε, qε) be the solutions to the penalized problem for each ε > 0 and (u, θ, q) be

the limits from Lemma 2.5. Then (u, θ, q) will satisfy (2.1). We can substitute zp in

(2.15) for any z ∈ W 1,∞(H1
0 ) and obtain

〈∂tθε, z〉+ 〈div qε, z〉+ 〈mij∂tu
ε
i,j , z〉 = 0.

Integrating from 0 to T we arrive at

〈θ(T, ·)ε, z(T, ·)〉 − 〈θε0, z(0, ·〉 −
∫ T

0

〈θε, ∂tz〉dt−
∫ T

0

〈qεi , z,i〉dt

+ 〈miju
ε
i,j(T, ·), z(T, ·)〉 − 〈miju

ε
0i,j , z(0, ·)〉 −

∫ T

0

〈miju
ε
i,j , z〉dt = 0.

(2.36)

Using Lemmas 2.5 and 2.6, we conclude, by taking the limit ε → 0, that (u, θ, q) fulfill

(2.4).

Similarly, substituting yp in (2.16) for any y ∈ W 1,∞(H1) and integrating yields

〈kijqεi (T, ·), y(T, ·)〉 − 〈kijq0iε, y(0, ·)〉 −
∫ T

0

〈kijqεi (t, ·), ∂tyj(t, ·)〉dt

+

∫ T

0

〈kijqεi (t, ·), yj(t, ·)〉+
∫ T

0

〈θε(t, ·), yi,i(t, ·)〉dt = 0.

(2.37)
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Again, taking the limit ε → 0 and using Lemmas 2.5 and 2.6 we conclude that (u, θ, q)

fulfill (2.5).

From Lemma 2.6, it is immediately clear that (u, θ, q) satisfy (2.2). Using Lemma 1.4

from [4] again, it follows from Lemma 2.5 that

uε −→ u in C0([0, T ], (L2(ΓC))
n).

Therefore, since
1

ε

∫
ΓC

|(uε
ν(t, ·)− g(·))+|2dΓ ≤ C,

we conclude that ∫
ΓC

|(uν(t, ·)− g(·))+|2dΓ = 0

and therefore (2.6) is satisfied.

Note that we did not use µ > 0 yet. Therefore everything we proved so far will also

hold if µ = 0. The critical part is in fact the convergence of quadratic terms that appear

in (2.3), as we will see in the following calculations.

For any w ∈ L∞(H1
ΓD

) ∩W 1,∞(L2) we substitute wp in (2.16) by w − u and obtain

〈∂2
t u

ε, w − uε〉+ 〈Cijklu
ε
k,l, wi,j − uε

i,j〉
+ µ〈∂tuε

i,j , wi,j − uε
i,j〉+ 〈mijθ

ε, wi,j − uε
i,j〉

= − 1

ε

∫
ΓC

(uε
ν − g)+(wν − uε

ν)dΓ− ε

∫
ΓC

∂tu
ε
ν(wν − uε

ν)dΓ.

Integrating from 0 to T we arrive at

〈∂tuε(T, ·), w(T, ·)〉 − 〈∂tuε(T, ·), uε(T, ·)〉 − 〈uε
1, w(0, ·)− uε

0〉

−
∫ T

0

〈∂tuε(t, ·), ∂tw(t, ·)〉dt+
∫ T

0

〈Cijklu
ε
k,l(t, ·), wi,j(t, ·)〉dt

+

∫ T

0

〈∂tuε(t, ·), ∂tuε(t, ·)〉dt−
∫ T

0

〈Cijklu
ε
k,l(t, ·), uε

i,j(t, ·)〉dt

+ µ

∫ T

0

〈∂tuε
i,j(t, ·), wi,j(t, ·)〉dt−

µ

2

(
||∇uε(T, ·)||2 − ||∇uε

0||2
)

+

∫ T

0

〈mijθ
ε(t, ·), wi,j(t, ·)〉dt−

∫ T

0

〈mijθ
ε(t, ·), uε

i,j(t, ·)〉dt

=
1

ε

∫ T

0

∫
ΓC

(uε
ν(t, ·)− g)+(uε

ν(t, ·)− g)− (uε
ν(t, ·)− g)+(wν(t, ·)− g)dΓdt

− ε

∫ T

0

∫
ΓC

∂tu
ε
ν(t, ·)wν(t, ·)dΓdt+

ε

2

∫
ΓC

|uε
ν(T, ·)|2 − |uε

0ν |2dΓ

≥ − ε

(∫ T

0

∫
ΓC

∂tu
ε
ν(t, ·)wν(t, ·)dΓdt+

1

2

∫
ΓC

|uε
ν(T, ·)|2 − |uε

0ν |2dΓ
)
.

(2.38)

Using Lemmas 2.5 and 2.6, we see that the right-hand side of (2.38) will converge to 0 as

ε → 0, since weak-* convergent series are bounded in norm. For the left-hand side we can

again conclude the convergence of all terms that are linear in (uε, θε, qε). However, the

convergence of the quadratic terms, namely the L2(0, T )-norms of ||uε
t ||, 〈Cijklui,j , uk,l〉
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and 〈mijθ, ui,j〉, remains an issue. While we know the terms will be bounded, we cannot

conclude their convergence to the respective terms for u, as weak-* convergence does not

imply norm convergence.

Note that it is not possible to circumvent this problem by simply taking estimates for

the second order energy and giving a strong solution, since the second order energy is

not (trivially) bounded in ε. We remark that Muñoz Rivera and Racke [6] encountered

a similar problem, which could be circumvented by reducing the problem to the radially

symmetrical case and using an estimate obtained via compensated compactness. How-

ever, it is not possible to utilize this for our problem, since we do not have a bound on

∇θ, which is a necessary component of the proof in [6].

Therefore, we shall use µ > 0, which will yield

uε ⇀ u in W 1,2((H1
ΓC

)n)

by Lemma 2.5. From this we can conclude the uniform convergence of uε
t as well as ∇u.

It is then possible to take the limit ε → 0 in (2.38) and conclude that (u, θ, q) will satisfy

(2.3). �

3. Stability. In general, one cannot expect the exponential stability of a thermoe-

lastic problem that is not radially symmetric. Therefore, we shall restrict our problem

to the radially symmetric, isotropic and homogeneous cases; i.e., we assume that the

following conditions hold:

The domain Ω is radially symmetric, in this case annular: Ω = B(0, 1)\B(0, r0),

1 > r0 > 0; ΓD = ∂B(0, r0); ΓC = ∂B(0, 1); ΓN = ∅.
The coefficients satisfy the following symmetry conditions:

Cijkl = λδijδkl + ν(δikδjl + δjkδil),

mij = mδij , Kij = κδij , g(x) = g ≥ 0∀x ∈ ΓC .

Additionally, we shall assume that the solution to the problem as derived in the previous

section is unique in this case, which implies that with radially symmetric initial data and

the above assumptions on the coefficients, the solution itself will be radially symmetric.

We shall first investigate the stability of the penalized problem, which will transfer to

the original problem by a simple continuity argument.

With our assumptions, the equations take the form

∂2
t u

ε − µ∂t�uε − λ1�uε − (λ1 + λ2)∇div uε +m∇θε = 0, (3.1)

∂tθ
ε + div qε +m div ∂tu

ε = 0, (3.2)

τ0∂tq
ε + qε + κθε = 0, (3.3)

with Lamé-Moduli λ1, λ2 satisfying 2λ1 + nλ2 > 0 and constants κ > 0 and m �= 0.

The boundary conditions to the penalized problem then read

θε|∂Ω = 0, uε|ΓD
= 0,

µ∂t
∂uε

∂ν
· ν + λ1

∂uε

∂ν
· ν + (λ1 + λ2) div uε = −1

ε
(uε

ν − g)+ − ε∂tu
ε
ν on ΓC .

(3.4)
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As mentioned above, solutions to this problem will also be radially symmetric, so we can

write

uε(t, x) = xw(t, |x|), θε(t, x) = ψ(t, |x|), qε(t, x) = xh(t, |x|).
Writing r := |x|, (w,ψ, h) will then satisfy the equations

∂2
tw − µ∂twrr − µ∂t

1

r
wr − ν1wrr −

ν2
r
wr +

m

r
θr = 0, (3.5)

∂tψ + nh+ rhr +mn∂tw +mr∂twr = 0, (3.6)

τ0∂th+ h+
κ

r
ψr = 0. (3.7)

We will now show that the energy of the penalized problem, defined by

Eε(t) := ||∂tuε||2 + λ1||∇uε||2 + κ||θε||2 + ||qε||2 + 1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ,

decays exponentially as time goes to infinity, i.e.

Eε(t) ≤ αEε
0e

−βt.

We will use the technique of a Lyapunov functional, constructing the negative terms of

the energy and combining the respective functionals in a final estimate. First, one easily

sees by multiplying (3.1) with ∂tu, (3.2) with κθ and (3.3) with q and integrating over

Ω, that the energy satisfies

d

dt
Eε(t) ≤ −C2 (µ||∂tuε||2n + ||qε||2n). (3.8)

Lemma 3.1. Let

F1(t) := 〈∂tuε, uε〉n + ε

∫
ΓC

|uε
ν |2dΓ− µ||∇uε||2n×n.

Then for any δ1 > 0,

d

dt
F1(t) ≤ −(C3 − δ1)||∇uε||2n×n − 1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ + ||∂tuε||2n +

C4

δ1
||θε||2. (3.9)

Proof.

d

dt
〈∂tuε, uε〉 = ||∂tuε||2 + 〈∂2

t u
ε, uε〉

= ||∂tuε||2 − λ1||∇uε||2 − µ〈∂t∇uε,∇uε〉 − 〈mθε, div uε〉

− (λ1 + λ2)||div uε||2 − 1

ε

∫
ΓC

(uε
ν − g)+uνdΓ− ε

∫
ΓC

∂tu
ε
νu

ε
νdΓ.

(3.10)

Estimating

|〈mθε, div uε〉| ≤ C4

(
δ1||∇uε||2 + 1

δ 1
||θε||2

)
for any δ1 > 0 and

−1

ε

∫
ΓC

(uε
ν − g)+uε

νdΓ ≤ −1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ,

we obtain the desired result. �
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Lemma 3.2. Let

Ψ(t, r) :=

∫ r

r0

ψ(t, s)ds

and

F2(t) := −τ0

∫ 1

r0

Ψ(t, r)h(t, r)dr.

Then for any δ2, δ3 > 0,

d

dt
F2(t) ≤

C

δ2 + δ3

∫ 1

r0

|h(t, r)|2dr− κ− δ2
r0

∫ 1

r0

|ψ(t, r)|2dr+ δ3

∫ 1

r0

|∂tw(t, r)|2dr. (3.11)

Proof. By (3.6), Ψ satisfies

∂tΨ+

∫ r

r0

nhds+

∫ r

r0

shds+

∫ r

r0

mn∂twds+

∫ r

r0

ms∂twsds = 0. (3.12)

Multiplying (3.12) with hr and integrating, we obtain for any δ3 > 0,

−
∫ 1

r0

(∂tΨ)hrdr = n

∫ 1

r0

hr

∫ r

r0

hdsdr +

∫ 1

r0

hr

∫ r

r0

shsdsdr

+mn

∫ 1

r0

hr

∫ r

r0

∂tw(t, s)dsdr +m

∫ 1

r0

h

∫ r

r0

s∂twsdsdr

≤ C

δ3

∫ 1

r0

|h(t, r)|2dr + δ3

∫ 1

r0

|w(t, r)|2dr.

(3.13)

Multiplying (3.7) by Ψr and integrating, we obtain

τ0

∫ 1

r0

Ψ(∂th)rdr +

∫ 1

r0

Ψhrdr +

∫ 1

r0

κΨrrΨdr = 0.

We have, by definition of Ψ,∫ 1

r0

κΨrr(t, r)Ψ(t, r)dr = −κ

∫ 1

r0

|Ψr(t, r)|2dr = −κ

∫ 1

r0

|ψ(t, r)|2dr.

Using Poincaré’s Inequalitiy for Ψ, this implies for any δ2 > 0,

−
∫ 1

r0

Ψ(∂th)rdr ≤ C

δ2

∫ 1

r0

|h|2dr − (κ− δ2)

∫ 1

r0

|ψ|2dr. (3.14)

Combining (3.13) and (3.14), we obtain the desired result. �
Defining

L(t) := NEε(t) + F1(t) + δ4F2(t),

where δ4 will be chosen later, we easily see that for large enough N there exist C1, C2 > 0

such that

C1E(t) ≤ L(t) ≤ C2E(t). (3.15)

Now, we can prove the essential theorem of this section.

Theorem 3.3. Let µ > 0. Then the system is exponentially stable; i.e., there is a β > 0

such that

Eε(t) ≤ αEε
0e

−βt.
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Proof. Using (3.8), (3.9) and (3.11), we conclude that

d

dt
L(t) ≤ −NC2(µ||∂tuε||2n + ||qε||2n)− (C3 − δ1)||∇uε||2n×n

− 1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ + ||∂tuε||2n +

C4

δ1
||θε||2

+ δ4

(
C5

δ2 + δ3

∫ 1

r0

|h(t, r)|2dr − κ− δ2
r0

∫ 1

r0

|ψ|2dr + δ3

∫ 1

r0

|∂tw|2dr
)

≤ (1 + C6δ3δ4 −NC2µ)||∂tuε||2n + (
δ4C7

δ2 + δ3
−NC2)||qε||2n + (δ1 − C3)||∇uε||2n×n

− 1

ε

∫
ΓC

|(uε
ν − g)+|2dΓ + (

C4

δ1
− δ4

κ− δ2
r0

)||θε||2.

Choosing δ1 < C3 and δ2 < κ, then δ4 > r0C4

δ1(κ−δ2)
and (arbitrarily) δ3 = 1, we conclude

that, for sufficiently large N , there is a C > 0 such that

d

dt
L(t) ≤ −CEε(t).

Using (3.15), this proves our theorem. �
Note that δ3 is not really needed for the construction of the Lyapunov functional and

could have been left as 1. However, we want to point out that the positive ut term arising

from F2 is not a problem; the problem requiring µ > 0 is the positive ut term arising

from F1, which cannot be made arbitrarily small without losing the negative terms for

the derivatives of u. For the classical problem, Muñoz Rivera and Racke [6] showed that

this term can be handled by adding additional functions to the Lyapunov functional;

however, this gives rise to a positive ∇θ term. While ∇θ is given as a negative term from

the energy itself in the classical case, this does not hold for τ0 > 0; in fact we do not

know anything about derivatives of θ. It is therefore necessary to gain the negative ut

term by other means, one of them being the viscoelastic term. If we define the energy of

the original problem as

E(t) := ||∂tu||2 + ||∇u||2 + ||θ||2 + ||q||2,

we see by the lower semicontinuity of the norms of weak*-convergent series, using Lemma

2.5, that

lim inf
ε→0

Eε(t) ≥ E(t).

Using the strong convergence of initial data, we obtain

E(t) ≤ Eε(t) ≤ αEε(0) exp(−βt) → αE(0) exp(−βt).

This proves our final theorem:

Theorem 3.4. Let µ > 0. Then there are α, β > 0 such that

E(t) ≤ αE(0) exp(−βt).
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