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Abstract. The paper deals with the elliptic system of the thermistor problem in 3

dimensions taking into account the Thomson effect. Existence and uniqueness results are

presented. The proofs are based on a reduction to a two-point problem for an ordinary

differential equation.

1. Introduction. The phenomenological theory of thermoelectric effects is summa-

rized (see [7]) in the constitutive equations

J = σ(E− α∇u), q = −κ∇u+ uαJ, E = −∇ϕ, (1)

where J is the current density, q the heat flux, E the electric field, u the absolute

temperature, ϕ the electric potential, σ and κ are the thermal and electric conductivity

which in this paper are assumed to be positive functions of the temperature. α is also

a function of u but with no definite sign. In a stationary state, equations (1), together

with the balance equations

∇ · J = 0, ∇ · q = E · J,
give the system of partial differential equations

∇ · (σ(u)∇v) = 0, (2)

∇ · (κ(u)∇u) + σ(u)β(u)∇u · ∇v + σ(u)|∇v|2 = 0, (3)

where β(u) = uα′(u) and v = ϕ+
∫ u

u1
α(t)dt is the effective potential so that

J = −σ(u)∇v. (4)

Let Ω be an open and bounded subset of R3 representing a body conductor of heat and

electricity with a C1 boundary consisting of two disjoint two-dimensional surfaces S1, S2

which act as electrodes to which a given difference of potential V > 0 is applied. The

goal of this paper is to study the following problem PbV :
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To find v(x) ∈ C0(Ω̄)∩C2(Ω), u(x) ∈ C0(Ω̄)∩C2(Ω) such that equations (2) and (3)

are satisfied with the boundary conditions

v = 0 on S1, v = V on S2, (5)

u = u1 on S1, u = u2 on S2, (6)

where u1 and u2 (u1 < u2) are given positive constants. We suppose

σ(u) ∈ C0(R1), κ(u) ∈ C0(R1), β(u) ∈ C1(R1), σ(u) > 0, κ(u) > 0. (7)

Thus no assumption of uniform ellipticity is made. In Section 2 we prove that a

functional relation u = û(v) between the temperature and potential exists and permits

the reduction of problem PbV to the Dirichlet problem for the Laplacian. û(v) is a

solution of the following ordinary differential equation:

κ(u)

σ(u)

du

dv
= γ − v −

∫ u

u1

β(t)dt (8)

satisfying the conditions

u(0) = u1, u(V ) = u2. (9)

The method is not new (see W. Voigt [8] and H. Diesselhorst [5]). However, the question

of existence and uniqueness for problem (8), (9), and in turn for problem PbV , is not

treated in [5] and [8]. The special case of the metallic conduction is discussed in Section

3. Finally, Section 4 deals with a related problem in which a multiplicity of solutions

may exist. Problem PbV is known as the “thermistor problem” when β = 0. It has been

extensively studied with arbitrary boundary conditions by many authors (see, among

others, [6], [1], [2] and the references therein).

2. The main theorem. If (v(x), u(x)) is a regular solution of problem PbV , we

have from the maximum principle the “a priori” estimates

V ≥ v(x) ≥ 0 in Ω̄, (10)

u(x) ≥ u1 in Ω̄. (11)

Theorem 1. If (7) holds and
∫ ∞

u1

κ(t)

σ(t)
dt = ∞, (12)

∣∣∣β(u)σ(u)
κ(u)

∣∣∣ ≤ C, for all u ≥ u1, (13)

then

(i) there exists at least one regular solution to problem PbV .

(ii) The problem can be reduced to the following Dirichlet problem for the Laplacian:

∆ψ = 0 in Ω, ψ = ψ1 on S1, ψ = ψ2 on S2, (14)

where ψ1 and ψ2 are constants which can be expressed in terms of the data.
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Proof. If v(x) is a solution to problem PbV we have, by (2),

∇ · (vσ(u)∇v) = σ(u)|∇v|2,

∇ ·
[
σ(u)

∫ u

u1

β(t)dt∇v
]
= σ(u)β(u)∇u · ∇v.

Therefore, equation (3) can be rewritten in divergence form as

∇ ·
{
σ(u)

[
v∇v +

κ(u)

σ(u)
∇u+

∫ u

u1

β(t)dt ∇v
]}

= 0. (15)

Let u = û(v) be the sought for functional relation. Define

θ =
1

2
v2 +

∫ u

u1

κ(t)

σ(t)
dt+

∫ v

0

[∫ û(ξ)

u1

β(t)dt
]
dξ. (16)

Then (3) becomes

∇ · (σ(u)∇θ) = 0. (17)

Moreover, θ(x) satisfies the boundary conditions:

θ = 0 on S1, θ = γV −1 on S2, (18)

where γ is an unknown constant. To prove that θ(x) and v(x) are related by the func-

tional relation

θ = γv (19)

we consider

∇ · (σ(û(v))∇θ) = 0 in Ω, θ = 0 on S1, θ = γV −1 on S2, (20)

∇ · (σ(û(v))∇v) = 0 in Ω, v = 0 on S1, v = V on S2. (21)

This system is uncoupled, and it is easy to see that the solution v(x) of (21) is unique.

Since θ(x) = γv(x) solves (20), we obtain (19). From (16) we have

γv =
1

2
v2 +

∫ u

u1

κ(t)

σ(t)
dt+

∫ v

0

[∫ û(ξ)

u1

β(t)dt
]
dξ. (22)

Taking the derivative of (22) with respect to v we obtain the ordinary differential

equation

κ(u)

σ(u)

du

dv
= γ − v −B(u), (23)

where

B(u) =

∫ u

u1

β(t)dt, (24)

which must be supplemented by (5) with the conditions:

u(0) = u1, (25)

u(V ) = u2. (26)
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The two-point boundary value problem (23), (25), (26) determines û(v). We prove

now that (23), (25), (26) has one and only one solution for arbitrary data u1, u2 and V .

Let us define the function

F : [u1,∞) → [0,∞), w = F (u), F (u) =

∫ u

u1

k(t)

σ(t)
dt. (27)

F applies one-to-one [u1,∞) onto [0,∞) by (7) and (12). Under the transformation (27),

problem (23), (25), (26) becomes

dw

dv
= γ − v −B(w), (28)

w(0) = 0, (29)

w(V ) = F (u2), (30)

where

B(w) = B(F−1(w)).

Since

B
′(w) = β(F−1(w))

σ(F−1(w))

κ(F−1(w))
, (31)

the solution of the Cauchy problem (28), (29) is defined in [0, V ] by (13). We claim that

equation (30), i.e.

w(V ; γ) = F (u2), (32)

is solvable with respect to γ. By (13) and (31), we have

B(0)− τw ≤ B(w) ≤ B(0) + τw. (33)

Hence w(V ; γ) can be estimated from above and from below in terms of the solutions of

the problems:

dy+

dv
= γ − v + τy+, y+(0) = 0,

dy−

dv
= γ − v − τy−, y−(0) = 0. (34)

We find:

y−(V ; γ) ≤ w(V ; γ) ≤ y+(V ; γ). (35)

On the other hand we have, by direct computation,

lim
γ→∞

y−(V ; γ) = ∞, lim
γ→−∞

y+(V ; γ) = −∞. (36)

By the continuous and differentiable dependence of w(V ; γ) on the parameter γ,

wγ(v; γ) satisfies the Cauchy problem:

dwγ

dv
= 1−B

′(w)wγ , wγ(0) = 0. (37)

With an easy calculation we find from (37) that

wγ(V ; γ) ≥ e−CV

C

(
1− e−CV

)
> 0. (38)
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From (38) and (36) we conclude that (32), and therefore (26), has one and only one

solution γ̃. Let ũ(v) = u(v, γ̃) and consider the problem:

∇ · (σ(ũ(v))∇v) = 0 in Ω, (39)

v = 0 on S1, v = V on S2. (40)

Let

ψ = G(v), G(v) =

∫ v

0

σ(ũ(ξ))dξ, ψ2 = G(V ). (41)

G applies one-to-one [0, V ] onto [0, ψ2]. If ψ(x) solves

∆ψ = 0 in Ω, ψ = 0 on S1, ψ = ψ2 on S2, (42)

then by the maximum principle we have

0 ≤ ψ(x) ≤ ψ2 in Ω̄. (43)

If we define

v(x) = G−1(ψ(x)) (44)

and

u(x) = ũ(v(x)) (45)

we obtain a solution to problem PbV . �

3. Two special cases. When equation (23) has a first integral it is possible to prove

that problem PbV not only has a solution, but also that the solution is unique. This is

the case of the metallic conduction. For metals the thermal and electric conductivity are

related by the Wiedemann-Franz law [7], which reads:

κ(u) = Kσ(u)u, (46)

where K is a positive constant. If we assume, as in [5],

β(u) = Cu (47)

(a linear dependence which is verified if u varies in a small interval), we have from (46)

and (47),

β(u) = τ
κ(u)

σ(u)
, τ =

C

K
. (48)

In this case it is possible to study problem PbV completely, in particular to prove the

uniqueness of the solution. The proof is based on the following simple observation.

Lemma 1. Let A(θ, ψ) ∈ C0(R2),

A(θ, ψ) > 0. (49)

If θi, ψi, i = 1, 2 are given constants, the problem

∇ · (A(θ, ψ)∇θ) = 0 in Ω, θ = θ1 on S1, θ = θ2 on S2, (50)

∇ · (A(θ, ψ)∇ψ) = 0 in Ω, ψ = ψ1 on S1, ψ = ψ2 on S2 (51)

has one and only one solution (θ(x), ψ(x)), which can be represented in terms of the

solution of a Dirichlet problem for the Laplacian.
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Proof. Let (θ(x), ψ(x)) be a solution to (50), (51). Then

ψ(x) = aθ(x) + b, (52)

where a = (ψ2−ψ1)(θ2−θ1)
−1 and b = ψ1−(ψ2−ψ1)(θ2−θ1)

−1. If w(x) = ψ(x)−aθ(x)−b

we have w = 0 on S1 ∪ S2 and ∇ · (A(θ, ψ)∇w) = 0 in Ω. Hence w(x) = 0 in Ω̄ and

ψ(x) = aθ(x) + b. (53)

Define

z = L(θ), L(θ) =

∫ θ

θ1

A(ξ, aξ + b)dξ. (54)

If z(x) = L(θ(x)), we get:

∆z = 0 in Ω, z = 0 on S1, z = L(θ2) on S2. (55)

Now, if (θ̃, ψ̃) is a second solution to (50), (51) and z̃(x) is obtained as before, we have

∆z̃ = 0 in Ω, z̃ = 0 on S1, z̃ = L(θ2) on S2. (56)

Thus, z̃(x) = z(x) and θ(x) = L−1(z̃(x)) = L−1(z(x)) = θ̃(x), and by (52), ψ̃(x) =

ψ(x). �
In the next theorem we assume for definiteness τ > 0 and u2 = u1 = ū > 0. The

general case can be treated similarly.

Theorem 2. Let us suppose (48) to hold and define

G(v, V, τ ) =
V

τ

1− e−τv

1− e−τV
− v

τ
. (57)

If ∫ ∞

ū

κ(t)

σ(t)
dt = ∞, (58)

then there exists one and only one solution of problem PbV , which can be constructed

from the functional relation

u = F−1(G(v, V, τ )), where F (u) =

∫ u

ū

κ(t)

σ(t)
dt. (59)

Let

µ =

∫ ∞

ū

κ(t)

σ(t)
dt < ∞. (60)

If

G(v∗, V, τ ) ≥ µ, where v∗ = −1

τ
log

1− e−τV

τV
, (61)

then problem PbV has no solution. When

G(v∗, V, τ ) < µ, (62)

there exists one and only one solution, which is again obtained from (59).
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Proof. By (48), equation (23) has the integrating factor eτv, which gives the first

integral

F (u) +
1

τ
v − 1

τ2
− γ

τ
= Ce−τv. (63)

Equation (63) permits us to solve problem (23), (25), (26). After computing C and γ we

find the functional relation between u and v, i.e.

F (u) = G(v, V, τ ), (64)

where G(v, V, τ ) is given by (57). G(v, V, τ ) is easily studied. We find G(0, V, τ ) =

G(V, V, τ ) = 0; moreover, G′(v) > 0 if v ∈ (0, v∗) and G′(v) < 0 if v ∈ (v∗, V ), where

v∗ ∈ (0, V2 ) is given by (61). Hence, if (58) holds, (64) is uniquely solvable with respect to

u. When (60) holds, (64) is solvable only if (62) is satisfied. Once the functional relation

u = û(v) is obtained, problem PbV is reducible to a Dirichlet problem for the Laplacian

as in Theorem 1. To prove that the solution obtained in this way is unique we use the

transformation

θ = eτv
[
τF (u) + v − 1

τ
+ 1

]
, (65)

ψ = eτv
[
τF (u) + v − 1

τ
− 1

]
. (66)

Under (65), (66) equations (2) and (3) become

∇ · (e−τvσ(u)∇θ) = 0,

∇ · (e−τvσ(u)∇ψ) = 0,

where

v =
1

τ
log

θ − ψ

2
,

u = F−1
[1
τ

(θ + ψ

θ − ψ
− 1

τ
log

θ − ψ

2
+

1

τ

)]
.

Since θ and ψ are constants on S1 and S2 all assumptions of Lemma 1 are satisfied and

we can conclude that the solution is unique �
Remark 1. The present method permits a precise estimate of the maximum of the

temperature. More precisely we have:

max
x∈Ω

u(x) = F−1(G(v∗, V, τ ))

as an examination of the graphs of F (u) and G(v) immediately shows. Moreover, this

maximum is assumed in an interior point of Ω̄.

When β(u) = 0 (complete absence of Thomson effect), problem (23), (25), (26) sim-

plifies and we have:

κ(u)

σ(u)

du

dv
= γ − v, (67)

u(0) = u1, u(V ) = u2. (68)

In (67) variables separate and, solving with condition (68), we obtain

F (u) = H(v), (69)
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where

F (u) =

∫ u

u1

κ(t)

σ(t)
dt, H(v) =

v

V

(
F (u2) +

V 2

2

)
−v2

2
.

We have

H ′(v∗) = 0, with v∗ =
V

2
+

F (u2)

V
.

If ∫ ∞

u1

κ(t)

σ(t)
dt = ∞,

problem (67), (68), and therefore problem PbV , has one and only one solution. In

particular, when v∗ < V , we have

u(xM ) = max
x∈Ω

u(x) = F−1(H(v∗)), xM ∈ Ω, (70)

whereas, if V ∗ ≥ V ,

u(xM ) = max
x∈Ω

u(x) = u2, xM ∈ S2. (71)

Assume now

∞ >

∫ ∞

u1

κ(t)

σ(t)
dt = µ. (72)

If v∗ < V , equation (67) is solvable with respect to u if and only if H(v∗) < µ. Hence, in

this case, problem PbV has one and only one solution. On the contrary, when v∗ ≥ V ,

equation (69), and therefore problem PbV , is always solvable, since H(V ) = F (u2) < µ.

The maximum of the temperature is again given by (70) and (71). To prove uniqueness,

we proceed as in Theorem 2 using this time the transformation

θ =
1

2
v2 +

∫ u

u1

κ(t)

σ(t)
dt,

ψ = v,

which reduces (2) and (3) to a form which permits the use of Lemma 1.

4. Multiplicity of solutions. In this last section we assume that the potential V is

not applied directly to the electrodes S1 and S2, but via a one-dimensional resistor of R

ohms, a natural situation, since in practice R is always greater than zero. In this model

the potential Γ on S2 is an unknown constant. By (4) the total electric current I flowing

in the resistor is given by

I = σ(u2)

∫
S2

∂v

∂n
dS,

where ∂
∂n denotes the outer normal derivative to S2. We have problem Pb2:
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To find v(x), u(x) and Γ ∈ R1 such that

∇ · (σ(u)∇v) = 0 in Ω, (73)

v = 0 on S1, v = Γ on S2, (74)

∇ · (κ(u)∇u) + σ(u)β(u)∇u · ∇v + σ(u)|∇v|2 = 0 in Ω, (75)

u = u1 on S1, u = u2 on S2, (76)

V − Γ = Rσ(u2)

∫
S2

∂v

∂n
dS. (77)

Lemma 2. If (v(x), u(x),Γ) is a solution to problem Pb2, then

0 < Γ < V. (78)

Proof. By contradiction assume Γ ≤ 0. If Γ = 0, then v(x) = 0 and from (77) we

have Γ = V . If Γ < 0, by the maximum principle in Hopf’s form, we have ∂v
∂n < 0 on S2

by (73). Hence V − Γ = Rσ(u2)
∫
S2

∂v
∂ndS < 0. Therefore Γ > 0, and as a consequence,

∂v
∂n > 0 on S2. Thus (78) holds. �

For every fixed Γ ∈ (0, V ) we can reduce problem PbΓ, reasoning as in Theorem 1, to

the following two-point problem for an ordinary differential equation:

κ(u)

σ(u)

du

dv
= γ − v −B(u), (79)

u(0) = u1, u(Γ) = u2, (80)

which has, under the assumption (13), one and only one solution

u = û(v,Γ).

Define

ψ = L(v,Γ), L(v,Γ) =

∫ v

0

σ(û(ξ,Γ))dξ, v ∈ [0, V ]

and solve

∆ψ = 0 in Ω,

ψ = 0 on S1, ψ = L(Γ,Γ) on S2.

If w(x) is given by

∆w = 0 in Ω, w = 0 on S1, w = 1 on S2

we have

ψ(x) = L(Γ,Γ)w(x), (81)

whence v(x) = L−1(ψ(x),Γ) is a solution to

∇ · (σ(û(v,Γ))∇v) = 0 in Ω, v = 0 on S1, v = Γ on S2.

Let

K =

∫
S2

∂w

∂n
dS.

By (81), equation (77) reads

V − Γ = RKL(Γ,Γ). (82)
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If g(Γ) = V − Γ − RKL(Γ,Γ), we have g(0) = V > 0 and g(V ) = −RKL(Γ,Γ) < 0.

Therefore equation (82) has in (0, V ) at least one solution. However, uniqueness is not

to be expected as can already be seen when β = 0 (see [4]). Typically there exists one or

three solutions and these solutions are found in practical devices modelled after problem

Pb2. Finally, we note that the function g(Γ) can be written in terms of the data and

that the domain Ω enters only with the constant K.
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