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Abstract. Electroencephalography (EEG) and Magnetoencephalography (MEG) are

two important methods for the functional imaging of the brain. For the case of the spher-

ical homogeneous model, we elucidate the mathematical relations of these two methods.

In particular, we derive and analyse three different representations for the electric and

magnetic potentials, as well as the corresponding electric and magnetic induction fields,

namely: integral representations involving the Green and the Neumann kernels, repre-

sentations in terms of eigenfunction expansions, and closed form expressions. We show

that the parts of the EEG and MEG fields in the interior of the brain that are due to

the induction current are related via Kelvin’s inversion transformation. We also derive

closed form expressions for the interior and exterior vector potentials of the corresponding

magnetic induction fields.

1. Introduction. Electrochemically generated neuronal currents in the brain give

rise to a magnetic field, which in turn excites an induction current within the conductive

brain tissue. This electromagnetic activity of the brain is recorded by measuring the

electric potential on the scalp (EEG) and the magnetic induction field at distances 4-6

cm from the head (MEG). There exists an extensive literature on how to utilise the

EEG and MEG recordings [13], [17] in order to determine the electric potential and the

magnetic induction field outside the head. From the mathematical point of view, the

two basic problems for EEG and MEG are the forward problem, namely find the interior

and exterior fields in terms of the neuronal current and the inverse problem, namely

find the neuronal current in terms of the electric potential or in terms of the magnetic

field. The fact that neither of these inverse problems has a unique solution was known to

Helmholtz in 1853. Nevertheless, complete quantitative results on the non-uniqueness of

the inverse MEG problem were obtained only recently, in [9], [10] for the spherical model
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and in [8] for a star-shaped conductor (see also [1]). To our knowledge, no corresponding

results were known for EEG until recently [7]. It was shown in [7] that at least for the

spherical brain-model, EEG and MEG provide strictly complementary information about

the current, namely the components of the current obtained from EEG and from MEG

live in two orthogonal complements of the vector space used for the representation of

the neuronal current. In fact, it is shown in [7], [8] that EEG and MEG depend on the

scalar and the vector invariants, respectively, of a certain dyadic field, which provides

the appropriate tensor field characterising the unique solution of the relative inverse

problem. Simple analytic algorithms for the solution of the inverse problem for both

EEG and MEG corresponding to a single dipole, a finite set of dipoles, and a current

localised within a small sphere, are presented in [5]. For the more realistic ellipsoidal

brain-model, the direct problems are discussed in [3], [4].

In this paper we concentrate on the spherical model and in particular we discuss

these different mathematical formulations for EEG and MEG. One of these formulations

involves integrals of the Green and Neumann kernels. We show that the complementarity

of the EEG and MEG [7] is due to the fact that the electric and magnetic potentials are

generated mathematically through the action of a directional derivative on two orthogonal

directions: the direction of the dipole’s moment for EEG and the direction perpendicular

to the moment and to the position vector of the dipole for MEG. For the case of the

electric potential, the above directional derivative acts on an integral representation

involving the product of the Neumann kernel with respect to the observation point times

the normal derivative of the Green kernel with respect to the source point. For the case

of the magnetic potential, the relative directional derivative acts on a similar integral

representation. In both cases, the passage of the information from the interior source to

the exterior observation point occurs via the surface integral over the boundary of the

conductive sphere involving the two kernels. In addition to integral representations, we

also present closed form solutions, as well as eigenfunction expansions.

As was mentioned earlier, the electric and magnetic potentials and fields are generated

by the neuronal activity of the brain and by the induction current excited within the brain

tissue as a result of this activity. We show here that the parts of the interior and exterior

fields that are due to this secondary inductive activity are images of each other under the

harmonicity-preserving Kelvin transformation. Therefore, expressing the internal field

in terms of the external one and vice versa is mathematically straightforward. Similar

results hold for the vector potentials of the magnetic induction fields. In fact, the Kelvin

connection obliterates the possibility to obtain extra information from the interior field.

The paper is organised as follows. Section 2 summarises the mathematical formulation

of EEG and MEG. Electroencephalography is discussed in Section 3, and magnetoen-

cephalography is the topic of Section 4.

2. Mathematical formulation. Mathematically, the electromagnetic activity of the

human brain is governed by the quasi-static theory of Maxwell’s equations [16], [19]:

∇×E = 0, (1)

∇×B = µ0J
p + σE, (2)

∇ ·B = 0, (3)
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where σ is the conductivity, µ0 is the magnetic permeability, Jp is the neuronal current,

B is the magnetic induction field, and E is the electric field. Equation (1) implies the

existence of the electric potential u such that

E = −∇u. (4)

For the single dipole excitation at the point τ with moment Q, the current is defined by

Jp(r) = Qδ(r − τ ), (5)

where δ denotes the Dirac measure. For this current inside a homogeneous conductor Ω,

the electric potential and the magnetic induction field satisfy the Geselowitz [11], [12]

formulae

4πσu(r) = Q · r − τ

|r − τ |3
− σ

∮
∂Ω

u(r′)n̂(r′) · r − r′

|r − r′|3
ds(r′), r �∈ ∂Ω (6)

and

4π

µ
0

B(r) = Q× r − τ

|r − τ |3
− σ

∮
∂Ω

u(r′)n̂(r′)× r − r′

|r − r′|3
ds(r′), r �∈ ∂Ω, (7)

respectively, where ∂Ω denotes the boundary of the conductive medium Ω. The interior

electric potential u satisfies the Neumann problem

σ∆u(r) = ∇ · Jp(r), r ∈ Ω, (8)

∂nu(r) = 0, r ∈ ∂Ω. (9)

Equations (6) and (7) are the scalar and the vector invariants [8] of the dyadic equation

D̃(r) = Q⊗ r − τ

|r − τ |3 − σ

∮
∂Ω

u(r′)n̂(r′)⊗ r − r′

|r − r|3 ds(r
′), (10)

which completely characterises the electric and magnetic activity of the brain [7].

In the particular case that the conductor is a sphere of radius α with conductivity

σ, the dipolar current (5) generates the electric potentials u±, the electric fields E±,

the scalar magnetic potentials U+, and the magnetic induction fields B±, where the

superscripts + and − denote exterior and interior fields, respectively.

The potentials u± solve the boundary value problems

σ∆u−(r) = Q · ∇δ(r − τ ), r < α, (11)

∂nu
−(r) = 0, r = α (12)

and

∆u+(r) = 0, r > α, (13)

u+(r) = u−(r), r = α, (14)

u+(r) = O(1/r2), r → ∞, (15)

respectively.

In the region Ωc exterior to the conductor, the field B+ is both irrotational and

solenoidal, and therefore it can be represented as the gradient of a harmonic function

B+(r) =
µ0

4π
∇U+(r), (16)
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where U+ is called the scalar magnetic potential. The magnetic potential satisfies the

exterior problem

∆U+(r) = 0, r > α, (17)

∂rU
+(r) = −Q× τ · r̂

|r − τ |3 , r = α, (18)

U+(r) = O(1/r2), r → ∞, (19)

where the notation ̂ on the top of a vector denotes unit magnitude, and the Neumann

condition (18) is obtained from formula (7). Equation (7) also provides the interior

magnetic field B−.

3. Electroencephalography. A particular solution of (11) is given by

up(r) =
1

4πσ
Q · r − τ

|r − τ |3
=

1

4πσ
Q · ∇τ

1

|r − τ | . (20)

Then

u−(r) = up(r) + w(r), (21)

where the harmonic function w satisfies the Neumann condition

∂rw(r) = − 1

4πσ
∂rQ · ∇τ

1

|r − τ | , r = α. (22)

It was shown in [6] that an interior harmonic function satisfying (22) can be represented

in the form

w(r) =
1

4πα

∮
r′=α

N(αr̂′, r)∂rw(αr̂
′)ds(r′)

= − 1

(4π)2ασ

∮
r′=α

N(αr̂′, r)∂r′Q · ∇τ
1

|r′ − τ | ds(r
′), (23)

where the Neumann kernel N is given by

N(r′, r) =
2r′

|r′ − r| − ln[|r′ − r|+ r̂′ · (r′ − r)]. (24)

Let G denote the fundamental solution of the Laplace equation

G(r′, τ ) = − 1

4π

1

|r′ − τ | (25)

and define the integral

D(r, τ ) =
1

4πα

∮
r′=α

N(αr̂′, r)∂r′G(αr̂′, τ )ds(r′), (26)

where the observation point r appears in the Neumann function and the source position

τ appears in the double layer kernel. Then, equations (21)-(26) imply

σu−(r) = Q · ∇τ [D(r, τ )−G(r, τ )]. (27)
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Using the values u−(αr̂) in (14) and Poisson’s integral formula for the sphere [6], we

obtain the following representation for the exterior electric potential:

u+(r) = − (α2 − r2)

4πα
Q · ∇τ

∮
r′=α

D(r′, τ )−G(r′, τ )

|r′ − r|3 ds(r′). (28)

Straightforward calculations, using either eigenfunction expansions or images [4], lead to

the following solutions:

u−(r) =
1

4πσ
Q · ∇τ

[
1

|r − τ | +
∞∑

n=1

(
1 +

1

n

)
τnrn

α2n+1
Pn(r̂ · τ̂ )

]

=
1

4πσ
Q · ∇τ

[
1

P
+

α

r

1

R
− 1

α
ln

rR+ r ·R
2α2

]

=
Q

4πσ
·
[
P

P 3
+

α

r

R

R3
+

1

αR

Rr + rR

Rr + r ·R

]
, r| < α, (29)

where

P = r − τ , P = |P |, R = α2

r2 r − τ , R = |R| (30)

and

u+(r) =
1

4πσ
Q · ∇τ

∞∑
n=1

2n+ 1

n

τn

rn+1
Pn(r̂ · τ̂ )

=
1

4πσ
Q · ∇τ

[
2

P
− 1

r
ln

rP + r · P
2r2

]

=
Q

4πσ
·
[
2
P

P 3
+

1

rP

Pr + rP

Pr + r · P

]
, r > α. (31)

The integral representation for u+also follows from the standard Poisson integral formula

for the sphere [6].

In summing the series in (29) and (31) we have used the fact that the function

fθ(ρ) =
∞∑

n=1

ρn

n
Pn(cos θ), ρ < 1 (32)

solves the initial value problem

ρf ′
θ(ρ) = (1− 2ρ cos θ + ρ2)−1/2 − 1,

fθ(0) = 0 (33)

and therefore

fθ(ρ) = − ln
1− ρ cos θ +

√
1− 2ρ cos θ + ρ2

2
. (34)
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The contributions of the induction current to the electric fields u−, u+ are given by

f−(r) =
Q

4πσ
· α
r

[
R

R3
+

r

α2R

Rr + rR

Rr + r ·R

]
, r < α, (35)

f+(r) =
Q

4πσ
·
[
P

P 3
+

1

rP

Pr + rP

Pr + r · P

]
, r > α, (36)

respectively. In view of the definitions (30) and Kelvin’s theorem

∆f(r) =
( r

α

)5

∆
α

r
f

(
α2

r2
r

)
(37)

it follows that f−, f+ are images of each other under the harmonicity-preserving Kelvin

transformation r �→ (α/r)2r [15].

The electric fields E− and E+ can be determined using equation (4) and any of the

expressions in (29) and (31), respectively.

4. Magnetoencephalography. Equations (7) or (10) yield

4π

µ0

r̂·B(r) = ∂rU(r) = −Q× τ · r̂
|r − τ |3 = −1

r
Q× τ · ∇τ

1

|r − τ | , r > α. (38)

In analogy with (23) we obtain

U(r) = − 1

4πα

∮
r′=α

N(αr̂′, r)∂rU(αr̂′)ds(r′)

=
1

4πα2

∮
r′=α

N(αr̂′, r)Q× τ · ∇τ
1

|r′ − τ | ds(r
′), (39)

where the minus sign accounts for the exterior problem and N is defined by (24).

Define the integral

S(r, τ ) =
1

α2

∮
r′=α

N(αr̂′, r)G(αr̂′, τ )ds(r′). (40)

Then, the magnetic potential is represented by

U(r) = −(Q× τ · ∇τ )S(r, τ ), r > α. (41)

Note that N depends on the observation point r, G depends on the source point τ and

the directional differentiation depends solely on the variables of the dipole.

The function U defined by (41) is harmonic; using the identity

∂rN(αr̂′, r) =
α

r

α2 − r2

|αr̂′ − r|3
(42)
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as well as Poisson’s integral formula for the sphere [6], we recover the Neumann data

(18):

∂rU(r) = −1

r
Q× τ · ∇τ

[
α2 − r2

α

∮
r′=α

G(αr̂′, τ )

|αr̂′ − r|3
ds(r′)

]

= −1

r
Q× τ · ∇τ

1

|r − τ |

= −Q× τ · r̂
|r − τ |3 . (43)

Utilising the classical expansion

1

|r′ − r| =
∞∑

n=0

r′n

rn+1
Pn(r̂ · r̂′), r′ < r (44)

and the identity

∂r′ ln[|r′ − r|+ r̂′ · (r′ − r)] =
1

|r′ − r| , (45)

we obtain the expansion

N(r′, r) =
∞∑

n=0

2n+ 1

n+ 1

(
r′

r

)n+1

Pn(r̂ · r̂′), r′ < r. (46)

By substituting (44) (with r replaced by τ ) and (46) into (39), applying the addition

theorem [18],

4π

2n+ 1

n∑
m=−n

Y m∗

n (r̂)Y m
n (r̂′) = Pn(r̂ · r̂′), (47)

where Y m
n denotes the orthogonalised complex form of spherical harmonics, and using

orthogonality, we obtain the following expansion:

U(r) = Q× τ · ∇τ

∞∑
n=1

1

n+ 1

τn

rn+1
Pn(r̂ · τ̂ ), r > α. (48)

Using (32)-(34) to sum the series in (48) and applying the relevant directional differen-

tiation we obtain

U(r) =
Q× τ · r
F (r, τ )

, (49)

where

F (r, r0) = |r − τ | [|r‖r − τ |+ r · (r − τ )] . (50)

The expression (49) for the scalar magnetic potential coincides with the one obtained in

[2], [20] via integration.

For the evaluation of the exterior magnetic field we can use formula (16) and either

(48) or (49). Alternatively, in order to demonstrate how the two fields are connected via

the Kelvin transformation, we prefer to follow the interior-exterior expansion approach

[14].
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From equations (31) and (47) we obtain

σu(αr̂) = Q · ∇τ

∞∑
n=1

n∑
m=−n

1

n

τn

αn+1
Y m
n (r̂)Y m∗

n (τ̂ ), (51)

where u is either the interior or the exterior potential. Substituting (51) into (7) and

using the identity

−r′ × r − r′

|r − r′|3 = r ×∇r
1

|r − r′| , (52)

we arrive at

4π

µ0
B(r) = Q× r − τ

|r − τ |3

+ (Q · ∇τ )(r ×∇r)
∞∑

n=1

n∑
m=−n

1

n

( τ

α

)n

Y m∗
n (τ̂ )Im±

n (r), r �= α, (53)

where

Im±
n (r) =

∮
|ρ̂|=1

Y m
n (ρ̂)

|r − αρ̂| ds(ρ̂) (54)

and the + and− signs indicate the regions exterior and interior to the sphere, respectively.

Appropriate use of equation (44) and orthogonality leads to the expressions

Im−
n (r) =

4π

2n+ 1

rn

αn+1
Y m
n (r̂), for r < α (55)

and

Im+
n (r) =

4π

2n+ 1

αn

rn+1
Y m
n (r̂), for r > α. (56)

Using equations (32)-(34) and (47) to sum the series, we obtain the following closed form

expression:
4π

µ0
B±(r) = Q× r − τ

|r − τ |3 − (Q · ∇τ )(r ×∇r)L
±(r, τ ) (57)

with

L−(r, τ ) =
1

α
ln

F (r̄, τ )

2r̄2|r̄ − τ | , for r < α, (58)

and

L+(r, τ ) =
1

r
ln

F (r, τ )

2r2|r − τ | , for r > α, (59)

where the function F is given by (50), and r̄=(α2/r2)r is the Kelvin image of r with

respect to the conductive sphere. The two functions L− and L+ are connected via

Kelvin’s theorem (37), and since the operator r×∇r remains invariant under the Kelvin

transformation (since it involves only tangential operations), it follows that the parts of

the fields B− and B+ that are due to the induction current are connected via Kelvin’s

theorem. Hence, as far as the effect of the conductive brain tissue is concerned, the MEG

fields behave exactly the same way as the EEG fields.

The fields B± are solenoidal (see (3)) and therefore they can be represented in terms

of the vector potentials A± by

4π

µ0
B±(r) = ∇×A±(r). (60)
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Hence, equation (57) implies that

A±(r) =
Q

|r − τ | + r(Q · ∇τ ) L
±(r, τ ) , (61)

where L± are given by (58), (59).

Acknowledgement. This work was performed under the Marie Curie Chair of Ex-

cellence Project BRAIN , granted to the authors by the European Commission under

code number EXC 023928.

References

[1] Ammari H., Bao G., Fleming J.L. (2002). An inverse source problem for Maxwell’s equations in mag-
netoencephalography. SIAM Journal of Applied Mathematics, vol. 62, pp. 1369-1382. MR1898525
(2003f:35282)

[2] Bronzan J.B. (1971). The magnetic scalar potential. American Journal of Physics, vol. 39, pp.
1357-1359.

[3] Dassios G. (2006). What is recoverable in the inverse magnetoencephalography problem? In: Am-
mari H., Kang H. (eds). Inverse Problems, Multi-Scale Analysis and Effective Medium Theory, Con-
temporary Mathematics 408, American Mathematical Society, Providence, pp. 181-200. MR2262357
(2007h:35347)

[4] Dassios G. Electric and magnetic activity of the brain in spherical and ellipsoidal geometry. Lecture
Notes from the Mini-course on Mathematics of Emerging Biomedical Imaging (H.Ammari, ed.),
Paris 2007, Springer-Verlag (in press).

[5] Dassios G., Fokas A.S. Electro-magneto-encephalography for a three-shell model: Dipoles and be-
yond for the spherical geometry. Inverse Problems 25, 2009. doi: 10.1088/0266–5611/25/3/025001

[6] Dassios G., Fokas A.S. Methods for solving elliptic PDEs in spherical coordinates. SIAM Journal of
Applied Mathematics 68, 1080–1096, 2008.

[7] Dassios G., Fokas A.S., Hadjiloizi D. On the complementarity of electro-encephalography and mag-

netoencephalography, Inverse Problems 23, 2007. doi: 10.1088/0266–5611/23/6/016
[8] Dassios G., Fokas A.S., Kariotou F. (2005). On the non-uniqueness of the inverse MEG problem.

Inverse Problems, vol. 21, pp. L1-L5. MR2146267 (2006b:78033)
[9] Fokas A.S., Gelfand I.M., Kurylev Y. (1996). Inversion method for magnetoencephalography. Inverse

Problems, vol. 12, pp. L9-L11. MR1391533
[10] Fokas A.S., Kurylev Y., Marinakis V. (2004). The unique determination of neuronal current in

the brain via magnetoencephalography. Inverse Problems, vol. 20, pp. 1067-1082. MR2087980
(2005c:92006)

[11] Geselowitz D.B. (1967). On bioelectric potentials in an inhomogeneous volume conductor. Biophys-
ical Journal, vol. 7, pp. 1-11.

[12] Geselowitz D.B. (1970). On the magnetic field generated outside an inhomogeneous volume conduc-
tor by internal current sources. IEEE Transactions in Magnetism, vol. 6, pp. 346-347.

[13] Hamalainen M., Hari R., Ilmoniemi R.J., Knuutila J., Lounasmaa O. (1993).
Magnetoencephalography–theory, instrumentation, and applications to noninvasive studies of
the working human brain. Reviews of Modern Physics, vol. 65, pp. 413-497.

[14] Heller L., Ranken D., Best E. (2004) The magnetic field inside special conducting geometries due
to internal current. IEEE Transactions on Biomedical Engineering, vol. 51, pp. 1310-1318.

[15] Kellogg O.D. (1953) Foundations of Potential Theory. Dover Publications, New York.
[16] Landau L.D., Lifshitz E.M. (1960) Electrodynamics of Continuous Media, Pergamon Press, London.

MR0121049 (22:11796)
[17] Malmivuo J., Plonsey R. (1995). Bioelectromagnetism. Oxford University Press. New York.
[18] Morse P.M. and Feshbach H. (1953) Methods of theoretical Physics I,II. McGraw-Hill, New York.

MR0059774 (15:583h)

http://www.ams.org/mathscinet-getitem?mr=1898525
http://www.ams.org/mathscinet-getitem?mr=1898525
http://www.ams.org/mathscinet-getitem?mr=2262357
http://www.ams.org/mathscinet-getitem?mr=2262357
http://www.ams.org/mathscinet-getitem?mr=2146267
http://www.ams.org/mathscinet-getitem?mr=2146267
http://www.ams.org/mathscinet-getitem?mr=1391533
http://www.ams.org/mathscinet-getitem?mr=2087980
http://www.ams.org/mathscinet-getitem?mr=2087980
http://www.ams.org/mathscinet-getitem?mr=0121049
http://www.ams.org/mathscinet-getitem?mr=0121049
http://www.ams.org/mathscinet-getitem?mr=0059774
http://www.ams.org/mathscinet-getitem?mr=0059774


780 G. DASSIOS AND A. S. FOKAS

[19] Plonsey R., Heppner D.B. (1967). Considerations of quasi-stationarity in electrophysiological sys-
tems. Bulletin of Mathematical Biophysic, vol. 29, pp. 657-664.

[20] Sarvas J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetical inverse
problem. Physics in Medicine and Biology, vol. 32, pp. 11-22.


	1. Introduction
	2. Mathematical formulation
	3. Electroencephalography
	4. Magnetoencephalography
	Acknowledgement
	References

