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700506 – Iaşi, Romania)
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Abstract. Within the framework of linear viscoelasticity this paper deals with the

study of spatial behavior of solutions describing harmonic vibrations in a right cylinder

of finite extent. Some exponential decay estimates of Saint–Venant type, in terms of the

distance from the excited end of the cylinder are obtained from a first-order differen-

tial inequality concerning an appropriate measure associated with the amplitude of the

steady-state vibration. The dissipative mechanism guarantees the validity of the result

for every value of the frequency of vibration and for the class of viscoelastic materials

compatible with thermodynamics whose relaxation tensor is supposed to be symmetric

and sufficiently regular. The case of a semi-infinite cylinder is also studied, and some

alternatives of Phragmén–Lindelöf type are established.

Introduction. The present paper is concerned with the study of the spatial behavior

of solutions in a right cylinder made of an anisotropic and homogeneous viscoelastic

solid. We consider a finite cylinder subject to boundary data varying harmonically in

time on one end, while the other end and lateral surface are clamped. The history of the

displacement up to time t = 0 is supposed to be known and the body force is assumed

to be absent.

Initial boundary value problems of this type have been treated by Flavin and Knops [1]

in the framework of the linearly damped wave equation and the linearly elastic damped

cylinder. They proved that in both cases the existence of damping gives rise ultimately

to a steady-state oscillation, whose amplitude decays exponentially from the excited end

provided the exciting frequency is less than a certain critical value. The latter case has
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been investigated under the assumption of positive definiteness upon the elasticity tensor.

This work has been followed by further developments (see [2, 3, 4, 5, 6] and the references

therein). The results established in these papers suggest exponential decay of activity

away from the excited end, provided the frequency of vibration is lower than a critical

value and the constitutive coefficients satisfy some positive definiteness conditions.

The present paper is devoted to the linear theory of viscoelasticity. We recall that

mathematical theories of materials with fading memory have been developed to a great

extent in recent decades (see, for example, the books by Day [7], Leitman and Fischer [8],

Christensen [9] and Fabrizio and Morro [10]). Here, we consider a viscoelastic solid whose

relaxation tensor is symmetric, sufficiently regular and compatible with thermodynamics.

According to [10], [11], the compatibility with thermodynamics implies that Ġs
rlmn(·),

the half-range Fourier sine transform of the relaxation tensor, is negative definite.

A prismatic cylinder made of a linear viscoelastic material is subject to a harmonic-in-

time vibration on its basis, while the remaining boundary is clamped. For the amplitude

of the steady-state vibrations occurring in the cylinder we associate an adequate measure.

Then, following standard arguments concerning the Saint–Venant’s principle [12, 13, 1]

we infer that the decay of the amplitude of vibrations is described by an exponential of

the distance from the excited end of the cylinder, provided that the negative definiteness

of Ġs
rlmn(·) is assumed. We also indicate how to extend the results to a semi-infinite

cylinder.

Furthermore, we relax the assumption on the relaxation tensor by assuming that

−Ġs
rlmn(·) is strongly elliptic. By introducing such a hypothesis we are considering a

very large class of materials, including those new materials with extreme and unusual

physical properties such as a negative Poisson’s ratio (that is, so-called auxetic mate-

rials). These are materials with heterogeneous structure, including natural viscoelastic

composites such as bone, ligament, and wood, as well as synthetic composites, bioma-

terials, and cellular solids with structural hierarchy (see, for example, [14], [15]). Such

a material expands laterally when stretched, in contrast to ordinary materials. On the

basis of the strong ellipticity of −Ġs
rlmn(·) we are able to introduce adequate measures

of the amplitude of vibration and to establish appropriate spatial estimates describing

the spatial evolution of the amplitude in question.

All spatial estimates established in the present paper hold for arbitrary values of the

exciting frequency under the hypotheses upon the relaxation tensor suggested by the

dissipation inequality. We recall that the spatial behavior of the transient component of

the solution has been established by Chiriţă et al. [16] and Chiriţă and Ciarletta [17].

1. Formulation of the problem. Throughout this paper, we shall denote by x1,

x2, x3 the rectangular Cartesian coordinates and by t the time. We employ the usual

summation and differentiation conventions: Latin subscripts are understood to range

over the integers (1, 2, 3), whereas Greek subscripts are confined to the range (1, 2),

summation over repeated subscripts is implied, subscripts preceded by a comma denote

partial differentiation with respect to the corresponding Cartesian coordinate, and a

superposed dot denotes time differentiation.
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We assume that B is the interior of a right cylinder of length L > 0 whose cross

section is bounded by one or more piecewise smooth curves and choose the Cartesian

coordinates such that the origin lies in the excited end of the cylinder and such that the

x3-axis is parallel to the generators. Let D(x3) denote the cross section of the cylinder

corresponding to the axial distance x3 to the excited end, and let ∂D(x3) denote the

cross-sectional boundary. We denote by π the lateral surface of the cylinder, that is,

π = ∂D × [0, L].

Let us suppose that a homogeneous and anisotropic linear viscoelastic material fills B.

According to the linearized theory of isothermal viscoelasticity [10], the fundamental sys-

tem of field equations, in the absence of the body force, consists of the strain-displacement

relations

erl =
1

2
(ur,l + ul,r), in B × (−∞,∞), (1.1)

the constitutive equations

trl = Grlmn(0)emn +

∫ ∞

0

Ġrlmn(s)e
t
mn(s)ds, in B × [0,∞), (1.2)

and the equations of motion

trl,r = ρ0ül, in B × (0,∞), (1.3)

where ul are the components of the displacement vector, erl are the components of the

strain tensor, trl are the components of the stress tensor and etrl represent the history

up to time t, namely etrl(s) = erl(t− s), s ≥ 0. Further, ρ0 is the constant mass density

and Grlmn(t), 0 ≤ t < ∞, are the components of the relaxation tensor satisfying the

symmetry relations

Grlmn(t) = Glrmn(t) = Grlnm(t), t ≥ 0. (1.4)

The tensor Grtmn(0) is called the instantaneous elastic modulus and governs the response

to instantaneous changes in the strain. We suppose that the relaxation tensor Grlmn(·)
has a continuous derivative Ġrlmn(·) and that the equilibrium elastic modulus

Grlmn(∞) = lim
t→∞

Grlmn(t) (1.5)

exists. We take Grlmn(∞) to be a positive definite tensor so that the body is a solid.

Moreover, we assume that the relaxation tensor is symmetric, that is,

Grlmn(t) = Gmnrl(t), t ≥ 0. (1.6)

We recall that the behavior of the relaxation tensor Grlmn(t), 0 ≤ t < ∞, when

the material is compatible with thermodynamics or the material is dissipative, has been

discussed in various papers (see Day [18], Fabrizio and Morro [10, 11], Wilkes [19] and

the references therein).

In this paper we suppose that the material is compatible with thermodynamics. Ac-

cording to Fabrizio and Morro [10, p. 47], this hypothesis assures that the half-range

Fourier sine transform

Ġs
rlmn(ω) =

∫ ∞

0

Ġrlmn(s) sin(ωs)ds, ω > 0, (1.7)
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of the function Ġrlmn ∈ L1([0,∞)) is negative definite. Such a condition inspires the

assumptions upon the relaxation tensor made in the present paper in order to establish

the spatial behavior of the harmonic vibrations. In fact, the results described in Section

2 are obtained by assuming the positive definiteness of −Ġs
rlmn(ω), while in Section 3 we

relax this condition by assuming −Ġs
rlmn(ω) to be strongly elliptic.

Since the above assumptions upon Ġs
rlmn(ω) there seem to be not so transparent,

we illustrate the relationship between the relaxation tensor Grlmn(t) and the half-range

Fourier sine transform Ġs
rlmn(ω) of Ġrlmn(t) by a simple example. Thus, let us consider

the case of decay exponential memory with Grlmn(t) = G∞
rlmn+e−αtHrlmn, α > 0, Hrlmn

and G∞
rlmn independent of t and G∞

rlmn positive definite (the body is a solid). Then, the

half-range Fourier sine transform is Ġs
rlmn(ω) = − αω

α2+ω2Hrlmn. Therefore, the half-range

Fourier sine transform is negative definite if and only if Hrlmn is positive definite, while

the strong ellipticity of −Ġs
rlmn(ω) means the strong ellipticity of Hrlmn and conversely.

Particularly, in the isotropic case when Hrlmn = λδrlδmn + µ(δrmδln + δrnδlm), the

positive definiteness of −Ġs
rlmn(ω) is equivalent with µ > 0, λ+ 2

3µ > 0, while the strong

ellipticity is equivalent with µ > 0, λ+2µ > 0 (see Gurtin [20] for a discussion concerning

the strong ellipticity of the elastic tensor).

The situation changes a little when Grlmn(t) is a sum of exponential functions, that

is, Grlmn(t) = G∞
rlmn +

∑N
P=1 e

−α
P
tHP

rlmn, αP
> 0, G∞

rlmn and HP
rlmn independent of

t for all P = 1, 2, ..., N and G∞
rlmn positive definite. Clearly, −Ġs

rlmn(ω) is positive

definite (or strongly elliptic) if and only if the linear combination
∑N

P=1

α
P

α2
P
+ω2H

P
rlmn is

positive definite (or strongly elliptic), so that it is not necessary that all tensors HP
rlmn

be positive definite (or strongly elliptic) such that −Ġs
rlmn(ω) be positive definite (or

strongly elliptic) but just a linear combination of the tensors HP
rlmn.

Let us consider the Cauchy problem expressed by the relations (1.1), (1.2), (1.3), the

lateral boundary conditions

ul = 0 , on π × [0,∞) (1.8)

together with the end boundary conditions

ul = ũl(x1, x2) exp(iωt), on D(0)× (0,∞), (1.9)

ul = 0, on D(L)× (0,∞) (1.10)

and the initial history condition of the displacement

ul = al(x1, x2, x3, t) , in B × (−∞, 0]. (1.11)

In the above relations ω is a positive constant (frequency of vibration), i =
√
−1 is the

unit complex number and ũl, al are prescribed functions.

It is easy to see that

ul = Ul(x1, x2, x3, t) + vl(x1, x2, x3) exp(iωt) , (1.12)

where Ul (transient solution) absorbs the initial history and satisfies the null boundary

conditions and the equations (1.1), (1.2) and (1.3), while vl (amplitude of steady-state
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solution) satisfies the boundary value problem consisting of the field equations

Trl,r = −ρ0ω
2vl ,

Trl = Grlmn(0)εmn +
(∫ ∞

0

Ġrlmn(s)e
−iωsds

)
εmn,

εrl =
1

2
(vr,l + vl,r), in B,

(1.13)

subject to

vl = 0 , on π (1.14)

and

vl = ũl(x1, x2) , on D(0), (1.15)

vl = 0, on D(L). (1.16)

If we introduce the notation

Crlmn(ω) = Grlmn(0) + Ġc
rlmn(ω), (1.17)

where Ġc
rlmn(ω) is the half-range Fourier cosine transform of the function Ġrlmn ∈

L1([0,∞)), i.e.

Ġc
rlmn(ω) =

∫ ∞

0

Ġrlmn(s) cos(ωs)ds, (1.18)

then from (1.7) and (1.13) we deduce the following system of partial differential equations:(
Crlmn(ω)− iĠs

rlmn(ω)
)
vn,mr + ρ0ω

2vl = 0. (1.19)

For later convenience, we note that Trl may be written in the form

Trl =
(
Crlmn(ω)− iĠs

rlmn(ω)
)
εmn. (1.20)

Ul represents essentially the transient, and vl exp(iωt) is the forced oscillation. We

recall that the spatial behavior of the transient solution Ul can be studied by the methods

developed by Chiriţă et al. [16] and Chiriţă and Ciarletta [17]. So in what follows we

will study the spatial behavior of the amplitude of the steady-state vibration satisfying

(1.13) under the boundary conditions (1.14), (1.15) and (1.16). Since the effects caused

by Ul in the cylinder are transient, the decay estimates for vl are of interest for large

time t.

2. Spatial behavior based on the positive definiteness of −Ġs
rlmn(ω). Through-

out this section we shall assume that −Ġs
rlmn(ω) is positive definite. Let us consider the

boundary value problem defined by the equations (1.19) (or (1.13)) and the boundary

conditions (1.14), (1.15), (1.16) and let us introduce the following cross-sectional func-

tional

I(x3) =

∫
D(x3)

i
(
Tr3vr − T r3vr

)
dA

=

∫
D(x3)

[
iCr3ml(ω)

(
vl,mvr − vl,mvr

)
+ Ġs

r3ml(ω)
(
vl,mvr + vl,mvr

)]
dA ,

(2.1)
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where the superposed bar denotes the complex conjugate. By using the symmetry as-

sumption of Grlmn and the negative definiteness property of the tensor Ġs
rlmn(ω), we

prove in this section that I(·) is an acceptable measure of the amplitude of steady-state

vibrations that decay more rapidly than an exponential of the distance from the ex-

cited end of the cylinder. To this end we follow the standard procedures concerning the

Saint–Venant’s principle [12, 13, 1].

Thus, from (2.1), by direct differentiation, we get

dI

dx3
(x3) =

∫
D(x3)

[
iCr3ml(ω)

(
vl,mvr,3 − vl,mvr,3

)
+ Ġs

r3ml(ω)
(
vl,mvr,3 + vl,mvr,3

)]
dA

+

∫
D(x3)

[
iCr3ml(ω)

(
vl,m3vr − vl,m3vr

)
+ Ġs

r3ml(ω)
(
vl,m3vr + vl,m3vr

)]
dA .

(2.2)

By using the field equations (1.19), the square bracket of the second integral may be

written in the form

iCr3ml(ω)
(
vl,m3vr − vl,m3vr

)
+ Ġs

r3ml(ω)
(
vl,m3vr + vl,m3vr

)
= −iCrρml(ω)

(
vl,mρvr − vl,mρvr

)
− Ġs

rρml(ω)
(
vl,mρvr + vl,mρvr

)
.

(2.3)

The divergence theorem, the boundary conditions (1.14), the symmetry of the tensors

Crnml(ω), Ġ
s
rnml(ω) and the above relation may be used to write dI/dx3 in the form

dI

dx3
(x3) = 2

∫
D(x3)

Ġs
rnml(ω)vl,mvr,ndA . (2.4)

Now, since the fourth-order tensor −Ġs(ω) is symmetric and positive definite, then

there exist two positive constants depending on ω, denoted by νm and νM , such that

νm(ω)ζlrζlr ≤ −Ġs
lrnp(ω)ζlrζnp ≤ νM (ω)ζlrζlr, (2.5)

for every symmetric second-order tensor ζlr. From (2.4) and (2.5) we deduce

dI

dx3
(x3) ≤ −2νm(ω)

∫
D(x3)

εlrεlrdA ≤ 0 , (2.6)

where εlr is defined by (1.13)3, so that I(·) is a nonincreasing function. We also note

that (1.16) assures that I(L) = 0, so that I(x3) ≥ 0 for all x3 ∈ [0, L].

On the other hand, letting σ be a positive parameter and using Schwarz and arithmetic-

geometric mean inequalities one deduces

I(x3) ≤
∫
D(x3)

|Tr3ivr + T r3ivr|dA ≤ σ

∫
D(x3)

TrlT rldA+
1

σ

∫
D(x3)

vrvrdA . (2.7)

Denoting by Υ′ and Υ′′ the real and imaginary parts of the complex quantity Υ, then

from (1.13)3 and (1.20) it follows that

T ′
rl = Crlmn(ω)ε

′
mn + Ġs

rlmn(ω)ε
′′
mn,

T ′′
rl = Crlmn(ω)ε

′′
mn − Ġs

rlmn(ω)ε
′
mn.

(2.8)
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Let us denote by c2
M
(ω) the largest eigenvalue of the symmetric and positive semi-

definite tensor Bsnpq(ω) = Crlsn(ω)Crlpq(ω). Then by the usual techniques it may be

established that

TrlT rl = T ′
rlT

′
rl + T ′′

rlT
′′
rl ≤

(
c
M
(ω) + νM (ω)

)2

εrlεrl. (2.9)

Further, letting B(l, h) denote the cylinder slice bounded by the plane ends x3 = l

and x3 = l+h, then the boundary condition (1.14) and the relation (2.5) assure that the

following inequalities hold:

−
∫
B(x3,h)

Ġs
rnml(ω)ε

′
rnε

′
mldV ≥ ρ0w

2
0(h)

∫
B(x3,h)

v′rv
′
rdV,

−
∫
B(x3,h)

Ġs
rnml(ω)ε

′′
rnε

′′
mldV ≥ ρ0w

2
0(h)

∫
B(x3,h)

v′′r v
′′
r dV,

(2.10)

where w0(h)
2π is the lowest frequency of vibration of the cylinder B(x3, h) filled by an

elastic material whose components of the constant elasticity tensor are −Ġs
rnml(ω) and

whose lateral surface is clamped and whose plane ends are free. We note that more

information concerning the inequalities (2.10) and the frequency w0(h) may be found in

the paper by Toupin [12] and in the monograph article by Gurtin [20].

From (2.10) we deduce the following Poincaré-type inequality:

−
∫
B(x3,h)

Ġs
rnml(ω)εrnεmldV ≥ ρ0w

2
0(h)

∫
B(x3,h)

vrvrdV. (2.11)

The relations (2.5), (2.7), (2.9) and (2.11) assure that the function

Q(x3, h) =
1

h

∫ x3+h

x3

I(y)dy (2.12)

satisfies the inequality

Q(x3, h) ≤
(
σ
(
c
M
(ω) + νM (ω)

)2

h
+

νM (ω)

σhρ0w2
0(h)

)∫
B(x3,h)

εrlεrldV. (2.13)

On integrating (2.6) between x3 and x3 + h and using the definition (2.12) we deduce

∂Q

∂x3
(x3, h) =

1

h

(
I(x3 + h)− I(x3)

)
≤ −2νm

h

∫
B(x3,h)

εrlεrldV. (2.14)

Thus, from (2.13) and (2.14) one obtains

γ(σ, h, ω)
∂Q

∂x3
(x3, h) +Q(x3, h) ≤ 0, (2.15)

where

γ(σ, h, ω) =
σ
(
c
M
(ω) + νM (ω)

)2

2νm(ω)
+

νM (ω)

2σρ0w2
0(h)ν

m(ω)
. (2.16)
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Setting the parameter σ in order that the above quantity be a minimum, that is,

σ0 =
1

c
M
(ω) + νM (ω)

√
νM (ω)

ρ0w2
0(h)

,

γm(h, ω) = γ(σ0, h, ω) =
cM (ω) + νM (ω)

νm(ω)

√
νM (ω)

ρ0w2
0(h)

,

(2.17)

from (2.15) we deduce

Q(x3, h) ≤ Q(0, h) exp
(
− x3

γm(h, ω)

)
. (2.18)

Moreover, since I(·) is a nonincreasing function on [0, L], we have

I(x3 + h) ≤ Q(x3, h) ≤ I(x3). (2.19)

The above relations lead to the following.

Theorem 2.1. The cross-sectional function I(x3) defined by (2.1) in connection with the

boundary value problem (1.13)-(1.16) is an acceptable measure of solution and satisfies

the following decay estimate:

0 ≤ I(x3) ≤ I(0) exp
(
− x3 − h

γm(h, ω)

)
, h ≤ x3 ≤ L, (2.20)

where γm(h, ω) is defined by (2.17)2.

3. Spatial behavior under the strong ellipticity of −Ġs
rlmn (ω). In this section

we will study the spatial behavior of the amplitude of vibrations by using the strong

ellipticity condition for −Ġs
rlmn (ω), that is,

−Ġs
rlmn (ω) ξrξmζlζn > 0 (3.1)

for all nonzero vectors (ξ1, ξ2, ξ3), (ζ1, ζ2, ζ3). Such a condition is obviously milder than

that expressing the positive definiteness of −Ġs
rlmn (ω). In fact, by using this hypothesis

we are considering a very large class of materials including those new materials with

extreme and unusual physical properties such as a negative Poisson’s ratio (that is, so-

called auxetic materials). These are materials with heterogeneous structure, including

natural viscoelastic composites such as bone, ligament, and wood, as well as synthetic

composites, biomaterials, and cellular solids with structural hierarchy (see, for example,

[14], [15]). Such a material expands laterally when stretched, in contrast to ordinary

materials.

Since such a study can be too complex for general anisotropic viscoelastic materials,

we proceed here to pursue such a procedure for some particularly important classes of

materials, namely that of transversely isotropic and rhombic systems.
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3.1. Transversely isotropic materials. Many natural and man-made materials are clas-

sified as transversely isotropic (or hexagonal). Such materials are characterized by the

fact that one can find a line that allows a rotation of the material about it without

changing its properties. The plane, which is perpendicular to this line (the axis of rota-

tional symmetry) is called a plane of symmetry or plane of isotropy. A modern example

for such a material are laminates made of randomly oriented chopped fibers that are in

general placed in a certain plane. The effective material properties for a bundled struc-

ture have no profound direction in that plane, which then becomes a plane of symmetry.

Hence, each plane that contains the axis of rotation is a plane of symmetry, and therefore,

transversely isotropic materials admit an infinite number of symmetries.

The restrictions placed on the relaxation tensor by transverse isotropy imply the fol-

lowing conditions:

G1123 = G1131 = G1112 = G2223 = G2231 = G2212 = 0,

G3323 = G3331 = G3312 = G2331 = G2312 = G3112 = 0,
(3.2)

corresponding to the direction of transverse isotropy coinciding with the x3 coordinate

axis. Moreover, if we set

g11 = −Ġs
1111, g22 = −Ġs

2222, g33 = −Ġs
3333, g12 = −Ġs

1122, g23 = −Ġs
2233,

g31 = −Ġs
3311, g44 = −Ġs

2323, g55 = −Ġs
3131, g66 = −Ġs

1212,

(3.3)

then the only nonzero components Ġs
rlmn are

g22 = g11, g33, g23 = g13, g12, g44 = g55, g66 =
1

2
(g11 − g12) (3.4)

and the strong ellipticity condition (3.1) becomes

g66 (ξ1ζ2 − ξ2ζ1)
2
+ g11 (ξ1ζ1 + ξ2ζ2)

2
+ 2 (g13 + g55) (ξ1ζ1 + ξ2ζ2) ξ3ζ3

+ g33ξ
2
3ζ

2
3 + g55

(
ξ23ζ

2
1 + ξ21ζ

2
3 + ξ23ζ

2
2 + ξ22ζ

2
3

)
> 0.

(3.5)

As is well known (see, for example, Merodio and Ogden [21], Chiriţă [22]), such a

condition holds if and only if

g11 > 0, g33 > 0, g55 > 0, g11 > g12, (3.6)

|g13 + g55| < g55 +
√
g11g33. (3.7)

On the other hand, the differential system (1.19) becomes

(c11 + ig11) v1,11 + [c12 + c66 + i (g12 + g66)] v2,21 + (c66 + ig66) v1,22

+ [c13 + c55 + i (g13 + g55)] v3,31 + (c55 + ig55) v1,33 + ρ0ω
2v1 = 0,

[c12 + c66 + i (g12 + g66)] v1,12 + (c66 + ig66) v2,11 + (c11 + ig11) v2,22

+ [c13 + c55 + i (g13 + g55)] v3,32 + (c55 + ig55) v2,33 + ρ0ω
2v2 = 0,

(c55 + ig55) (v3,11 + v3,22) + [c13 + c55 + i (g13 + g55)] (v1,13 + v2,23)

+ (c33 + ig33) v3,33 + ρ0ω
2v3 = 0,

(3.8)
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where

c11 = C1111, c33 = C3333, c12 = C1122, c31 = C3311, c55 = C3131, c66 = C1212.

(3.9)

By means of the relations (1.14) and (3.8), we obtain the following identity:

d

dx3

∫
D(x3)

{i [(c13 + c55) (v3v̄ρ,ρ − v̄3vρ,ρ) + c55 (vρv̄ρ,3 − v̄ρvρ,3)

+c33 (v3v̄3,3 − v̄3v3,3)] + g33 (v3v̄3,3 + v̄3v3,3) + g55 (vρv̄ρ,3 + v̄ρvρ,3)

+ (g13 + g55) (v3v̄ρ,ρ + v̄3vρ,ρ)} dA = 2

∫
D(x3)

g66 (v1,2 − v2,1) (v̄1,2 − v̄2,1) dA

+ 2

∫
D(x3)

[g11 (v1,1 + v2,2) (v̄1,1 + v̄2,2) + g33v3,3v̄3,3] dA

+ 2

∫
D(x3)

g55 (v1,3v̄1,3 + v3,1v̄3,1 + v2,3v̄2,3 + v3,2v̄3,2) dA

+ 2

∫
D(x3)

(g13 + g55) (vρ,ρv̄3,3 + v̄ρ,ρv3,3) dA.

(3.10)

Thus, we can introduce the function

Jκ (x3) = −
∫
D(x3)

{i [(c13 + c55) (v3v̄ρ,ρ − v̄3vρ,ρ) + c55 (vρv̄ρ,3 − v̄ρvρ,3)

+c33 (v3v̄3,3 − v̄3v3,3)] + vρ [g55v̄ρ,3 + (g55 − κ) v̄3,ρ] + v̄ρ [g55vρ,3 + (g55 − κ) v3,ρ]

+v3 [g33v̄3,3 + (g13 + κ) v̄ρ,ρ] + v̄3 [g33v3,3 + (g13 + κ) vρ,ρ]} dA,

(3.11)

where κ ∈ (0, 2g55) is a positive parameter at our disposal. Then, the identity (3.10)

when combined with (1.14) furnishes

− dJκ
dx3

(x3) = 2

∫
D(x3)

g66 (v1,2 − v2,1) (v̄1,2 − v̄2,1) dA

+ 2

∫
D(x3)

[g11vα,αv̄ρ,ρ + (g13 + κ) (vρ,ρv̄3,3 + v̄ρ,ρv3,3) + g33v3,3v̄3,3] dA

+ 2

∫
D(x3)

[g55 (v1,3v̄1,3 + v3,1v̄3,1) + (g55 − κ) (v1,3v̄3,1 + v̄1,3v3,1)] dA

+ 2

∫
D(x3)

[g55 (v2,3v̄2,3 + v3,2v̄3,2) + (g55 − κ) (v2,3v̄3,2 + v̄2,3v3,2)] dA.

(3.12)

Further, for every g13 satisfying (3.7) it is possible to determine κ ∈ (0, 2g55) so that

|g13 + κ| < √
g11g33. (3.13)

In fact, the choice for κ has to be such that

max (−g13 −
√
g11g33, 0) < κ < min (2g55,−g13 +

√
g11g33) . (3.14)

Throughout the remainder of this section we assume that κ satisfies the relation (3.14).

With this choice we have

|g55 − κ| < g55, (3.15)
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and hence we can deduce that

g55 (v1,3v̄1,3 + v3,1v̄3,1) + (g55 − κ) (v1,3v̄3,1 + v̄1,3v3,1)

≥ η1 (v1,3v̄1,3 + v3,1v̄3,1) ,

g55 (v2,3v̄2,3 + v3,2v̄3,2) + (g55 − κ) (v2,3v̄3,2 + v̄2,3v3,2)

≥ η1 (v2,3v̄2,3 + v3,2v̄3,2) ,

(3.16)

where

η1 = min (κ, 2g55 − κ) . (3.17)

Moreover, the relation (3.13) implies that

g11vα,αv̄ρ,ρ + (g13 + κ) (vρ,ρv̄3,3 + v̄ρ,ρv3,3) + g33v3,3v̄3,3

≥ η2 (vα,αv̄ρ,ρ + v3,3v̄3,3) ,
(3.18)

where

η2 =
1

2

[
g11 + g33 −

√
(g11 − g33)

2 + 4 (g13 + κ)2
]
. (3.19)

So we obtain

− dJκ
dx3

(x3) ≥ 2

∫
D(x3)

g66 (v1,2 − v2,1) (v̄1,2 − v̄2,1) dA

+ 2

∫
D(x3)

η2 (vα,αv̄ρ,ρ + v3,3v̄3,3) dA+ 2

∫
D(x3)

η1 (vα,3v̄α,3 + v3,αv̄3,α) dA

(3.20)

and

−dJκ
dx3

(x3) ≥ 2

∫
D(x3)

η1 (vα,3v̄α,3 + v3,αv̄3,α) dA+ 2

∫
D(x3)

(η0vα,β v̄α,β + η2v3,3v̄3,3) dA,

(3.21)

where

η0 = min (η2, g66) . (3.22)

Thus, from the relations (3.20) and (3.21) we can conclude that dJκ

dx3
(x3) ≤ 0 and

therefore Jκ (x3) is a nonincreasing function on [0, L]. Moreover, by recalling that the

relations (1.14) and (3.11) imply Jκ (L) = 0, it follows that Jκ (x3) ≥ 0 and hence it can

be an acceptable measure for the amplitude of vibration.

Now we will proceed to obtain an appropriate estimate for the measure Jκ (x3). To

this end we will use the lateral boundary condition (1.14) in order to write∫
D(x3)

vr,αv̄r,αdA ≥ λ0

∫
D(x3)

vr v̄rdA, (3.23)

where λ0 is the lowest eigenvalue in the two-dimensional clamped membrane problem for

the cross section D (x3). Then, by means of the Schwarz and arithmetic-geometric mean
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inequalities, from (3.11), (3.13) and (3.15) we obtain

Jκ (x3) ≤
1√
λ0

(|c13 + c55|+
√
g11g33)

∫
D(x3)

vα,αv̄ρ,ρdA

+
1√
λ0

(|c55|+ 2g55)

∫
D(x3)

vα,ρv̄α,ρdA

+
1√
λ0

(|c13 + c55|+ |c33|+ g55 + g33 +
√
g11g33)

∫
D(x3)

v3,ρv̄3,ρdA

+
1√
λ0

(|c55|+ g55)

∫
D(x3)

vα,3v̄α,3dA

+
1√
λ0

(|c33|+ g33)

∫
D(x3)

v3,3v̄3,3dA.

(3.24)

Furthermore, by using the relations (3.20) and (3.21) into (3.24), we obtain the following

first-order differential inequality:

Jκ (x3) ≤ −η
dJκ
dx3

(x3) for all x3 ∈ [0, L], (3.25)

where

η =
1

2η2
√
λ0

(|c13 + c55|+
√
g11g33) +m0, (3.26)

m0 =
1

2
√
λ0

max

(
|c55|+ 2g55

η0
,
m1

η1
,
|c33|+ g33

η2

)
,

m1 = max (|c55|+ g55, |c13 + c55|+ |c33|+ g55 + g33 +
√
g11g33) . (3.27)

By integrating the differential inequality (3.25) we can deduce the requested estimate.

These results can be embodied in the following theorem.

Theorem 3.1. In the context of a finite cylinder made of a viscoelastic material, the

cross-sectional functional Jκ (x3) represents an acceptable measure of the amplitude of

vibration and satisfies the following exponential decay estimate:

0 ≤ Jκ (x3) ≤ Jκ (0) exp

(
−x3

η

)
for all x3 ∈ [0, L]. (3.28)

3.2. Rhombic materials. In this subsection we shall consider the class of rhombic vis-

coelastic materials with the group C3 generated by Rπ
e3
, Rπ

e2
(here Rθ

e is the orthogonal

tensor corresponding to a right-handed rotation through the angle θ, 0 < θ < 2π, about

an axis in the direction of the unit vector e). Such a class of viscoelastic materials is

characterized by the only nonzero coefficients:

g11 = −Ġs
1111, g22 = −Ġs

2222, g33 = −Ġs
3333, g12 = −Ġs

1122, g23 = −Ġs
2233,

g31 = −Ġs
3311, g44 = −Ġs

2323, g55 = −Ġs
3131, g66 = −Ġs

1212.

(3.29)
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Then the strong ellipticity condition (4.1) is equivalent with the following conditions

([23]):

g11> 0, g22> 0, g33> 0, g44> 0, g55> 0, g66> 0, (3.30)

−2g66+κi
3

√
g11g22< g12< κs

3

√
g11g22,

−2g44+κi
1

√
g22g33< g23< κs

1

√
g22g33,

−2g55+κi
2

√
g11g33< g13< κs

2

√
g11g33, (3.31)

where
(
κi
1, κ

s
1

)
,
(
κi
2, κ

s
2

)
and

(
κi
3, κ

s
3

)
are solutions with respect to x, y and z of the

equation S (x, y, z) ≡ x2 + y2 + z2 − 2xyz− 1 = 0, satisfying |x| < 1, |y| < 1, |z| < 1 and

x ∈
{

g23√
g22g33

,
g23 + 2g44√

g22g33

}
, y ∈

{
g13√
g11g33

,
g13 + 2g55√

g11g33

}
, z ∈

{
g12√
g11g22

,
g12 + 2g66√

g11g22

}
.

We introduce the following function:

Kκ (x3) = −
∫
D(x3)

{i [(c13 + c55) (v3v̄1,1 − v̄3v1,1) + (c23 + c44) (v3v̄2,2 − v̄3v2,2)

+c55 (v1v̄1,3 − v̄1v1,3) + c44 (v2v̄2,3 − v̄2v2,3) + c33 (v3v̄3,3 − v̄3v3,3)]

+v1 [g55v̄1,3 + (g55 − κ2) v̄3,1] + v̄1 [g55v1,3 + (g55 − κ2) v3,1]

+v2 [g44v̄2,3 + (g44 − κ1) v̄3,2] + v̄2 [g44v2,3 + (g55 − κ1) v3,2]

+v3 [g33v̄3,3 + (g13 + κ2) v̄1,1 + (g23 + κ1) v̄2,2]

+v̄3 [g33v3,3 + (g13 + κ2) v1,1 + (g23 + κ1) v2,2]} dA,

(3.32)

where κ1 ∈ [0, 2g44], κ2 ∈ [0, 2g55] and κ3 ∈ [0, 2g66]. Further, we note that the direct

differentiation and basic equations (1.12) imply

− dKκ

dx3
(x3) = 2

∫
D(x3)

[g11v1,1v̄1,1 + g22v2,2v̄2,2 + g33v3,3v̄3,3 + (g12 + κ3) (v1,1v̄2,2

+v̄1,1v2,2) + (g13 + κ2) (v1,1v̄3,3 + v̄1,1v3,3) + (g23 + κ1) (v2,2v̄3,3 + v̄2,2v3,3)] dA

+

∫
D(x3)

[g66 (v1,2v̄1,2 + v2,1v̄2,1) + (g66 − κ3) (v1,2v̄2,1 + v̄1,2v2,1)] dA

+

∫
D(x3)

[g55 (v1,3v̄1,3 + v3,1v̄3,1) + (g55 − κ2) (v1,3v̄3,1 + v̄1,3v3,1)] dA

+

∫
D(x3)

[g44 (v3,2v̄3,2 + v2,3v̄2,3) + (g44 − κ1) (v2,3v̄3,2 + v̄2,3v3,2)] dA.

(3.33)

We now choose κ1 ∈ [0, 2g44], κ2 ∈ [0, 2g55] and κ3 ∈ [0, 2g66] so that P (x, y, z), with

coordinates x = g23+κ1√
g22g33

, y = g13+κ2√
g11g33

, z = g12+κ3√
g11g22

, lies inside the region limited by the
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surface S (x, y, z). On this basis we deduce that

g44 (v3,2v̄3,2 + v2,3v̄2,3) + (g44 − κ1) (v3,2v̄2,3 + v̄3,2v2,3)

≥ m1 (v3,2v̄3,2 + v2,3v̄2,3) , (3.34)

g55 (v1,3v̄1,3 + v3,1v̄3,1) + (g55 − κ2) (v1,3v̄3,1 + v̄1,3v3,1)

≥ m2 (v1,3v̄1,3 + v3,1v̄3,1) , (3.35)

g66 (v1,2v̄1,2 + v2,1v̄2,1) + (g66 − κ3) (v1,2v̄2,1 + v̄1,2v2,1)

≥ m3 (v1,2v̄1,2 + v2,1v̄2,1) , (3.36)

g11v1,1v̄1,1 + g22v2,2v̄2,2 + g33v3,3v̄3,3 + (g12 + κ3) (v1,1v̄2,2 + v̄1,1v2,2)

+ (g13 + κ2) (v1,1v̄3,3 + v̄1,1v3,3) + (g23 + κ1) (v2,2v̄3,3 + v̄2,2v3,3)

≥ m4 (v1,1v̄1,1 + v2,2v̄2,2 + v3,3v̄3,3) , (3.37)

where

m1 = min (2g44 − κ1, κ1) , m2 = min (2g55 − κ2, κ2) , m3 = min (2g66 − κ3, κ3) ,

(3.38)

and m4 is the lowest positive eigenvalue of the linear transformation given by the matrix

⎛
⎝ g11 g12 + κ3 g13 + κ2

g12 + κ3 g22 g23 + κ1

g13 + κ2 g23 + κ1 g33

⎞
⎠ . (3.39)

Therefore, relations (3.33) to (3.37) imply

− dKκ

dx3
(x3) ≥

∫
D(x3)

[m1 (v3,2v̄3,2 + v2,3v̄2,3) +m2 (v1,3v̄1,3 + v3,1v̄3,1)

+m3 (v1,2v̄1,2 + v2,1v̄2,1) +m4 (v1,1v̄1,1 + v2,2v̄2,2 + v3,3v̄3,3)] dA ≥ 0,

(3.40)

and henceKκ (x3) appears as a nonincreasing function with respect to x3 on [0, L]. More-

over, the relations (1.14) and (3.32) imply Kκ (L) = 0 and so it follows that Kκ (x3) ≥ 0

for all x3 ∈ [0, L] and Kκ (x3) is an acceptable measure of the amplitude in question.

We recall that

|g44 − κ1| < g44, |g55 − κ2| < g55, |g66 − κ3| < g66,

|g23 + κ1| <
√
g22g33, |g13 + κ2| <

√
g11g33, |g12 + κ3| <

√
g11g22

(3.41)
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and use the Schwarz and arithmetic-geometric mean inequalities and (3.23) to estimate

Kκ (x3), so we obtain

Kκ (x3) ≤
1√
λ0

[|c13 + c55|+ |c55|+ 2g55 +
√
g11g33]

∫
D(x3)

v1,1v̄1,1dA

+
1√
λ0

[|c23 + c44|+ |c44|+ 2g44 +
√
g22g33]

∫
D(x3)

v2,2v̄2,2dA

+
1√
λ0

[|c55|+ 2g55]

∫
D(x3)

v1,2v̄1,2dA+
1√
λ0

[|c44|+ 2g44]

∫
D(x3)

v2,1v̄2,1dA

+
1√
λ0

[|c13 + c55|+ |c23 + c44|+ |c33|+ g33 + g55 +
√
g11g33

+
√
g22g33]

∫
D(x3)

v3,1v̄3,1dA+
1√
λ0

[|c13 + c55|+ |c23 + c44|+ |c33|+ g33 + g44

+
√
g11g33 +

√
g22g33]

∫
D(x3)

v3,2v̄3,2dA+
1√
λ0

(|c55|+ g55)

∫
D(x3)

v1,3v̄1,3dA

+
1√
λ0

(|c44|+ g44)

∫
D(x3)

v2,3v̄2,3dA+
1√
λ0

(|c33|+ g33)

∫
D(x3)

v3,3v̄3,3dA.

(3.42)

From the relations (3.40) and (3.42) we can obtain a first-order differential inequality

such as (3.25), and hence we have a spatial estimate such as (3.28), where now η is given

by

η =
1√
λ0

max

{
µ1

m4
,
µ2

m4
,
1

m3
(|c55|+ 2g55) ,

1

m3
(|c44|+ 2g44) ,

1

m2
(µ0 + g55) ,

1

m1
(µ0 + g44) ,

1

m2
(|c55|+ g55) ,

1

m1
(|c44|+ g44) ,

1

m4
(|c33|+ g33)

}
,

(3.43)

and

µ1 = |c13 + c55|+ |c55|+ 2g55 +
√
g11g33, µ2 = |c23 + c44|+ |c44|+ 2g44 +

√
g22g33,

µ0 = |c13 + c55|+ |c23 + c44|+ |c33|+ g33 +
√
g11g33 +

√
g22g33.

(3.44)

4. Concluding remarks. i) In this paper we have obtained some exponential decay

estimates, similar to those of Saint–Venant type, for a right homogeneous viscoelastic

cylinder, of finite extent, subjected to boundary data varying harmonically in time on

one plane end.

Specifically, the estimate described in Theorem 2.1 holds for every value of the fre-

quency of vibrations and for the class of viscoelastic materials whose relaxation tensor is

supposed to be symmetric, sufficiently regular and compatible with thermodynamics. In

fact, we used just the property expressing the positive definiteness of the half-range sine

Fourier transform of the fourth-order tensor −Ġrlmn(·), while the estimate described in

Theorem 3.1 holds for every value of the frequency under the weaker assumption that

the fourth-order tensor −Ġs
rlmn(ω) is strongly elliptic.
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A relevant example pointing out the relationship between the assumptions upon the

half-range Fourier transform Ġs
rlmn(ω) and the properties of Grlmn(t) has been given in

Section 2 when the case of decay exponential memory was considered.

ii) The results may be easily extended to a semi-infinite cylinder, namely the case

when L → ∞. In what follows we exemplify this for the case of the measure I(x3). Then

only two possibilities are possible: a) I(x3) ≥ 0 for all x3 ∈ [0,∞); or b) there exists

x∗
3 ∈ [0,∞) such that I(x∗

3) < 0.

In case a), since I(·) is nonnegative, we deduce the same differential inequality (2.15)

and therefore the estimate (2.20) holds.

Let us consider case b). From (2.6) it follows that

I(x3) < 0, x∗
3 ≤ x3 < ∞, (4.1)

so that, on [x∗
3,∞), we must change the sign of I(x3) in the relation (2.7). Repeating

the reasoning presented in Section 2 one deduces the following estimate:

−I(x3) ≥ −I(x∗
3) exp

(x3 − h− x∗
3

γm(h, ω)

)
> 0, x3 ∈ [x∗

3 + h,∞). (4.2)

Thus, we have the following Phragmèn–Lindelöf alternative.

Theorem 4.1. In the context of a semi-infinite viscoelastic cylinder for which −Ġs
rlmn(ω)

is positive definite, the following alternative holds: a) either I(·) is a nonnegative function

on [0,∞) which decays spatially faster than the exponential exp
(
− x3−h

γm(h,ω)

)
; or b) there

exists x∗
3 ∈ [0,∞) such that I(x∗

3) < 0, and then −I(x3) grows spatially faster than the

exponential exp
(

x3−h−x∗
3

γm(h,ω)

)
.

We have to outline that a similar alternative can be established for the measures

Jκ (x3) and Kκ (x3).
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