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Abstract. In this paper, we study a nonlocal parabolic problem arising in the study

of a micro-electro mechanical system. The nonlocal nonlinearity involved is related to

an integral over the spatial domain. We first give the structure of stationary solutions.

Then we derive the convergence of a global (in time) solution to the maximal solution as

the time tends to infinity. Finally, we provide some quenching criteria.

1. Introduction. In this paper, we study the following nonlocal parabolic problem:⎧⎨
⎩

ut = uxx − λg(t;u)u−2(x, t), −1 < x < 1, t > 0,

u(±1, t) = 1, t > 0,

u(x, 0) = u0(x), −1 ≤ x ≤ 1,

(1.1)

where λ > 0, u0(x) is a smooth function such that 0 < u0(x) ≤ 1 for all x ∈ [−1, 1] and

u0(±1) = 1, and

g(t;u) :=

(
1 + χ

∫ 1

−1

u−1(x, t)dx

)−2

(1.2)

for a given positive constant χ. Without loss of generality, by a suitable re-scaling, we

shall assume that χ = 1 throughout this paper. Furthermore, we suppose that the initial

datum u0 is symmetric with respect to x = 0.

This problem arises in the modeling of an elastic membrane suspended above a rigid

plate with a fixed voltage source and a fixed capacitor, by assuming the ratio of the
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inertial terms and the damping terms is zero and the deflection u is only of one dimension.

The parameter λ is defined by

λ =
V 2L2ε0
2l2τ

,

where V is the applied voltage, τ is the tension in the membrane, L is a characteristic

length of the domain, l is a characteristic width of the gap between the membrane and

the fixed electrode, and ε0 is the primitivity of free space. We refer to [15] for a derivation

of the equation. See also [6, 14] for related models in MEMS.

We say that a solution u of (1.1) quenches, if there exists a finite T such that

lim inf
t↑T

{ min
−1≤x≤1

u(x, t)} = 0.

In this case, the nonlocal term becomes singular and the solution no longer exists as a

classical solution after T , the so-called quenching time. In electrical engineering, it is

the so-called pull-in instability phenomenon. Therefore, it is very important to study

whether the solution of (1.1) quenches in finite time.

The study of quenching has drawn a lot of attention following the work of Kawarada

[12] in 1975. The main questions in these works are quenching criteria, quenching loca-

tions, quenching rate, and spatial profile at quenching time. For the local problem with

general negative power, i.e., for the equation

ut = uxx − σu−β, σ, β > 0,

we refer the reader to [13] for the quenching criteria, [8] for the quenching locations,

[8, 4, 9] for the quenching rates, and [5] for the quenching profile.

One of the main features of equation (1.1) is the nonlocal nature of the functional

g(t, u). One of the main tools for studying blow-up and quenching properties is the

comparison principle. Notice that if the term u−1(x, t) in (1.2) is replaced by any positive

power of u(x, t), then the comparison principle would still hold true. In this case, the

monotonicity in time of the solution can be derived for certain initial data. But for the

system (1.1), unfortunately, the comparison principle is not valid.

For the system (1.1), the question of when the solution quenches in finite time, the

quenching criterion, is closely related to the structure of stationary solutions. In section

2, we shall prove that a constant λ∗ > 0 exists such that there are no positive stationary

solutions of (1.1) if λ > λ∗; there is exactly one positive stationary solution of (1.1) if

λ = λ∗; and there are two positive stationary solutions of (1.1) if λ < λ∗. Moreover, the

minimum of the stationary solution is decreasing as λ increases for the maximal solution

branch, and is increasing as λ increases for the minimal solution branch for λ ∈ (0, λ∗].

In section 3, we shall give some global (in time) solutions and derive the convergence of

these global solutions to the maximal stationary solutions as t → ∞. Finally, we provide

some quenching criteria for λ sufficiently large in section 4. In particular, we show that

there is a cusp at the quenching point x = 0 under certain conditions on the initial data.
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2. Stationary solutions. In this section, we study positive solutions of the following

boundary value problem:

Uxx = λ

(
1 +

∫ 1

−1

U−1(x)dx

)−2

U−2, −1 < x < 1, (2.1)

U(±1) = 1, (2.2)

for a given positive constant λ.

Note that a solution of the nonlocal problem (2.1)-(2.2) must be a solution of the

following local boundary value problem:

wxx = σw−2, −1 < x < 1, w(±1) = 1, (2.3)

where, obviously,

σ = λ

(
1 +

∫ 1

−1

U−1(x)dx

)−2

, if U = w. (2.4)

Notice that some properties and the structure of solutions of (2.3) have been studied in

detail by Levine (cf. [13]). For example, the problem (2.3) has only classical solutions.

These solutions must be strictly convex and symmetric with respect to x = 0. Hence

there exists a unique minimum point at x = 0. Moreover, there is a positive constant

σ∗ such that there are exactly two solutions of (2.3) if 0 < σ < σ∗, there is exactly one

solution of (2.3) if σ = σ∗, and there are no solutions of (2.3) if σ > σ∗. We denote by

uλ a solution of (2.1)-(2.2) for a given λ, and wσ a solution of (2.3) for a given σ. Then

uλ = wσ with λ = λ(σ). It follows from (2.4) that

λ = λ(σ) = σ

(
1 +

∫ 1

−1

w−1
σ (x)dx

)2

(2.5)

for some σ ∈ (0, σ∗].

We can obtain some information for λ by investigating the relation (2.5). Since there

are two solutions for each σ < σ∗, it is not so obvious as to how one can obtain the exact

information for λ from (2.5). See also [15] for an analysis of this relation. In this paper,

we shall use a different approach which is motivated by the work of Deng [2]. We also

refer the reader to [1, 2, 3, 10, 11] for some related works on nonlocal parabolic problems.

Suppose that U(x) is a solution of (2.1)-(2.2). Recall that U(x) has exactly one

minimum point at x = 0. Let

F1(s) = −s−1, G1(µ) =

∫ 1

µ

1√
F1(s)− F1(µ)

ds,

where µ = U(0) ∈ (0, 1). Then

G1(µ) =

√
2λ

1 + Y
, (2.6)

where Y =
∫ 1

−1
U−1(x)dx. Indeed, multiplying the equation (2.1) by Ux and integrating

it over [0, x] for any x ∈ [0, 1], we obtain that

1

2
[Ux(x)]

2 = −λ(1 + Y )−2[U(x)−1 − µ−1], x ∈ [0, 1]. (2.7)



728 JONG-SHENQ GUO, BEI HU, AND CHI-JEN WANG

Since Ux > 0 in (0, 1], it follows from (2.7) that

Ux(x)√
µ−1 − U(x)−1

=

√
2λ

1 + Y
, x ∈ (0, 1]. (2.8)

Hence (2.6) can be deduced by integrating (2.8) from 0 to 1 and using the boundary

condition (2.2).

In order to derive a relation between λ and µ which is independent of Y , we let

y =
2
∫ x

−1
U−1(s)ds

Y
− 1, h(y) = 1 + ln{U(x)}, −1 ≤ x, y ≤ 1.

Then h(y) satisfies

hyy = λY 2/[2(1 + Y )]2 exp[1− h(y)], −1 < y < 1,

and h(±1) = 1. Similarly, h(y) has exactly one minimum ν at 0, where ν = 1 + lnµ.

Now, let

F2(s) = − exp{−s}, G2(ν) =

∫ 1

ν

1√
F2(s)− F2(ν)

ds.

Using the same process as above, we have

G2(ν) =

√
λe

2

Y

1 + Y
. (2.9)

It follows from (2.6) and (2.9) that

Y =
2√
e

G2(ν)

G1(µ)
. (2.10)

Since ν = 1 + lnµ, substituting (2.10) into (2.6), we get

λ =
1

2

(
G1(µ) +

2√
e
G2(ν)

)2

:= K(µ). (2.11)

Next, by changing variables, we claim that

G1(µ) =
√
µ
√
1− µ+ µ3/2 ln

√
1− µ+ 1
√
µ

, (2.12)

G2(ν) = 2
√
µe ln

√
1− µ+ 1
√
µ

, ν = 1 + lnµ. (2.13)

Recall that

G1(µ) =

∫ 1

µ

1√
F1(s)− F1(µ)

ds =

∫ 1

µ

√
µs√

s− µ
ds, µ ∈ (0, 1).
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Set s = µ sec2 ϑ. Then we obtain

G1(µ) = 2µ3/2

∫ sec−1(1/
√
µ)

0

sec3 ϑdϑ

= µ3/2 1
√
µ

√
1− µ
√
µ

+ µ3/2 ln(
1
√
µ
+

√
1− µ
√
µ

)

=
√
µ
√
1− µ+ µ3/2 ln

√
1− µ+ 1
√
µ

,

and (2.12) is proved.

For (2.13), set s = 1 + ln(z). Then we have

G2(ν) =
√
µe

∫ 1

µ

dz√
z2 − µz

=
√
µe

∫ 1

µ

dz√
(z − µ/2)2 − µ2/4

.

Set z − µ/2 = µ secϑ/2. Then

G2(ν) =
√
µe

∫ sec−1(2/µ−1)

0

secϑdϑ

=
√
µe ln{

√
(2/µ− 1)2 − 1 + (2/µ− 1)}

= 2
√
µe ln

√
1− µ+ 1
√
µ

for ν = 1 + lnµ with µ ∈ (0, 1).

By the definition of K(µ), we have

K(µ) =
1

2

[√
µ(1− µ) + (µ3/2 + 4µ1/2) ln

√
1− µ+ 1
√
µ

]2
,

K ′(µ) =

[√
µ(1− µ) + (µ3/2 + 4µ1/2) ln

√
1− µ+ 1
√
µ

]
Q(µ),

where

Q(µ) := − 3µ+ 3

2
√

µ(1− µ)
+

3µ+ 4

2
√
µ

ln

√
1− µ+ 1
√
µ

.

Hence K ′(µ) = 0 if and only if µ satisfies

I(µ) :=
3µ+ 3

(3µ+ 4)
√
1− µ

= ln

√
1− µ+ 1
√
µ

:= J(µ). (2.14)

Note that I(0+) = 3/4, I(1−) = +∞, J(0+) = +∞, and J(1−) = 0. Moreover, I is

strictly increasing and J is strictly decreasing. It follows that equation (2.14) has exactly

one solution in (0, 1), say at µ∗. Since K(µ) → 0 as either µ → 0 or µ → 1, K(µ) should

attain its maximum at µ∗. Therefore, λ = K(µ) is increasing for 0 < µ < µ∗ and

λ = K(µ) is decreasing for µ∗ < µ < 1.

Conversely, for a given µ ∈ (0, 1), we first compute G1(µ) and G2(ν) by using (2.12)

and (2.13). Then we can compute Y and λ by using (2.10) and (2.11). Finally, the
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solution U(x) of (2.1)-(2.2) with U(0) = µ can be computed from the formula∫ U(x)

µ

ds√
F1(s)− F1(µ)

=

∫ U(x)

µ

√
µs√

s− µ
ds =

√
2λ

1 + Y
x (2.15)

for x ∈ [0, 1] and U(−x) = U(x) for x ∈ [−1, 0).

We thus have proved the following theorem.

Theorem 2.1. There exists a positive constant λ∗, which is given by λ∗ = K(µ∗), such

that there are no solutions of (2.1)-(2.2) if λ > λ∗; there is exactly one solution of

(2.1)-(2.2) if λ = λ∗; and there are two solutions of (2.1)-(2.2) if λ < λ∗.

Note that µ∗ ≈ 0.395809637819479 and λ∗ ≈ 5.64837452749789.

3. Global existence. First, we recall from [13] that the solution v of the local prob-

lem

vt = vxx − σv−2, −1 < x < 1, t > 0, (3.1)

v(±1, t) = 1, t > 0, (3.2)

v(x, 0) = v0, −1 ≤ x ≤ 1, (3.3)

exists globally in time for any positive initial data v0 which is greater than the corre-

sponding larger stationary solution, denoted by w+
σ , of (2.3), if σ ∈ (0, σ∗). Moreover,

we have v(x, t) → w+
σ (x) as t → ∞ uniformly for x ∈ [−1, 1]. We remark that the proof

of the above convergence of v given in [13] follows from an important fact that vt < 0.

In particular, by differentiating equation (3.1) with respect to t, we obtain that

(vt)t − (vt)xx − 2σv−3vt = 0.

Since vt(x, 0) = −σ < 0 for x ∈ (−1, 1) for the case when v0 ≡ 1, it follows from the

maximum principle that vt < 0 in (−1, 1) × (0,∞). Unfortunately, we are unable to

prove this monotonicity in time for our nonlocal case. Nevertheless, we have

Theorem 3.1. The solution u of (1.1) with u0 ≡ 1 exists globally (in time) for any

λ ∈ (0, 9σ∗).

Proof. Note that g(t;u) ∈ (0, 1/9) for any t > 0, since u < 1 for x ∈ (−1, 1). Let v be

the solution of (3.1)-(3.3) with σ = λ/9 and v0 ≡ 1. Then from

(u− v)t − (u− v)xx = σv−2 − λgu−2 ≥ σ(v−2 − u−2) = σ(u+ v)(u− v)/(uv)2

and by applying the maximum principle, we deduce that u ≥ v. It follows that u exists

globally in time, if λ ∈ (0, 9σ∗). �
To study the asymptotic behavior of the global solution u of (1.1), we introduce the

following energy functional:

E(t) :=
1

2

∫ 1

−1

u2
x(x, t)dx+ λ

(
1 +

∫ 1

−1

u−1(x, t)dx

)−1

. (3.4)

Then we compute that

E′(t) = −
∫ 1

−1

u2
t (x, t)dx,
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by using the fact ut(±1, t) = 0 and an integration by parts. Hence we have

0 ≤
∫ T

0

∫ 1

−1

u2
t (x, t)dxdt = E(0)− E(T ) ≤ E(0) < ∞ (3.5)

for any T > 0.

Note that u is symmetric with respect to x = 0 and ux < 0 in (−1, 0) × (0,∞).

Again, let v be the solution of (3.1)-(3.2) with σ = λ/9 and v0 ≡ 1. Since vt < 0 and

v(x, t) → w+
σ (x) as t → ∞ uniformly for x ∈ [−1, 1], we have v(0, t) ≥ w+

σ (0) > 0 for any

t > 0. This implies that u has a positive lower bound w+
σ (0) for (x, t) ∈ [−1, 1]× [0,∞).

Then, by the parabolic regularity theory, we have the uniform boundedness for ux, uxx,

and ut in [−1, 1]× [0,∞).

Now, taking any sequence {tn} with tn → ∞ as n → ∞ and setting un(x, t) :=

u(x, t + tn), using the above regularity result as well as the energy functional defined

above, it is easy to show that u(x, t) converges to one of the steady states for the given λ

(cf. e.g., [7, 8]). Note that u(0, t) ≥ v(0, t) ≥ w+
σ (0) ≥ wσ∗(0) = Uλ∗(0) > U−

λ (0) for all

λ < λ∗. Hence the limit must be the larger steady state, denoted by U+
λ , of (2.1)-(2.2).

Since the limit is independent of the sequence {tn}, it follows that u(x, t) → U+
λ (x) as

t → ∞.

Therefore, we have proved the following theorem.

Theorem 3.2. For any λ ∈ (0, 9σ∗), the solution u of (1.1) with u0 ≡ 1 converges to the

steady state U+
λ as t → ∞.

4. Quenching. In this section, we shall determine whether solutions of (1.1) quench

in finite time. It is well-known that, under certain conditions on the initial data, the

profile of the local problem (3.1)-(3.3) at the quenching time T at the quenching point

x = 0 satisfies

v(x, T ) ∼ C

(
|x|√
| ln |x||

)2/3

as |x| → 0

for some positive constant C (see [5]). In the following theorem, we also prove that there

is a cusp at the quenching point x = 0. In the proof, the auxiliary function we used is

very simple. But, we have to adapt this method to nonlocal integral terms, which we

believe is quite original.

Theorem 4.1. Suppose that u0 ∈ C2[−1, 1], and, for some c0 > 0,

u0(x) = u0(−x), u0(x) ≥ c0, u′′
0(x) ≥ c0, u0(−1) = u0(1) = 1. (4.1)

If λ is sufficiently large, then u(x, t) quenches at x = 0 at a finite time T ≤ 1. Further-

more, there is a cusp at the quenching point x = 0: for any 2 < β < 3, there exists

δ0 = δ0(β) > 0 such that

u(x, t) ≥ δ0|x|2/β for (x, t) ∈ [−1, 1]× [0, T ).

Proof. Let T be the maximal existence time of u such that u > 0 for t ∈ [0, T ). For

contradiction, we assume that T > 1. We set T = 2 if T ≥ 2.
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By comparison principle, it is clear that

u(x, t) ≤ ϕ(x, t) for − 1 < x < 1, 0 < t < T,

where ϕ is the solution of

ϕt = ϕxx, −1 < x < 1, 0 < t < 2, (4.2)

ϕ(−1, t) = ϕ(1, t) = 1, 0 < t < 2, (4.3)

ϕ(x, 0) = u0(x), −1 < x < 1. (4.4)

It follows that

ux(1, t) ≥ ϕx(1, t) ≥ ε0 > 0 for 0 < t < T, (4.5)

where the constant ε0 is clearly independent of λ. We choose ε0 small enough so that

g(0;u) > σ0 :=

[
1 +

2β

β − 1

(
2

ε0

)1/β
]−2

and both (4.5) and the condition

ε0 ≤ βcβ0 (4.6)

hold.

Take 2 < β < 3, fixed. It is clear that v = uβ satisfies

(vx)t − (vx)xx = v−1vx ·
[
(3− β) λ g(t;u)v1−3/β − 2(β − 1)

β
(vx)x

]
+

β − 1

β

v3x
v2

for 0 < x < 1, 0 < t < T . Recalling that 1 − 3/β < 0, u ≤ 1 and ux ≥ 0 for 0 < x < 1,

we obtain

(vx)t − (vx)xx ≥ v−1vx ·
[
(3− β) λ g(t;u)− 2(β − 1)

β
(vx)x

]
for 0 < x < 1, 0 < t < T .

We take λ large enough so that λσ0 ≥ 3 and

(3− β) λ σ0 −
2(β − 1)

β
ε0 > 0. (4.7)

Let [0, T̃ ) ⊂ [0, T ) be the maximal interval on which

(3− β) λ g(t;u)− 2(β − 1)

β
ε0 > 0, 0 < t < T̃ . (4.8)

Notice that, using (4.8), we have

wt − wxx +
2(β − 1)

β

vx
v
wx ≥ 0,

where w := vx − ε0x. Also, from (4.1) it follows that u′
0(x) ≥ c0x, and so vx(x, 0) ≥ ε0x

on [0, 1] by (4.6). Then, using comparison on the region (0, 1)× (0, T̃ ), we find that

vx(x, t) ≥ ε0x for 0 < x < 1, 0 < t < T̃ . (4.9)
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It follows that

v(x, t) ≥ v(0, t) +
1

2
ε0x

2

>
1

2
ε0x

2 for 0 < x < 1, 0 < t < T̃ ,

and hence

u(x, t) > δ0x
2/β for 0 < x < 1, 0 < t < T̃ , (4.10)

where δ0 = (ε0/2)
1/β is clearly independent of λ. This inequality implies that∫ 1

−1

u−1(x, t)dx = 2

∫ 1

0

u−1(x, t)dx < 2δ−1
0

∫ 1

0

x−2/βdx =
2β

β − 2
δ−1
0 , (4.11)

and hence

g(t;u) > σ0 for 0 < t < T̃ . (4.12)

Using (4.7) and the maximality of [0, T̃ ) we find that T̃ = T .

Having established this lower bound for g, we can now apply the comparison principle

to conclude

u(x, t) ≤ ψ(x, t) for − 1 < x < 1, 0 < t < T, (4.13)

where ψ is the solution of

ψt = ψxx − λσ0, −1 < x < 1, 0 < t < T, (4.14)

ψ(−1, t) = ψ(1, t) = 1, 0 < t < T, (4.15)

ψ(x, 0) = 1, −1 < x < 1. (4.16)

By comparison we have

ψ(x, t) ≤ 1− λσ0

3
t(1− x2) for − 1 < x < 1, 0 < t ≤ 1. (4.17)

Thus ψ(0, t) must vanish before t = 3/(λσ0). This implies that T ≤ 3/(λσ0) ≤ 1, a

contradiction. The proof is complete. It is clear that (4.10) is now valid for 0 < t < T . �
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