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Abstract. In this paper it is shown that the change in the energy for a linearly

viscoelastic body (with Kelvin–Voigt type viscosity) in frictionless contact with a rigid

obstacle can be accounted for by viscous losses and the work done by external forces.

Thus there is no change in the energy due to impacts, unlike the case of rigid-body

dynamics. The result can be extended to a wide class of dynamic viscoelastic boundary

thin obstacle problems of similar type.

1. Introduction. The impact of an elastic or viscoelastic body against a rigid ob-

stacle using the Signorini contact conditions has been the subject of many papers (see,

for example, [3, 5, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 23]). While most

papers focus on showing existence of solutions, or numerical approximation of solutions

to these problems, relatively little has been published regarding conservation of energy,

or rigorously accounting for changes in the energy [18, 19, 21, 23]. In particular, whether

in general the contact forces for contact with a rigid obstacle do non-zero work on an

elastic or visco-elastic body has been an open question. All the results related to con-

servation of energy or accounting for changes in energy so far have either made special

assumptions about the governing equations or the geometry or both. The paper [18],

which is perhaps the most sophisticated paper dealing with energy conservation or bal-

ance for impact-type problems, applies to the wave equation in a half-space R+ ×R
n−1.

On the other hand, [21] is for a one-dimensional wave equation, but requires a convex

obstacle, and also ∂u/∂t(x, t+) = −∂u/∂t(x, t−) whenever u(x, t) meets the obstacle.

This corresponds to requiring a coefficient of restitution of one in a rigid-body setting.

The paper [19] obtains an energy balance for a one-dimensional visco-elastic rod with

impact on the boundary. Finally, [23] is able to obtain conservation of energy for elastic

bodies in a modified impact law that artificially reduces the problem to make the contact

forces finite-dimensional functions of time.
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This paper shows that the contact forces for a visco-elastic body in contact with a

rigid obstacle do zero net work, and that the energy of the body can be accounted for

solely by means of the external forces and viscous damping.

Obtaining energy balances is a difficult task. One of the difficulties is that while

penalty methods can be developed so that energy is conserved in the penalty approxima-

tion, all the methods used to obtain a solution of the limiting problem (with Signorini

contact conditions) must rely on weak convergence in the appropriate Sobolev spaces

[7, 8, 9, 12, 13, 15, 16]. The energy, being a convex function of the deformation and

velocity fields, is at best a weakly lower semicontinuous function. The limiting solution

cannot then be guaranteed to conserve energy or to satisfy an appropriate energy balance

in the viscoelastic case.

This might be regarded as a mathematical curiosity, except that it has a clear physical

interpretation: where there is weak but not strong convergence, more and more of the

energy could be pushed into higher and higher frequency modes. Thus penalty approxi-

mations with very large penalty parameters (as might be suitable for describing contact at

an atomic level) may result in significant amounts of energy being pushed into extremely

high-frequency vibrations, which is indistinguishable from heat. That is, impacts could

directly turn gross kinetic energy into heat. Any finite-dimensional simulation, using

finite element methods for example, might keep this energy in elastic vibrations, albeit

at frequencies well above those where the finite-dimensional approximations are valid.

Thus it is highly desirable to show that energy is conserved, or that changes in energy

can be accounted for, without resorting to “energy losses due to impact”. Since standard

approaches rely on weak convergence in Sobolev spaces, some new tools are needed.

In a remarkable paper, Petrov and Schatzman [19] introduce some new tools. They

consider the impact of a viscoelastic rod against a rigid obstacle at one end, and obtain

an energy balance. The tools used by Petrov and Schatzman are convolution complemen-

tarity problems (see next paragraph); unfortunately this approach does not generalize

to more than one dimension. However, it does give some insight into the mathematics

of impact problems. One thing that should be noted from [19] is that incorporating

viscosity makes the deformation field more regular but the contact forces less regular.

Results on conservation of energy or energy balances have been established via con-

volution complementarity problems [19, 23]. These are complementarity problems of the

form: Given k : R+ → R
n×n and q : R+ → R

n, find z : R+ → R
n satisfying

0 ≤ z(t) ⊥ (k ∗ z)(t) + q(t) ≥ 0 for all t ≥ 0,

where “a ≥ 0” for a vector a ∈ R
n means that “ai ≥ 0 for i = 1, 2, . . . , n”, k ∗ z is the

convolution

(k ∗ z)(t) =
∫ t

0

k(s) z(t− s) ds,

and “a ⊥ b” means that aT b = 0. In the context of mechanical impact problems, z

typically represents the normal contact force, while k ∗ z + q represents the gap between

the body (or bodies) and the obstacle. If we set w = k∗z+q, then provided w is sufficiently

regular, not only is z(t)Tw(t) = 0 for all t, but z(t)Tdw/dt(t) = 0 for (almost) all t as
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well [23, 24]. From this property, energy balances can be proved [23, 24], including ones

for the viscoelastic rod problem of Petrov and Schatzman.

However, in dealing with most boundary thin obstacle problems, the normal contact

force is removed from the problem by formulating it as a variational inequality [7, 8, 9,

12, 13, 15, 16] rather than as a complementarity problem as is done in [1, 2]. Variational

inequalities [4, 11] have the form: Given F : X → X∗ and a closed convex set K ⊆ X,

find u ∈ X such that

〈ũ− u, F (u)〉 ≥ 0 for all ũ ∈ K. (1.1)

If K is also a cone (that is, x ∈ K implies αx ∈ K for any α ≥ 0), then (1.1) is equivalent

to a generalized complementarity problem: Find u such that

K 
 u ⊥ F (u) ∈ K∗, (1.2)

where K∗ = { z | 〈z, w〉 ≥ 0 for all w ∈ K } is the dual cone to K, and “a ⊥ b” means

that 〈a, b〉 = 0.

Complementarity formulations must explicitly invoke the normal contact force, and

the difficulty with these formulations for impact problems is in obtaining suitable bounds

for these contact forces. This is dealt with successfully in [1, 2] by restricting attention to

problems in which the cone K is strongly pointed in the relevant Sobolev space. A cone K

in a Banach space X is strongly pointed if there is δ > 0 and ξ ∈ X∗ where 〈ξ, x〉 ≥ δ ‖x‖
for all x ∈ K, where 〈·, ·〉 is the duality pairing between X and its dual space X∗. The

cone K being strongly pointed is equivalent to K∗ being solid in X∗; that is, K∗ has non-

empty interior. This property fails for elasticity problems in more than one dimension.

Since bounds on the contact forces are not available, a common approach to treating

impact problems is to use variational inequalities that do not need to explicitly refer to

the normal contact forces at all [3, 5, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 23].

Energy conservation results have been obtained using complementarity formulations

[19, 23]. These results have been obtained by developing lemmas on “differentiating

complementarity problems”: showing that if K 
 a(t) ⊥ b(t) ∈ K∗ for sufficiently

regular a and b, then a′(t) ⊥ b(t) for almost all t.

The approach taken in this paper is to start with the variational inequality formulation,

and from that obtain a result on “differentiating variational inequalities” analogous to

the results in [24]. From that, regularity results that have already been established for

viscoelastic bodies in impact, and some technical considerations, we are able to conclude

with an energy balance for viscoelastic bodies.

2. Differentiating variational inequalities. The main result for this section is:

Lemma 2.1. Let K be a closed, convex set in a separable reflexive Banach space X,

f : [0, T ] → X∗, f ∈ Lp(0, T ;X∗), and u : [0, T ] → X be a solution to the variational

inequality: u(t) ∈ K for all t, and∫ T

0

〈ũ(t)− u(t), f(t)〉 dt ≥ 0 for all continuous ũ : [0, T ] → K. (2.1)

Provided the distributional derivative u′ ∈ Lq(0, T ;X) (1/p+1/q = 1), then 〈u′(t), f(t)〉
= 0 for almost all t ∈ [0, T ].
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Proof. First we note that since the space of continuous functions [0, T ] → X is dense

in the space L∞(0, T ; X), (2.1) holds for all ũ ∈ L∞(0, T ; X). For any measurable set

E and w ∈ K we can let ũ(t) = u(t) for t �∈ E and ũ(t) = w for t ∈ E; we have∫
E

〈w − u(t), f(t)〉 dt ≥ 0.

Thus there is a Lebesgue null set Nw such that 〈w − u(t), f(t)〉 ≥ 0 for all t �∈ Nw. As

X is reflexive, there is a countable dense subset {wi}∞i=1; setting N =
⋃∞

i=1 Nwi
, which

is also a Lebesgue null set, we see that

〈w − u(t), f(t)〉 ≥ 0 for all w ∈ K and t �∈ N. (2.2)

On the other hand, by standard arguments, since v := u′ ∈ Lq(0, T ;X), u must be

absolutely continuous, and as X has the Radon–Nikodym property [10, Thm. III.3.1],

u(t) = u(s)+
∫ t

s
v(τ ) dτ for all t > s [10, Thm. IV.3.2]. Therefore, the ordinary derivative

limh→0(u(t + h) − u(t))/h exists and is equal to v(t) for almost all t [10, Thm. II.2.9].

Let F be the set of t ∈ [0, T ] where either limh→0(u(t + h) − u(t))/h fails to exist, or

exists but is different from v(t). This is also a null set.

Then on the set [0, T ]\(N ∪ F ) we have

〈f(t), u′(t)〉 = lim
h→0

〈
f(t),

u(t+ h)− u(t)

h

〉
.

But, 〈
f(t),

u(t+ h)− u(t)

h

〉
≥ 0 for h > 0, and〈

f(t),
u(t+ h)− u(t)

h

〉
≤ 0 for h < 0.

Thus the limit must be zero on [0, T ]\(N∪F ). Noting that t �→ 〈f(t), u′(t)〉 is in L1(0, T )

and that 〈f(t), u′(t)〉 = 0 for almost all t, we see that 〈f, u′〉 = 0 in L1(0, T ) and in the

sense of measures. �
This result is not particularly sharp: any X with separable dual and that has the

Radon–Nikodym property would suffice. Analogous results for dynamic complementarity

problems are shown in [24].

There is a result for two derivatives.

Lemma 2.2. Let K be a closed, convex set in a reflexive Banach space X, f : [0, T ] → X∗,

f ∈ W 1,p(0, T ;X∗), and let u : [0, T ] → X be a solution to the variational inequality:

u(t) ∈ K for all t, and

〈ũ− u(t), f(t)〉 ≥ 0 for all ũ ∈ K. (2.3)

Then provided u ∈ W 1,q(0, T ;X) (1/p + 1/q = 1), 〈u′(t), f ′(t)〉 ≤ 0 for almost all

t ∈ [0, T ].

Proof. As in Lemma 2.1, both u′(t) = limh→0(u(t + h) − u(t))/h and f ′(t) =

limh→0(f(t + h) − f(t))/h exist for almost all t. For any t where both are true, for
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h > 0, from the definition of a solution of the VI,

0 ≥
〈
f(t+ h),

u(t+ h)− u(t)

h

〉
,

0 ≤
〈
f(t),

u(t+ h)− u(t)

h

〉
.

Subtracting, we get

0 ≥
〈
f(t+ h)− f(t)

h
,
u(t+ h)− u(t)

h

〉
.

Alternatively, if h < 0, let h′ = −h > 0 and t′ = t + h. Then applying the previous

argument gives

0 ≥
〈
f(t′ + h′)− f(t′)

h′ ,
u(t′ + h′)− u(t′)

h′

〉
.

That is,

0 ≥
〈
f(t)− f(t+ h)

−h
,
u(t)− u(t+ h)

−h

〉

=

〈
f(t+ h)− f(t)

h
,
u(t+ h)− u(t)

h

〉
.

In either case, taking h → 0 for any t where both derivatives exist gives

0 ≥ 〈f ′(t), u′(t)〉 ,

as desired. �

3. An energy balance for viscoelastic bodies in impact. In Kuttler and Shillor

[16], the problem of contact of a viscoelastic body with a rigid obstacle with a bounded

(undeformed) domain Ω ⊂ R
n is considered, with the boundary ∂Ω divided into three

regions: Γ1 on which u(t,x) = g(x) is given (fixed boundary), Γ2 on which σ(t,x)n(x) =

h(t,x) is given (given traction forces), and Γ3 on which contact can occur, where

ρ
∂2u

∂t2
= div σ(t,x) + f(t,x) in Ω,

σ(t,x) = Aε(u) +B ε(u̇) is the stress tensor,

ε(t,x) =
1

2
(∇u(t,x) +∇u(t,x)T ) is the strain tensor,

σ(t,x)n(x) = N(t,x)n(x) on Γ3,

0 ≤ n(x) · u(t,x)− γ(x) ⊥ N(t,x) ≥ 0 on Γ3.

Assuming that ρ is constant, we can scale time so that ρ ≡ 1. Note that unlike the rigid-

body case there is no coefficient of restitution. For now we will assume that g(x) = 0 on

Γ1 for simplicity of the development. We introduce the following function spaces:

V =
{
w ∈ H1(Ω)d | w|Γ1 = 0

}
,

H = w ∈ L2(Ω)d.
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We denote the dual of a Banach space X as X ′. We consider the spaces as forming a

Gelfand triple V ⊂ H = H ′ ⊂ V ′ with compact inclusions. Kuttler and Shillor transform

this into a variational inequality: Let

K = {w ∈ L2(0, T ;H1(Ω)) | w|Γ1 = 0, n(x) ·w(t,x)− γ(x) ≥ 0 for all x ∈ Γ3, t > 0 }.
(3.1)

The operators L and M are given by Lw = −div(Aε(w)) and Mw = −div(B ε(w)).

Note that A and B map symmetric d × d matrices into symmetric d × d matrices, and

for any d× d symmetric matrix Ξ, 〈Ξ, AΞ〉 :=
∑

i,j Ξij(AΞ)ij ≥ ηA 〈Ξ, Ξ〉 with ηA > 0,

with a corresponding inequality for B. Then L and M are elliptic partial differential

operators. The dynamic contact problem can be re-written as a variational inequality

where u ∈ K and∫ T

0

〈
dv

dt
+ Lu+Mv − f , u−w

〉
dt ≥ 0 for all w ∈ K,

with v = du/dt. Kuttler and Shillor apply integration by parts to
∫ T

0
〈dv/dt, u−w〉 dt

to give

〈v(T ), u(T )−w(T )〉 − 〈v(0), u(0)−w(0)〉 −
∫ T

0

〈v, v −w′〉 dt.

Kuttler and Shillor then use penalty approximations (with penalty parameter ε ↓ 0) to

obtain a sequence of approximate solutions uε, vε = duε/dt with the following properties:

uε uniformly bounded in L∞(0, T ;V ),

vε uniformly bounded in L∞(0, T ;H) ∩ L2(0, T ;V ),

v′
ε uniformly bounded in L2(0, T ;V ′).

The uniform bounds on vε mean that the vε lie in a compact subset of L2(0, T ; [H,V ]θ)

for any 0 < θ < 1, where [H,V ]θ is the interpolation space of H and V [6, 25]. This

means that
∫ T

0
〈vε, vε〉 dt →

∫ T

0
〈v, v〉 dt in a suitable subsequence.

A technical difficulty is to show that t �→ 1
2 〈v(t), v(t)〉 is absolutely continuous, and

that (d/dt) 12 〈v(t), v(t)〉 = 〈v(t), v′(t)〉 for almost all t. If v is absolutely continuous,

this is standard. However, we will show this below without showing that v is absolutely

continuous [0, T ] → H. Let {φi}∞i=1 be an H-orthonormal basis of eigenfunctions of

I + L , and write v(t) =
∑

i vi(t)φi. Since v′ ∈ L2(0, T ;V ′), this means that each v′i is

in L2(0, T ) and vi is absolutely continuous. Then the ordinary derivative v′i exists almost

everywhere. Thus vi v
′
i is integrable on [0, T ], and we can apply the standard rules to show

that v2i is absolutely continuous and ( 12v
2
i )

′ = vi v
′
i almost everywhere. We can choose an

equivalent norm for V : ‖v‖2V =
∑

i λiv
2
i , where (I+L)φi = λiφi for all i. Then we have

a corresponding equivalent norm for V ′: ‖w‖2V ′ =
∑

i λ
−1
i w2

i . We show that
∑

i(
1
2v

2
i )

′ is

integrable as follows: |vi| |v′i| ≤ 1
2 (λiv

2
i +λ−1

i (v′i)
2); summing over i gives

∑
i |vi(t) v′i(t)| ≤

1
2 (‖v(t)‖2V + ‖v′(t)‖2V ′), which is integrable. So

∑N
i=1 vi(t) v

′
i(t) is integrable, uniformly

in N . Now for any 0 ≤ t ≤ T ,
∫ t

0

∑N
i=1 vi(s) v

′
i(s) ds = 1

2

∑N
i=1 vi(t)

2 − 1
2

∑N
i=1 vi(0)

2.

Using the dominated convergence theorem together with the bounds on ‖v(t)‖H and

‖v(0)‖H coming from v(0) ∈ V ⊂ H and v ∈ L∞(0, T ;H), we can take the limit for
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almost every t to get∫ t

0

〈v(s), v′(s)〉 ds =
1

2
〈v(t), v(t)〉 − 1

2
〈v(0), v(0)〉

for almost all t. Since 〈v, v′〉 ∈ L1(0, T ), we have t �→ 1
2 〈v(t), v(t)〉 is an absolutely

continuous function (possibly after redefinition on a null set), and (d/dt) 12 〈v(t), v(t)〉 =
〈v(t), v′(t)〉 for almost all t. Note that in the same way, it can be shown that

(d/dt) 12 〈Lu(t), u(t)〉 = 〈Lu(t), v(t)〉 for almost all t.

Since v ∈ L2(0, T ;V ) and v′ ∈ L2(0, T ;V ′), we can apply integration by parts to

obtain ∫ b

a

〈
dv

dt
+ Lu+Mv − f , u−w

〉
dt ≥ 0 for all w ∈ K

for all 0 ≤ a ≤ b ≤ T . Applying the differentiation lemma above, Lemma 2.1, we obtain〈
dv

dt
+ Lu+Mv − f , v

〉
= 0 for almost all t.

Noting that 〈dv/dt, v〉, 〈Lu, v〉, 〈Mv, v〉, and 〈f , v〉 are all in L1(0, T ), and applying

integration by parts, we get

d

dt

(
1

2
〈v, v〉+ 1

2
〈Lu, u〉

)
= 〈f , v〉 − 〈Mv, v〉 ,

where the function differentiated is absolutely continuous. We identify 1
2 〈v, v〉+

1
2 〈Lu, u〉

as the total energy of the elastic body (kinetic plus elastic potential energy), 〈f , v〉 as

the rate at which work is done by the external forces, and 〈Mv, v〉 as the rate of energy

loss due to viscosity. Thus we have an energy balance for linearly viscoelastic bodies in

frictionless contact with a rigid obstacle.

4. Other examples. This approach can be applied to a wide range of boundary-thin

impact problems with Kelvin–Voigt viscoelasticity. For example, consider the problem

of a viscoelastic Euler–Bernoulli beam impacting at one end. Here we use subscripts to

indicate partial derivatives:

ρAutt = −EI uxxxx − E′I utxxxx + f(t, x), x ∈ (0, �), t > 0,

N(t) = EI uxxx(�, t) + E′I utxxx(�, t),

0 = EI uxx(�, t) + E′I utxx(�, t),

0 ≤ N(t) ⊥ u(�, t) ≥ 0,

u(0, t) = 0, ux(0, t) = 0.

Here A is the cross-sectional area of the beam, ρ is the mass density (mass per unit

volume), I is the second moment of area, E is Young’s modulus, E′ is the corresponding

quantity for viscosity, and � is the length of the beam. In this case we set H = L2(0, �)

and V = H2
cf (0, �) = {u ∈ H2(0, �) | u(0) = u′(0) = 0 } (the subscript “cf” indicates

“clamped at x = 0 and free at x = �”). The elasticity operator is A = EI(∂4/∂x4) and
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the viscosity operator is B = E′I(∂4/∂x4), so that the equations become

ρAutt = −Au− But + f(t, x) in (0, �).

We assume ρ and A are time-independent, smooth, and bounded away from zero.

If we let K = {u ∈ H2
cf (0, �) | u(�) ≥ 0 }, then the impact problem is equivalent to

the variational inequality: Find u : [0, T ] → K such that∫ T

0

〈ρAutt +Au+ But − f(t), w(t)− u(t)〉V ′×V dt ≥ 0

for all continuous w : [0, T ] → K. We assume that f ∈ L2(0, T ;H). By standard methods,

such as penalty methods, solutions can be shown to exist for this problem [17] with

u ∈ W 1,2(0, T ;V ). We can show that utt ∈ L2(0, T ;V ′) as follows (using an argument in

[16]): Take any φ ∈ C∞
0 ((0, T )×Ω) so that the support of φ is strictly contained within

Ω. Then since the contact force is only applied on the boundary,∣∣∣∣∣
∫ T

0

∫
Ω

[ρAutt +Au+ But]φ dV dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

f(t, x)φ(t, x) dV (x) dt

∣∣∣∣∣
≤ ‖f‖L2(0,T ;H)‖φ‖L2(0,T ;H).

Since C∞
0 ((0, T )× Ω) is dense in L2((0, T )× Ω) = L2(0, T ;H), this means that

‖ρAutt +Au+ But‖L2(0,T ;H) ≤ ‖f‖L2(0,T ;H) .

Now Au ∈ L∞(0, T ;V ′) (since u ∈ L∞(0, T ;V )) and But ∈ L2(0, T ;V ′) (since ut ∈
L2(0, T ;V )), so ρAutt ∈ L2(0, T ;V ′). Since ρA is bounded away from zero and is

smooth, utt ∈ L2(0, T ;V ′).

Thus we can apply Lemma 2.1 to obtain

〈ρAutt +Au+ But − f(t), ut〉V ′×V = 0 almost everywhere.

Applying integration by parts (following the methods of the previous section) we find

that for any t at which the classical derivative ut is defined,

1

2
〈ρAut(t), ut(t)〉+

1

2
〈Au(t), u(t)〉

=
1

2
〈ρAut(0), u(0)〉+

1

2
〈Au(0), u(0)〉

+

∫ t

0

〈f(τ ), ut(τ )〉 dτ −
∫ t

0

〈But(τ ), ut(τ )〉 dτ.

That is, we have an energy balance. The technique, clearly, can be applied to a wide

range of obstacle problems where the contact conditions are applied to a part of the

boundary of the domain of the governing partial differential equation.
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