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Abstract. We develop an analytical approach to study the wave properties of an

elastic half-space subjected to harmonic vibrations applied on its free surface by a periodic

array of rigid punches. Contrary to previous investigations, it is assumed that any

neighbouring pair of these oscillates with a (common) phase shift, thus implying rather

specific behaviours of the structure. Starting from integral equations for the contact

stress and representation formulas for the wave field in both the anti-plane and in-plane

problems, suitable mild approximations on the kernels allow analytical solutions of some

related (auxiliary) integral equations in a given range of (not too high) frequency.

The explicit formulas thus obtained for the wave field are reflected through some

figures and enable us to investigate the energetic properties of the structure with respect

to different phase shifts. A direct numerical solution of the original integral equations

confirms the precision of the analytical solution.

1. Introduction. As is well known, the transfer of force or energy from one elastic

body to another is a problem of great relevance in both mechanical and civil engineering,

where the theory and the practice of Classical Elasticity are deeply involved. Nowadays,

one of the most important applications is probably connected with certain problems

arising in Applied Geophysics, more precisely in the study of seismic vibrations for pro-

tection of the building foundations, and in the ground exploration activities for geological

(mining) research [1, 2].

As an example of the latter topic (in addition to other methods), the researchers used

to apply a vibrator on the ground surface to generate a certain structure of waves inside

the earth, in order to evaluate the mechanical properties of soils and/or discover expected

deposits of coal, oil or natural gases. Initially, one massive vibrator (so-called punch)
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was used for this purpose; however, some recent results (reflected in numerous patents;

see, e.g., [3]–[5]) seem to show that the efficiency of energy transmission into the soil can

be improved by using several punches vibrating simultaneously. Actually, it comes out

from the practice that multiple sources and receiver arrays provide a good technique for

high-resolution results [6]; this can be explained by noting that in such a case one can

arrange an optimal control of the frequency, amplitude or phase distribution along the

punches’ array, thus achieving the greatest efficiency from such systems in energy and

resolution.

Crucial for these results can be a suitable phase shift between adjacent vibrators.

In a previous paper [7], we studied the wave propagation through an elastic half-space

originated by a periodic distribution of rigid (identical) punches vibrating above its free

surface in the case of a null phase shift, namely, when all punches oscillate with the same

phase (in addition to the same amplitude and frequency); in this paper, we aim to treat

the case of a common phase shift between any pair of adjacent punches, which, as will

be clear from the results obtained, implies very interesting energetic properties of the

vibrating structure.

After recalling the formulation of both the anti-plane and in-plane problems in this

context (Section 2), we work out the integral equations and representation formulas

in which such problems are reflected for an arbitrary phase shift (Section 3). Then,

by selecting suitable ranges of frequency according to the given phase shift, we will

reduce the problems to some integral equations which are independent of frequency and

arise from mild approximations of the original kernels valid in those ranges (Section

4). Such (auxiliary) integral equations are solved analytically (Section 5), so that an

explicit representation, with respect to frequency, can be set up for the wave field in all

the considered cases (Section 6). In the final Section 7, the peculiar properties of the

structure will be pointed out and discussed, by also looking at some graphs in which

the analytical results can be reflected for concrete values of the physical and geometric

parameters. Parallel to this approach, a direct numerical method will be applied to the

original (exact) integral equations in order to control the validity of the (approximate)

analytical solution in the given frequency ranges.

2. Formulation of the anti-plane and in-plane problems. Reduction to in-

tegral equations. Let us reconsider the oscillating structure treated in [7]: we have

an infinite, periodic distribution of rigid coplanar punches lying over the free surface

of an elastic half-space y ≥ 0. The punches can vibrate harmonically with given am-

plitude, frequency and (possibly different) phases, thus generating a wave propagation

through the half-space; such punches are infinitely long (in the z−direction), 2b is the

common width of their bases and 2a the period of the array (a > b). If we denote by

S × {−∞ < z < +∞} the total contact area between the punches and the half-space

surface, in the (geometrically) periodic problem we are treating it follows that

S =
+∞⋃

n=−∞
(−b + 2an, b + 2an). (2.1)

Figure 1 shows the section of the structure with (any) normal plane xy.
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Fig. 1. A periodic array of rigid punches (of width 2b) vibrating
above the free surface of an elastic half-space. The period is 2a.

In the anti-plane problem, we assume that each punch is perfectly joined with the

half-space, and the applied forces are also directed along the z−axis. In the in-plane

problem, we assume that the contact between the punch and the half-space is frictionless,

and the applied forces are directed along the y−axis, namely, normally onto the punches.

In both cases, this clearly implies a displacement of given amplitude at y = 0 (in the

contact zones), which will be involved as a boundary datum in our problems.

Of course, if ω is the (angular) frequency of the harmonic applied forces, the linear

model here adopted implies that time dependence is harmonic with the same ω through-

out the whole structure; thus, in the sequel the common factor e−iωt should be understood

in all field variables.

By classical results of Elasticity Theory [7, 8], the anti-plane (scalar) problem in the

present context can be reduced to an integral equation and a representation formula, as

follows:

∫

S

τ (ξ)

[∫ +∞

−∞

e−iα(x−ξ)

√
α2 − k2

dα

]
dξ = −2πμ w0 , x ∈ S; (2.2)

w(x, y) = − 1

2πμ

∫

S

τ (ξ)

[∫ +∞

−∞

e−
√
α2−k2y

√
α2 − k2

e−iα(x−ξ) dα

]
dξ , y ≥ 0. (2.3)

In such relations, we use the following notation:

k is the transverse wave number, namely k = ω
√

ρ/μ, where ρ and μ are the mass

density and shear modulus of the elastic material in the half-space, respectively.

w is the stationary wave field, namely w(x, y) = uz(x, y, t) eiωt, where uz is the out-

of-plane displacement component (only non-null and clearly independent of z); w0 =

w(x, 0), x ∈ S, denotes the common amplitude of the (horizontal) punches’ vibration.
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τ is the tangential stress over the half-space surface, namely τ (x) ≡ μ
∂w(x, y)

∂y

∣∣∣∣
y=0

,

x ∈ S (of course, τ = 0 outside S).

Along parallel lines, the in-plane (vector) problem can be reduced to the following

integral equation and representation formulas:

∫

S

σ(ξ)

[∫ +∞

−∞

√
α2 − k2

1

Δ(α)
e−iα(x−ξ) dα

]
dξ =

2πμ

k2
2

u0 , x ∈ S; (2.4)

ux(x, y) =
i

2πμ

∫

S

σ(ξ)

{∫ +∞

−∞

α

Δ(α)

[
(k2

2 − 2α2) e−
√

α2−k2
1y

+ 2
√

α2 − k2
1

√
α2 − k2

2 e−
√

α2−k2
2y

]
e−iα(x−ξ) dα

}
dξ , y ≥ 0,

(2.5a)

uy(x, y) =
1

2πμ

∫

S

σ(ξ)

{∫ +∞

−∞

√
α2 − k2

1

Δ(α)

[
(k2

2 − 2α2) e−
√

α2−k2
1y

+ 2α2 e−
√

α2−k2
2y

]
e−iα(x−ξ) dα

}
dξ , y ≥ 0.

(2.5b)

In such relations, we define:

k1 and k2 are the longitudinal and transverse wave numbers, namely k1=ω
√

ρ/(λ+2μ),

k2 = ω
√

ρ/μ (> k1), where λ and μ are the Lamé moduli of the elastic material (ρ, μ as

before).

Δ(α) is a pertinent Rayleigh function, namely

Δ(α) =
(
2α2 − k2

2

)2 − 4α2
√

α2 − k2
1

√
α2 − k2

2 .

ux and uy are the components of the stationary displacement field (only non-null and

independent of z); u0 = uy(x, 0), x ∈ S, denotes the common amplitude of the (vertical)

punches’ vibration.

σ is the normal stress over the half-space surface, namely σ(x) ≡ λ
∂ux(x, y)

∂x

∣∣∣∣
y=0

+

(λ + 2μ)
∂uy(x, y)

∂y

∣∣∣∣
y=0

, x ∈ S (of course, σ = 0 outside S).

Once having resolved the integral equations for τ or σ, the representation formulas

can be used to give the structure of the wave field throughout the elastic half-space.

3. The case of a phase shift between adjacent punches in the periodic dis-

tribution. We now focus our attention on the integral equations stated in the previous

section, which, as they stand, are clearly valid for an arbitrary contact area S. Let us

take into account that S is given as in (2.1), and assume that, by a suitable choice of

the applied forces, there is a phase shift ε ∈ [0, 1) between the vibration of two adjacent

punches: we mean by this that τ (or σ) in ξ + 2an is equal to exp(2iπεn)× τ (or σ) in

ξ. Note that, if ε is a rational number, say ε = p/q, the problem is fully periodic and

the period remains 2aq; on the contrary, if ε is irrational, the problem is not periodic (or

better, is periodic only from the geometrical point of view).
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As a consequence, looking at the integrals over S contained in (2.2)–(2.5), we have

∫

S

(
τ (ξ)

σ(ξ)

)
eiαξ dξ =

+∞∑

n=−∞

∫ b+2an

−b+2an

(
τ (ξ)

σ(ξ)

)
eiαξ dξ

=
+∞∑

n=−∞
e2iπεn

∫ b

−b

(
τ (ξ)

σ(ξ)

)
eiα(ξ+2an) dξ

=
π

a

+∞∑

m=−∞
δ[α − π(m − ε)/a]

∫ b

−b

(
τ (ξ)

σ(ξ)

)
eiαξ dξ , (3.1)

where the following formula (implied by well-known properties of the Dirac function δ;

see [9]) has been used:

+∞∑

n=−∞
e2in(πε+aα) =

π

a

+∞∑

m=−∞
δ[α − π(m − ε)/a]. (3.2)

Thus, the integral equation (2.2) and the representation formula (2.3) for the anti-plane

problem can be rewritten as follows:
∫ b

−b

Kτ (x − ξ) τ (ξ) dξ = Cτ , x ∈ (−b, b), (3.3)

w(x, y) = − 1

2aμ

+∞∑

m=−∞

e−qτmy

qτm

(∫ b

−b

τ (ξ) eiπ(m−ε)ξ/a dξ

)
e−iπ(m−ε)x/a, y ≥ 0, (3.4)

where the kernel Kτ is given by

Kτ (x) =

+∞∑

m=−∞

1

aqτm
e−iπ(m−ε)x/a, (3.5a)

and we put

Cτ = −2μ w0, qτm =

√
[π(m − ε)/a]

2 − k2. (3.5b)

Similarly, (2.4) and (2.5) for the in-plane problem become
∫ b

−b

Kσ(x − ξ) τ (ξ) dξ = Cσ, x ∈ (−b, b), (3.6)

ux(x, y) =
i

2aμ

+∞∑

m=−∞

π(m − ε)

aΔm

{[
k2
2 − 2

[
π(m − ε)

a

]2]
e−qσmy + 2qσmrσm e−rσmy

}

×
(∫ b

−b

σ(ξ) eiπ(m−ε)ξ/a dξ

)
e−iπ(m−ε)x/a, y ≥ 0, (3.7a)

uy(x, y) =
1

2aμ

+∞∑

m=−∞

qσm
Δm

{[
k2
2 − 2

[
π(m − ε)

a

]2]
e−qσmy + 2

[
π(m − ε)

a

]2
e−rσmy

}

×
(∫ b

−b

σ(ξ) eiπ(m−ε)ξ/a dξ

)
e−iπ(m−ε)x/a, y ≥ 0, (3.7b)
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where the kernel Kσ is given by

Kσ(x) =
+∞∑

m=−∞

qσm
aΔm

e−iπ(m−ε)x/a, (3.8a)

and we put

Cσ = 2μ u0/k2
2 , qσm =

√
[π(m − ε)/a]2 − k2

1 , rσm =

√
[π(m − ε)/a]2 − k2

2 ,

Δm = Δ(π(m − ε)/a) =
{
2 [π(m − ε)/a]

2 − k2
2

}2

− 4 [π(m − ε)/a]
2
qσmrσm. (3.8b)

When real, the root-squares in (3.5b), (3.8b) will be taken as positive.

4. Approximation for explicit solutions. Of course, the above integral equations

could be directly submitted to classical numerical algorithms for arbitrary values of

the involved parameters (and actually this has been done for the sake of comparison).

However, in this paper we aim to remain in an analytical context, and to this end we

assume that frequency belongs to some specific ranges according to the value of the phase

shift ε ∈ (0, 1).1 In this connection, for each one of the two problems being considered,

we shall treat separately the three cases (1) ε < 1/2, (2) ε > 1/2, (3) ε = 1/2, which

may have different physical implications.

4.1. Anti-plane problem.

4.1.1. The case ε < 1/2. Let us put

ak/π < 1− ε ; (4.1)

looking at (3.5), we accept that, as a consequence, the kernel in the integral equation

(3.3) can be simplified by means of the approximation

aqτm � π|m − ε| ∀m 	= 0. (4.2)

It is worth remarking that this is not a low-frequency approximation, since, for example,

at one third of the range (4.1), it implies at worst (for qτ1 ) :
√
1− 1/9 = 0.94 � 1. The

value of qτm for m = 0 is taken to be exact. In this connection, we note that the wave

number qτ0 is imaginary for ak/π in the range (ε, 1− ε), being positive for ak/π less than

ε. Equation (3.4) thus implies non-decaying (far-field) wave propagation (of the mode

with order zero) only in that range (of course, for ak/π > 1 − ε further propagating

modes arise).

Thus, from (3.5a) we get

Kτ (x − ξ) =

∞∑

m=−∞

1

aqτm
e−iπ(m−ε)(x−ξ)/a

= eiπε(x−ξ)/a ×

⎡

⎣ 1

aqτ0
+
∑

m �=0

1

aqτm
e−iπm(x−ξ)/a

⎤

⎦

= eiπε(x−ξ)/a ×
[

1

aqτ0
+

1

π
Kε(x − ξ)

]
, (4.3)

1The case ε = 0, in which all punches vibrate with the same phase, has been treated in [7].
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where

Kε(x) ≡
∑

m �=0

e−iπmx/a

|m − ε| (4.4)

is a kernel independent of frequency.

By introducing the new unknown

ϕε(ξ) ≡ e−iπεξ/a τ (ξ), (4.5)

it is not difficult to deduce, starting from (3.3), the following integral equation for such

a function (|x| < b) :

1

π

∫ b

−b

Kε(x − ξ)ϕε(ξ)dξ = Cτ e−iπεx/a − 1

aqτ0
Φε, (4.6a)

where

Φε =

∫ b

−b

ϕε(ξ) dξ (4.6b)

is an unknown constant.

Now, it is clear that, if h0(ξ), hε(ξ) are two functions which solve the auxiliary integral

equations

1

π

∫ b

−b

Kε(x − ξ)

(
h0(ξ)

hε(ξ)

)
dξ =

(
1

e−iπεx/a

)
, x ∈ (−b, b), (4.7)

fully independent of frequency, then, by linearity, the solution of (4.6) can be constructed

as

ϕε(x) = − 1

aqτ0
Φε h0(x) + Cτhε(x) (4.8)

from which τ (x) is rapidly deduced.2 The unknown constant above can be obtained by

integrating (4.8) in (−b, b); we get

Φε =

(
1 +

1

aqτ0
H0

)−1

CτHε , (4.9)

where new constants H (free of frequency) are given by

H0 =

∫ b

−b

h0(x)dx, Hε =

∫ b

−b

hε(x)dx (4.10)

and can be calculated after the equations (4.7) have been solved.

4.1.2. The case ε > 1/2. Let us put

ak/π < ε ; (4.11)

looking at (3.5a) and (3.5b), we accept that, as a consequence, the kernel can be simplified

by the approximation

aqτm � π|m − ε| ∀m 	= 1. (4.12)

A remark similar to that after (4.2) applies (for qτ0 ). The value of qτm for m = 1 is taken to

be exact. In this connection, note that the wave number qτ1 is imaginary for ak/π in the

2Note however that in the integral of (3.4), the function ϕ can directly appear.
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range (1− ε, ε), being positive for ak/π less than 1− ε. Equation (3.4) thus implies far-

field propagation (of the mode with order 1) only in that range (of course, for ak/π > ε,

further propagating modes arise).

Thus, from (3.5a) we get

Kτ (x − ξ) =

∞∑

m=−∞

1

aqτm
e−iπ(m−ε)(x−ξ)/a

= eiπ(ε−1)(x−ξ)/a ×

⎡

⎣ 1

aqτ1
+
∑

m �=1

1

aqτm
e−iπ(m−1)(x−ξ)/a

⎤

⎦

= eiπ(ε−1)(x−ξ)/a ×
[

1

aqτ1
+

1

π
K ′

ε(x − ξ)

]
, (4.13)

where

K ′
ε(x) ≡

∑

m �=1

e−iπ(m−1)x/a

|m − ε| =
∑

m �=0

e−iπmx/a

|m − (ε − 1)| ≡ Kε−1(x) (4.14)

is a kernel independent of frequency. It is now clear that the subsequent development

of this case can be obtained from the previous one by the only substitution ε → ε − 1

in all formulas (after (4.4)). In this connection, we will denote by ĥ0(ξ) and ĥε−1(ξ)

the solutions of the auxiliary equations (4.7) with ε − 1 instead of ε (in the kernel and

right-hand side), and by Ĥ0, Ĥε−1 the corresponding integrals over (−b, b).

4.1.3. The case ε = 1/2. This is a more particular case, when each pair of adjacent

punches vibrates in anti-phase. Let us put

ak/π < 3/2 ; (4.15)

looking at (3.5a) and (3.5b), we accept that, as a consequence, the kernel can be simplified

by the approximation

aqτm � π|m − 1/2| ∀m 	= 0, 1. (4.16)

A remark similar to that after (4.2) applies (for qτ2 = qτ−1). The value of qτm for m = 0, 1 is

taken to be exact. In this connection, note that the wave number qτ0 (= qτ1 ) is imaginary

for ak/π in the range (1/2, 3/2), being positive for ak/π less than 1/2. Equation (3.4)

thus implies far-field propagation (of the modes with order 0,1 which have the same

dependence on y) only in that range (of course, for ak/π > 3/2 further propagating

modes arise).

Thus, from (3.5a) we get

Kτ (x − ξ) =
∑∞

m=−∞
1

aqτm
e−iπ(m−1/2)(x−ξ)/a

= ei(π/2)(x−ξ)/a ×
[

1

aqτ0
(1 + e−iπ(x−ξ)/a) +

∑
m �=0,1

1

aqτm
e−iπm(x−ξ)/a

]

= ei(π/2)(x−ξ)/a ×
[

1

aqτ0
+

(
1

aqτ0
− 2

π

)
e−iπ(x−ξ)/a +

1

π
K1/2(x − ξ)

]
,

(4.17)
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where

K1/2(x) ≡
∑

m �=0

e−iπmx/a

|m − 1/2| (4.18)

is a kernel independent of frequency.

By introducing the new unknowns,

ϕ±(ξ) ≡ e±i(π/2)ξ/a τ (ξ), (4.19)

it is not difficult to deduce, starting from (3.3), the following integral equation involving

such functions (|x| < b) :

1

π

∫ b

−b

K1/2(x − ξ)ϕ−(ξ) dξ = Cτ e−i(π/2)x/a

− 1

aqτ0
Φ− +

(
2

π
− 1

aqτ0

)
Φ+ e−iπx/a, (4.20a)

where

Φ± =

∫ b

−b

ϕ±(ξ) dξ (4.20b)

are unknown constants.

Now, it is clear that, if h̃0(ξ), h̃1/2(ξ), h̃1(ξ) are three functions which solve the aux-

iliary integral equations

1

π

∫ b

−b

K1/2(x − ξ)

⎛

⎝
h̃0(ξ)

h̃1/2(ξ)

h̃1(ξ)

⎞

⎠ dξ =

⎛

⎝
1

e−i(π/2)x/a

e−iπx/a

⎞

⎠ , x ∈ (−b, b), (4.21)

fully independent on frequency, then, by linearity, the solution of (4.20) can be con-

structed as

ϕ−(x) = − 1

aqτ0
Φ− h̃0(x) + Cτ h̃1/2(x) +

(
2

π
− 1

aqτ0

)
Φ+ h̃1(x), (4.22)

from which τ (x) is rapidly deduced (recall footnote 2). The unknown constants Φ± can

be obtained by twice integrating (4.22) in (−b, b), as it is and after multiplying by eiπx/a;

we get an algebraic linear system, as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 +

1

aqτ0
H̃0

)
Φ− +

(
1

aqτ0
− 2

π

)
H̃1 Φ+ = Cτ H̃1/2 ,

1

aqτ0
H̃1

0 Φ− +

[
1 +

(
1

aqτ0
− 2

π

)
H̃1

1

]
Φ+ = Cτ H̃1

1/2 ,

(4.23)

where new constants H̃ (free of frequency) are given by

H̃λ
μ =

∫ b

−b

h̃μ(x) eiλπx/a dx (μ = 0, 1/2, 1, λ = 0, 1; H̃0
μ ≡ H̃μ) (4.24)

and can be calculated after the equations (4.21) have been solved.
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4.2. In-plane problem.

4.2.1. The case ε < 1/2. Let us put

ak2/π < 1− ε ; (4.25)

looking at (3.8a) and (3.8b), we accept that, as a consequence, the kernel in the integral

equation (3.6) can be simplified by means of the approximations

aqσm � arσm � π|m − ε|, Δm � 2

(
π(m − ε)

a

)2

(k2
1 − k2

2) ∀m 	= 0. (4.26)

A remark similar to that after (4.2) applies (for rσ1 ). The values of all parameters above

for m = 0 are taken to be exact. In this connection, we note that the wave number rσ0 is

imaginary for ak2/π in the range (ε, 1− ε), being positive, along with qσ0 , for ak2/π less

than ε. Equations (3.7a) and (3.7b) thus imply far-field propagation (of the mode with

order zero) only in that range (of course, for ak2/π > 1 − ε further propagating modes

arise).

Thus, from (3.8a) we get

Kσ(x − ξ) =

∞∑

m=−∞

qσm
aΔm

e−iπ(m−ε)(x−ξ)/a

= eiπε(x−ξ)/a ×

⎡

⎣ qσ0
aΔ0

+
∑

m �=0

qσm
aΔm

e−iπm(x−ξ)/a

⎤

⎦

= eiπε(x−ξ)/a ×
[

qσ0
aΔ0

+
1/(2π)

k2
1 − k2

2

Kε(x − ξ)

]
, (4.27)

where Kε(x) (free of frequency) is given by (4.4). The subsequent development is anal-

ogous to that shown for the anti-plane problem in this case: Equations (4.5), (4.6a),

(4.6b), (4.8) and (4.9) are respectively replaced by:

ψε(ξ) ≡ e−iπεξ/a σ(ξ), (4.28)

1

π

∫ b

−b

Kε(x − ξ)ψε(ξ) dξ = 2(k2
1 − k2

2)C
σe−iπεx/a − 2(k2

1 − k2
2)

qσ0
aΔ0

Ψε, (4.29a)

Ψε =

∫ b

−b

ψε(ξ) dξ, (4.29b)

ψε(x) = −2(k2
1 − k2

2)
qσ0

aΔ0
Ψε h0(x) + 2(k2

1 − k2
2)C

σ hε(x) , (4.30)

Ψε =

[
1

2(k2
1 − k2

2)
+

qσ0
aΔ0

H0

]−1

CσHε. (4.31)

(Of course, (4.7) and (4.10) apply unaltered.)

4.2.2. The case ε > 1/2. Let us put

ak2/π < ε ; (4.32)
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looking at (3.8a) and (3.8b), we accept that, as a consequence, the kernel can be simplified

by the approximations

aqσm � arσm � π|m − ε|, Δm � 2

(
π(m − ε)

a

)2

(k2
1 − k2

2) ∀m 	= 1. (4.33)

A remark similar to that after (4.2) applies (for rσ0 ). The values of all parameters above

for m = 1 are taken to be exact. In this connection, note that the wave number rσ1 is

imaginary for ak2/π in the range (1− ε, ε), being positive, along with qσ1 , for ak2/π less

than 1 − ε. Equations (3.7a) and (3.7b) thus imply far-field propagation (of the mode

with order 1) only in that range (of course, for ak2/π > ε further propagating modes

arise).

Thus, from (3.8a) we get

Kσ(x − ξ) =

∞∑

m=−∞

qσm
aΔm

e−iπ(m−ε)(x−ξ)/a

= eiπ(ε−1)(x−ξ)/a ×

⎡

⎣ qσ1
aΔ1

+
∑

m �=1

qσm
aΔm

e−iπ(m−1)(x−ξ)/a

⎤

⎦

= eiπ(ε−1)(x−ξ)/a ×
[

qσ1
aΔ1

+
1/(2π)

k2
1 − k2

2

K ′
ε(x − ξ)

]
, (4.34)

where K ′
ε(x) = Kε−1(x) (free of frequency) is given by (4.14). It is now clear that the

subsequent development of this case can be obtained from the previous one by the only

substitution ε → ε − 1 in all formulas (4.28)–(4.31) (along with the equations (4.7), for

which recall the final remark of subsection 4.1.2).

4.2.3. The case ε = 1/2. As already noted, this is a more particular case (when each

pair of adjacent punches vibrates in anti-phase). Let us put

ak2/π < 3/2 ; (4.35)

looking at (3.8a) and (3.8b), we accept that, as a consequence, the kernel can be simplified

by the approximations

aqσm � arσm � π|m − 1/2|, Δm � 2

(
π(m − 1/2)

a

)2

(k2
1 − k2

2) ∀m 	= 0, 1. (4.36)

A remark similar to that after (4.2) applies (for rσ2 = rσ−1). The values of all parameters

above for m = 0, 1 are taken to be exact. In this connection, note that the wave number

rσ0 (= rσ1 ) is imaginary for ak2/π in the range (1/2, 3/2), being positive, along with qσ0 (=

qσ1 ), for ak2/π less than 1/2. Equations (3.7a) and (3.7b) thus imply far-field propagation

(of the modes with order 0,1 which have the same dependence on y) only in that range

(of course, for ak2/π > 3/2 further propagating modes arise).
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Thus, from (3.8a) we get

Kσ(x − ξ) =
∑∞

m=−∞
qσm

aΔm
e−iπ(m−1/2)(x−ξ)/a

= ei(π/2)(x−ξ)/a ×
[

qσ0
aΔ0

(1 + e−iπ(x−ξ)/a) +
∑

m �=0,1

qσm
aΔm

e−iπm(x−ξ)/a

]

= ei(π/2)(x−ξ)/a ×
[

qσ0
aΔ0

+

(
qσ0

aΔ0
− 1/π

k2
1 − k2

2

)
e−iπ(x−ξ)/a +

1/(2π)

k2
1 − k2

2

K1/2(x − ξ)

]
,

(4.37)

where K1/2(x) (free of frequency) is given by (4.18). The subsequent development is

analogous to that shown for the anti-plane problem in this case: Equations (4.19), (4.20a),

(4.20b), (4.22) and (4.23) are respectively replaced by:

ψ±(ξ) ≡ e±i(π/2)ξ/a σ(ξ), (4.38)

1

π

∫ b

−b

K1/2(x − ξ)ψ−(ξ) dξ = 2(k2
1 − k2

2)C
σ e−i(π/2)x/a

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψ− +

[
2

π
− 2(k2

1 − k2
2)

qσ0
aΔ0

]
Ψ+ e−iπx/a, (4.39a)

Ψ± =

∫ b

−b

ψ±(ξ) dξ, (4.39b)

ψ−(x) = −2(k2
1 − k2

2)
qσ0

aΔ0
Ψ− h̃0(x) + 2(k2

1 − k2
2)C

σ h̃1/2(x)

+

[
2

π
− 2(k2

1 − k2
2)

qσ0
aΔ0

]
Ψ+ h̃1(x),

(4.40)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1 + 2(k2

1 − k2
2)

qσ0
aΔ0

H̃0

]
Ψ− +

[
2(k2

1 − k2
2)

qσ0
aΔ0

− 2

π

]
H̃1 Ψ+ = 2(k2

1 − k2
2)C

σH̃1/2,

2(k2
1 − k2

2)
qσ0

aΔ0
H̃1

0 Ψ− +

{
1 +

[
2(k2

1 − k2
2)

qσ0
aΔ0

− 2

π

]
H̃1

1

}
Ψ+ = 2(k2

1 − k2
2)C

σH̃1
1/2.

(4.41)

(Of course, (4.21) and (4.24) apply unaltered.)

5. Analytical treatment of the basic integral equations. Let us rewrite all the

auxiliary integral equations of the previous section in the general form:

1

π

∫ b

−b

Kη(x − ξ)h(ξ)dξ = f(x) , |x| ≤ b , (5.1a)

where

Kη(x) =
∑

m �=0

e−iπmx/a

|m − η| . (5.1b)

By η we mean ε when it is ε ≤ 1/2, or ε− 1 when ε > 1/2; so, η can be negative, but

its modulus never exceeds 1/2. Of course, f(x) and h(ξ) are also intended to depend on

the parameter η.
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By applying the operator D(·) = −(a/iπ)d/dx(·) − ηI(·), where I is the identical

operator, (5.1a) and (5.1b) become

∫ b

−b

∑

m �=0

sign(m − ε)e−iπm(x−ξ)/ah(ξ)dξ = (Df)(x) , |x| ≤ b ; (5.2)

since sign(m − η) = signm, we have

∑

m �=0

sign(m − η)e−iπm(x−ξ)/a =
∞∑

m=1

e−iπm(x−ξ)/a −
∞∑

m=1

eiπm(x−ξ)/a

=
eiπx/a + eiπξ/a

eiπx/a − eiπξ/a
.

(5.3)

By the change of variables

z = eiπx/a, τ = eiπξ/a, dξ =
a

iπ

dτ

τ
, (5.4)

(5.2) is transformed into

a

iπ

∫ β

α

h(τ )

τ

z + τ

z − τ
dτ = π(Df)(z) , z ∈ L(α, β), (5.5)

where α = exp(−iπb/a), β = exp(iπb/a), the contour L(α, β) =
{
z = eiφ : |φ| < πb/a

}

is an open part of the unit circle in the complex plane, and the symbol
∫ β

α
(·) means

(henceforth) the integral over such a contour. For simplicity, we use the same symbol for

the functions h and Df when passing to the complex variables.

Since
z + τ

(z − τ )τ
=

1

τ
+

2

z − τ
, (5.5) is equivalent to the following Cauchy-type singular

integral equation:

1

iπ

∫ β

α

h(τ )

τ − z
dτ =

H

2a
− π

2a
(Df)(z) ≡ F (z) , z ∈ L(α, β) , (5.6a)

where

H =
a

iπ

∫ β

α

h(τ )

τ
dτ =

∫ b

−b

h(ξ)dξ (5.6b)

is a (still unknown) constant.

The solution to (5.6a) and (5.6b) can be given as [10]

h(z) =
1

iπ
√
(z − α)(β − z)

[
C +

∫ β

α

F (τ )
√
(τ − α)(β − τ )

τ − z
dτ

]
, z ∈ L(α, β) , (5.7)

where C is an arbitrary constant.

Now, recalling the right-hand terms in the auxiliary equations, let us firstly put f(x) =

1. This trivially implies that

(Df)(x) = (Df)(z) = −η and F (z) =
H + πη

2a
, (5.8)
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so that the integral in brackets above holds in this case:

∫ β

α

F (τ )
√
(τ − α)(β − τ )

τ − z
dτ =

H + πη

2a

∫ β

α

√
(τ − α)(β − τ )

τ − z
dτ

=
H + πη

2a
π

(
α + β

2
− z

)
, z ∈ L(α, β) ,

(5.9)

where the tabular integral [9]

∫ β

α

√
(τ − α)(β − τ )

τ − z
dτ = π

(
α + β

2
− z

)

has been used. Hence, solution (5.7) becomes

h(z) =
C + π(α + β) (H + πη)/(4a)

iπ
√
(z − α)(β − z)

− (H + πη) z

2ai
√
(z − α)(β − z)

, z ∈ L(α, β) , (5.10)

in which two constants (H and C) remain to be determined. Substitution of h from

(5.10) into (5.6b) gives a first relation between such constants, as follows:

H =
aC + π(α + β) (H + πη)/4

−π2

∫ β

α

dz

z
√

(z − α)(β − z)
+

H + πη

2π

∫ β

α

dz√
(z − α)(β − z)

= −aC/π − (H + πη)(α + β − 2)/4 , (5.11)

where the tabular integrals [9]

Jk =

∫ β

α

zk dz√
(z − α)(β − z)

= π2(−1)k
k∑


=0

α
βk−


�!(k − �)! Γ
(
1
2 − �

)
Γ
(
1
2 + � − k

) ,

J−k = Jk−1 , k = 0, 1, 2, ... (5.12)

have been used (here for only k = 0,−1 : J0 = J−1 = π; Γ(z) ≡
∫∞
0

e−t tz−1dt is the

(Euler’s) Gamma function).

Another relation can be obtained by calculating the original integral equation (5.1) at

any particular value of x in (−b, b) (for instance, at x = 0), then passing to the complex

variables (5.4) and finally substituting h from (5.10). We get

a

iπ2

∑

m �=0

1

|m − η|

∫ β

α

τm−1h(τ ) dτ

=
a

iπ2

∑

m �=0

1

|m − η|

{[
C + π(α + β) (H + πη)/(4a)

iπ

]
Jm−1 −

(H + πη)

2ai
Jm

}
= 1;

(5.13)

on putting
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S1(η) =
∑

m �=0

Jm−1

|m − η| , S2(η) =
∑

m �=0

Jm

|m − η| ,
3 (5.14a)

we finally have

[
aC

π
+

H + πη

4
(α + β)

]
S1(η) =

H + πη

2
S2(η)− π2. (5.15)

Solving the linear system (5.11), (5.15) gives the following expressions:

H =
2π2 + πη [S1(η)− S2(η)]

S1(η) + S2(η)
,

aC

π
=

πη

4
(2− α − β)− H

4
(2 + α + β), (5.16)

by means of which (5.10) is fully explicit.

Let us now put f(x) = exp(−iπηx/a) (η = ε ≤ 1/2 or η = ε−1, ε > 1/2). It follows

that

(Df)(x) = (Df)(z) = 0 and F (z) =
H

2a
, (5.17)

so that

∫ β

α

F (τ )
√
(τ − α)(β − τ )

τ − z
dτ =

πH

2a

(
α + β

2
− z

)
, z ∈ L(α, β) . (5.18)

As a consequence, (5.10) and (5.16) are replaced by

h(z) =
C + π(α + β)H/(4a)

iπ
√
(z − α)(β − z)

− H z

2ai
√
(z − α)(β − z)

, z ∈ L(α, β) ; (5.19)

H =
2π2

S1(η) + S2(η)
,

aC

π
= −H

4
(2 + α + β). (5.20)

Finally, let us put f(x) = exp(−iπx/a), which is the last right-hand term to be

concerned with for η = 1/2 (see (4.21)3). It follows that

(Df)(x) =
1

2
e−iπx/a, (Df)(z) =

1

2z
and F (z) =

H

2a
− π

4az
, (5.21)

so that

∫ β

α

F (τ )
√
(τ − α)(β − τ )

τ − z
dτ =

πH

2a

(
α + β

2
− z

)
− π

4a

∫ β

α

√
(τ − α)(β − τ )

τ (τ − z)
dτ

=
πH

2a

(
α + β

2
− z

)
− π2

4a

1− z

z
, z ∈ L(α, β) , (5.22)

where the tabular integral [9]

∫ β

α

√
(τ − α)(β − τ )

τ
dτ = π

(
α + β

2
− 1

)

3Note that S1,2(−η) = S2,1(η).
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has been used. As a consequence, the solution of (4.21)3 is given (in the complex plane)

by

h̃1(x) ∼ h̃1(z) =

{[
C

iπ
+

H

4ai
(α + β) +

π

4ai

]
− H

2ai
z − π

4ai

1

z

}
1√

(z − α)(β − z)
,

z ∈ L(α, β), (5.23a)

H =

2π2 − π

2

[
S3(η)−

α + β

2
S1(η)

]

S1(η) + S2(η)
≡ H̃1,

C =
π

a

[
π

4

(
α + β

2
− 1

)
−
(

α + β

4
+

1

2

)
H

]
≡ C̃1, (5.23b)

where

S3(η) =
∑

m �=0

Jm−2

|m − η| . (5.14b)

6. Explicit representations of the wave field. Recalling the terminology used in

Section 4, we can thus write

h0(x) ∼ h0(z) =
C + π(α + β) (H + πη)/(4a)

iπ
√
(z − α)(β − z)

− (H + πη) z

2ai
√
(z − α)(β − z)

, z ∈ L(α, β) ,

(6.1a)

H =
2π2 + πη [S1(η)− S2(η)]

S1(η) + S2(η)
≡ H0, (6.1b)

C =
π

a

[
πη

4
(2− α − β)− H

4
(2 + α + β)

]
≡ C0; (6.1c)

hε(x) ∼ hε(z) =
C + π(α + β)H/(4a)

iπ
√
(z − α)(β − z)

− H z

2ai
√
(z − α)(β − z)

, z ∈ L(α, β) , (6.2a)

H =
2π2

S1(η) + S2(η)
≡ Hε, C = −π

a

[
H

4
(2 + α + β)

]
≡ Cε , (6.2b)

with η = ε (ε < 1/2) throughout where it appears on the right-hand sides.

ĥ0(x) ∼ ĥ0(z) and ĥε−1(x) ∼ ĥε−1(z) are equal to h0(z) and hε(z) above,

respectively, with η = ε − 1 (ε > 1/2) throughout where it appears; in this case, H ≡
Ĥ0, C ≡ Ĉ0, and H ≡ Ĥε−1, C ≡ Ĉε−1, respectively.

h̃0(x) ∼ h̃0(z) and h̃1/2(x) ∼ h̃1/2(z) are equal to h0(z) and hε(z) above,

respectively, with η = ε = 1/2 throughout where it appears; in this case, H ≡ H̃0, C ≡
C̃0 and H ≡ H̃1/2, C ≡ C̃1/2, respectively.

h̃1(x) ∼ h̃1(z) is directly given by (5.23a) and (5.23b) (along with the corresponding

constants H̃1, C̃1).

Now, let us go back to the representation formulas (3.4), (3.7) for the wave fields.

In them, the integrals in brackets are calculated analytically by means of all previous

formulas, as follows (we treat simultaneously both the anti-plane and in-plane problems).
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For ε < 1/2, we have (starting from (4.8) and (4.30) and using (6.1) and (6.2)):

∫ b

−b

(
τ (ξ)

σ(ξ)

)
eiπ(m−ε)ξ/a dξ =

∫ b

−b

(
ϕε(ξ)

ψε(ξ)

)
eiπmξ/a dξ

=

⎛

⎜⎜⎝
− 1

aqτ0
Φε

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψε

⎞

⎟⎟⎠

∫ b

−b

h0(ξ) eiπmξ/a dξ +

(
Cτ

2(k2
1 − k2

2)C
σ

)∫ b

−b

hε(ξ) eiπmξ/a dξ

=
a

iπ

⎛

⎜⎜⎝
− 1

aqτ0
Φε

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψε

⎞

⎟⎟⎠
∫ β

α

h0(τ ) τm−1 dτ+
a

iπ

(
Cτ

2(k2
1 − k2

2)C
σ

)∫ β

α

hε(τ ) τm−1 dτ

=
a

iπ

⎛

⎜⎜⎝
− 1

aqτ0
Φε

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψε

⎞

⎟⎟⎠

[
πε

2ai
(Jm−1 − Jm)− H0

2ai
(Jm−1 + Jm)

]

+
a

iπ

(
Cτ

2(k2
1 − k2

2)C
σ

)[
−Hε

2ai
(Jm−1 + Jm)

]
, (6.3)

where Φε,Ψε are given by (4.9) and (4.31). The propagating mode (of order m = 0,

when ak/π or ak2/π > ε) is simply given by

w∞(x, y) = − 1

2aμqτ0
ei
√

k2−(πε/a)2 y Φε eiπεx/a, y → ∞; (6.4)

u∞
x (x, y) = − iπε

2a2μΔ0

{[
k2
2 − 2

(πε

a

)2]
e−qσ0 y + 2qσ0 rσ0 ei

√
k2
2−(πε/a)2 y

}
Ψε eiπεx/a,

y → ∞,

(6.5a)

u∞
y (x, y) =

qσ0
2aμΔ0

{[
k2
2 − 2

(πε

a

)2]
e−qσ0 y + 2

(πε

a

)2
ei
√

k2
2−(πε/a)2 y

}
Ψε eiπεx/a,

y → ∞.

(6.5b)

By a radiation condition [8], we took qτo = −i
√

k2 − (πε/a)2, rσo = −i
√

k2
2 − (πε/a)2 .4

For ε > 1/2, we have the same expressions as in (6.3) with the substitutions

ε → ε− 1, C0 → Ĉ0, H0 → Ĥ0, Cε → Ĉε−1, Hε → Ĥε−1, Jm−1 → Jm−2, Jm → Jm−1 .

The propagating mode (of order m = 1, when ak/π or ak2/π > 1− ε) is given by (6.4),

(6.5a) and (6.5b) on simply putting ε− 1 in place of ε (and Ĥ0, Ĥε−1 in place of H0, Hε

in formulas (4.9) and (4.31)).

4Regarding qσ0 , see (forthcoming) (7.3b), cases (II), (III).
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For ε = 1/2, we have (starting from (4.22) and (4.40) and using (6.1), (6.2), and

(5.23)):

∫ b

−b

(
τ (ξ)

σ(ξ)

)
eiπ(m−1/2)ξ/a dξ =

∫ b

−b

(
ϕ−(ξ)

ψ−(ξ)

)
eiπmξ/a dξ

=

⎛

⎜⎜⎝
− 1

aqτ0
Φ−

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψ−

⎞

⎟⎟⎠

∫ b

−b

h̃0(ξ) eiπmξ/a dξ +

(
Cτ

2(k2
1 − k2

2)C
σ

)∫ b

−b

h̃1/2(ξ) eiπmξ/a dξ

−

⎛

⎜⎜⎝

(
1

aqτ0
− 2

π

)
Φ+

[
2(k2

1 − k2
2)

qσ0
aΔ0

− 2

π

]
Ψ+

⎞

⎟⎟⎠

∫ b

−b

h̃1(ξ) eiπmξ/a dξ

=
a

iπ

⎛

⎜⎜⎝
− 1

aqτ0
Φ−

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψ−

⎞

⎟⎟⎠

∫ β

α

h̃0(τ ) τm−1 dτ+
a

iπ

(
Cτ

2(k2
1 − k2

2)C
σ

)∫ β

α

h̃1/2(τ ) τm−1 dτ

− a

iπ

⎛

⎜⎜⎝

(
1

aqτ0
− 2

π

)
Φ+

[
2(k2

1 − k2
2)

qσ0
aΔ0

− 2

π

]
Ψ+

⎞

⎟⎟⎠

∫ β

α

h̃1(τ ) τm−1 dτ

=
a

iπ

⎛

⎜⎜⎝
− 1

aqτ0
Φ−

−2(k2
1 − k2

2)
qσ0

aΔ0
Ψ−

⎞

⎟⎟⎠

[
π/2

2ai
(Jm−1 − Jm)− H̃0

2ai
(Jm−1 + Jm)

]

+
a

iπ

(
Cτ

2(k2
1 − k2

2)C
σ

)[
−

H̃1/2

2ai
(Jm−1 + Jm)

]

− a

iπ

⎛

⎜⎜⎝

(
1

aqτ0
− 2

π

)
Φ+

[
2(k2

1 − k2
2)

qσ0
aΔ0

− 2

π

]
Ψ+

⎞

⎟⎟⎠

[
π(α + β)/4− H̃1

2ai
Jm−1 −

H̃1

2ai
Jm − π

4ai
Jm−2

]
,

(6.6)
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where Φ±,Ψ± are given by systems (4.23) and (4.41), in which the constants H̃0, H̃1/2, H̃1

are already known, while the remaining ones are calculated as follows:

H̃1
0 =

a

iπ

∫ β

α

h̃0(τ ) dτ =
a

iπ

[
C̃0 + π(α + β)(H̃0 + π/2)/(4a)

iπ
J0 −

H̃0 + π/2

2ai
J1

]

= −a

π
C̃0 ,

H̃1
1/2 =

a

iπ

∫ β

α

h̃1/2(τ ) dτ =
a

iπ

[
C̃1/2 + π(α + β)H̃1/2/(4a)

iπ
J0 −

H̃1/2

2ai
J1

]
= −a

π
C̃1/2 ,

(6.7)

H̃1
1 =

a

iπ

∫ β

α

h̃1(τ ) dτ =
a

iπ

[
C̃1 + π(α + β)H̃1/(4a) + π2/(4a)

iπ
J0 −

H̃1

2ai
J1 −

π

4ai
J−1

]

= −a

π
C̃1 .

The propagating mode (of order m = 0, 1 when ak/π or ak2/π > 1/2) is given by

w∞(x, y) = − 1

2aμqτ0
ei
√

k2−(π/(2a))2y
(
Φ+ e−iπx/(2a) +Φ− eiπx/(2a)

)
, y → ∞; (6.8)

u∞
x (x, y) =

iπ

4a2μΔ0

{[
k2
2 − 2

( π

2a

)2]
e−qσ0 y + 2qσ0 rσ0 ei

√
k2
2−(π/(2a))2y

}

×
(
Ψ+ e−iπx/(2a) −Ψ− eiπx/(2a)

)
, y → ∞,

u∞
y (x, y) =

qσ0
2aμΔ0

{[
k2
2 − 2

( π

2a

)2]
e−qσ0 y + 2

( π

2a

)2
ei
√

k2
2−(π/(2a))2y

}

×
(
Ψ+ e−iπx/(2a) +Ψ− eiπx/(2a)

)
, y → ∞

(6.9)

(recall the remark after (6.5), along with the footnote).

As claimed, all the equations established in this section are clearly explicit with respect

to frequency.

7. Physical remarks. As said in the Introduction, the case of a phase shift in the

oscillation between adjacent punches implies very interesting (and rather specific) prop-

erties of the vibrating structure from the energy point of view. When all punches oscillate

in the same phase, namely, when ε = 0, propagating (non-decaying) waves are introduced

into the elastic medium just from the lowest non-zero frequencies; see lines 3 in Figs. 2,

3 of [7]; physically, this means that some energy can be inputted throughout the medium

even for arbitrarily small frequency.

On the contrary, when there is a certain phase shift, we see that all wave modes decay

with distance for relatively low frequency, and this means that the energy can be deeply

inputted only if the frequency is greater than a certain critical value (connected to the

phase shift itself), starting from which a far-field propagation can occur; under such a

value, the energy produced by the vibration remains concentrated in a zone of finite

depth. The greatest critical value, namely, the wider range with no far-field propagation,
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corresponds to the anti-phase vibration (ε = 1/2). From a physical standpoint, this char-

acteristic can be useful when one needs, for some practical applications, to concentrate

the wave energy near the free surface of the medium; this happens, for example, in the

detection of surface-breaking cracks by ultrasonic non-destructive testing. On the con-

trary, when one wishes to provide a high level of the wave energy far from the surface,

like in the searching of mining deposits at large depths, higher frequencies should be

applied.

Of course, by an obvious property of balance, the energy produced by the system of

vibrating punches on the surface, averaged over the harmonic period, must be equal to

the energy carried to infinity when there is far-field propagation, or to zero when there

is no such propagation.

It is interesting to investigate these properties from a mathematical standpoint, in

view of the analytical procedure here adopted. We can easily calculate the work made

by the elastic stresses along the particles’ displacements, during a period 2π/ω of the

harmonic regime. After integrating over the typical interval (−a, a), we get at infinity

(as y → ∞) :

Eτ
∞/π = Im

{∫ a

−a

τ∞(x, y)w∗
∞(x, y)dx

}
(7.1a)

or

Eσ
∞/π = Im

{∫ a

−a

[
σ∞
yy(x, y)u∞∗

y (x, y) + σ∞
xy(x, y)u∞∗

x (x, y)
]
dx

}
(7.1b)

according to the anti-plane or in-plane problem to be considered. In such expres-

sions, we define: τ∞ = μ(∂w∞/∂y), σ∞
yy = (λ + 2μ)(∂u∞

y /∂y) + λ(∂u∞
x /∂x), σ∞

xy =

μ
[
(∂u∞

x /∂y) + (∂u∞
y /∂x)

]
[8] , as well as ( · )∗ = complex conjugate of ( · ), Im { · } =

imaginary part of { · } .

By using (6.4), (6.5), (6.8), (6.9) and the above relations, equations (7.1a) and (7.1b)

can be worked out in the two problems, to give

Eτ
∞/π =

1

2aμ
Im

{
1

qτ0

}
×
(

|Φε|2 , ε < 1/2

|Φ+|2 + |Φ−|2, ε = 1/2

)
, (7.2a)

where for ε ≤ 1/2 we have the following:

Im

{
1

qτ0

}
=

{
0, ak/π < ε (qτ0 > 0 : no far-field propagation)

1/
√

k2 − (πε/a)2, ak/π > ε (qτ0 = −i
√

k2 − (πε/a)2 : far-field prop.)
;

(7.2b)

as well as

Eσ
∞/π =

k2
2

2aμ|Δ0|2
Im
{[

k2
2 − 2(πε/a)2

]2 |e−qσ0 y|2qσ∗0 + 4(πε/a)2|e−rσ0 y|2|qσ0 |2rσ∗0
}

y→∞

×
(

|Ψε|2 , ε < 1/2

|Ψ+|2 + |Ψ−|2, ε = 1/2

)
, (7.3a)
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where for ε ≤ 1/2 we have the following: Im { · }y→∞

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, (ak1/π <)ak2/π < ε (I)

4(πε/a)2
[
(πε/a)2 − k2

1

]√
k2
2 − (πε/a)2, ak1/π < ε < ak2/π (II)[

k2
2 − 2(πε/a)2

]2√
k2
1 − (πε/a)2 + 4(πε/a)2

[
k2
1 − (πε/a)2

]√
k2
2 − (πε/a)2,

ε < ak1/π < ak2/π (III)

(7.3b)

where

(I) qσ0 , rσ0 > 0 : no far-field propagation,

(II) qσ0 > 0, rσ0 = −i
√

k2
2 − (πε/a)2 : far-field prop. with only wave number rσ0 ,

(III) qσ0 = −i
√

k2
1 − (πε/a)2, rσ0 = −i

√
k2
2 − (πε/a)2 : far-field prop. with both

wave numbers qσ0 , rσ0 .

For ε > 1/2, we can use the expressions established for ε < 1/2 by substituting in

these ε by ε − 1 (so that H0, Hε become Ĥ0, Ĥε−1 in (4.9) and (4.31)); of course, the

inequalities involving ε in (7.2b) and (7.3b) should be intended with 1− ε instead of ε.

We note that our mathematical procedure requires in the above formulas that ak/π

or ak2/π < 1 − ε when ε < 1/2, ak/π or ak2/π < ε when ε > 1/2, ak/π or

ak2/π < 3/2 when ε = 1/2; thus, the case of far-field propagation with both wave

numbers (in the in-plane problem) can be included only if k2/k1 =
√
(λ + 2μ)/μ <

(1− ε)/ε when ε < 1/2, k2/k1 < ε/(1− ε) when ε > 1/2, k2/k1 < 3 when ε = 1/2.

By choosing a fixed geometry (b/a = 1/2) and calculating all constants H involved, we

have derived the Φ’s and Ψ’s by (4.9),(4.31) or (4.23),(4.41), and then we have plotted

the energy at infinity versus the frequency parameter as given by the above explicit

expressions; see Figs. 2–4. We took three values of the phase shift: ε = 1/4, 3/4, 1/2.

First of all, we note that, as physically expected, the energy produced for ε = 3/4

coincides with that for ε = 1/4, since in this case Ĥ0 = H0 and Ĥε−1 = Hε (see

(6.1b),(6.2b)1 and footnote 3 above); thus, we can unify the discussion for these two

values.

In the anti-plane problem, after the beginning of the far-field propagation (with only

the first mode), the behaviour of the energy is strictly increasing in the given range,

contrary to the case of a null phase shift; moreover, the rate of increasing appears to be

greater with some phase shift (in particular, with ε = 1/2): compare lines 1 and 2 of Fig.

2 with line 3 of Fig. 2 in [7].

The situation is quite different in the in-plane problem, where the behaviour heavily

depends on the physical properties of the material, more precisely on the value of the

ratio k2/k1 =
√
(λ + 2μ)/μ with respect to the assumed phase shifts (see the remark

above): when k2/k1 < 3, the far-field propagation begins (just after the critical value)

with one wave number and a non-decreasing behaviour; then, at a frequency equal to

k2/k1 times the critical value, the propagation with two wave numbers begins. See lines

1 in Figs. 3, 4. Approaching such a frequency, the energy shows a high peak immediately

followed by a sharp dip to zero and another rapid increase (a new peak for ε = 1/2); that

is typical when resonance and/or anti-resonance effects occur at some frequency in the

wave propagation. Such a behaviour is a specific characteristic of the phase shift case,
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since for ε = 0 the far-field propagation (of the first mode) always occurs with only one

wave number (the longitudinal one k1) without oscillations [7]. After this frequency, the

energy meets a local minimum (very spread) to finally become slowly increasing. On the

contrary, when k2/k1 > 3, the far-field propagation occurs with only one wave number

throughout the given range; however, even if the energy does not show any oscillation,

its behaviour is quite different from that of the case ε = 0, which has a local maximum

0.25 0.5 0.75 1 1.25 1.5

1

2

3

4

5

1
2

Eτ/πμw2
0

ak/π

Fig. 2. For anti-plane problem, with b/a = 0.5. Energy at infinity
Eτ

∞/(πμw2
0) vs. ak/π. Line 1: ε = 1/4 or 3/4, ak/π ∈ (0, 3/4); line

2: ε = 1/2, ak/π ∈ (0, 3/2). Dashed lines: exact numerical solution
(at y = 0).
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E  /πμu2
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Fig. 3. For in-plane problem, with b/a = 0.5 and ε = 1/4 or 3/4.
Energy at infinity Eσ

∞/(πμu2
0) vs. ak2/π ∈ (0, 3/4). Line 1: k2/k1 =

2; line 2: k2/k1 = 4. Dashed lines: exact numerical solution (at
y = 0).
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Fig. 4. For in-plane problem, with b/a = 0.5 and ε = 1/2. Energy
at infinity Eσ

∞/(πμu2
0) vs. ak2/π ∈ (0, 3/2). Line 1: k2/k1 = 2; line

2: k2/k1 = 4. Dashed lines: exact numerical solution (at y = 0).

in the final part of the range: compare lines 2 of Figs. 3 and 4 with line 3 of Fig. 3 in

[7].

On the surface of the medium (at y = 0), the work over the geometric period (−a, a)

is simply given by

(
Eτ

0 /π

Eσ
0 /π

)
= Im

{∫ a

−a

(
τ (x)w∗

0(x)

σ(x) u∗
0(x)

)
dx

}
=

(
w0

u0

)
Im

{∫ b

−b

(
τ (x)

σ(x)

)
dx

}
, (7.4)

since the stresses are non-null only in the contact zone (−b, b), and moreover (in the

in-plane problem) only the normal component of the stress σ = σyy is present in view of

the friction-free boundary condition.

By solving numerically the integral equations (3.3),(3.6) with the exact kernels given

in (3.5),(3.8), respectively, we have worked out the expressions (7.4) for the same values

of geometric and physical parameters considered in the analytical procedure; the results

are reported as dashed lines in the (corresponding) figures previously discussed. Of

course, to plot now any curve with respect to frequency, those equations must be solved

numerically each time anew for each new value of the frequency parameter. We can see

that the agreement between exact numerical (at y = 0) and approximate analytical (at

y → ∞) results is quite excellent, in particular for ε = 1/2, apart from some (not large)

discrepancies in the final parts of the frequency ranges involved. In our opinion, this fact

can be used to confirm the validity of the procedure here developed.

References

[1] K. Aki, P. G. Richards, Quantitative Seismology. Theory and Methods (1,2), Freeman: San Fran-

cisco, 1980.



38 EDOARDO SCARPETTA AND MEZHLUM A. SUMBATYAN

[2] J. Brouwer, K. Helbig, Shallow High-Resolution Reflection Seismics (Handbook of Geophysical
Exploration: Seismic Exploration), Pergamon: New York, 1998.

[3] United States Patent 6028818 : Method and apparatus for multiple seismic vibratory surveys.
(http://www.freepatentsonline.com/6028818.html)

[4] United States Patent 6807508 : Seismic prospecting method and device using simultaneous emission
of seismic signals based on pseudo-random sequences. (http://www.freepatentsonline.com/6807508.
html)

[5] United States Patent 6714867 : Method for seismic monitoring of an underground zone by simulta-
neous use of several vibroseismic sources. (http://www.freepatentsonline.com/6714867.html)

[6] J. J. Postel, E. Gillot, M. Larroque, Review of specific parameters in high-resolution seismic, EAGE
66th Conf., Paris, 2004, Z99. (http://www.freepatentsonline.com/6714867.html)

[7] E. Scarpetta, M. A. Sumbatyan, Wave Properties of the Elastic Half-space loaded by a Periodic
Array of Vibrating Punches: an Analytical Approach, Adv. Theor. Appl. Mech.1 (6) 2008, 281-300.

[8] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland: Amsterdam, 1973.
[9] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integrals and Series (vol.2), Gordon and Breach

Science Publishers: Amsterdam, 1986. MR874987 (88f:00014)

[10] F. D. Gakhov, Boundary Value Problems, Pergamon Press: Oxford, 1966. MR0198152 (33:6311)

http://www.ams.org/mathscinet-getitem?mr=874987
http://www.ams.org/mathscinet-getitem?mr=874987
http://www.ams.org/mathscinet-getitem?mr=0198152
http://www.ams.org/mathscinet-getitem?mr=0198152

	1. Introduction
	2. Formulation of the anti-plane and in-plane problems. Reduction to integral equations
	3. The case of a phase shift between adjacent punches in the periodic distribution
	4. Approximation for explicit solutions
	4.1. Anti-plane problem
	4.2. In-plane problem

	5. Analytical treatment of the basic integral equations
	6. Explicit representations of the wave field
	7. Physical remarks
	References

