A NEW TWO-COMPONENT SYSTEM MODELLING SHALLOW-WATER WAVES

By
DELIA IONESCU-KRUSE

Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 6, P.O. Box 1-764, 014700 Bucharest, Romania

Abstract

For propagation of surface shallow-water waves on irrotational flows, we derive a new two-component system. The system is obtained by a variational approach in the Lagrangian formalism. The system has a noncanonical Hamiltonian formulation. We also find its exact solitary-wave solutions.

1. Introduction. In this paper we obtain the following system of nonlinear partial differential equations:

$$
\left\{\begin{array}{l}
u_{t}+3 u u_{x}+H_{x}=\left[H^{2}\left(u u_{x x}+u_{x t}-\frac{u_{x}^{2}}{2}\right)\right]_{x} \tag{1.1}\\
H_{t}+(H u)_{x}=0
\end{array}\right.
$$

with $x \in \mathbf{R}, t \in \mathbf{R}, u(x, t) \in \mathbf{R}, H(x, t) \in \mathbf{R}$.
We start from a general dimensionless version of the two-dimensional irrotational water-wave problem with a free surface and a flat bottom. We focus on the motion of shallow-water waves, waves whose length is still large compared with the depth of the water in which they propagate. In this shallow-water regime, many two-component systems have already been derived and studied. One of them is the well-known GreenNagdhi system 16]

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+H H_{x}=\frac{1}{3 H}\left[H^{3}\left(u u_{x x}+u_{x t}-u_{x}^{2}\right)\right]_{x} \tag{1.2}\\
H_{t}+(H u)_{x}=0
\end{array}\right.
$$

which models shallow-water waves whose amplitude (in the dimensionless version, the amplitude parameter, that is, the ratio of the wave amplitude to the depth of the water) is not necessarily small. Here $u(x, t)$ represents the horizontal velocity, or the depthaveraged ${ }^{1}$ horizontal velocity, and $H(x, t)$ is the free upper surface. The Green-Naghdi

[^0]equations are mathematically well-posed in the sense that they admit solutions over the relevant time scale for any initial data that are reasonably smooth (see [26], 3]). The solution of the Green-Naghdi equations provides a good approximation of the solution of the full water-wave problem (see [26], 4]). The Green-Naghdi equations have nice structural properties that facilitate the derivation of simplified model equations in the shallow-water regime. For example, the celebrated Korteweg-de Vries, Benjamin-BonaMahoney, Camassa-Holm, and Degasperis-Procesi equations arise as approximations to the Green-Naghdi equations; cf. the discussion in 13 .

Actually, Green and Naghdi considered in [16] the three-dimensional water-wave problem with a free surface and a variable bottom, and no assumption of an irrotational flow was made a priori. The equations were derived by imposing the condition that the horizontal velocity is independent of the vertical coordinate z, the condition that the vertical velocity has only a linear dependence on z, and by using the mass conservation equation and the energy equation in integral form plus invariance under rigid-body translation. For one horizontal x-coordinate and for a flat bottom, the equations have the form (1.2). In the two-dimensional case (only one horizontal dimension) and for a domain with a flat bottom, the system (1.2) was originally derived in 1953 by Serre [31, and it was independently rediscovered by Su and Gardner [33] in 1969. Serre (31, Sect. V) integrated the Euler equations over z on the interval $[0, H(x, t)]$ and made the assumption that the horizontal component of fluid velocity is equal to its depth-averaged value. Su and Gardner [33] obtained the system (1.2) by depth-averaging the two-dimensional irrotational water-wave problem and by using a long-wave asymptotic expansion. In the literature, the equations (1.2) are sometimes referred to as the Serre equations or the Su-Gardner equations, but usually they are called the Green-Naghdi equations. Very recently, Ionescu-Kruse 21] obtained, by a variational approach in the Lagrangian formalism, the system (1.2) for the propagation of arbitrary amplitude shallow-water waves on two-dimensional irrotational flows.

In Section 3 of the present paper, we derive, by the same approach as in [21], the system (1.1). We are in the shallow-water regime and we consider surface waves of arbitrary amplitude. We are looking for a higher-order correction to the classical shallow-water equations (2.14). The second equation of the system (2.14) is a transport equation, the free surface is advected, or Lie transported (in the geometry literature), by the fluid flow. In the system (1.1), we keep this equation as it is. We obtain the first equation of the system (1.1) by calculating the critical points of an action functional in the space of paths with fixed endpoints, within the Lagrangian formalism. We arrive at this action functional as follows. Within the Eulerian formalism, we consider the Lagrangian function integrated over time in the action functional to have the traditional form, that is, the kinetic energy minus the potential energy. According to a velocity field with a horizontal component (2.9) independent of the vertical coordinate z and a vertical component (2.10) having only a linear dependence on z, we take for the kinetic energy at the free surface of the water the expression (3.12) and for the potential energy calculated with respect to the undisturbed water level the expression (3.13). Then, we transport the Lagrangian function (3.15) from the Eulerian picture to the tangent bundle which represents the velocity phase space in the Lagrangian formalism, this transport being
made taking into account the second equation of the system (1.1) as well. Thus, we get the Lagrangian function (3.16). We point out that the Lagrangian (3.15) as well as (3.16) are not metrics; the pursuit of an advanced geometrical approach is not necessarily dependent upon the existence of a metric, as also illustrated in the recent papers [14] and [15].

The type of considerations made in the present paper also proved very useful (in similar contexts) to qualitative studies of some model equations. For example, in the derivation of criteria for global existence and blow-up of solutions as well as in studies of the propagation speed for some model equations for shallow-water waves, see e.g. the papers [8, [11, [17, 6], 18].

The Green-Naghdi equations (1.2) have the following Hamiltonian formulation (see [19, [7]):

$$
\binom{m_{t}}{H_{t}}=-\left(\begin{array}{cc}
\partial_{x} m+m \partial_{x} & H \partial_{x} \tag{1.3}\\
\partial_{x} H & 0
\end{array}\right)\binom{\frac{\delta \mathcal{H}_{G N}}{\delta m}}{\frac{\delta \mathcal{H}_{G N}}{\delta H}}
$$

where $\mathcal{H}_{G N}$ is the total energy (kinetic plus potential) given by

$$
\begin{equation*}
\frac{1}{2} \int_{-\infty}^{\infty}\left(H u^{2}+\frac{1}{3} H^{3} u_{x}^{2}+(H-1)^{2}\right) d x \tag{1.4}
\end{equation*}
$$

and m is the momentum density defined by

$$
\begin{equation*}
m:=\frac{\delta \mathcal{H}_{G N}}{\delta u}=H u-\frac{1}{3}\left(H^{3} u_{x}\right)_{x} \tag{1.5}
\end{equation*}
$$

$\frac{\delta \mathcal{H}_{G N}}{\delta u}, \frac{\delta \mathcal{H}_{G N}}{\delta m}$, and $\frac{\delta \mathcal{H}_{G N}}{\delta H}$ being the variational derivatives of $\mathcal{H}_{G N}$ with respect to u, m, and H, respectively.

In Section 4 of the present paper, we show that the system (1.1) has the Hamiltonian formulation (1.3), with a different total energy \mathcal{H}_{N} given by (4.2) and a different momentum density m given by (4.3).

The solitary-wave solution of the Green-Naghdi equations (1.2) has the form (see [31, pp. 863-864] and [33, p. 539])

$$
\begin{align*}
& H(x, t)=1+\left(c^{2}-1\right) \operatorname{sech}^{2}\left[\frac{\sqrt{3}}{2} \frac{\sqrt{c^{2}-1}}{c}(x-c t)\right] \tag{1.6}\\
& u(x, t)=c\left(1-\frac{1}{H(x, t)}\right)
\end{align*}
$$

with c the speed of the traveling wave. These waves exist for all c such that the condition

$$
\begin{equation*}
c^{2}>1 \tag{1.7}
\end{equation*}
$$

is satisfied. In [24, 25], the eigenvalue problem obtained from linearizing the equations about solitary-wave solutions is investigated and it is established that small-amplitude solitary-wave solutions of the Green-Naghdi equations are linearly stable.

In Section 5 of the present paper, we find the solitary-wave solution of the system (1.1). Its expression (5.19)-(5.20) is different from (1.6). The speed c of the traveling wave has to satisfy the condition (5.9), that is, the condition (1.7).
2. Preliminaries. We recall the classical water-wave problem for gravity waves propagating at the free surface of a two-dimensional inviscid incompressible fluid. The fluid occupies the domain

$$
\begin{equation*}
-\infty<x<\infty, \quad 0 \leq z \leq h_{0}+\eta(x, t) \tag{2.1}
\end{equation*}
$$

where the constant $h_{0}>0$ is the undisturbed depth of the water and $\eta(x, t)$ is the displacement of the free surface from the undisturbed state. Here (x, z) gives the Cartesian coordinates, the x-axis being in the direction of wave propagation and the z-axis pointing vertically upwards. The governing equations are Euler's equations and the continuity equation with appropriate surface and bottom boundary conditions (see, for example, [10]):

$$
\begin{align*}
& \quad u_{t}+u u_{x}+v u_{z}=-p_{x} \\
& v_{t}+u v_{x}+v v_{z}=-p_{z}-g \\
& \quad u_{x}+v_{z}=0, \\
& v=\eta_{t}+u \eta_{x} \quad \text { on } z=h_{0}+\eta(x, t), \tag{2.2}\\
& p=p_{0} \quad \text { on } z=h_{0}+\eta(x, t), \\
& v=0 \quad \text { on } z=0 .
\end{align*}
$$

Here $(u(x, z, t), v(x, z, t))$ is the velocity field of the water-no motion takes place in the y-direction, $p(x, z, t)$ denotes the pressure, p_{0} being the constant atmospheric pressure and g is the acceleration due to gravity. We set the constant density $\rho=1$.

The water flow is assumed to be irrotational; that is, in addition to the system (2.2) we also have the equation

$$
\begin{equation*}
u_{z}-v_{x}=0 \tag{2.3}
\end{equation*}
$$

We introduce the following dimenionless variables (see, for example, [23]):

$$
\begin{gather*}
\bar{x}=\frac{x}{\lambda}, \quad \bar{z}=\frac{z}{h_{0}}, \quad \bar{t}=\frac{\sqrt{g h_{0}}}{\lambda} t, \quad \bar{\eta}=\frac{\eta}{a} \\
\bar{u}=\frac{1}{\sqrt{g h_{0}}} u, \quad \bar{v}=\frac{1}{h_{0}} \frac{\lambda}{\sqrt{g h_{0}}} v \tag{2.4}\\
\bar{p}=\frac{1}{g h_{0}}\left[p-p_{0}-g\left(h_{0}-z\right)\right]
\end{gather*}
$$

where a represents a measure of the amplitude of the waves and λ the typical wavelength for the considered waves. The dimensionless variables considered above are good choices for showing the magnitude of the different terms that appear in the equations. Substituting (2.4) in the system (2.2)-(2.3), one finds that the equations of motion depend upon the two parameters ϵ and δ defined as

$$
\begin{equation*}
\epsilon:=\frac{a}{h_{0}}, \quad \delta:=\frac{h_{0}}{\lambda} . \tag{2.5}
\end{equation*}
$$

The amplitude parameter ϵ is associated with the nonlinearity of the wave, and the longwave parameter δ is associated with the dispersion of the wave. Omitting the bars for
the sake of clarity, the dimensionless form of the system (2.2)-(2.3) is

$$
\begin{align*}
& u_{t}+u u_{x}+v u_{z}=-p_{x} \\
& \delta^{2}\left(v_{t}+u v_{x}+v v_{z}\right)=-p_{z}, \\
& u_{x}+v_{z}=0, \\
& u_{z}-\delta^{2} v_{x}=0, \tag{2.6}\\
& v=\epsilon\left(\eta_{t}+u \eta_{x}\right) \quad \text { on } z=1+\epsilon \eta(x, t), \\
& p=\epsilon \eta \quad \text { on } z=1+\epsilon \eta(x, t), \\
& v=0 \quad \text { on } z=0 .
\end{align*}
$$

Making smallness hypotheses on the parameters ϵ and δ, one reduces the problem to different physical regimes. Our analysis is concerned with the shallow-water regime, that is,

$$
\begin{equation*}
\delta \ll 1 \tag{2.7}
\end{equation*}
$$

The amplitude of waves is governed by ϵ. We consider relatively large amplitude surface waves, meaning that no smallness assumption is made on ϵ. For $\delta=0$, the leading-order system becomes

$$
\begin{align*}
& u_{t}+u u_{x}+v u_{z}=-p_{x} \\
& \quad p_{z}=0, \\
& u_{x}+v_{z}=0, \\
& \quad u_{z}=0, \tag{2.8}\\
& v=\epsilon\left(\eta_{t}+u \eta_{x}\right) \quad \text { on } z=1+\epsilon \eta(x, t), \\
& p=\epsilon \eta(x, t) \quad \text { on } z=1+\epsilon \eta(x, t), \\
& v=0 \quad \text { on } z=0 .
\end{align*}
$$

The system of equations (2.8) reduces to

$$
\begin{gather*}
u=u(x, t) \tag{2.9}\\
v=-z u_{x} \tag{2.10}\\
p=\epsilon \eta(x, t) \tag{2.11}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+\epsilon \eta_{x}=0, \tag{2.12}\\
\epsilon \eta_{t}+[(1+\epsilon \eta) u]_{x}=0 .
\end{array}\right.
$$

Let us denote

$$
\begin{equation*}
H(x, t):=1+\epsilon \eta(x, t) \tag{2.13}
\end{equation*}
$$

Then, the system of equations (2.12) becomes

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+H_{x}=0 \tag{2.14}\\
H_{t}+(H u)_{x}=0
\end{array}\right.
$$

that is, the classical shallow-water equations (see, for example, 32). These equations possess an infinite number of integrals of motion (the conserved quantities) due to Benney [5] and can be written in Hamiltonian form relative to a symplectic structure introduced by Manin [27. The second Hamiltonian structure for the system (2.14) was obtained by Cavalcante and McKean 6. In fact, the system (2.14) is Hamiltonian with respect to three distinct Hamiltonian structures [29]. These Hamiltonian structures are compatible and thus the system of equations (2.14) is completely integrable 30. For a rigorous
analysis of the system (2.14) as an approximate model of the water-wave problem, see [4].
3. The variational derivation of a new two-component shallow-water system. In what follows we consider ϵ arbitrary but fixed; there is no smallness assumption on the wave amplitude. We are looking for a higher-order correction to the classical shallow-water equations (2.12), or (2.14) in view of the notation (2.13). We observe that the second equation in (2.14) is exactly the second equation of the new two-component shallow-water system (1.1). We will derive the first equation of the system (1.1) directly from a variational principle in the Lagrangian formalism.

We introduce now the map

$$
\begin{equation*}
\gamma: \mathbf{R} \times[0, T] \mapsto \mathbf{R}, \quad \gamma(X, t)=x \tag{3.1}
\end{equation*}
$$

such that, for a fixed $t, \gamma(\cdot, t)$ is an invertible \mathbf{C}^{1}-mapping, that is,

$$
\begin{equation*}
\gamma(\cdot, t) \in \operatorname{Diff}(\mathbf{R}) \tag{3.2}
\end{equation*}
$$

and such that

$$
\begin{equation*}
u(x, t)=\gamma_{t}(X, t), \quad \text { that is, } \quad u(\cdot, t)=\gamma_{t} \circ \gamma^{-1} \tag{3.3}
\end{equation*}
$$

This map reminds us of the flow map used in the Lagrangian description of the fluid which maps a fluid particle labeled by its initial location X to its later Eulerian position x. In the Lagrangian description of the fluid, the Lagrangian velocity $\gamma_{t}(X, t)$ represents the velocity of the fluid particle labeled X, while the Eulerian velocity $\gamma_{t}\left(\gamma^{-1}(x), t\right)$ represents the velocity of the particle passing the location x at time t.

In the Eulerian formalism for our problem, for a fixed $t, u(x, t)$ can be regarded as a vector field on \mathbf{R}; that is, it belongs to the Lie algebra of $\operatorname{Diff}(\mathbf{R})$. In the Lagrangian formalism for our problem, the velocity phase space is the tangent bundle $T \operatorname{Diff}(\mathbf{R})$. For the configuration space $\operatorname{Diff}(\mathbf{R})$, we add the technical assumption that the smooth functions defined on \mathbf{R} with value in \mathbf{R} vanish rapidly at $\pm \infty$ together with as many derivatives as necessary.

The other unknown of our problem is $H(x, t)$, which for a fixed t can be regarded as a real function on $\mathbf{R}, H(\cdot, t) \in \mathcal{F}(\mathbf{R})$. We settle that the evolution equation of $H(x, t)$ is the second equation in (2.14). This equation is an advection equation. In the language of geometry, this equation expresses the fact that the 1-form

$$
\begin{equation*}
\mathrm{H}(x, t):=H(x, t) d x \tag{3.4}
\end{equation*}
$$

is Lie transported by the vector field

$$
\begin{equation*}
\mathrm{u}(x, t):=u(x, t) \partial_{x} \tag{3.5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\partial \mathrm{H}}{\partial t}+\mathrm{L}_{\mathrm{u}} \mathrm{H}=0 \tag{3.6}
\end{equation*}
$$

where L_{u} denotes the Lie derivative with respect to the vector field u (see, for example, [1, Section 2.2]). The equation (3.6) is an equation written in the Eulerian formalism.

With the aid of the pull-back map γ^{*}, in the Lagrangian formalism this becomes

$$
\begin{equation*}
\gamma^{*}\left(\frac{\partial \mathrm{H}}{\partial t}+\mathrm{L}_{\mathrm{u}} \mathrm{H}\right)=0 \tag{3.7}
\end{equation*}
$$

By interpreting the Lie derivative of a time-dependent 1-form along a time-dependent vector field in terms of the flow of the vector field (see, for example, [1, Section 2]), we get that

$$
\begin{equation*}
\frac{d}{d t}\left[\gamma^{*}(\mathrm{H})\right]=\gamma^{*}\left(\mathrm{~L}_{\mathrm{u}} \mathrm{H}\right)+\gamma^{*}\left(\frac{\partial \mathrm{H}}{\partial t}\right) \stackrel{(3.7 \mathrm{~J}}{=} 0 ; \tag{3.8}
\end{equation*}
$$

that is, we get the time-invariant 1 -form

$$
\begin{equation*}
\mathrm{H}_{0}:=\gamma^{*}(\mathrm{H}), \quad \mathrm{H}_{0}(X, t)=\mathrm{H}_{0}(X, 0) \tag{3.9}
\end{equation*}
$$

By the definition of the pull-back map (see, for example, 1, Section 2]), we get between the components of the 1-forms $\mathrm{H}_{0}(X, t):=H_{0}(X, t) d X$ and $\mathrm{H}(x, t):=H(x, t) d x$ the following relation:

$$
\begin{equation*}
H_{0}=(H \circ \gamma) J_{\gamma}, \tag{3.10}
\end{equation*}
$$

where $J_{\gamma}:=\frac{\partial \gamma}{\partial X}$ is the Jacobian of γ, or

$$
\begin{equation*}
H=\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}} \tag{3.11}
\end{equation*}
$$

Our goal is to show that the first equation of the system (1.1) yields the critical points of an appropriate action functional which is completely determined by a scalar function called Lagrangian. We take the traditional form of the Lagrangian, that is, the kinetic energy minus the potential energy. In the Eulerian formalism, taking into account the components (2.9) and (2.10) of the velocity field, the kinetic energy has at the free surface $z=1+\epsilon \eta(x, t)$ the expression

$$
\begin{align*}
E_{c}(u, \eta) & =\frac{1}{2} \int_{-\infty}^{\infty}\left[u^{2}+(1+\epsilon \eta)^{2} u_{x}^{2}\right] d x \\
& \stackrel{(2.13}{=} \frac{1}{2} \int_{-\infty}^{\infty}\left[u^{2}+H^{2} u_{x}^{2}\right] d x=: E_{c}(u, H) \tag{3.12}
\end{align*}
$$

In nondimensional variables, with ρ and g settled at 1 , we define the gravitational potential energy at the free surface $z=1+\epsilon \eta(x, t)$, gained by the fluid parcel when it is vertically displaced from its undisturbed position with $\epsilon \eta(x, t)$, by

$$
\begin{align*}
E_{p}(\eta) & =\int_{-\infty}^{\infty}\left(\int_{0}^{1+\epsilon \eta}(z-1) d z\right) d x=\frac{1}{2} \int_{-\infty}^{\infty}(\epsilon \eta)^{2} d x \\
& \stackrel{(2.13}{=} \tag{3.13}\\
& \frac{1}{2} \int_{-\infty}^{\infty}(H-1)^{2} d x=: E_{p}(H)
\end{align*}
$$

We require in (3.12) and (3.13) that at any instant t,

$$
\begin{equation*}
u \rightarrow 0, \quad u_{x} \rightarrow 0 \text { and } H \rightarrow 1 \text { as } x \rightarrow \pm \infty \tag{3.14}
\end{equation*}
$$

Thus, in the Eulerian formalism, the Lagrangian function has the form

$$
\begin{equation*}
\mathfrak{L}(u, H)=E_{c}(u, H)-E_{p}(H)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u^{2}+H^{2} u_{x}^{2}-(H-1)^{2}\right] d x \tag{3.15}
\end{equation*}
$$

Within the Lagrangian formalism, the Lagrangian for our problem will be obtained by transporting the Lagrangian (3.15) from the Eulerian formalism to all tangent spaces $T \operatorname{Diff}(\mathbf{R})$, this transport being made taking into account (3.3) and (3.11).

For each function $H_{0} \in \mathcal{F}(\mathbf{R})$ independent of time, we define the Lagrangian $\mathcal{L}_{H_{0}}$: $T \operatorname{Diff}(\mathbf{R}) \rightarrow \mathbf{R}$ by

$$
\begin{gather*}
\mathcal{L}_{H_{0}}\left(\gamma, \gamma_{t}\right):=\frac{1}{2} \int_{-\infty}^{\infty}\left\{\left(\gamma_{t} \circ \gamma^{-1}\right)^{2}+\left[\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}\right]^{2}\left[\partial_{x}\left(\gamma_{t} \circ \gamma^{-1}\right)\right]^{2}\right. \\
\left.-\left[\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}-1\right]^{2}\right\} d x \tag{3.16}
\end{gather*}
$$

The Lagrangian $\mathcal{L}_{H_{0}}$ depends smoothly on H_{0} and it is right invariant under the action of the subgroup

$$
\begin{equation*}
\operatorname{Diff}(\mathbf{R})_{H_{0}}=\left\{\psi \in \operatorname{Diff}(\mathbf{R}) \mid\left(H_{0} \circ \psi^{-1}\right) J_{\psi^{-1}}=H_{0}\right\} \tag{3.17}
\end{equation*}
$$

that is, if we replace the path $\gamma(t, \cdot)$ by $\gamma(t, \cdot) \circ \psi(\cdot)$, for a fixed time-independent ψ in $\operatorname{Diff}(\mathbf{R})_{H_{0}}$, then $\mathcal{L}_{H_{0}}$ is unchanged.

The action on a path $\gamma(t, \cdot), t \in[0, T]$, in $\operatorname{Diff}(\mathbf{R})$ is

$$
\begin{equation*}
\mathfrak{a}(\gamma):=\int_{0}^{T} \mathcal{L}_{H_{0}}\left(\gamma, \gamma_{t}\right) d t \tag{3.18}
\end{equation*}
$$

The critical points of the action (3.18) in the space of paths with fixed endpoints satisfy

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon} \mathfrak{a}(\gamma+\varepsilon \varphi)\right|_{\varepsilon=0}=0 \tag{3.19}
\end{equation*}
$$

for every path $\varphi(t, \cdot), t \in[0, T]$, in $\operatorname{Diff}(\mathbf{R})$ with endpoints at zero, that is,

$$
\begin{equation*}
\varphi(0, \cdot)=0=\varphi(T, \cdot) \tag{3.20}
\end{equation*}
$$

and such that $\gamma+\varepsilon \varphi$ is a small variation of γ on $\operatorname{Diff}(\mathbf{R})$. With (3.16) and (3.18) in view, the condition (3.19) becomes

$$
\begin{align*}
\int_{0}^{T} \int_{-\infty}^{\infty} & \left\{\left.\left(\gamma_{t} \circ \gamma^{-1}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\left(\gamma_{t}+\varepsilon \varphi_{t}\right) \circ(\gamma+\varepsilon \varphi)^{-1}\right]\right. \\
& +\left.\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}^{2}\left[\partial_{x}\left(\gamma_{t} \circ \gamma^{-1}\right)\right]^{2} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[H_{0} \circ(\gamma+\varepsilon \varphi)^{-1}\right] \\
& +\left.\left(H_{0} \circ \gamma^{-1}\right)^{2} J_{\gamma^{-1}}\left[\partial_{x}\left(\gamma_{t} \circ \gamma^{-1}\right)\right]^{2} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[J_{\left.(\gamma+\varepsilon \varphi)^{-1}\right]}\right] \\
& +\left.\left[\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}\right]^{2} \partial_{x}\left(\gamma_{t} \circ \gamma^{-1}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\partial_{x}\left(\left(\gamma_{t}+\varepsilon \varphi_{t}\right) \circ(\gamma+\varepsilon \varphi)^{-1}\right)\right] \\
& -\left.\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}^{2} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[H_{0} \circ(\gamma+\varepsilon \varphi)^{-1}\right] \\
& -\left.\left(H_{0} \circ \gamma^{-1}\right)^{2} J_{\gamma^{-1}} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[J_{\left.(\gamma+\varepsilon \varphi)^{-1}\right]}\right. \\
& +\left.\left(J_{\gamma^{-1}}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[H_{0} \circ(\gamma+\varepsilon \varphi)^{-1}\right] \\
& \left.+\left.\left(H_{0} \circ \gamma^{-1}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[J_{\left.(\gamma+\varepsilon \varphi)^{-1}\right]}\right]\right\} d x d t=0
\end{align*}
$$

After calculation (for more details see, for example, [22]), we get

$$
\begin{align*}
&\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\left(\gamma_{t}+\varepsilon \varphi_{t}\right) \circ(\gamma+\varepsilon \varphi)^{-1}\right]= \partial_{t}\left(\varphi \circ \gamma^{-1}\right)+\left(\gamma_{t} \circ \gamma^{-1}\right) \partial_{x}\left(\varphi \circ \gamma^{-1}\right) \\
&-\left(\varphi \circ \gamma^{-1}\right) \partial_{x}\left(\gamma_{t} \circ \gamma^{-1}\right), \tag{3.22}\\
&\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[H_{0} \circ(\gamma+\varepsilon \varphi)^{-1}\right]=-\left(\varphi \circ \gamma^{-1}\right) \partial_{x}\left(H_{0} \circ \gamma^{-1}\right), \tag{3.23}\\
&\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[J_{\left.(\gamma+\varepsilon \varphi)^{-1}\right]}=-\left(J_{\gamma^{-1}}\right) \partial_{x}\left(\varphi \circ \gamma^{-1}\right)-\partial_{x}\left(J_{\gamma^{-1}}\right)\left(\varphi \circ \gamma^{-1}\right),\right. \tag{3.24}\\
&\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\partial_{x}\left(\left(\gamma_{t}+\varepsilon \varphi_{t}\right) \circ(\gamma+\varepsilon \varphi)^{-1}\right)\right]= \partial_{t x}\left(\varphi \circ \gamma^{-1}\right)+\left(\gamma_{t} \circ \gamma^{-1}\right) \partial_{x}^{2}\left(\varphi \circ \gamma^{-1}\right) \\
&-\left[\partial_{x}^{2}\left(\gamma_{t} \circ \gamma^{-1}\right)\right]\left(\varphi \circ \gamma^{-1}\right) . \tag{3.25}
\end{align*}
$$

Thus, from (3.22)-(3.25), the condition (3.21) becomes

$$
\begin{align*}
\int_{0}^{T} \int_{-\infty}^{\infty} \quad\{ & \left\{\left[\partial_{t}\left(\varphi \circ \gamma^{-1}\right)+u \partial_{x}\left(\varphi \circ \gamma^{-1}\right)-\left(\varphi \circ \gamma^{-1}\right) u_{x}\right]\right. \\
& -H H_{x} u_{x}^{2}\left(\varphi \circ \gamma^{-1}\right)-H^{2} u_{x}^{2} \partial_{x}\left(\varphi \circ \gamma^{-1}\right) \\
& +H^{2} u_{x}\left[\partial_{t x}\left(\varphi \circ \gamma^{-1}\right)+u \partial_{x}^{2}\left(\varphi \circ \gamma^{-1}\right)-\left(\varphi \circ \gamma^{-1}\right) u_{x x}\right] \\
& +H H_{x}\left(\varphi \circ \gamma^{-1}\right)+H^{2} \partial_{x}\left(\varphi \circ \gamma^{-1}\right) \\
& \left.-H_{x}\left(\varphi \circ \gamma^{-1}\right)-H \partial_{x}\left(\varphi \circ \gamma^{-1}\right)\right\} d x d t=0 \tag{3.26}
\end{align*}
$$

where $u=\gamma_{t} \circ \gamma^{-1}$ and $H=\left(H_{0} \circ \gamma^{-1}\right) J_{\gamma^{-1}}$. In the above formula, we integrate by parts with respect to t and x, we take into account (3.14) and (3.20), and we get

$$
\begin{align*}
-\int_{0}^{T} \int_{-\infty}^{\infty} & \left(\varphi \circ \gamma^{-1}\right)\left[u_{t}+3 u u_{x}-H H_{x} u_{x}^{2}-H^{2} u_{x} u_{x x}\right. \\
& \left.-\left(H^{2} u_{x}\right)_{t x}-\left(H^{2} u u_{x}\right)_{x x}+H H_{x}\right] d x d t=0 \tag{3.27}
\end{align*}
$$

With H satisfying the second equation in (1.1), the condition (3.27) becomes

$$
\begin{align*}
-\int_{0}^{T} \int_{-\infty}^{\infty}\left(\varphi \circ \gamma^{-1}\right)\left\{u_{t}\right. & +3 u u_{x}+H H_{x}- \\
& \left.-\left[H^{2}\left(u_{x t}+u u_{x x}-\frac{u_{x}^{2}}{2}\right)\right]_{x}\right\} d x d t=0 \tag{3.28}
\end{align*}
$$

Therefore, we proved
Theorem 3.1. For an irrotational shallow-water flow, the nondimensional horizontal velocity of the water $u(x, t)$ and the nondimensional free upper surface $H(x, t)=1+$ $\epsilon \eta(x, t)$, for ϵ arbitrarily fixed, satisfy the system (1.1).

We emphasize that for our considerations we do not require any hypothesis of small amplitude. Under the additional assumption of a small or moderate amplitude regime, similar considerations lead to a variational derivation of the celebrated Korteweg-de Vries and Camassa-Holm model equations (see [20] and [12]).
4. The Hamiltonian structure for the shallow-water system (1.1). The use of a variational principle in fluid dynamics, beside the aesthetic attraction in condensing the equations by extremizing a scalar quantity, retains the Hamiltonian structure with consequent energy conservation. We present below the Hamiltonian structure of the two-component shallow-water system (1.1).

Theorem 4.1. The shallow-water system (1.1) has the following Hamiltonian form:

$$
\binom{m_{t}}{H_{t}}=-\left(\begin{array}{cc}
\partial_{x} m+m \partial_{x} & H \partial_{x} \tag{4.1}\\
\partial_{x} H & 0
\end{array}\right)\binom{\frac{\delta \mathcal{H}_{N}}{\delta m}}{\frac{\delta \mathcal{H}_{N}}{\delta H}}
$$

where \mathcal{H}_{N} is the total energy, that is,

$$
\begin{equation*}
\mathcal{H}_{N}(u, H):=E_{c}(u, H)+E_{p}(H)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u^{2}+H^{2} u_{x}^{2}+(H-1)^{2}\right] d x \tag{4.2}
\end{equation*}
$$

and m is the momentum density defined by

$$
\begin{equation*}
m:=\frac{\delta \mathcal{H}_{N}}{\delta u}=u-\left(H^{2} u_{x}\right)_{x} \tag{4.3}
\end{equation*}
$$

Proof. Here $\frac{\delta \mathcal{H}_{N}}{\delta u}$ is the variational derivative of \mathcal{H}_{N} with respect to u; that is,

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(u+\epsilon \delta u, H)=\int_{-\infty}^{\infty} \frac{\delta \mathcal{H}_{N}}{\delta u} \delta u d x \tag{4.4}
\end{equation*}
$$

From the expression (4.2) of \mathcal{H}_{N} we have

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(u+\epsilon \delta u, H)=\int_{-\infty}^{\infty}\left[u \delta u+H^{2} u_{x}(\delta u)_{x}\right] d x \tag{4.5}
\end{equation*}
$$

Integrating by parts and taking into account (3.14), we get

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(u+\epsilon \delta u, H)=\int_{-\infty}^{\infty}\left[u-\left(H^{2} u_{x}\right)_{x}\right] \delta u d x \tag{4.6}
\end{equation*}
$$

Therefore, m has the expression (4.3).
In order to calculate $\frac{\delta \mathcal{H}_{N}}{\delta m}$ and $\frac{\delta \mathcal{H}_{N}}{\delta H}$, that is, the variational derivatives of \mathcal{H}_{N} with respect to m and H, respectively, we write the total energy \mathcal{H}_{N} in terms of m and H. Integrating the second term in the right-hand integral (4.2) by parts and taking into account (3.14), we obtain

$$
\begin{equation*}
\mathcal{H}_{N}=\frac{1}{2} \int_{-\infty}^{\infty}\left[m u+(H-1)^{2}\right] d x \tag{4.7}
\end{equation*}
$$

We can regard (4.3) as an operator equation; that is,

$$
\begin{equation*}
m=u-\left(H^{2} u_{x}\right)_{x}=: \mathcal{T}_{H} u \tag{4.8}
\end{equation*}
$$

Here \mathcal{T}_{H} is a linear operator defined on the space of real functions u satisfying (3.14), with the inner product defined by

$$
\begin{equation*}
\left\langle\mathcal{T}_{H} u, v\right\rangle:=\int_{-\infty}^{\infty}\left[u v-\left(H^{2} u_{x}\right)_{x} v\right] d x \tag{4.9}
\end{equation*}
$$

For two functions u and v satisfying (3.14), integrating the second term in the right-hand integral (4.9) by parts we obtain

$$
\begin{equation*}
\left\langle\mathcal{T}_{H} u, v\right\rangle=\left\langle u, \mathcal{T}_{H} v\right\rangle \tag{4.10}
\end{equation*}
$$

that is, \mathcal{T}_{H} is a selfadjoint operator.

$$
\begin{equation*}
\left\langle\mathcal{T}_{H} u, u\right\rangle=\int_{-\infty}^{\infty}\left[u^{2}+H^{2} u_{x}^{2}\right] d x \tag{4.11}
\end{equation*}
$$

thus, the operator \mathcal{T}_{H} is also positive definite.
The operator equation (4.8) may be inverted to determine u as a continuous function of m,

$$
\begin{equation*}
u=\mathcal{T}_{H}^{-1} m \tag{4.12}
\end{equation*}
$$

\mathcal{T}_{H}^{-1} being the inverse operator.
Then (4.7) becomes

$$
\begin{equation*}
\mathcal{H}_{N}(m, H)=\frac{1}{2} \int_{-\infty}^{\infty}\left[m\left(\mathcal{T}_{H}^{-1} m\right)+(H-1)^{2}\right] d x \tag{4.13}
\end{equation*}
$$

Let us calculate now $\frac{\delta \mathcal{H}_{N}}{\delta m}$ and $\frac{\delta \mathcal{H}_{N}}{\delta H}$, where

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(m+\epsilon \delta m, H)=\int_{-\infty}^{\infty} \frac{\delta \mathcal{H}_{N}}{\delta m} \delta m d x \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(m, H+\epsilon \delta H)=\int_{-\infty}^{\infty} \frac{\delta \mathcal{H}_{N}}{\delta H} \delta H d x \tag{4.15}
\end{equation*}
$$

From (4.13), taking into account that \mathcal{T}_{H}^{-1} is also a linear and selfadjoint operator, we obtain

$$
\begin{align*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(m+\epsilon \delta m, H) & =\frac{1}{2} \int_{-\infty}^{\infty}\left[\delta m\left(\mathcal{T}_{H}^{-1} m\right)+m\left(\mathcal{T}_{H}^{-1} \delta m\right)\right] d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty}\left[\delta m\left(\mathcal{T}_{H}^{-1} m\right)+\left(\mathcal{T}_{H}^{-1} m\right) \delta m\right] d x \\
& =\int_{-\infty}^{\infty}\left(\mathcal{T}_{H}^{-1} m\right) \delta m d x \tag{4.16}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{\delta \mathcal{H}_{N}}{\delta m}=\mathcal{T}_{H}^{-1} m=u \tag{4.17}
\end{equation*}
$$

From (4.13), we also have

$$
\begin{align*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(m, H+\epsilon \delta H)= & \frac{1}{2} \int_{-\infty}^{\infty}\left(\left.m \frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)}^{-1} m\right) d x \\
& +\int_{-\infty}^{\infty}(H-1) \delta H d x \tag{4.18}
\end{align*}
$$

Differentiating with respect to ε the identity

$$
\begin{equation*}
\mathcal{T}_{(H+\epsilon \delta H)} \circ \mathcal{T}_{(H+\epsilon \delta H)}^{-1}=\mathrm{Id}, \tag{4.19}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)}^{-1} m=-\mathcal{T}_{H}^{-1}\left(\left.\frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)} u\right) . \tag{4.20}
\end{equation*}
$$

Thus, taking into account that \mathcal{T}_{H}^{-1} is a selfadjoint operator and the relation (4.20), the first term in the right-hand side of (4.18) becomes

$$
\begin{equation*}
\frac{1}{2} \int_{-\infty}^{\infty}\left(\left.m \frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)}^{-1} m\right) d x=-\frac{1}{2} \int_{-\infty}^{\infty}\left(\left.u \frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)} u\right) d x \tag{4.21}
\end{equation*}
$$

From the expression (4.8) of the linear operator \mathcal{T}_{H},

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)} u=-2\left(u_{x} H_{x}+H u_{x x}\right) \delta H-2 H u_{x}(\delta H)_{x} \tag{4.22}
\end{equation*}
$$

We substitute (4.22) into the right-hand side of (4.21), we integrate by parts for a function u satisfying (3.14), and finally we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{-\infty}^{\infty}\left(\left.m \frac{d}{d \varepsilon}\right|_{\epsilon=0} \mathcal{T}_{(H+\epsilon \delta H)}^{-1} m\right) d x=\int_{-\infty}^{\infty}\left(-H u_{x}^{2}\right) \delta H d x \tag{4.23}
\end{equation*}
$$

Substituting (4.23) into (4.18) yields

$$
\begin{equation*}
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{H}_{N}(m, H+\epsilon \delta H)=\int_{-\infty}^{\infty}\left(-H u_{x}^{2}+H-1\right) \delta H d x \tag{4.24}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\delta \mathcal{H}_{N}}{\delta H}=-H u_{x}^{2}+H-1 \tag{4.25}
\end{equation*}
$$

It remains to check now that the system

$$
\binom{m_{t}}{H_{t}}=-\left(\begin{array}{cc}
\partial_{x} m+m \partial_{x} & H \partial_{x} \tag{4.26}\\
\partial_{x} H & 0
\end{array}\right)\binom{u}{-H u_{x}^{2}+H-1}
$$

is the shallow-water system (1.1). It is clear that the second equation of the system (4.26) is the second equation of the system (1.1). A straightforward calculation, with H satisfying the second equation in (1.1), shows that the first equation of the two systems also coincide.

What is left is to show that the operator

$$
-\left(\begin{array}{cc}
\partial_{x} m+m \partial_{x} & H \partial_{x} \tag{4.27}\\
\partial_{x} H & 0
\end{array}\right)
$$

is skew-symmetric and satisfies Jacobi's identity. The verification of Jacobi's identity can be done directly (see, for example, [7]) or with the assistance of the Lie-Poisson structure (see, for example, [28]). This completes the proof.

Remark 4.2. The Lagrangian (3.15) does not depend on time and on the space coordinate x; that is, it is invariant (symmetric) under the time and space translations. Noether's theorem implies for each invariance a unique conservation law (see, for example, [2]). Thus, we get for the system of equations (1.1) the conservation of the total
energy (4.2) and the conservation of the momentum density (4.3), respectively. The local conservation law for the momentum density has the form

$$
\begin{align*}
m_{t} & =-\partial_{x}(m u)-m \partial_{x}(u)-H \partial_{x}\left(-H u_{x}^{2}+H-1\right) \\
& =-\partial_{x}\left(m u+\frac{u^{2}}{2}+\frac{H^{2}}{2}+\frac{3 H^{2} u_{x}^{2}}{2}\right) \tag{4.28}
\end{align*}
$$

5. Solitary waves for the shallow-water system (1.1). We are now interested in finding the solitary-wave solution of the nonlinear system (1.1). For a solution

$$
\begin{equation*}
u(x, t)=u(x-c t), \quad H(x, t)=H(x-c t) \tag{5.1}
\end{equation*}
$$

traveling with speed $c>0$, the system (1.1) takes the form

$$
\left\{\begin{array}{l}
-c u^{\prime}+3 u u^{\prime}+H H^{\prime}=\left[H^{2}(u-c) u^{\prime \prime}-H^{2} \frac{\left(u^{\prime}\right)^{2}}{2}\right]^{\prime} \tag{5.2}\\
(-c H+H u)^{\prime}=0
\end{array}\right.
$$

We require that, at any instant t,

$$
\begin{equation*}
u \rightarrow 0, \quad u^{\prime} \rightarrow 0, \quad u^{\prime \prime} \rightarrow 0 \text { and } H \rightarrow 1 \text { as } x \rightarrow \pm \infty \tag{5.3}
\end{equation*}
$$

Integrating each equation of the system (5.2) and taking into account the asymptotic limits (5.3), we get

$$
\left\{\begin{array}{l}
-c u+\frac{3}{2} u^{2}+\frac{H^{2}}{2}=H^{2}(u-c) u^{\prime \prime}-H^{2} \frac{\left(u^{\prime}\right)^{2}}{2}+\frac{1}{2} \tag{5.4}\\
u=c\left(1-\frac{1}{H}\right)
\end{array}\right.
$$

Plugging the expression of u into the first equation of the system (5.4) yields an ordinary differential equation for H :

$$
\begin{equation*}
\frac{c^{2}}{2}-\frac{2 c^{2}}{H}+\frac{3 c^{2}}{2} \frac{1}{H^{2}}+\frac{H^{2}}{2}=-c^{2} \frac{H^{\prime \prime}}{H}+\frac{3 c^{2}}{2} \frac{\left(H^{\prime}\right)^{2}}{H^{2}}+\frac{1}{2} \tag{5.5}
\end{equation*}
$$

We multiply the above equation by $2 \frac{H^{\prime}}{H^{2}}$, we integrate, we take into account the asymptotic limits (5.3), and we obtain

$$
\begin{equation*}
-\frac{c^{2}}{H}+\frac{2 c^{2}}{H^{2}}-\frac{c^{2}}{H^{3}}+H=-c^{2} \frac{\left(H^{\prime}\right)^{2}}{H^{3}}-\frac{1}{H}+2 \tag{5.6}
\end{equation*}
$$

Now (5.6) becomes

$$
\begin{equation*}
c^{2}\left(H^{\prime}\right)^{2}=(H-1)^{2}\left(c^{2}-H^{2}\right) \tag{5.7}
\end{equation*}
$$

From (5.7) it follows that

$$
\begin{equation*}
c^{2}>H^{2} \tag{5.8}
\end{equation*}
$$

which according to the asymptotic behavior (5.3) of H yields the following condition for c:

$$
\begin{equation*}
c^{2}>1 \tag{5.9}
\end{equation*}
$$

The solution of the separable differential equation (5.7) is obtained by integration. We denote

$$
\begin{equation*}
H-1=: \frac{1}{K} \tag{5.10}
\end{equation*}
$$

Then we get the integral

$$
\begin{equation*}
I:=\int \frac{c d H}{(H-1) \sqrt{c^{2}-H^{2}}}=-\int \frac{c d K}{\sqrt{\left(c^{2}-1\right) K^{2}-2 K-1}} \tag{5.11}
\end{equation*}
$$

With the condition (5.9) in view, we denote

$$
\begin{equation*}
\sqrt{\left(c^{2}-1\right) K^{2}-2 K-1}=: w-\sqrt{c^{2}-1} K \tag{5.12}
\end{equation*}
$$

In this way,

$$
\begin{equation*}
K=\frac{w^{2}+1}{2\left(w \sqrt{c^{2}-1}-1\right)} \tag{5.13}
\end{equation*}
$$

and the integral (5.11) becomes

$$
\begin{equation*}
I=-\int \frac{c d w}{w \sqrt{c^{2}-1}-1}=-\frac{c}{\sqrt{c^{2}-1}} \log \left(w \sqrt{c^{2}-1}-1\right) \tag{5.14}
\end{equation*}
$$

From the notations (5.12) and (5.10), we conclude that

$$
\begin{equation*}
I=-\frac{c}{\sqrt{c^{2}-1}} \log \left[\frac{\sqrt{c^{2}-1} \sqrt{c^{2}-H^{2}}+c^{2}-H}{H-1}\right] \tag{5.15}
\end{equation*}
$$

Therefore, the solution of the differential equation (5.7) has the implicit form

$$
\begin{equation*}
\frac{\sqrt{c^{2}-1} \sqrt{c^{2}-H^{2}}+c^{2}-H}{H-1}=\exp \left[-\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right] \tag{5.16}
\end{equation*}
$$

We add 1 to both sides of the above equation, we divide by $\sqrt{c^{2}-1}$, we raise to the second power, and we get

$$
\begin{equation*}
\frac{2 c^{2}-H^{2}-1+2 \sqrt{c^{2}-1} \sqrt{c^{2}-H^{2}}}{(H-1)^{2}}=\left(\frac{\exp \left[-\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+1}{\sqrt{c^{2}-1}}\right)^{2} \tag{5.17}
\end{equation*}
$$

By adding 1 again to both sides of the above equation,

$$
\left(\frac{2}{H-1}\right) \frac{\sqrt{c^{2}-1} \sqrt{c^{2}-H^{2}}+c^{2}-H}{H-1}=\left(\frac{\exp \left[-\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+1}{\sqrt{c^{2}-1}}\right)^{2}+1
$$

and by (5.16), we finally obtain

$$
\begin{equation*}
\frac{2}{H-1} \exp \left[-\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]=\left(\frac{\exp \left[-\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+1}{\sqrt{c^{2}-1}}\right)^{2}+1 \tag{5.18}
\end{equation*}
$$

Thus we have
Theorem 5.1. The solitary-wave solution of the shallow-water system (1.1) has the form

$$
\begin{align*}
& H(x, t)=1+\frac{2\left(c^{2}-1\right) \exp \left[\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]}{c^{2} \exp \left[2 \frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+2 \exp \left[\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+1} \\
&=1+\frac{c^{2}-1}{1+\frac{c^{2}+1}{2} \cosh \left[\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]+\frac{c^{2}-1}{2} \sinh \left[\frac{\sqrt{c^{2}-1}}{c}(x-c t)\right]} \tag{5.19}
\end{align*}
$$

and

$$
\begin{equation*}
u(x, t)=c\left(1-\frac{1}{H(x, t)}\right) \tag{5.20}
\end{equation*}
$$

References

[1] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, second edition, revised and enlarged; with the assistance of Tudor Ratiiu and Richard Cushman, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. MR 515141 (81e:58025)
[2] V. I. Arnol'd, Mathematical methods of classical mechanics, translated from the Russian by K. Vogtmann and A. Weinstein, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. MR997295 (90c:58046)
[3] Borys Alvarez-Samaniego and David Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana Univ. Math. J. 57 (2008), no. 1, 97-131, DOI 10.1512/iumj.2008.57.3200. MR2400253 (2010a:35016)
[4] Borys Alvarez-Samaniego and David Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math. 171 (2008), no. 3, 485-541, DOI 10.1007/s00222-007-0088-4. MR2372806 (2009b:35324)
[5] D. J. Benney, Some properties of long non-linear waves, Studies Appl. Math. 52 (1973) 45-50.
[6] J. Cavalcante and H. P. McKean, The classical shallow water equations: symplectic geometry, Phys. D 4 (1981/82), no. 2, 253-260, DOI 10.1016/0167-2789(82)90066-5. MR653778 (84h:76010)
[7] Adrian Constantin, The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math. 15 (1997), no. 1, 53-85. MR1438436 (98c:76011)
[8] Adrian Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, English, with English and French summaries, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 321-362. MR1775353 (2002d:37125)
[9] Adrian Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys. 46 (2005), no. 2, 023506, 4, DOI 10.1063/1.1845603. MR2121730(2005h:35303)
[10] Adrian Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. MR 2867413
[11] Adrian Constantin and Joachim Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (2000), no. 1, 75-91, DOI 10.1007/PL00004793. MR 1738352 (2001b:35258)
[12] A. Constantin, T. Kappeler, B. Kolev, and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom. 31 (2007), no. 2, 155-180, DOI 10.1007/s10455-006-9042-8. MR 2326419 (2008d:58005)
[13] Adrian Constantin and David Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), no. 1, 165-186, DOI 10.1007/s00205-008-0128-2. MR2481064 (2010f:35334)
[14] Joachim Escher, Non-metric two-component Euler equations on the circle, Monatsh. Math. 167 (2012), no. 3-4, 449-459, DOI 10.1007/s00605-011-0323-3. MR2961293
[15] Joachim Escher and Boris Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z. 269 (2011), no. 3-4, 1137-1153, DOI 10.1007/s00209-010-0778-2. MR2860280 (2012m:37124)
[16] A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech. 78 (1976), 237-246.
[17] Guilong Gui and Yue Liu, On the Cauchy problem for the Degasperis-Procesi equation, Quart. Appl. Math. 69 (2011), no. 3, 445-464. MR2850740 (2012i:35337)
[18] David Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl. 311 (2005), no. 2, 755-759, DOI 10.1016/j.jmaa.2005.03.001. MR2168432 (2006d:35225)
[19] Darryl D. Holm, Hamiltonian structure for two-dimensional hydrodynamics with nonlinear dispersion, Phys. Fluids 31 (1988), no. 8, 2371-2373, DOI 10.1063/1.866587. MR951328(89f:76023)
[20] Delia Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys. 14 (2007), no. 3, 303-312, DOI 10.2991/jnmp.2007.14.3.1. MR2350091 (2008j:76015)
[21] Delia Ionescu-Kruse, Variational derivation of the Green-Naghdi shallow-water equations, J. Nonlinear Math. Phys. 19 (2012), no. suppl. 1, 1240001, 12, DOI 10.1142/S1402925112400013. MR 2999395
[22] D. Ionescu-Kruse, Variational derivation of two-component Camassa-Holm shallow water system, Appl. Anal. 92 (2013), no. 6, 1241-1253. DOI:10.1080/00036811.2012.667082. MR3197932
[23] R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR1629555 (99m:76017)
[24] Yi A. Li, Linear stability of solitary waves of the Green-Naghdi equations, Comm. Pure Appl. Math. 54 (2001), no. 5, 501-536, DOI 10.1002/cpa.1.abs. MR1811125 (2003b:35186)
[25] Yi A. Li, Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations, Recent advances in integrable systems (Kowloon, 2000), J. Nonlinear Math. Phys. 9 (2002), no. suppl. 1, 99-105, DOI 10.2991/jnmp.2002.9.s1.9. MR1900188(2003d:37126)
[26] Yi A. Li, A shallow-water approximation to the full water wave problem, Comm. Pure Appl. Math. 59 (2006), no. 9, 1225-1285, DOI 10.1002/cpa.20148. MR2237287(2007d:76024)
[27] Ju. I. Manin, Algebraic aspects of nonlinear differential equations (Russian), Current problems in mathematics, Vol. 11 (Russian), pp. 5-152 (errata insert), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1978. MR0501136 (58 \#18567)
[28] Mathematical methods in hydrodynamics and integrability in dynamical systems, AIP Conference Proceedings, edited by Michael Tabor and Yvain M. Trève, vol. 88, American Institute of Physics, New York, 1982. MR 694249 (84c:76002)
[29] Y. Nutku, On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure, J. Math. Phys. 28 (1987), no. 11, 2579-2585, DOI 10.1063/1.527749. MR913410 (88k:58058)
[30] Peter J. Olver and Yavuz Nutku, Hamiltonian structures for systems of hyperbolic conservation laws, J. Math. Phys. 29 (1988), no. 7, 1610-1619, DOI 10.1063/1.527909. MR946335 (90b:58085)
[31] F. Serre, Contribution à l'étude des écoulements permanents et variables dans les canaux, La Houille Blanche 3 (1953), 374-388, and 6 (1953), 830-872.
[32] J. J. Stoker, Water waves, The mathematical theory with applications, reprint of the 1957 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley \& Sons Inc., New York, 1992. MR 1153414 (92m:76029)
[33] C. H. Su and C. S. Gardner, Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation, J. Mathematical Phys. 10 (1969), 536-539. MR0271526 (42 \#6409)

[^0]: Received April 26, 2013 and, in revised form, May 16, 2013.
 2010 Mathematics Subject Classification. Primary 35Q35, 76B15, 76M30, 37K05, 76B25.
 Key words and phrases. Shallow-water waves, variational methods, Hamiltonian structures, solitary waves.
 E-mail address: Delia.Ionescu@imar.ro
 ${ }^{1}$ The depth-averaged value of a quantity $q(x, z, t)$ is defined by $\bar{q}(x, t):=\frac{1}{H(x, t)} \int_{0}^{H(x, t)} q(x, z, t) d z$.

