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Abstract. For propagation of surface shallow-water waves on irrotational flows, we

derive a new two-component system. The system is obtained by a variational approach

in the Lagrangian formalism. The system has a noncanonical Hamiltonian formulation.

We also find its exact solitary-wave solutions.

1. Introduction. In this paper we obtain the following system of nonlinear partial

differential equations:{
ut + 3uux +Hx =

[
H2

(
uuxx + uxt − u2

x

2

)]
x
,

Ht + (Hu)x = 0,
(1.1)

with x ∈ R, t ∈ R, u(x, t) ∈ R, H(x, t) ∈ R.

We start from a general dimensionless version of the two-dimensional irrotational

water-wave problem with a free surface and a flat bottom. We focus on the motion

of shallow-water waves, waves whose length is still large compared with the depth of

the water in which they propagate. In this shallow-water regime, many two-component

systems have already been derived and studied. One of them is the well-known Green-

Nagdhi system [16]{
ut + uux +HHx = 1

3H

[
H3(uuxx + uxt − u2

x)
]
x
,

Ht + (Hu)x = 0,
(1.2)

which models shallow-water waves whose amplitude (in the dimensionless version, the

amplitude parameter, that is, the ratio of the wave amplitude to the depth of the water)

is not necessarily small. Here u(x, t) represents the horizontal velocity, or the depth-

averaged1 horizontal velocity, and H(x, t) is the free upper surface. The Green-Naghdi
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equations are mathematically well-posed in the sense that they admit solutions over the

relevant time scale for any initial data that are reasonably smooth (see [26], [3]). The

solution of the Green-Naghdi equations provides a good approximation of the solution

of the full water-wave problem (see [26], [4]). The Green-Naghdi equations have nice

structural properties that facilitate the derivation of simplified model equations in the

shallow-water regime. For example, the celebrated Korteweg-de Vries, Benjamin-Bona-

Mahoney, Camassa-Holm, and Degasperis-Procesi equations arise as approximations to

the Green-Naghdi equations; cf. the discussion in [13].

Actually, Green and Naghdi considered in [16] the three-dimensional water-wave prob-

lem with a free surface and a variable bottom, and no assumption of an irrotational flow

was made a priori. The equations were derived by imposing the condition that the hori-

zontal velocity is independent of the vertical coordinate z, the condition that the vertical

velocity has only a linear dependence on z, and by using the mass conservation equation

and the energy equation in integral form plus invariance under rigid-body translation.

For one horizontal x-coordinate and for a flat bottom, the equations have the form (1.2).

In the two-dimensional case (only one horizontal dimension) and for a domain with a

flat bottom, the system (1.2) was originally derived in 1953 by Serre [31], and it was

independently rediscovered by Su and Gardner [33] in 1969. Serre ([31], Sect. V) inte-

grated the Euler equations over z on the interval [0, H(x, t)] and made the assumption

that the horizontal component of fluid velocity is equal to its depth-averaged value. Su

and Gardner [33] obtained the system (1.2) by depth-averaging the two-dimensional ir-

rotational water-wave problem and by using a long-wave asymptotic expansion. In the

literature, the equations (1.2) are sometimes referred to as the Serre equations or the

Su-Gardner equations, but usually they are called the Green-Naghdi equations. Very

recently, Ionescu-Kruse [21] obtained, by a variational approach in the Lagrangian for-

malism, the system (1.2) for the propagation of arbitrary amplitude shallow-water waves

on two-dimensional irrotational flows.

In Section 3 of the present paper, we derive, by the same approach as in [21], the system

(1.1). We are in the shallow-water regime and we consider surface waves of arbitrary

amplitude. We are looking for a higher-order correction to the classical shallow-water

equations (2.14). The second equation of the system (2.14) is a transport equation,

the free surface is advected, or Lie transported (in the geometry literature), by the

fluid flow. In the system (1.1), we keep this equation as it is. We obtain the first

equation of the system (1.1) by calculating the critical points of an action functional in

the space of paths with fixed endpoints, within the Lagrangian formalism. We arrive

at this action functional as follows. Within the Eulerian formalism, we consider the

Lagrangian function integrated over time in the action functional to have the traditional

form, that is, the kinetic energy minus the potential energy. According to a velocity field

with a horizontal component (2.9) independent of the vertical coordinate z and a vertical

component (2.10) having only a linear dependence on z, we take for the kinetic energy at

the free surface of the water the expression (3.12) and for the potential energy calculated

with respect to the undisturbed water level the expression (3.13). Then, we transport

the Lagrangian function (3.15) from the Eulerian picture to the tangent bundle which

represents the velocity phase space in the Lagrangian formalism, this transport being
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made taking into account the second equation of the system (1.1) as well. Thus, we

get the Lagrangian function (3.16). We point out that the Lagrangian (3.15) as well as

(3.16) are not metrics; the pursuit of an advanced geometrical approach is not necessarily

dependent upon the existence of a metric, as also illustrated in the recent papers [14]

and [15].

The type of considerations made in the present paper also proved very useful (in

similar contexts) to qualitative studies of some model equations. For example, in the

derivation of criteria for global existence and blow-up of solutions as well as in studies

of the propagation speed for some model equations for shallow-water waves, see e.g. the

papers [8], [11], [17], [9], [18].

The Green-Naghdi equations (1.2) have the following Hamiltonian formulation (see

[19], [7]): (
mt

Ht

)
= −

(
∂xm+m∂x H∂x

∂xH 0

)(
δHGN

δm

δHGN

δH

)
, (1.3)

where HGN is the total energy (kinetic plus potential) given by

1

2

∫ ∞

−∞

(
Hu2 +

1

3
H3u2

x + (H − 1)2
)
dx (1.4)

and m is the momentum density defined by

m :=
δHGN

δu
= Hu− 1

3

(
H3ux

)
x
, (1.5)

δHGN

δu , δHGN

δm , and δHGN

δH being the variational derivatives of HGN with respect to u, m,

and H, respectively.

In Section 4 of the present paper, we show that the system (1.1) has the Hamilton-

ian formulation (1.3), with a different total energy HN given by (4.2) and a different

momentum density m given by (4.3).

The solitary-wave solution of the Green-Naghdi equations (1.2) has the form (see

[31, pp. 863–864] and [33, p. 539])

H(x, t) = 1 + (c2 − 1) sech2
[√

3
2

√
c2−1
c (x− ct)

]
u(x, t) = c

(
1− 1

H(x,t)

)
,

(1.6)

with c the speed of the traveling wave. These waves exist for all c such that the condition

c2 > 1 (1.7)

is satisfied. In [24], [25], the eigenvalue problem obtained from linearizing the equations

about solitary-wave solutions is investigated and it is established that small-amplitude

solitary-wave solutions of the Green-Naghdi equations are linearly stable.

In Section 5 of the present paper, we find the solitary-wave solution of the system

(1.1). Its expression (5.19)–(5.20) is different from (1.6). The speed c of the traveling

wave has to satisfy the condition (5.9), that is, the condition (1.7).
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2. Preliminaries. We recall the classical water-wave problem for gravity waves prop-

agating at the free surface of a two-dimensional inviscid incompressible fluid. The fluid

occupies the domain

−∞ < x < ∞, 0 ≤ z ≤ h0 + η(x, t), (2.1)

where the constant h0 > 0 is the undisturbed depth of the water and η(x, t) is the dis-

placement of the free surface from the undisturbed state. Here (x, z) gives the Cartesian

coordinates, the x-axis being in the direction of wave propagation and the z-axis point-

ing vertically upwards. The governing equations are Euler’s equations and the continuity

equation with appropriate surface and bottom boundary conditions (see, for example,

[10]):

ut + uux + vuz = −px,

vt + uvx + vvz = −pz − g,

ux + vz = 0,

v = ηt + uηx on z = h0 + η(x, t),

p = p0 on z = h0 + η(x, t),

v = 0 on z = 0.

(2.2)

Here (u(x, z, t), v(x, z, t)) is the velocity field of the water—no motion takes place in the

y-direction, p(x, z, t) denotes the pressure, p0 being the constant atmospheric pressure

and g is the acceleration due to gravity. We set the constant density ρ = 1.

The water flow is assumed to be irrotational; that is, in addition to the system (2.2)

we also have the equation

uz − vx = 0. (2.3)

We introduce the following dimenionless variables (see, for example, [23]):

x̄ = x
λ , z̄ = z

h0
, t̄ =

√
gh0

λ t, η̄ = η
a ,

ū = 1√
gh0

u, v̄ = 1
h0

λ√
gh0

v,

p̄ = 1
gh0

[p− p0 − g(h0 − z)],

(2.4)

where a represents a measure of the amplitude of the waves and λ the typical wavelength

for the considered waves. The dimensionless variables considered above are good choices

for showing the magnitude of the different terms that appear in the equations. Substi-

tuting (2.4) in the system (2.2)–(2.3), one finds that the equations of motion depend

upon the two parameters ε and δ defined as

ε :=
a

h0
, δ :=

h0

λ
. (2.5)

The amplitude parameter ε is associated with the nonlinearity of the wave, and the long-

wave parameter δ is associated with the dispersion of the wave. Omitting the bars for
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the sake of clarity, the dimensionless form of the system (2.2)–(2.3) is

ut + uux + vuz = −px,

δ2(vt + uvx + vvz) = −pz,

ux + vz = 0,

uz − δ2vx = 0,

v = ε(ηt + uηx) on z = 1 + εη(x, t),

p = εη on z = 1 + εη(x, t),

v = 0 on z = 0.

(2.6)

Making smallness hypotheses on the parameters ε and δ, one reduces the problem to

different physical regimes. Our analysis is concerned with the shallow-water regime, that

is,

δ << 1. (2.7)

The amplitude of waves is governed by ε. We consider relatively large amplitude surface

waves, meaning that no smallness assumption is made on ε. For δ = 0, the leading-order

system becomes

ut + uux + vuz = −px,

pz = 0,

ux + vz = 0,

uz = 0,

v = ε(ηt + uηx) on z = 1 + εη(x, t),

p = εη(x, t) on z = 1 + εη(x, t),

v = 0 on z = 0.

(2.8)

The system of equations (2.8) reduces to

u = u(x, t), (2.9)

v = −zux, (2.10)

p = εη(x, t), (2.11)

and {
ut + uux + εηx = 0,

εηt + [(1 + εη)u]x = 0.
(2.12)

Let us denote

H(x, t) := 1 + εη(x, t). (2.13)

Then, the system of equations (2.12) becomes{
ut + uux +Hx = 0,

Ht + (Hu)x = 0,
(2.14)

that is, the classical shallow-water equations (see, for example, [32]). These equations

possess an infinite number of integrals of motion (the conserved quantities) due to Benney

[5] and can be written in Hamiltonian form relative to a symplectic structure introduced

by Manin [27]. The second Hamiltonian structure for the system (2.14) was obtained by

Cavalcante and McKean [6]. In fact, the system (2.14) is Hamiltonian with respect to

three distinct Hamiltonian structures [29]. These Hamiltonian structures are compatible

and thus the system of equations (2.14) is completely integrable [30]. For a rigorous
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analysis of the system (2.14) as an approximate model of the water-wave problem, see

[4].

3. The variational derivation of a new two-component shallow-water sys-

tem. In what follows we consider ε arbitrary but fixed; there is no smallness assumption

on the wave amplitude. We are looking for a higher-order correction to the classical

shallow-water equations (2.12), or (2.14) in view of the notation (2.13). We observe that

the second equation in (2.14) is exactly the second equation of the new two-component

shallow-water system (1.1). We will derive the first equation of the system (1.1) directly

from a variational principle in the Lagrangian formalism.

We introduce now the map

γ : R× [0, T ] �→ R, γ(X, t) = x, (3.1)

such that, for a fixed t, γ(·, t) is an invertible C1-mapping, that is,

γ(·, t) ∈ Diff(R), (3.2)

and such that

u(x, t) = γt(X, t), that is, u(·, t) = γt ◦ γ−1. (3.3)

This map reminds us of the flow map used in the Lagrangian description of the fluid

which maps a fluid particle labeled by its initial location X to its later Eulerian position

x. In the Lagrangian description of the fluid, the Lagrangian velocity γt(X, t) represents

the velocity of the fluid particle labeled X, while the Eulerian velocity γt(γ
−1(x), t)

represents the velocity of the particle passing the location x at time t.

In the Eulerian formalism for our problem, for a fixed t, u(x, t) can be regarded as a

vector field on R; that is, it belongs to the Lie algebra of Diff(R). In the Lagrangian

formalism for our problem, the velocity phase space is the tangent bundle TDiff(R).

For the configuration space Diff(R), we add the technical assumption that the smooth

functions defined on R with value in R vanish rapidly at ±∞ together with as many

derivatives as necessary.

The other unknown of our problem is H(x, t), which for a fixed t can be regarded as

a real function on R, H(·, t) ∈ F(R). We settle that the evolution equation of H(x, t) is

the second equation in (2.14). This equation is an advection equation. In the language

of geometry, this equation expresses the fact that the 1-form

H(x, t) := H(x, t)dx (3.4)

is Lie transported by the vector field

u(x, t) := u(x, t)∂x; (3.5)

that is,
∂H

∂t
+ LuH = 0, (3.6)

where Lu denotes the Lie derivative with respect to the vector field u (see, for example,

[1, Section 2.2]). The equation (3.6) is an equation written in the Eulerian formalism.
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With the aid of the pull-back map γ∗, in the Lagrangian formalism this becomes

γ∗
(
∂H

∂t
+ LuH

)
= 0. (3.7)

By interpreting the Lie derivative of a time-dependent 1-form along a time-dependent

vector field in terms of the flow of the vector field (see, for example, [1, Section 2]), we

get that
d

dt
[γ∗(H)] = γ∗(LuH) + γ∗

(
∂H

∂t

)
(3.7)
= 0; (3.8)

that is, we get the time-invariant 1-form

H0 := γ∗(H), H0(X, t) = H0(X, 0). (3.9)

By the definition of the pull-back map (see, for example, [1, Section 2]), we get between

the components of the 1-forms H0(X, t) := H0(X, t)dX and H(x, t) := H(x, t)dx the

following relation:

H0 = (H ◦ γ)Jγ , (3.10)

where Jγ := ∂γ
∂X is the Jacobian of γ, or

H = (H0 ◦ γ−1)Jγ−1 . (3.11)

Our goal is to show that the first equation of the system (1.1) yields the critical points

of an appropriate action functional which is completely determined by a scalar function

called Lagrangian. We take the traditional form of the Lagrangian, that is, the kinetic

energy minus the potential energy. In the Eulerian formalism, taking into account the

components (2.9) and (2.10) of the velocity field, the kinetic energy has at the free surface

z = 1 + εη(x, t) the expression

Ec(u, η) =
1

2

∫ ∞

−∞
[u2 + (1 + εη)2u2

x]dx

(2.13)
=

1

2

∫ ∞

−∞
[u2 +H2u2

x]dx =: Ec(u,H). (3.12)

In nondimensional variables, with ρ and g settled at 1, we define the gravitational po-

tential energy at the free surface z = 1 + εη(x, t), gained by the fluid parcel when it is

vertically displaced from its undisturbed position with εη(x, t), by

Ep(η) =

∫ ∞

−∞

(∫ 1+εη

0

(z − 1) dz

)
dx =

1

2

∫ ∞

−∞
(εη)2dx

(2.13)
=

1

2

∫ ∞

−∞
(H − 1)2dx =: Ep(H). (3.13)

We require in (3.12) and (3.13) that at any instant t,

u → 0, ux → 0 and H → 1 as x → ±∞. (3.14)

Thus, in the Eulerian formalism, the Lagrangian function has the form

L(u,H) = Ec(u,H)− Ep(H) =
1

2

∫ ∞

−∞
[u2 +H2u2

x − (H − 1)2]dx. (3.15)
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Within the Lagrangian formalism, the Lagrangian for our problem will be obtained by

transporting the Lagrangian (3.15) from the Eulerian formalism to all tangent spaces

TDiff(R), this transport being made taking into account (3.3) and (3.11).

For each function H0 ∈ F(R) independent of time, we define the Lagrangian LH0
:

TDiff(R) → R by

LH0
(γ, γt) :=

1

2

∫ ∞

−∞
{(γt ◦ γ−1)2 + [(H0 ◦ γ−1)Jγ−1 ]2[∂x(γt ◦ γ−1)]2

−[(H0 ◦ γ−1)Jγ−1 − 1]2}dx. (3.16)

The Lagrangian LH0
depends smoothly on H0 and it is right invariant under the action

of the subgroup

Diff(R)H0
= {ψ ∈ Diff(R)|(H0 ◦ ψ−1)Jψ−1 = H0}; (3.17)

that is, if we replace the path γ(t, ·) by γ(t, ·) ◦ ψ(·), for a fixed time-independent ψ in

Diff(R)H0
, then LH0

is unchanged.

The action on a path γ(t, ·), t ∈ [0, T ], in Diff(R) is

a(γ) :=

∫ T

0

LH0
(γ, γt)dt. (3.18)

The critical points of the action (3.18) in the space of paths with fixed endpoints satisfy

d

dε
a(γ + εϕ)

∣∣∣
ε=0

= 0 (3.19)

for every path ϕ(t, ·), t ∈ [0, T ], in Diff(R) with endpoints at zero, that is,

ϕ(0, ·) = 0 = ϕ(T, ·), (3.20)

and such that γ+εϕ is a small variation of γ on Diff(R). With (3.16) and (3.18) in view,

the condition (3.19) becomes∫ T

0

∫ ∞

−∞

{(
γt ◦ γ−1

) d

dε

∣∣∣
ε=0

[
(γt + εϕt) ◦ (γ + εϕ)−1

]
+(H0 ◦ γ−1)J2

γ−1

[
∂x(γt ◦ γ−1)

]2 d

dε

∣∣∣
ε=0

[H0 ◦ (γ + εϕ)−1]

+(H0 ◦ γ−1)2Jγ−1

[
∂x(γt ◦ γ−1)

]2 d

dε

∣∣∣
ε=0

[J(γ+εϕ)−1 ]

+[(H0 ◦ γ−1)Jγ−1 ]2∂x(γt ◦ γ−1)
d

dε

∣∣∣
ε=0

[
∂x

(
(γt + εϕt) ◦ (γ + εϕ)−1

)]
−(H0 ◦ γ−1)J2

γ−1

d

dε

∣∣∣
ε=0

[H0 ◦ (γ + εϕ)−1]

−(H0 ◦ γ−1)2Jγ−1

d

dε

∣∣∣
ε=0

[J(γ+εϕ)−1 ]

+(Jγ−1)
d

dε

∣∣∣
ε=0

[H0 ◦ (γ + εϕ)−1]

+(H0 ◦ γ−1)
d

dε

∣∣∣
ε=0

[J(γ+εϕ)−1 ]

}
dxdt = 0. (3.21)
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After calculation (for more details see, for example, [22]), we get

d

dε

∣∣∣
ε=0

[
(γt + εϕt) ◦ (γ + εϕ)−1

]
= ∂t(ϕ ◦ γ−1) + (γt ◦ γ−1)∂x(ϕ ◦ γ−1)

−(ϕ ◦ γ−1)∂x(γt ◦ γ−1), (3.22)

d

dε

∣∣∣
ε=0

[H0 ◦ (γ + εϕ)−1] = −(ϕ ◦ γ−1)∂x(H0 ◦ γ−1), (3.23)

d

dε

∣∣∣
ε=0

[J(γ+εϕ)−1 ] = −(Jγ−1)∂x(ϕ ◦ γ−1)− ∂x(Jγ−1)(ϕ ◦ γ−1), (3.24)

d

dε

∣∣∣
ε=0

[
∂x

(
(γt + εϕt) ◦ (γ + εϕ)−1

)]
= ∂tx(ϕ ◦ γ−1) + (γt ◦ γ−1)∂2

x(ϕ ◦ γ−1)

−[∂2
x(γt ◦ γ−1)](ϕ ◦ γ−1). (3.25)

Thus, from (3.22)–(3.25), the condition (3.21) becomes∫ T

0

∫ ∞

−∞

{
u
[
∂t(ϕ ◦ γ−1) + u∂x(ϕ ◦ γ−1)− (ϕ ◦ γ−1)ux

]
−HHxu

2
x(ϕ ◦ γ−1)−H2u2

x∂x(ϕ ◦ γ−1)

+H2ux

[
∂tx(ϕ ◦ γ−1) + u∂2

x(ϕ ◦ γ−1)− (ϕ ◦ γ−1)uxx

]
+HHx(ϕ ◦ γ−1) +H2∂x(ϕ ◦ γ−1)

−Hx(ϕ ◦ γ−1)−H∂x(ϕ ◦ γ−1) } dxdt = 0, (3.26)

where u = γt ◦γ−1 and H = (H0 ◦γ−1)Jγ−1 . In the above formula, we integrate by parts

with respect to t and x, we take into account (3.14) and (3.20), and we get

−
∫ T

0

∫ ∞

−∞
(ϕ ◦ γ−1)

[
ut + 3uux −HHxu

2
x −H2uxuxx

−(H2ux)tx − (H2uux)xx +HHx ] dxdt = 0. (3.27)

With H satisfying the second equation in (1.1), the condition (3.27) becomes

−
∫ T

0

∫ ∞

−∞
(ϕ ◦ γ−1)

{
ut + 3uux +HHx −

−
[
H2

(
uxt + uuxx − u2

x

2

)]
x

}
dxdt = 0. (3.28)

Therefore, we proved

Theorem 3.1. For an irrotational shallow-water flow, the nondimensional horizontal

velocity of the water u(x, t) and the nondimensional free upper surface H(x, t) = 1 +

εη(x, t), for ε arbitrarily fixed, satisfy the system (1.1).

We emphasize that for our considerations we do not require any hypothesis of small

amplitude. Under the additional assumption of a small or moderate amplitude regime,

similar considerations lead to a variational derivation of the celebrated Korteweg-de Vries

and Camassa-Holm model equations (see [20] and [12]).
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4. The Hamiltonian structure for the shallow-water system (1.1). The use

of a variational principle in fluid dynamics, beside the aesthetic attraction in condensing

the equations by extremizing a scalar quantity, retains the Hamiltonian structure with

consequent energy conservation. We present below the Hamiltonian structure of the

two-component shallow-water system (1.1).

Theorem 4.1. The shallow-water system (1.1) has the following Hamiltonian form:(
mt

Ht

)
= −

(
∂xm+m∂x H∂x

∂xH 0

)(
δHN

δm

δHN

δH

)
, (4.1)

where HN is the total energy, that is,

HN (u,H) := Ec(u,H) + Ep(H) =
1

2

∫ ∞

−∞

[
u2 +H2u2

x + (H − 1)2
]
dx, (4.2)

and m is the momentum density defined by

m :=
δHN

δu
= u− (H2ux)x. (4.3)

Proof. Here δHN

δu is the variational derivative of HN with respect to u; that is,

d

dε

∣∣∣
ε=0

HN (u+ εδu,H) =

∫ ∞

−∞

δHN

δu
δu dx. (4.4)

From the expression (4.2) of HN we have

d

dε

∣∣∣
ε=0

HN (u+ εδu,H) =

∫ ∞

−∞

[
uδu+H2ux(δu)x

]
dx. (4.5)

Integrating by parts and taking into account (3.14), we get

d

dε

∣∣∣
ε=0

HN (u+ εδu,H) =

∫ ∞

−∞

[
u− (H2ux)x

]
δu dx. (4.6)

Therefore, m has the expression (4.3).

In order to calculate δHN

δm and δHN

δH , that is, the variational derivatives of HN with

respect to m and H, respectively, we write the total energy HN in terms of m and H.

Integrating the second term in the right-hand integral (4.2) by parts and taking into

account (3.14), we obtain

HN =
1

2

∫ ∞

−∞

[
mu+ (H − 1)2

]
dx. (4.7)

We can regard (4.3) as an operator equation; that is,

m = u− (H2ux)x =: THu. (4.8)

Here TH is a linear operator defined on the space of real functions u satisfying (3.14),

with the inner product defined by

〈THu, v〉 :=
∫ ∞

−∞

[
uv − (H2ux)xv

]
dx. (4.9)
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For two functions u and v satisfying (3.14), integrating the second term in the right-hand

integral (4.9) by parts we obtain

〈THu, v〉 = 〈u, THv〉; (4.10)

that is, TH is a selfadjoint operator.

〈THu, u〉 =
∫ ∞

−∞

[
u2 +H2u2

x

]
dx; (4.11)

thus, the operator TH is also positive definite.

The operator equation (4.8) may be inverted to determine u as a continuous function

of m,

u = T −1
H m, (4.12)

T −1
H being the inverse operator.

Then (4.7) becomes

HN (m,H) =
1

2

∫ ∞

−∞

[
m(T −1

H m) + (H − 1)2
]
dx. (4.13)

Let us calculate now δHN

δm and δHN

δH , where

d

dε

∣∣∣
ε=0

HN (m+ εδm,H) =

∫ ∞

−∞

δHN

δm
δmdx (4.14)

and
d

dε

∣∣∣
ε=0

HN (m,H + εδH) =

∫ ∞

−∞

δHN

δH
δH dx. (4.15)

From (4.13), taking into account that T −1
H is also a linear and selfadjoint operator, we

obtain

d

dε

∣∣∣
ε=0

HN (m+ εδm,H) =
1

2

∫ ∞

−∞

[
δm(T −1

H m) +m(T −1
H δm)

]
dx

=
1

2

∫ ∞

−∞

[
δm(T −1

H m) + (T −1
H m)δm

]
dx

=

∫ ∞

−∞
(T −1

H m)δmdx. (4.16)

Therefore,
δHN

δm
= T −1

H m = u. (4.17)

From (4.13), we also have

d

dε

∣∣∣
ε=0

HN (m,H + εδH) =
1

2

∫ ∞

−∞

(
m

d

dε

∣∣∣
ε=0

T −1
(H+εδH)m

)
dx

+

∫ ∞

−∞
(H − 1)δH dx. (4.18)

Differentiating with respect to ε the identity

T(H+εδH) ◦ T −1
(H+εδH) = Id, (4.19)
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we get

d

dε

∣∣∣
ε=0

T −1
(H+εδH)m = −T −1

H

(
d

dε

∣∣∣
ε=0

T(H+εδH)u

)
. (4.20)

Thus, taking into account that T −1
H is a selfadjoint operator and the relation (4.20), the

first term in the right-hand side of (4.18) becomes

1

2

∫ ∞

−∞

(
m

d

dε

∣∣∣
ε=0

T −1
(H+εδH)m

)
dx = −1

2

∫ ∞

−∞

(
u
d

dε

∣∣∣
ε=0

T(H+εδH)u

)
dx. (4.21)

From the expression (4.8) of the linear operator TH ,

d

dε

∣∣∣
ε=0

T(H+εδH)u = −2(uxHx +Huxx)δH − 2Hux(δH)x. (4.22)

We substitute (4.22) into the right-hand side of (4.21), we integrate by parts for a function

u satisfying (3.14), and finally we obtain

1

2

∫ ∞

−∞

(
m

d

dε

∣∣∣
ε=0

T −1
(H+εδH)m

)
dx =

∫ ∞

−∞

(
−Hu2

x

)
δH dx. (4.23)

Substituting (4.23) into (4.18) yields

d

dε

∣∣∣
ε=0

HN (m,H + εδH) =

∫ ∞

−∞

(
−Hu2

x +H − 1
)
δH dx; (4.24)

that is,

δHN

δH
= −Hu2

x +H − 1. (4.25)

It remains to check now that the system(
mt

Ht

)
= −

(
∂xm+m∂x H∂x

∂xH 0

)(
u

−Hu2
x +H − 1

)
(4.26)

is the shallow-water system (1.1). It is clear that the second equation of the system

(4.26) is the second equation of the system (1.1). A straightforward calculation, with H

satisfying the second equation in (1.1), shows that the first equation of the two systems

also coincide.

What is left is to show that the operator

−
(

∂xm+m∂x H∂x
∂xH 0

)
(4.27)

is skew-symmetric and satisfies Jacobi’s identity. The verification of Jacobi’s identity can

be done directly (see, for example, [7]) or with the assistance of the Lie-Poisson structure

(see, for example, [28]). This completes the proof. �
Remark 4.2. The Lagrangian (3.15) does not depend on time and on the space co-

ordinate x; that is, it is invariant (symmetric) under the time and space translations.

Noether’s theorem implies for each invariance a unique conservation law (see, for exam-

ple, [2]). Thus, we get for the system of equations (1.1) the conservation of the total
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energy (4.2) and the conservation of the momentum density (4.3), respectively. The local

conservation law for the momentum density has the form

mt = −∂x(mu)−m∂x(u)−H∂x
(
−Hu2

x +H − 1
)

= −∂x

(
mu+

u2

2
+

H2

2
+

3H2u2
x

2

)
. (4.28)

5. Solitary waves for the shallow-water system (1.1). We are now interested

in finding the solitary-wave solution of the nonlinear system (1.1). For a solution

u(x, t) = u(x− ct), H(x, t) = H(x− ct), (5.1)

traveling with speed c > 0, the system (1.1) takes the form{
−cu′ + 3uu′ +HH ′ =

[
H2(u− c)u′′ −H2 (u′)2

2

]′
,

(−cH +Hu)′ = 0.
(5.2)

We require that, at any instant t,

u → 0, u′ → 0, u′′ → 0 and H → 1 as x → ±∞. (5.3)

Integrating each equation of the system (5.2) and taking into account the asymptotic

limits (5.3), we get{
−cu+ 3

2u
2 + H2

2 = H2(u− c)u′′ −H2 (u′)2

2 + 1
2 ,

u = c
(
1− 1

H

)
.

(5.4)

Plugging the expression of u into the first equation of the system (5.4) yields an ordinary

differential equation for H:

c2

2
− 2c2

H
+

3c2

2

1

H2
+

H2

2
= −c2

H ′′

H
+

3c2

2

(H ′)2

H2
+

1

2
. (5.5)

We multiply the above equation by 2H′

H2 , we integrate, we take into account the asymp-

totic limits (5.3), and we obtain

− c2

H
+

2c2

H2
− c2

H3
+H = −c2

(H ′)2

H3
− 1

H
+ 2. (5.6)

Now (5.6) becomes

c2(H ′)2 = (H − 1)2(c2 −H2). (5.7)

From (5.7) it follows that

c2 > H2, (5.8)

which according to the asymptotic behavior (5.3) of H yields the following condition for

c:

c2 > 1. (5.9)

The solution of the separable differential equation (5.7) is obtained by integration. We

denote

H − 1 =:
1

K
. (5.10)
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Then we get the integral

I :=

∫
c dH

(H − 1)
√
c2 −H2

= −
∫

c dK√
(c2 − 1)K2 − 2K − 1

. (5.11)

With the condition (5.9) in view, we denote√
(c2 − 1)K2 − 2K − 1 =: w −

√
c2 − 1K. (5.12)

In this way,

K =
w2 + 1

2(w
√
c2 − 1− 1)

(5.13)

and the integral (5.11) becomes

I = −
∫

c dw

w
√
c2 − 1− 1

= − c√
c2 − 1

log(w
√
c2 − 1− 1). (5.14)

From the notations (5.12) and (5.10), we conclude that

I = − c√
c2 − 1

log

[√
c2 − 1

√
c2 −H2 + c2 −H

H − 1

]
. (5.15)

Therefore, the solution of the differential equation (5.7) has the implicit form
√
c2 − 1

√
c2 −H2 + c2 −H

H − 1
= exp

[
−
√
c2 − 1

c
(x− ct)

]
. (5.16)

We add 1 to both sides of the above equation, we divide by
√
c2 − 1, we raise to the

second power, and we get

2c2 −H2 − 1 + 2
√
c2 − 1

√
c2 −H2

(H − 1)2
=

⎛
⎝exp

[
−

√
c2−1
c (x− ct)

]
+ 1

√
c2 − 1

⎞
⎠

2

. (5.17)

By adding 1 again to both sides of the above equation,

(
2

H − 1

) √
c2 − 1

√
c2 −H2 + c2 −H

H − 1
=

⎛
⎝exp

[
−

√
c2−1
c (x− ct)

]
+ 1

√
c2 − 1

⎞
⎠

2

+ 1,

and by (5.16), we finally obtain

2

H − 1
exp

[
−
√
c2 − 1

c
(x− ct)

]
=

⎛
⎝exp

[
−

√
c2−1
c (x− ct)

]
+ 1

√
c2 − 1

⎞
⎠

2

+ 1. (5.18)

Thus we have

Theorem 5.1. The solitary-wave solution of the shallow-water system (1.1) has the form

H(x, t) = 1 +
2(c2 − 1) exp

[√
c2−1
c (x− ct)

]
c2 exp

[
2
√
c2−1
c (x− ct)

]
+ 2 exp

[√
c2−1
c (x− ct)

]
+ 1

= 1 +
c2 − 1

1 + c2+1
2 cosh

[√
c2−1
c (x− ct)

]
+ c2−1

2 sinh
[√

c2−1
c (x− ct)

] (5.19)
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and

u(x, t) = c

(
1− 1

H(x, t)

)
. (5.20)
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