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Abstract. When a stable normal mode loses stability in nonlinear conservative 2-

degree-of-freedom systems, the phenomenon of internal resonance occurs involving rig-

orous energy exchange between modes and generating a stable coupled mode (called a

modal coupling). Based on this observation, bifurcation of the coupled-mode responses

is studied when the system is weakly damped and under a small sinusoidal excitation

applied to one mode. The motions are not necessarily assumed to be small throughout.

To analyze the stability of the driving mode in the underlying conservative system, a

procedure is formulated to construct the stability curve in a stability chart. It is found

that if the driving mode loses stability, then a stable coupled-mode response is formed

and can be expressed in Fourier series. Assuming that the stability curve of the driving

mode enters the pth unstable region with p = 2, 3, 4, . . ., the coupled-mode response for

p = 2, 3, 4, . . . can be determined with two terms as the first-order approximation; i.e.,

each coordinate is expressed by the sum of two predominant harmonic terms. One-term

approximation of coupled-mode response is plausible if p = 1, which may result in 1:1

internal resonance. If the stability curve passes through the pth unstable region with

p = 2, 3, 4, . . . and if the coupled-mode responses are expressed in the first-order approx-

imation form, then the frequency response curve of the stable coupled-mode response

is overlapped with the curve of the unstable response. As the order of approximation

increases, two curves are separated from each other. The proposed method is compared

with other perturbation techniques in the systems that exhibit 1:1 and 3:1 internal res-

onances.
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1. Introduction. Consider a conservative 2-degree-of-freedom (DOF) system whose

kinetic energy T and potential energy V are written as

T =
1

2

(
ẋ2 + ẏ2

)
, V =

1

2

(
ω2
1x

2 + ω2
2y

2
)
+N(x, y) (1.1)

where x and y are the modal coordinates; ω1 and ω2 are the linearized natural frequencies;

N(x, y) represents the nonlinear restoring term; and T +V = h denotes the total energy.

Assume that the nonlinear restoring term is positive definite in R
2 and can be written as

N(x, y) =

4∑
n=0

αnx
4−nyn. (1.2)

When the system is damped and under a harmonic excitation, the equations of motion

can be written as
ẍ+ ω2

1x+Nx(x, y) = −c1ẋ+ F cosωt

ÿ + ω2
2y +Ny(x, y) = −c2ẏ

(1.3)

where Nx and Ny are the partial differentiations of N(x, y) with respect to x and y,

respectively. It is assumed that c1, c2, and F are small.

Since the origin O of the configuration space for the underlying conservative system

is a stable equilibrium, there exist two normal modes (called x-mode and y-mode, re-

spectively) in the neighborhood of O due to Liapunov’s Theorem [1–3]. These modes are

called the fundamental nonlinear normal modes to distinguish them from any bifurcating

nonlinear normal modes, as will be described in Section 3.

The idea of nonlinear normal modes was proposed by Rosenberg [4] with the view that

a nonlinear resonance occurs when a nonlinear normal mode exists in the system. And

many others (e.g., see Rand [5], Vakakis et al. [6] and Shaw and Pierre [7]) made sig-

nificant contributions to understanding nonlinear normal modes. Bifurcation of coupled

modes has been extensively investigated, mostly in the systems with 1:1 and 3:1 internal

resonances [8–21]. It was recently found that, by using numerical methods, the coupled

modes exhibiting various geometrical shapes bifurcate off the fundamental nonlinear nor-

mal modes. Furthermore, it was demonstrated that each bifurcation point corresponds

to the change in stability of the fundamental nonlinear normal modes.

The primary interest in this work is to show that, if the driving mode loses stability

in the underlying conservative system, then a stable coupled-mode response is formed.

Also, an analytical procedure of computing the coupled-mode responses is formulated.

The stability of the driving mode is analyzed by using Synge’s concept [22,23], which

requires beforehand the solution of the driving mode. The driving mode is expressed in

Fourier series. In Section 2, the driving mode is properly approximated to construct the

stability curve in the stability chart. Some properties of transition curves (eigenvalues)

and eigenfunctions are described.

A procedure is formulated in Section 3 to compute the coupled modes which bifur-

cate off the driving mode. These modes are also expressed in Fourier series and are

properly approximated. A criterion is established to distinguish bifurcating nonlinear

normal modes from the fundamental nonlinear normal modes. In Section 4, a procedure

is formulated, by using the approximated coupled modes, to compute the undamped

coupled-mode responses and to estimate the stability of the responses.
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Fig. 1. Disturbance vector β.

In Section 5, the effect of damping is considered to derive the functional form of

damped coupled-mode responses as the first-order approximation. In Section 6, some

examples are given to demonstrate the procedure of the proposed method, which is com-

pared with perturbation techniques in the systems with 1:1 and 3:1 internal resonances.

2. Stability analysis of a driving mode. The stability of the driving mode is

analyzed by using Synge’s concept [22, 23], which defines the disturbance vector β˜between configurations of the unperturbed trajectory C and a perturbed trajectory C∗

by the condition that β˜ is orthogonal to C (cf. Figure 1). The equation governing the

magnitude β = |β˜| is derived, for a fixed h, as

β̈(t) +

⎛
⎝Kv2 + 3κ2v2 +

2∑
i,j=1

Vijninj

⎞
⎠β(t) = 0 (2.1)

whereK is the Gaussian curvature; v the velocity of C; κ the curvature of C; Vij = ∇∇V ;

and �n = {n1, n2}, the unit vector of β˜. Then, C is said to be stable in kinematico-statical

sense if β, as every solution of Eq. (2.1), is permanently small. It is shown that this

concept is equivalent to the orbital stability [24].

To analyze the stability of the driving mode, the solution of C should be known. The

driving mode is a nonlinear normal mode in the underlying conservative system. It is

(i) a periodic trajectory passing through and symmetric with respect to the origin, (ii)

possesses two rest points, and (iii) can be expressed in Fourier series,

x(t) =
∞∑
j=0

Aj cos jωt+
∞∑
j=1

Cj sin jωt

y(t) =

∞∑
j=0

Bj cos jωt+

∞∑
j=1

Dj sin jωt.

(2.2)

Setting t = 0 at a rest point, we can deduce that x(−t) = x(t) and y(−t) = y(t), which

implies that Cj = Dj = 0, j = 1, 2, . . . . Furthermore, due to the symmetry, we can

write x(π/2ω − t) = −x(π/2ω + t) and y(π/2ω − t) = −y(π/2ω + t), which leads to

additional conditions that A2j = B2j = 0, j = 0, 1, 2, . . . . The driving mode can be
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simply approximated by

x(t) ≈
s∑

j=1

Aj cos(2j − 1)ωt, y(t) ≈
s∑

j=1

Bj cos(2j − 1)ωt (2.3)

where s is the order of approximation so that the modal curve in the configuration space

is expressed as

y(x) ≈
s∑

j=1

kjx
2j−1. (2.4)

The driving mode (i.e., the x-mode) is said to be simple if

y(t) ≡ 0, ẍ+ ω2
1x+ 4α0x

3 = 0. (2.5)

If the y-mode is also simple, then the system is said to be simple. For a simple system,

we have that α1 = α3 = 0. Simple systems are frequently observed if a certain symmetry

exists. Based on strongly nonlinear analysis (i.e., motions are not necessarily assumed

to be small), the solution of Eq. (2.5) is approximated as

y(t) ≡ 0, x(t) = A cosωt (2.6)

where ω2 = ω2
1 + 3α0A

2.

On the same line of approximating the driving mode in simple systems, the driving

mode, as a fundamental nonlinear normal mode in general systems, can be approximated

as

x(t) = A cosωt, y(t) = B cosωt. (2.7)

Justification of this approximation is presented in Appendix A. To obtain the solution

of the driving mode, the harmonic balance method is used to yield

(ω2
1 − ω2)A+ 3

4Nx(A,B) = 0

(ω2
2 − ω2)B + 3

4Ny(A,B) = 0.
(2.8)

Eliminating ω in Eq. (2.8), we obtain

(ω2
1 − ω2

2)AB +
3

4
[BNx(A,B)−ANy(A,B)] = 0. (2.9)

Introducing a polar coordinate system,

A = R cos θ, B = R sin θ, q = tan θ. (2.10)

Equation (2.9) can be rewritten as the fourth-order polynomial equation

f(q) +
3

4
R2g(q) = 0 (2.11)

where

f(q) = (ω2
1 − ω2

2)q(q
2 + 1)

g(q) = α3q
4 + (2α2 − 4α4)q

3 + (3α1 − 3α3)q
2 + (4α0 − 2α2)q − α1.

It is found that there are at least two district real roots in Eq. (2.11). Thus, a procedure

is established to obtain the solution of the driving mode; that is, we solve Eq. (2.11) for
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q by increasing R gradually from zero so that A, B and ω are obtained accordingly. The

effective nonlinear frequency is

ω2 = ω2
1 cos

2 θ + ω2
2 sin

2 θ + 3R2N(cos θ, sin θ). (2.12)

Now, the stability curve of the driving mode will be constructed in the stability chart.

It is found that K = 0, κ = 0, n1 = − sin θ, and n2 = cos θ. By substituting the solution

of the driving mode into Eq. (2.1), we obtain the Mathieu equation,

d2β

dτ2
+ (δ + 2ε cos 2τ )β = 0 (2.13)

where τ = ωt, and

ε = R2

4ω2

(
Nxx sin

2 θ − 2Nxy sin θ cos θ +Nyy cos
2 θ

)
δ = 1

ω2

(
ω2
1 sin

2 θ + ω2
2 cos

2 θ
)
+ 2ε

(2.14)

where Nxx, Nxy and Nyy are the functions of sin θ and cos θ in the place of x and y,

respectively. Thus, a procedure is established to construct the stability curve in the well-

known Strutt chart; that is, as R increases from zero to infinity, ε and δ are obtained. It

is found that the stability curve begins from (δ, ε) = (ω2
2/ω

2
1 , 0) when R = 0.

In the stability chart, two transition curves emanate from (δ, ε) = (p2, 0), p = 1, 2, . . .,

so that the pth unstable region may be constructed. On every transition curve, there is

one, but only one, periodic solution of Eq. (2.13) with the period π or 2π, called the

eigenfunction, denoted by β∗(t). It is noted that the period of β∗(t) is either a half of or

equal to that of the driving mode.

Assume that the stability curve enters the pth unstable region with p = 1, 2, . . . . Then

the driving mode loses stability and the eigenfunction is expressed in a Fourier series if

p is odd,

β∗(t) =
∞∑
j=1

aj cos(2j − 1)ωt (2.15)

or

β∗(t) =
∞∑
j=1

bj sin(2j − 1)ωt; (2.16)

and if p is even,

β∗(t) =
∞∑
j=0

cj cos 2jωt (2.17)

or

β∗(t) =
∞∑
j=1

dj sin 2jωt. (2.18)

The eigenfunction is, as the first-order approximation, written as

β∗(t) = cos pωt+O(ε) (2.19)

or

β∗(t) = sin pωt+O(ε). (2.20)
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3. The solution of coupled modes. Assume that c1 = c2 = F = 0 in the system

(1.3). If the stability curve of the driving mode enters an unstable region, then the driving

mode loses stability, and hence in the Poincaré map the elliptic center is replaced by a

saddle point. It is found that two elliptic centers bifurcate off the saddle point, giving

rise to the stable coupled mode which may be two periodic orbits of period-one (through

a pitchfork bifurcation) or one periodic orbit of period-two (through a period-doubling

bifurcation [25]).

We will describe the functional form of coupled modes. It is evident, for the formation

of an elliptic center, that one of the perturbed trajectories bifurcates off the saddle point

(i.e., the driving mode C). Let C∗ be the perturbed trajectory whose solution for Eq.

(2.13) is β∗(t). Then, at the outset of bifurcation, C∗ must be the coupled mode.

Lemma 3.1. The modal curve of the coupled mode is, at the outset of bifurcation, in the

form that a small disturbance kβ∗(t) is superimposed on the driving mode C. Therefore,

the coupled mode is approximated by

z˜(t) = z˜0(t) + kβ∗(t)n˜ (3.1)

where z˜0(t) = (x(t), y(t)) is the solution of C given by Eq. (2.7); n˜ = (− sin θ, cos θ); and

k is a constant to be determined by the harmonic balance method [25].

Corollary 3.2. The bifurcation of coupled mode in Lemma 3.1 is pitchfork, and two

elliptic centers in the Poincaré map correspond to two eigenfunctions ±β∗(t).

Proof. Suppose on the contrary that the bifurcation is period-doubling. Then, the

period of β∗(t) would be twice the period of C. But, the period of β∗(t) is either a half of

or equal to that of C. This contradiction leads to the pitchfork bifurcation. Due to the

symmetry of Eq. (2.13), −β∗(t) is also a periodic solution, leading to the fact that two

periodic solutions, ±β∗(t), correspond to two elliptic centers in the Poincaré map. �
If the stability curve of the driving mode enters the first unstable region, the stable

coupled mode is, as the first-order approximation, written as

x(t) = Ā cosωt+ C̄ cosωt ≡ A cosωt

y(t) = B̄ cosωt+ D̄ cosωt ≡ B cosωt
(3.2)

or
x(t) = Ā cosωt+ C̄ sinωt ≡ A cos(ωt+ θ1)

y(t) = B̄ cosωt+ D̄ sinωt ≡ B cos(ωt+ θ2).
(3.3)

If the stability curve enters the pth unstable region with p = 2, 3, . . ., then the stable

coupled mode is, as the first-order approximation, written as

x(t) = A cosωt+ C cos pωt

y(t) = B cosωt+D cos pωt
(3.4)

or
x(t) = A cosωt+ C sin pωt

y(t) = B cosωt+D sin pωt.
(3.5)

It is noted that bifurcating nonlinear normal modes occur, as a part of coupled modes,

when p = 1, 3, 5, . . . in Eq. (3.4), called the nongeneric bifurcation of nonlinear normal

modes [26, 27].
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The coupled modes given by Eqs. (3.2)-(3.5) can be computed by using the harmonic

balance method, except when p = 3 in Eq. (3.4). The exceptional coupled mode is

written as
x(t) = A cosωt+ C cos 3ωt

y(t) = B cosωt+D cos 3ωt.
(3.6)

This is in the second-order approximated form for the driving mode, i.e., s = 2 in Eq.

(2.3). Therefore, a criterion is required to distinguish the coupled mode given by Eq.

(3.6) from the driving mode.

To this end, the properties of the coupled modes will be derived. It is observed that two

period-one orbits generated by the disturbances ±β∗(t) are expressed in terms of one set

of modulation equations when the harmonic balance method is used, called the property

of symmetry. It is found that the property of symmetry holds valid when the coupled

modes are given by Eqs. (3.2)–(3.5) except when p = 3 in Eq. (3.4), and the exceptional

case leads to Eq. (3.6) (see, for example, Eqs. (6.38)–(6.43) and (6.56)–(6.60) in Section

6). For the second-order or higher approximation, the coupled modes generated by the

eigenfunctions given by Eqs. (2.15)–(2.18) are tested to find whether the property of

symmetry holds valid. It is found that the property of symmetry holds valid except Eq.

(2.15). This exceptional case leads to the third-order or higher approximation of the

driving mode.

Another property of the coupled modes will be derived. When the pth unstable region

with p = 2, 3, . . . is constructed, two approximated eigenfunctions, which generate two

coupled modes given by Eqs. (3.4) and (3.5), do correspond to one, but only one,

approximated eigenvalue (i.e., the transition curve, δ = p2). As a result, it is found that

two coupled modes given by Eqs. (3.4) and (3.5) for fixed p are expressed in terms of

one set of modulation equations when the harmonic balance method is used, called the

property of overlap, except when p = 3 in Eq. (3.4).

We assume without loss of generality that the coupled mode given by Eq. (3.6) enjoys

both properties of symmetry and of overlap, as every other coupled mode does. For

the coupled mode given by Eq. (3.6) to meet the property of symmetry, it is required

that firstly the set of modulation equations is obtained by using the harmonic balance

method, and then the set is symmetrized by deleting asymmetric terms from the set.

Here the asymmetric terms imply that, due to the presence of these terms, the property

of symmetry does not hold. It is found that the property of overlap holds valid when the

symmetrizing process is applied to the coupled mode given by Eq. (3.6).

Lemma 3.3. In order to have the solution of the coupled mode given by Eq. (3.6), the set

of modulation equations is firstly obtained and then the asymmetric terms are deleted

from the set at every order of approximation.

In simple systems, if the stability curve of the driving mode enters the first unstable

region, then the stable coupled mode is, as the first-order approximation, written as

x(t) = A cosωt, y(t) = B cosωt (3.7)

or

x(t) = A cosωt, y(t) = B sinωt. (3.8)
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If the stability curve enters the pth unstable region with p = 2, 3, . . ., then the stable

copled mode is, as the first-order approximation, written as

x(t) = A cosωt, y(t) = B cos pωt+O(ε) (3.9)

or

x(t) = A cosωt, y(t) = B sin pωt+O(ε) (3.10)

where O(ε) denotes a harmonic term in O(ε) of β∗(t) (cf. Section 5).

To obtain the solution of coupled modes, for example, given by Eq. (3.4), the harmonic

balance method is used to yield

Xj(A,B,C,D; ω) = 0, Yj(A,B,C,D; ω) = 0 (3.11)

where j = 1, p. Given A, other variables can be computed. Then, the backbone curve

can be constructed. The set of ω in the backbone curve is called the effective frequency

interval of the coupled mode. One limit of the interval is the bifurcation frequency ωb,

and the other depends on the type of bifurcation, either supercritical or subcritical.

Corollary 3.4. The backbone curve of the coupled mode expressed by Eq. (3.4) is

overlapped with the curve by Eq. (3.5) for given p. As the order of approximation

increases, two backbone curves are separated.

Proof. The property of overlap is applicable so that two coupled modes are expressed

in terms of one set of modulation equations. Therefore, for given A the same values of

B, C, D and ω are obtained for two coupled modes. For the second-order approximation,

harmonic terms in O(ε) for β∗(t), such as cos(p ± 2)ωt and sin(p ± 2)ωt, are added to

Eqs. (3.4) and (3.5). Then the property of overlap no longer holds, implying that two

curves are separated. �
In what follows, we consider one coupled mode instead of two coupled modes generated

by ±β∗(t).

4. Undamped coupled-mode responses. Assume that c1 = c2 = 0 in the system

(1.3) and that the stability curve of the driving mode enters an unstable region. The

bifurcation point is denoted by (ω,A) = (ωb, Ab). Then, it will be shown that a stable

coupled-mode response bifurcates off a single-mode response, and a procedure is described

to compute the response.

Definition 4.1. A forced response is said to be a single-mode response if its functional

form is equal to that of the driving mode.

The frequency response equations of single-mode response can be derived, by using

Eq. (2.8), as

(ω2
1 − ω2)A+ 3

4Nx(A,B) = F

(ω2
2 − ω2)B + 3

4Ny(A,B) = 0.
(4.1)

There are two branches, the upper S+ and the lower S−, in the frequency response curve.

The existence of two branches can be verified, for instance, by using Eqs. (6.1)–(6.4) in

Section 6. Indeed, it is found that, for c1 = c2 = 0, sinϕ = 0 by Eq. (6.4), and then

sin θ1 = 0 by Eq. (6.2). Then, cos θ1 = ±1 leads to S+ and S−, respectively.
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(a)

(b)

Fig. 2. Characteristic exponents of undamped forced responses: (a)
stable driving mode and (b) unstable driving mode.

Definition 4.2. A forced response C1 is said to be the coupled-mode response of a

coupled mode C2 if the functional forms of C1 and C2 are equal to each other.

To derive the frequency response equations of the coupled-mode response of a coupled

mode, for example, given by Eq. (3.4), Eq. (3.11) is used with

X1(A,B,C,D;ω) = F

Xp(A,B,C,D;ω) = 0

Yj(A,B,C,D;ω) = 0, j = 1, p.

(4.2)

If ω is not in the effective frequency interval, it is obvious that C = D = 0, implying

that the coupled-mode response is not formed. On the other hand, if ω is in the effective

frequency interval, then nonzero values of C and D can be obtained. In the latter case,

it is found that a coupled-mode response S+
b (and S−

b ) bifurcates off the branch S+ (and

S−). To observe this bifurcation, the values of C and D can be computed by using

equations Xp(A,B,C,D;ω) = 0, Yp(A,B,C,D;ω) = 0 in Eq. (4.2) when the values of

A and B are chosen from S+ (or S−) for given ω so that the approximate solution of S+
b

(or S−
b ) can be obtained.

The stability of coupled-mode responses is analyzed in the sense of Liapunov. Since

an undamped forced system is Hamiltonian, the symplectic property is applicable so that

the characteristic exponents ρj , j = 1, . . . , 4, are grouped into two pairs,

ρ1 + ρ2 = 0, ρ3 + ρ4 = 0. (4.3)

The first pair is denoted by ρ12, and the second by ρ34. If F = 0, we have

ρ3 = ρ4 ≡ 0. (4.4)

As F increases from zero, ρ34 splits either in the real or imaginary axis (cf. Figure 2).
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Fig. 3. Two kinds of disturbance.

To estimate the pairs of exponents, two kinds of disturbance are defined in the con-

figuration space (Figure 3). Let C be the trajectory of a single-mode response, and C∗ a

perturbed trajectory. The disturbance η˜1 (or η˜2) is orthogonal to C (or in the direction

of C). For small F , the disturbance η˜1 is close to β˜ of Synge’s concept, and hence ρ12 is

close to that obtained by β˜.The second pair ρ34 of a single-mode response is estimated by using the disturbance

η˜2 in the following.

Lemma 4.3. The second pair ρ34 of characteristic exponents for a single-mode response

is imaginary on one branch (say, S+), but is real on the other branch S−. This property

persists for large A.

Proof. See Appendix B. �
It is found in S+

b that ρ12 is zero and ρ34 is imaginary at the bifurcation point, and

thereafter ρ12 becomes imaginary, whereas ρ34 continues to remain imaginary, giving rise

to the elliptical stability (cf. Figure 2(a)). On the other hand, it is found in S−
b that ρ12

is zero and ρ34 is real at the bifurcation, and after bifurcation ρ12 becomes imaginary,

whereas ρ34 continues to remain real, giving rise to instability (cf. Figure 2(a)).

Similarly, coupled-mode responses may be formed when the unstable driving mode

recovers stability (i.e., the stability curve of the driving mode leaves an unstable region).

The stability of the coupled-mode response can be estimated and is found to be unstable,

as depicted in Figure 2(b).

5. The effects of damping. The solution of damped coupled-mode responses can

be obtained by using the harmonic balance method. To this end, the coupled mode

should be, as the first-order approximation, properly chosen both in general systems

(α1α3 �= 0) and in simple systems (α1 = α3 = 0). By the presence of damping, the phase

of every harmonic term in the coupled mode is shifted. It is found that the properties of

symmetry and of overlap hold valid in damped systems.

In general systems, the solution of damped coupled-mode response can be computed

without difficulty by using the coupled modes given by Eqs. (3.2)–(3.5) except when

p = 3 in the coupled mode given by Eq. (3.4), written as

x(t) = A cos(ωt+ θ1) + C cos(3ωt+ θ3)

y(t) = B cos(ωt+ θ2) +D cos(3ωt+ θ4).
(5.1)
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This functional form gives the second-order approximation of a single-mode response. In

this case, Lemma 3.3 is applicable.

Proposition 5.1. If the stability curve of the driving mode enters the first unstable

region in general systems, then the functional form of stable coupled-mode response is,

as the first-order approximation, written as

x(t) = A cos(ωt+ θ1) + C cos(ωt+ θ3)

y(t) = B cos(ωt+ θ2) +D cos(ωt+ θ4)
(5.2)

or
x(t) = A cos(ωt+ θ1) + C sin(ωt+ θ3)

y(t) = B cos(ωt+ θ2) +D sin(ωt+ θ4).
(5.3)

The functional form (5.2) or (5.3) may be reduced to the form

x(t) = A cos(ωt+ θ1), y(t) = B cos(ωt+ θ2) (5.4)

which is that of the single-mode response. The coupled-mode response requires an addi-

tional harmonic term in each coordinate; that is, the two-term approximation in general

systems is implemented.

The presence of damping in simple systems generates important effects on approx-

imating the functional form of coupled-mode responses. The equations of motion are

written as
ẍ+ ω2

1x+ 4α0x
3 + 2α2xy

2 = −c1ẋ+ F cosωt

ÿ + ω2
2y + 2α2x

2y + 4α4y
3 = −c2ẏ.

(5.5)

The driving mode is written as

y(t) ≡ 0, x(t) = A cosωt, ω2 = ω2
1 + 3α0A

2. (5.6)

Synge’s concept is used to analyze the stability of the driving mode. It is found that

K = 0, κ = 0, n1 = 0, and n2 = 1. Then, the Mathieu equation (2.13) is obtained with

τ = ωt, and

ε =
α2A

2

2(ω2
1 + 3α0A2)

, δ =
ω2
2

ω2
1 + 3α0A2

+ 2ε. (5.7)

By eliminating A, the stability curve is written as

δ =
ω2
2

ω2
1

− 2

(
3
ω2
2

ω2
1

α0

α2
− 1

)
ε. (5.8)

When the system parameters are given as

ω1 = 5, ω2 = 20, α0 = 1, α2 = 3, α4 = 12, α1 = α3 = 0 (5.9)

the stability curve begins from (δ, ε) = (16, 0) at A = 0, sequentially passes through

the third and the second unstable regions, and finally enters the first unstable region, as

depicted in Figure 4. We shall be interested in approximating the coupled-mode response

when the stability curve enters the third unstable region with β∗(t) = cos 3ωt+O(ε). The

bifurcation point is found as (ωb, Ab) = (5.68, 2.7). If the coupled mode is approximated

by

x(t) = A cosωt, y(t) = B cos 3ωt, (5.10)
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(a)

(b)

Fig. 4. Result of stability loss of the driving mode with the param-
eters given by Eq. (5.5): (a) stability loss and (b) bifurcation of
coupled modes.

then the frequency response equations are given by

A(ω2
1 − ω2 + 3α0A

2 + α2B
2) = F

B(ω2
2 − 9ω2 + α2A

2 + 3α4B
2) = 0.

(5.11)

The nonzero value of B is obtained when ω is slightly greater than ωb, implying that the

undamped coupled-mode response is formed. In damped systems, the functional form of

the coupled-mode response is written as

x(t) = A cos(ωt+ θ1), y(t) = B cos(3ωt+ θ2). (5.12)
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Then, the frequency response equations are obtained as

A(ω2
1 − ω2 + 3α0A

2 + α2B
2) = F cos θ1 (5.13)

0 = c1ωA+ F sin θ1 (5.14)

B(ω2
2 − 9ω2 + α2A

2 + 3α4B
2) = 0 (5.15)

0 = 3c2ωB. (5.16)

It is found from Eq. (5.16) that B = 0, implying that the damped coupled-mode response

is not formed. It can be shown that if the stability curve enters the pth unstable region

with p = 2, 3, . . . and if the functional form of the coupled-mode response is approximated

by

x(t) = A cos(ωt+ θ1), y(t) = B cos(pωt+ θ2) (5.17)

or

x(t) = A cos(ωt+ θ1), y(t) = B sin(pωt+ θ2), (5.18)

then it is found that B = 0, implying that the functional form is not properly approx-

imated. However, if the functional form of the coupled-mode response is approximated

by

x(t) = A cos(ωt+ θ1), y(t) = B cos(pωt+ θ2) +O(ε) (5.19)

where O(ε) is a harmonic term in O(ε) of β∗(t), such as cos [(p± 2)ωt+ θ3], then the

damped coupled-mode response is formed (see, for example, Eq. (6.37) in Section 6.2).

Proposition 5.2. If the stability curve of the driving mode in simple systems enters the

first unstable region, then the functional form of the stable coupled-mode response is, as

the first-order approximation, written as

x(t) = A cos(ωt+ θ1), y(t) = B cos(ωt+ θ2) (5.20)

or

x(t) = A cos(ωt+ θ1), y(t) = B sin(ωt+ θ2). (5.21)

If the stability curve enters the pth unstable region with p = 2, 3, . . ., then the functional

form of the stable coupled-mode response is, as the first-order approximation, written as

x(t) = A cos(ωt+ θ1), y(t) = B cos(pωt+ θ2) +O(ε) (5.22)

or

x(t) = A cos(ωt+ θ1), y(t) = B sin(pωt+ θ2) +O(ε) (5.23)

where O(ε) denotes a harmonic term in O(ε) of β∗(t).

If a pair of characteristic exponents is imaginary in an undamped system, then the

pair becomes complex conjugates with negative real part in a damped system. If a pair

of exponents is real in an undamped system, then the pair remains real in a damped

system. Therefore, an asymptotically stable coupled-mode response is formed if both

pairs of exponents are imaginary in an undamped system.

Theorem 5.3. If the stability curve of the driving mode enters the pth unstable region

with p = 1, 2, . . ., then a stable damped coupled-mode response is formed. The response

can be computed by using the harmonic balance method; the functional form of the

response is, as the first-order approximation, given by Propositions 5.1 and 5.2.
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Theorem 5.4. If the stability curve of the driving mode passes through the pth un-

stable region with p = 2, 3, . . ., and if the coupled-mode responses are expressed by the

first-order approximation, then the frequency response curve of the stable coupled-mode

response is overlapped with the curve of the unstable response. As the order of approxi-

mation increases, two curves are separated from each other.

Proof. Since the stability curve passes through the pth unstable region, two coupled-

mode responses are formed: one is stable, but the other is unstable. Due to the property

of overlap, two responses are expressed in terms of a set of modulation equations. Given

ω, the same values of A, B, C, D, and θ’s are obtained for two responses. For the

remaining part of the proof, refer to the proof for Corollary 3.4. �

6. Examples.

6.1. 1:1 internal resonance. Assume that ω1 ≈ ω2 and that the stability curve of the

driving mode enters the first unstable region. Then, the coupled-mode response can be

written as that in Eq. (5.20). Substitute into Eq. (1.3), and the harmonic balance

method will yield

(ω2
1 − ω2)A+ 3α0A

3 +
9α1

4
A2B cosϕ

+
α2

2
AB2(2 + cos 2ϕ) +

3α3

4
B3 cosϕ = F cos θ1 (6.1)

3α1

4
A2B sinϕ+

α2

2
AB2 sin 2ϕ+

3α3

4
B3 sinϕ = c1ωA+ F sin θ1 (6.2)

(ω2
2 − ω2)B +

3α1

4
A3 cosϕ+

α2

2
A2B(2 + cos 2ϕ)

+
9α3

4
AB2 cosϕ+ 3α4B

3 = 0 (6.3)

3α1

4
A3 sinϕ+

α2

2
A2B sin 2ϕ+

3α3

4
AB2 sinϕ = c2ωB (6.4)

where ϕ = θ2 − θ1.

Assume that the motions are small. Then, the method of multiple scales is applicable.

Let μ be a small parameter with 0 < μ � 1. Define x = μ1/2x̄, y = μ1/2ȳ, cj = μc̄j , j =

1, 2 and F = μ3/2f . Assume also that

ω2 = ω1 + μσ1, ω = ω1 + μσ2. (6.5)

Then, Eq. (1.3) can be rewritten as

¨̄x+ ω2
1 x̄ = −μ [Nx(x̄, ȳ) + c̄1 ˙̄x− f cosωt]

¨̄y + ω2
2 ȳ = −μ [Ny(x̄, ȳ) + c̄2 ˙̄y] .

(6.6)

The solutions are written as

x̄(t, μ) = x0(T0, T1) + μx1(T0, T1) +O(μ2)

ȳ(t, μ) = y0(T0, T1) + μy1(T0, T1) +O(μ2)
(6.7)
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where T0 = t and T1 = μt. Through the usual procedures [28], the approximate solutions

can be obtained as

x0(T0, T1) = a(T1) cos(ω1T0 + γ1(T1))

y0(T0, T1) = b(T1) cos(ω2T0 + γ2(T1)).
(6.8)

The modulation equations for the amplitudes and phases can be written as

ω1a
′ = −1

2
ω1c̄1a+

3

8
α1a

2b sinϕ1 +
1

4
α2ab

2 sin 2ϕ1

+
3

8
α3b

3 sinϕ1 +
1

2
f sinϕ2 (6.9)

ω2b
′ = −ω2

2
c̄2b+

3

8
α1a

3 sinϕ1 +
1

4
α2a

2b sin 2ϕ1

+
3

8
α3ab

2 sinϕ1 (6.10)

ω1aγ
′
1 =

3

2
α0a

3 +
9

8
α1a

2b cosϕ1 +
1

4
α2ab

2(2 + sin 2ϕ1)

+
3

8
α3b

3 cosϕ1 −
1

2
f sinϕ2 (6.11)

ω2bγ
′
2 =

3

8
α1a

3 cosϕ1 +
1

4
α2a

2b(2 + sin 2ϕ1)

+
9

8
α3ab

2 cosϕ1 +
3

2
α4b

3 (6.12)

where ϕ1 = γ2 − γ1 + σ1T1, ϕ2 = σ2T1 − γ1, and the prime denotes the derivative with

respect to T1. The above equations can be transformed into an autonomous system by

defining

ϕ′
1 = γ′

2 − γ′
1 + σ1, ϕ′

2 = σ2 − γ′
1. (6.13)

Imposing the steady-state conditions

a′ = b′ = ϕ′
1 = ϕ′

2 = 0 (6.14)

we approximate the steady-state solutions as

x0(t) = â cos(ωt− ϕ̂2)

y0(t) = b̂ cos(ωt− ϕ̂2 + ϕ̂1)
(6.15)

where the hat denotes the steady-state value for the amplitudes and phase differences

determined from Eqs. (6.9)–(6.14).

To obtain the coupled-mode solution, the single-mode response is firstly computed. By

increasing the amplitude from zero, the stability of the single-mode response is analyzed

to find a bifurcation point and to determine the type of bifurcation, such as saddle-node,

pitchfork, etc., so that the form of the coupled-mode response may be found.

The steady-state solution of the coupled-mode response obtained by the proposed

method is compared with that by the method of multiple scales. It is found that they

are agreeable. In fact, Eq. (6.1) agrees in O(μ) with the condition ϕ′
1 = 0, Eq. (6.2)

in O(μ) with a′ = 0, Eq. (6.3) in O(μ) with ϕ′
1 − ϕ′

2 = 0, and Eq. (6.4) in O(μ) with

b′ = 0.
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(a) (b)

Fig. 5. Result of stability loss of the driving mode with the param-
eters given by Eq. (6.16): (a) stability chart and (b) backbone curves.

To demonstrate the procedure of the proposed method, we consider a simple system

(α1 = α3 = 0) with parameters

ω1 = 5, ω2 = 7, α0 = 1, α2 = 3, α4 = 4. (6.16)

The driving mode can be written as in Eq. (2.6),

y(t) ≡ 0, x(t) = A cosωt (6.17)

where ω2 = ω2
1 + 3α0A

2.

The stability is analyzed by the procedure in Section 5. It is found that the stability

curve enters the first unstable region through the transition curve, δ = 1+ ε+O(ε2) with

β∗(t) = sinωt+O(ε) as depicted in Figure 5(a). Thus, a stable coupled mode bifurcates

off the driving mode in the form

x(t) = A cosωt, y(t) = B sinωt. (6.18)

The corresponding modal curve is an elliptic orbit (EO) in the configuration space. To

compute the solution of the coupled mode, the harmonic balance method is used to

obtain

A(ω2
1 − ω2 + 3α0A

2 + 1
2α2B

2) = 0

B(ω2
2 − ω2 + 1

2α2A
2 + 3α4B

2) = 0.
(6.19)

Eliminate ω to obtain

B2 =
1

7

(
A2 − 16

)
, (6.20)

and the effective nonlinear natural frequency of the EO is

ω2 = 25 + 3A2 + 1.5B2 = 49 + 1.5A2 + 12B2. (6.21)

The bifurcation point is (ωb, Ab) = (8.54, 4), and the backbone curve is shown in Figure

5(b).
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Fig. 6. Bifurcation of coupled-mode responses in the system of Fig.
5 when F = 2 and c1 = c2 = 0.

When a harmonic excitation is applied, the frequency response equations of single-

mode response are

y(t) ≡ 0, x(t) = A cosωt, A(ω2
1 − ω2 + 3α0A

2) = F. (6.22)

There are two branches of frequency response curve: stable S+ and unstable S−. Thus,

the second pair of exponents are imaginary in S+ and real in S−. To obtain the first pair

the disturbance η1 in used. Writing η1 = y(t), we obtain the Mathieu equation (2.13)

with τ = ωt and

ε =
α2A

2

2ω2
, δ =

ω2
2

ω2
+ 2ε. (6.23)

Since for given ω the values of A in S+ and S− are close to the backbone curve of the

driving mode, the stability curves of S+ and S− are close to that of the driving mode.

Therefore, the first pair of exponents in S+ or S− are close to that obtained by β of

Synge’s concept. The frequency response equations of the coupled-mode responses are

written as

A(ω2
1 − ω2 + 3α0A

2 + 1
2α2B

2) = F

B(ω2
2 − ω2 + 1

2α2A
2 + 3α4B

2) = 0.
(6.24)

When F = 2, the stable coupled-mode response (EO+) bifurcates off S+ at (ω′
b, A

′
b) =

(8.61, 4.07), and the unstable coupled-mode response (EO-), bifurcates off S− at

(ω′
b, A

′
b) = (8.5, 3.94), as depicted in Figure 6.

6.2. 3:1 internal resonance. Assume that ω2 ≈ 3ω1 and that the motions are small.

Then, the method of multiple scales is applicable. Let μ be a small parameter with

0 < μ � 1. Define x = μ1/2x̄, y = μ1/2ȳ, cj = μc̄j , j = 1, 2 and F = μ3/2f . Assume

that

ω2 = 3ω1 + μσ1, ω = ω1 + μσ2. (6.25)

The solutions are written as

x̄(t, μ) = x0(T0, T1) + μx1(T0, T1) +O(μ2)

ȳ(t, μ) = y0(T0, T1) + μy1(T0, T1) +O(μ2)
(6.26)
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where T0 = t and T1 = μt. Through the usual procedures [28], the approximate solutions

can be obtained as
x0(T0, T1) = a(T1) cos(ω1T0 + γ1(T1))

y0(T0, T1) = b(T1) cos(ω2T0 + γ2(T1)).
(6.27)

The modulation equations for the amplitudes and phases can be written as

ω1a
′ = −c̄1ω1a−

3α1

8
a2b sinϕ1 −

f

2
sinϕ2 (6.28)

ω2b
′ = −c̄2ω2b+

α1

8
a3 sinϕ1 (6.29)

ω1aγ
′
1 =

3α0

2
a3 +

3α1

8
a2b cosϕ1 +

α2

2
ab2 − f

2
cosϕ2 (6.30)

ω2bγ
′
2 =

α1

8
a3 cosϕ1 +

α2

2
a2b+

3α4

2
b3 (6.31)

where ϕ1 = γ2 − 3γ1 + σ1T1, ϕ2 = σ2T1 − γ1, and the prime denotes the derivative with

respect to T1. The above equations can be transformed into an autonomous system by

defining

ϕ′
1 = γ′

2 − 3γ′
1 + σ1, ϕ′

2 = σ2 − γ′
1. (6.32)

The steady-state coupled-mode responses can be obtained by the conditions, a′ = b′ =

ϕ′
1 = ϕ′

2 = 0, such that

x0(t) = â cos(ωt− ϕ̂2)

y0(t) = b̂ cos(3ωt− 3ϕ̂2 + ϕ̂1)
(6.33)

where the hats denote the steady-state solutions for Eqs. (6.28)–(6.31).

To compute the coupled-mode response by using the proposed method, we assume

that the stability curve of the driving mode enters the third unstable region. Then, it is

found by Eq. (5.3) or (5.4) that the coupled-mode response is written in the form of the

two-term approximation

x(t) = A cos(ωt+ θ1) + C cos(3ωt+ θ3)

y(t) = B cos(ωt+ θ2) +D cos(3ωt+ θ4),
(6.34)

which turns out to contradict the one-term approximation given by Eq. (6.33).

It is found by the condition b′ = 0 in Eq. (6.29) that if α1 = 0, then b = 0, which

implies that a coupled-mode response cannot be formed in a simple system. On the

contrary, it can be shown by using the proposed method that a coupled-response is

formed in a simple system. For example, we consider the system with the parameters

given by Eq. (5.9). The stability curve enters the third unstable region, as depicted in

Figure 4, and the transition curves and eigenfunctions can be expressed as

δ = 9 +
ε2

16
− ε3

64
+ . . . ; β∗(t) = cos 3ωt− ε

8 (cosωt− cos 5ωt) + . . . (6.35)

δ = 9 +
ε2

16
+

ε3

64
+ . . . ; β∗(t) = sin 3ωt− ε

8 (sinωt− sin 5ωt) + . . . . (6.36)

Then, the coupled-mode response, due to Eq. (5.19), is written as

x(t) = A cos(ωt+ θ1), y(t) = B1 cos(ωt+ θ2) +B2 cos(3ωt+ θ3). (6.37)
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Applying the harmonic balance method yields

(ω2
1 − ω2)A+ 3α0A

3 +
α2

2
AB2

1(2 + cosϕ2)

+ α2AB2
2 + α2AB1B2 cosϕ1 = F cos θ1 (6.38)

α2A(
1

4
B2

1 sinϕ2 +
1

2
B1B2 sinϕ1) = c1ωA+ F sin θ1 (6.39)

(ω2
2 − ω2)B1 + α2A

2

(
1

2
B1(2 + cosϕ2) +B2 cosϕ1

)
+ α4(3B

3
1 + 2B2

1B2 cosϕ3 + 6B1B
2
2) = 0 (6.40)

− α2

2
A2(B1 sinϕ2 + B2 sinϕ1) + 3α4B1B

2
2 = c2ωB1 (6.41)

(ω2
2 − 9ω2)B2 + α2A

2(B2 +B1 cosϕ1) + α4B1B
2
2 cosϕ3

+ 6α4B
2
1B2 + 3α4B

3
2 = 0 (6.42)

− α2

2
A2B1 sinϕ1 − α4B

3
1 sinϕ3 = 3c2ωB2 (6.43)

where ϕ1 = 2θ1 + θ2 − θ3, ϕ2 = 2θ1 − 2θ2 and ϕ3 = 3θ2 − θ3. It is found by Eqs. (6.41)

and (6.43) that B1 and B2 are not identically zero, in contrast to the condition b′ = 0 in

Eq. (6.29), where α1 = 0. Since six equations in Eqs. (6.38)–(6.43) are independent, six

variables, A, B1, B2, θ1, θ2 and θ3, can be solved so that the coupled-mode response

may be formed.

It is observed that if the stability curve of the driving mode intersects the transition

curve given by Eq. (6.35), a coupled mode is generated in the form of Eq. (2.3), giving

rise to a bifurcating nonlinear normal mode. On the other hand, a coupled mode is also

obtained in the form

x0(t) = a cos(ωt), y0(t) = b cos(3ωt) (6.44)

as a steady-state solution when the method of multiple scales is used for F = c1 = c2 = 0.

Eliminating t, we obtain

y0 = k1x0 + k3x
3
0, k3 = − 4

3a2
k1. (6.45)

This form is the first-order approximation of the bifurcating nonlinear normal mode. A

procedure is formulated by Vakakis et al. [6] to compute the second-order or higher

approximation based on the form (6.45).

6.3. Conditions away from internal resonances. Some examples are given to demon-

strate that the coupled-mode responses are formed in systems which are neither 1:1 nor

3:1 internally resonant.

6.3.1. Thin elastica (zeroth unstable region). When a thin elastica is twisted and bent

simultaneously, a two-mode model is derived theoretically and verified experimentally [8,

9]. By twisting the clamped end sinusoidally, periodic and chaotic motions are observed.

The system is simple, and the kinetic energy T and potential energy V are written as

T =
1

2
(1 + αy2)ẋ2 +

1

2
ẏ2, V =

1

2
(Ω2x2 + y2), T + V = h (6.46)
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where x and y are the torsional and the bending modes, respectively. Assume that Ω = 20

and α = 0.1. When the system is forced and damped, the equations of motion become

(1 + αy2)ẍ+ 2αẋyẏ +Ω2x = −c1ẋ+ F cosωt

ÿ − αẋ2y + y = −c2y.
(6.47)

The solution of the driving mode is

y(t) ≡ 0, x(t) = A cosΩt. (6.48)

To analyze stability of the driving mode, Synge’s concept [22,23] is used. It is found that

K = 0, κ = 0, n1 = 0, and n2 = 1. Then, the Mathieu equation (2.13) is obtained with

τ = Ωt, ε =
α

4
A2, δ =

1

Ω2
− 2ε. (6.49)

As depicted in Figure 7(a), the stability curve enters the zeroth unstable region. The

bifurcation point is found at (ωb, Ab) = (20, 0.22). The corresponding eigenfunction is

β∗(t) = 1 +
ε

2
cos 2Ωt+O(ε2). (6.50)

The stable coupled mode can be approximated by

x(t) = A cosωt, y(t) = B0 +B1 cos 2ωt (6.51)

where |B0| � |B1|. By using the harmonic balance method, the solution of coupled mode

is obtained, and the backbone curve is depicted in Figure 7(b).

When F cosωt is added, the single-mode response is written as

y(t) ≡ 0, x(t) = A cosωt, A =
F

Ω2 − ω2
. (6.52)

Stability of the response is analyzed by using the disturbances η1 and η2. Write η1(t) =

y(t). Then, the Mathieu equation (2.13) is obtained with

τ = Ωt, ε =
α

2
A2, δ =

1

ω2
− 2ε. (6.53)

Bifurcation of the undamped coupled-mode response is computed. For instance, when

F = 10, we compute (ω′
b, A

′
b) = (18.9, 0.24), as depicted in Figure 8. To compute the

second pair of exponents, we write x(t) = A cosωt+ η2(t). Then, we derive

η̈2 +Ω2η2 = 0 (6.54)

which leads to ρ3 = −ρ4 = iΩ.

When damping terms are added, the coupled-mode response becomes

x(t) = A cos(ωt+ θ1), y(t) = B0 +B1 cos(2ωt+ θ2). (6.55)
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(a)

(b)

Fig. 7. Result of stability loss of the driving mode in the thin elastica system:
(a) stability chart and (b) backbone curves of the coupled mode.

Using the harmonic balance method, we derive[
Ω2 − ω2 − αω2(B2

0 +
1

2
B2

1 −B0B1 cosϕ)

]
A = F cos θ1 (6.56)

− αω2AB0B1 = F sin θ1 + c1ωA (6.57)

B0 −
1

2
αA2ω2(B0 −

1

2
B1 cosϕ) = 0 (6.58)

(1− 4ω2)B1 +
1

2
αA2ω2(B0 cosϕ−B1) = 0 (6.59)

α

2
ω2A2B0 sinϕ = −2c2ωB1 (6.60)
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Fig. 8. Bifurcation of coupled-mode responses in the thin elastica
when F = 10 and c1 = c2 = 0.

where ϕ = θ2 − 2θ1. It is found by Eq. (6.60) that B0 and B1 are not identically zero,

in contrast to Eq. (6.29) when α1 = 0. Since the five equations in (6.56)–(6.60) are

independent, five unknown variables, A, B0, B1, θ1 and θ2, can be computed to solve for

the coupled-mode response.

6.3.2. Successive losses of stability. As depicted in Figure 4, the stability curve of the

driving mode passes through the third and second unstable regions, finally entering the

first unstable region. It is observed that the phenomena of 3:1, 2:1 and 1:1 internal

resonances are successively founded as the amplitude of the driving mode increases.

In a nonlinear system of coupled oscillators [15–17, 29], the stability curves of fun-

damental nonlinear normal modes pass through infinitely many unstable regions in the

underlying conservative system. It is expected due to damping that a finite number of

p : 1 internal resonances are formed.

7. Summary and discussions. The results in this work can be summarized in the

following.
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a. It is shown that if the driving mode loses stability in the underlying conservative

system, then a stable coupled-mode response is formed in the damped forced system.

b. An analytical procedure is, as the first-order approximation, formulated to compute

the coupled-mode response. If the stability curve of the driving mode enters the first

unstable region, then the stable coupled-mode response is expressed in the form of one-

term approximation. If the stability curve enters the pth unstable region with p =

2, 3, . . ., then the stable coupled-mode response is expressed in the form of two-term

approximation (i.e., each coordinate is written by two dominant harmonic terms).

c. If the stability curve of the driving mode passes through the pth unstable region

with p = 2, 3, . . . in general systems, and if the coupled-mode responses are expressed

in the form of the first-order approximation, then the frequency response curve of the

stable coupled-mode response is overlapped with the curve of the unstable response. As

the order of approximation increases, two curves are separated from each other.

d. The proposed method is compared with other perturbation techniques in the sys-

tems with 1:1 and 3:1 internal resonances. By using perturbation techniques, the coupled-

mode response is expressed in the form of one-term approximation. Both methods result

in a good agreement between approximation for the case of 1:1 internal resonance, but

not for the case of 3:1 internal resonance. Necessity of the second- or higher-order ap-

proximation of the latter case is discussed.

8. Appendix A. Justification of Eq. (2.7). It will be demonstrated that a one-

term approximation of the fundamental nonlinear normal modes, given by Eq. (2.7), is

reasonable. To design a device called a nonlinear energy sink (see, for example, [30] for

more information), the stable periodic motions are sought in special types of nonlinear

mass-spring systems where kinetic energy T and potential energy V are expressed as, in

System 1,

T =
1

2
(ẋ2 + μẏ2), V =

1

2
ω2
0x

2 +
1

2
ε(x− y)2 +

1

4
κy4 (8.1)

where μ = 1, ω0 = 1, ε = 0.1 and κ = 1; and, in System 2,

T =
1

2
(ẋ2 + μẏ2), V =

1

2
ω2
0x

2 +
1

4
κ(x− y)4 (8.2)

where μ = 0.05, ω0 = 1 and κ = 1 [29].

Two linearized natural frequencies are ω1 = 0.3 and ω2 = 1.054 in System 1, and

ω1 = 0 and ω2 = 1 in System 2. By using the linear orthogonal transformation of

coordinate system, T and V are written in the form of Eq. (1.1). Following the procedures

provided in Section 2, the stability curves of fundamental nonlinear normal modes can be

constructed. It is found that the stability curve passes through infinitely many unstable

regions and that infinitely many kinds of coupled modes are formed. The bifurcation

points and the geometrical forms of coupled modes are reasonably agreeable with those

obtained earlier by using numerical methods in a wide range of frequency and total energy

[29].

9. Appendix B. Proof of Lemma 4.3. By utilizing the stability behavior of the

motions in free vibrations, the stability of the forced responses will be derived in an
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undamped system. The driving mode is considered as an oscillation where a mass point

is moving along the modal curve in the configuration space. Given the amplitude R

of motion, the effective nonlinear natural frequency ω is given by Eq. (2.10). Since the

period of motions depends on R, the motion is orbitally stable but parabolically unstable

in Liapunov’s sense.

The equation of motion can be written in the form

z̈ + f(z) = 0, f(z) = ω2
1z + k3z

3 + k5z
5 + · · · . (9.1)

Then, the solution can be approximated as

z(t) = R cosωt (9.2)

where ω is given by Eq. (2.12). To analyze the stability, we introduce a small perturbation

such that z(t) = R cosωt+ η2(t) into Eq. (9.1). Then, Hill’s equation [31] is obtained:

η′′2 +

⎛
⎝δ +

∑
i=1

εi
∑
j=1

bij cos 2jτ

⎞
⎠ η2 = 0 (9.3)

where the differentiation is with respect to a nondimensional time τ = ωt and

ε =
R2

ω2
, δ =

ω2
1

ω2
+
∑
j=1

ajεj . (9.4)

Since the set of parabolic instability is the totality of transition curves in the stability

chart, and since it is found that δ = 1 when ε = 0, the stability curve of the driving

mode lies on a transition curve emanating from (δ, ε) = (1, 0). Therefore, the backbone

curve of the driving mode corresponds to that transition curve.

When a small force is applied, the response is written as Eq. (9.2), and two branches,

S±, of the frequency response curve lie closely on the right- and left-hand sides of the

backbone curve, respectively. To analyze the stability of forced responses, write z(t) =

R cosωt+η2(t). Then, Hill’s equation (9.3) is obtained in which R and ω are taken from

S±. This implies that the stability curves of S± lie closely on the right- and left-hand

sides of that transition curve. Therefore, the second pair of exponents is imaginary in

one branch and real in the other branch. This property persists for large R (unlimited).

Since N(x, y) is positive definite, ω2 in Eq. (2.12) is positive, and, moreover, ∇V �= 0

except at the origin of the configuration space. Thus, ε and δ are well defined for all R.
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