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Abstract. We consider an emulsion formed by two newtonian fluids in which one

fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface

tension. We consider both cases of droplets with fixed centers of mass and of convected

droplets. In the non-dilute case, for spherical droplets of radius aε of the same order

as the period length ε, the two models were studied by Lipton-Avellaneda (1990) and

Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when

the characteristic size of the droplets aε, of arbitrary shape, is much smaller than ε.

We study the limit behavior when ε → 0 in each of these two models. We establish a

Brinkman type law for the critical size aε = O(ε3) in the first case, whereas in the second

case there is no “strange” term, and in the limit the flow is unperturbed by the droplets.

1. Introduction. The literature on emulsions, and in particular the study of their

effective properties, is vast and starts with the work on dilute emulsions by Taylor [19],

who considered an emulsion formed by two newtonian, incompressible fluids, one of which

is dispersed in the other in the form of spherical droplets, with fixed centers of mass, and

derived the form of its effective viscosity:

μeff =

(
1 +

5μ1 + 2μ2

2(μ1 + μ2)
φ+O(φ2)

)
μ2 (1.1)

in the case of droplets that have fixed centers of mass (i.e. are not convected with

the flow). Here μ1 and φ are the viscosity and respectively the volume fraction of the

droplets, and μ2 the viscosity of the continuous liquid phase. The formula generalizes

Einstein’s celebrated formula for the viscosity of suspensions of spherical, rigid particles

(as μ1 → ∞), and considers the so-called “zero-th order” approximation, i.e. the case
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when the droplets remain spherical. The “first order” approximation of the droplet

deformation was considered in the case of dilute emulsions by Schowalter, Chaffey and

Brenner [16] and Frankel and Acrivos [10], who derived a non-newtonian behavior of the

emulsions that exhibit “fluid memory” effects.

Another model of dilute fluid droplets was introduced by Ammari et al. [2]. While

for the limit case of rigid particles, Einstein’s formula can be recovered from this work,

Taylor’s formula (1.1) cannot be obtained, as Ammari et al.’s model, while using the

equations in the Eulerian frame, imposes the boundary conditions in the Lagrangian

frame. The same model is used by Bonnetier, Manceau and Triki [5], who extend to the

case with surface tension for droplets of known curvature.

In the non-dilute case, constitutive equations for emulsions have been derived by Choi

and Schowalter [8], who considered “first order” approximation of the droplet deforma-

tion. In the framework of periodic homogenization, the effective behavior of emulsions

was studied by Lipton and Vernescu [14] in the case of spherical droplets that are con-

vected with the fluid, results that extended the case of spherical droplets with fixed

centers studied by Lipton and Avellaneda [13]. In the former an effective viscosity was

derived consistent with the effective stress formula of Batchelor [4]. In the latter, ne-

glecting the bubble velocity, the problem yielded a Darcy flow, since it is equivalent to a

flow around fixed obstacles.

The present paper focuses on the dilute case of droplets in the periodic homogenization

framework. We consider the time-dependent, slow motion of a two-fluid dilute emulsion

formed by two newtonian, incompressible fluids, one of which is dispersed in the other

in the form of droplets, and derive its effective behavior. We consider only the “zero-th

order” problem, in which the effects of droplet deformation are not taken into account.

Thus if we denote by Ω1 the domain occupied by the droplets of viscosity μ1, and by Ω2

the domain occupied by the continuous liquid phase of viscosity μ2, and by S the union

of the bubble surfaces (i.e. S = Ω1 ∩ Ω2), the problem is described by

∂vvv

∂t
− div (−pI + 2μ(xxx) e(vvv)) = fff in Ω1 ∪ Ω2, (1.2)

div vvv = 0 in Ω, (1.3)

where μ(xxx) = μ1 if xxx ∈ Ω1 and μ(xxx) = μ2 if xxx ∈ Ω2.

The droplets are periodically distributed, and the size of the period is much larger than

the characteristic length of the droplets. This corresponds to a zero limit concentration

of droplets. We assume that the fluid velocity is continuous across the droplet surface

and both a kinematic and a dynamic condition are imposed on the fluid interface. In

addition we impose the condition that the droplets are neutrally buoyant.

The formulation of the stationary problem is discussed in Section 2, where, for the

reader’s convenience, we give details on the boundary conditions that need to be imposed

on the fluid interface S, the droplets’s boundary: (i) a no-slip condition, (ii) a kinematic

condition (that expresses the fact that droplet boundary is a material boundary) and

(iii) a dynamic condition (expressing the stress jump in terms of the surface tension).

In addition, the balance equations for the forces and torques on each droplet need to

be imposed, a condition expressing the fact that the droplets are neutrally buoyant.
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More details on boundary conditions can be found in the monographs of Leal [11] and

Zapryanov and Tabakova [21].

In Section 3 we formulate the periodic homogenization problem for droplets of arbi-

trary shapes as a variational problem. While two interesting cases can be derived, the

case of convected or non-convected droplets, we further detail the case of droplets with

fixed centers of mass and give its weak formulation. In the case of non-zero center of

mass velocity, the computations of the limit problem are similar but easier, so we do not

detail them here; we will merely state the final result.

Section 4 is dedicated to the so-called “local problem”. We identify a critical size of

droplets for which the sequence of solutions looses compactness.

In Section 5 we give the main result, the Γ-convergence of the functionals describing

the periodic problem to a limit functional, which has in the critical case an extra term,

the limit in this case being a Brinkman type equation. The limit problem is of the form

−div (−pI + 2μ2 e(vvv)) +Mvvv = fff in Ω, (1.4)

div vvv = 0 in Ω, (1.5)

whereM is a symmetric second order tensor that depends on the geometry of the droplets

and on the two fluid viscosities. The Brinkman law obtained by Brillard [7] and Allaire

[1] can be obtained from here when μ1 → +∞. For the problem of convected droplets,

the limit corresponds to the unperturbed flow, i.e. M ≡ 0.

The particular case of spherical droplets is considered in Section 6, and in this case

the explicit form of the tensor M is found:

Mmk = mμ2
π

8

3μ1 + 2μ2

μ1 + μ2
δmk,

with m = limε→0
aε

ε3 . Let us remark here that in the case of suspensions of spherical rigid

particles, the tensor reduces to

Mmk = mμ2
3π

8
δmk.

The time-dependent case is treated via Mosco-convergence in Section 7. The Appendix

contains the derivation of the weak formulation and some technical results regarding the

local problems.

2. Problem statement.

2.1. Balance of mass and momentum. Let us denote by Ω the domain occupied by

the emulsion, by Ω1 the domain occupied by the droplets of viscosity μ1, and by Ω2 the

domain occupied by the continuous liquid phase of viscosity μ2 and Ω = Ω1 ∪ Ω2. The

droplets are denoted by T� and their surface by S�; the union of the bubble surfaces

S = Ω1∩Ω2. The problem is described by the balance of momentum and mass equations

−div (−pI + 2μ(xxx) e(vvv)) = fff in Ω1 ∪ Ω2, (2.1)

div vvv = 0 in Ω, (2.2)

where vvv and p represent the fluid velocity and pressure, fff denotes the body forces, and

the viscosity μ(xxx) = μ1 if xxx ∈ Ω1 and μ(xxx) = μ2 if xxx ∈ Ω2. The stress tensor will be
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denoted by σσσ = −pI + 2μ(xxx) e(vvv), where e(vvv) = 1/2(∇vvv + (∇vvv)T ) is the strain rate

tensor.

2.2. Boundary conditions on droplet surfaces. (i) A kinematic boundary condition

needs to be imposed on the droplet boundary, which expresses the fact that the boundary

remains an interphase boundary.

Let us assume that the shape of the droplets is given by the surface F (t,xxx) = 0. Then

0 =
dF

dt
=

∂F

∂t
+∇xF · vvv,

and thus the normal velocity of the droplet boundary is given by

vvv ·nnn = −
∂F

∂t
|∇xF | .

The kinematic boundary condition on the droplet surface imposes the normal velocity of

both fluids to be equal to the normal velocity of the surface:

�vvv · nnn� = 0 and vvv · nnn = −
∂F

∂t
|∇xF | . (2.3)

Let us now assume that although it moves, the droplet shape does not change in time;

thus F (t,xxx) = G(xxx′), where xxx′ are the coordinates of a point on the droplet surface in

a moving frame, with orthonormal base {eee′i}, centered at the center of mass xxx�
C of the

droplet T�. Thus

xxx′ = xxx− xxx�
C and

deee′i
dt

= Aijeee
′
j ,

with A = (Aij) an antisymmetric matrix. Then

0 =
dG

dt
=

∂G

∂x′
i

dx′
i

dt
= n′

i((vvv − vvv�C) · eee′i + (xxx− xxx�
C) · (Aikeee

′
k)),

and thus the normal velocity of the interface S� is given by

vvv · nnn = (vvv�C +A(xxx− xxx�
C)) ·nnn. (2.4)

Thus the kinematic boundary condition (2.3) becomes

�vvv · nnn� = 0 and vvv · nnn = (vvv�C +A(xxx− xxx�
C)) ·nnn. (2.5)

The angular velocity ccc can be defined in R
3 as ccc = (c1, c2, c3) as c1 = −A23, c2 = −A31,

and c3 = −A12, and
deee′i
dt

= ccc× eee′i ,

and the kinematic boundary condition (2.5) becomes

�vvv ·nnn� = 0 and vvv · nnn = (vvv�C + ccc× (xxx− xxx�
C)) · nnn. (2.6)

Remark 2.1. Let us observe that the kinematic boundary condition (2.5) implies

vvv�C =
1

|T�|

∫
T�

vvvdxxx.
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Indeed using the incompressibility condition we have∫
S�

xivjnjds =

∫
T�

(vjδij + xidiv vvv)dxxx =

∫
T�

vidxxx,

and using the interphase velocity equation (2.4) we obtain∫
S�

xivjnjds =

∫
S�

((v�C)jxinj + xi(xl − x�
Cl)Aljnj)ds

= |T�|(v�C)i +
∫
T�

(xl − x�
Cl)Alidxxx+

∫
T�

xiAlldxxx. (2.7)

The last integral above cancels because of the antisymmetry of A, and the one before

last from the definition of the center of mass. In this case the kinematic condition (2.4)

becomes

vvv · nnn =

(
1

|T�|

∫
T�

vvvdxxx+A(xxx− xxx�
C)

)
·nnn.

In the particular case of spherical droplets, xxx − xxx�
C is parallel to nnn, and thus the

kinematic condition (2.5) reduces to

�vvv · nnn� = 0 and vvv · nnn =
1

|T�|

(∫
T�

vvvdxxx

)
· nnn. (2.8)

(ii) A second type of boundary condition connects the stress in each fluid at the

boundary. Indeed on the droplet surface there is a stress jump �σσσnnn� 	= 0, and (2.1) is

only valid in Ω1 and Ω2, and therefore we have

−div σσσ = �σσσnnn�δS�
+ fff in Ω, (2.9)

σσσ = −pI + 2μ e(vvv), (2.10)

with δS�
the Dirac measure on S�. The stress jump can be obtained from the principle

that the forces on an element of interfacial area of arbitrary shape and size must be in

equilibrium, because the interface is assumed to have zero thickness and thus zero mass.

One can thus obtain [11]

�σσσnnn� = s(∇s · nnn)nnn−∇ss ,

where s is the surface tension and ∇s = ∇ − nnn(nnn · ∇) is the surface gradient operator.

If the surface tension is uniform, the stress has only a normal jump across the interface,

which is proportional to the surface tension and the mean curvature.

(iii) A third type of boundary condition needs to be imposed if the droplets do not

change shape. In this case the droplet surface acts as a rigid surface that needs to be in

equilibrium as the viscous stresses act on it, and thus the balance of forces and torques

needs to be satisfied:∫
S�

�σσσnnn�ds = 0 and

∫
S�

(xxx− xxx�
C)× �σσσnnn�ds = 0. (2.11)

If the droplets are not allowed to translate, the balance of forces and torques becomes∫
S�

�σσσnnn�ds+FFF �δC� = 0 and

∫
S�

(xxx− xxx�
C)× �σσσnnn�ds = 0, (2.12)

where FFF � is a pointwise force centered at the center of mass of each droplet, which keeps

the droplet from translating with the fluid but which thus gives no extra torque; δC� is
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the Dirac mass at the center of the droplet. In this case the balance of forces equation

(2.12) can be used to determine FFF �.

Let us observe that in the case of spherical droplets of radius R with constant surface

tension s = const. the stress jump becomes

�σσσnnn� =
s

R
nnn,

and the balance of forces on the droplet surface is automatically satisfied:∫
S�

�σσσnnn�ds = 0.

2.3. Boundary conditions on the exterior boundary. For simplicity on the exterior

boundary we will consider a no-slip condition:

vvv = 000 on ∂Ω. (2.13)

3. Periodic homogenization for droplets of arbitrary shape. Let Ω ⊂ R
3 be

a bounded open set with Lipschitz boundary Γ = ∂Ω, and let Y =
(
− 1

2 ,
1
2

)3
be the unit

cube in R
3. For every ε > 0, let N ε be the set of all points � ∈ Z

3 such that ε(�+ Y ) is

strictly included in Ω and denote by |N ε| their total number. Let T be the closure of an

open connected set with Lipschitz boundary, compactly included in Y . For every ε > 0

and � ∈ N ε we consider the set T ε
� � ε(�+ Y ), where T ε

� = ε�+ aεT , where aε � ε. The

set T ε
� represents one of the droplets suspended in the fluid, and Sε

� = ∂T ε
� denotes its

surface. We now define the following subsets of Ω:

Ω1ε =
⋃

�∈Nε

T ε
� , Ω2ε = Ω\Ω1ε,

where Ω1ε is the domain occupied by the droplets of viscosity μ1, and Ω2ε is the domain

occupied by the surrounding fluid, of viscosity μ2. Let nnn be the unit normal on the

boundary of Ω2ε that points outside the domain.

The problem describing the flow of the emulsion is described by

−div σσσε = fff in Ω1ε ∪ Ω2ε, (3.1a)

σσσε = −pεI + 2με e(vvvε), (3.1b)

div vvvε = 0 in Ω, (3.1c)

with boundary conditions (see (2.5) and (2.12) ) on the surface of each droplet T ε
� , � ∈ N ε:

�vvvε� = 000 on Sε
� , (3.2a)

vvvε = ccc× (xxx− xxx�
C) on Sε

� , (3.2b)∫
Sε
�

(xxx− xxx�
C)× �σσσεnnn� ds = 0, (3.2c)

and, for simplicity, a zero velocity condition on the exterior boundary

vvvε = 000 on Γ , (3.3)
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where �·� denotes the jump across Sε
� , ccc is an unknown, constant vector in R

3, xxx�
C is the

position vector of the center of mass of the droplet T ε
� , and the viscosity με is defined as

με(xxx) =

{
μ1 if x ∈ Ω1ε,

μ2 if x ∈ Ω2ε.

Condition (3.2a) is the no-slip condition at the interface of the two fluids, and (3.2b),

(3.2c), and (3.3) follow from (2.5), (2.12) and (2.13).

3.1. Weak formulation. The emulsion flow problem in (3.1)− (3.3) has the equivalent

variational formulation:

For any fff ∈ LLL2(Ω), find vvvε ∈ V ε such that∫
Ω

2μεe(vvvε) : e(www) dxxx =

∫
Ω

fff ·www dxxx, for any www ∈ V ε, (3.4)

where V ε is the closed subspace of HHH1
0(Ω) given by

V ε =
{
www ∈HHH1

0(Ω) | div www = 0 in Ω, www = ccc× (xxx− xxx�
C) on Sε

� , ccc ∈ R
3
}
.

A weak solution to (3.1)− (3.3) is any vvvε that satisfies (3.4). Conversely, (3.1)− (3.3)

can be obtained from (3.4) in the sense of distributions; the details are presented in the

Appendix. The existence and uniqueness of a weak solution of the emulsion flow problem

follow from the Lax-Milgram lemma.

Furthermore, any vvvε solution to (3.4) is the unique solution of the problem{
Find vvvε ∈HHH1

0(Ω) such that

Jε(vvvε) = min
uuu∈HHH1

0(Ω)
Jε(uuu), (3.5)

where

Jε(uuu) =

∫
Ω

μεe(uuu) : e(uuu) dxxx−
∫
Ω

fff · uuudxxx+ IV ε(uuu), (3.6)

and IS represents the indicator function of the set S, defined by

IS(s) =

{
0 if s ∈ S,

+∞ if s /∈ S.

We are interested in studying the Γ-convergence of the sequence {Jε} when ε → 0.

4. The local problem. Let us consider the local problem for a reference cell Y ε
� : =

ε(�+ Y ) for some � ∈ N ε.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div σσσkε = 000 in Bε
�\Sε

� ,

σσσkε = −qkεI + 2μ e(wwwkε),

div wwwkε = 0 in Bε
� ,

�wwwkε� = 000 on Sε
� ,

wwwkε = ccc× (yyy − yyy�C) on Sε
� ,

wwwkε = eeek on ∂Bε
� ,∫

Sε
�

(yyy − yyy�C)× �σσσkεnnn� ds = 0,

(4.1)
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where Bε
� is the ball with center the center of cell � ∈ N ε and radius ε/2, eeek is the k-th -

unit vector of the cartesian base and μ = μ1 in T ε
� and μ = μ2 in Bε

� − T ε
� .

Define ŵwwkε = wwwkε − eeek. Then (4.1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div σ̂σσkε = 000 in Bε
�\Sε

� ,

σ̂σσkε = −qkεI + 2μ e(ŵwwkε),

div ŵwwkε = 0 in Bε
� ,

�ŵwwkε� = 000 on Sε
� ,

ŵwwkε = −eeek + ccc× (yyy − yyy�C) on Sε
� ,

ŵwwkε = 000 on ∂Bε
� ,∫

Sε
�

(yyy − yyy�C)× �σ̂σσkεnnn� ds = 0.

Applying a change of variable we get ŵwwkε(aεxxx) and aεq
kε(aεxxx) are solutions for a

problem of type (9.6) , where χχχk ε
aε = ŵwwkε(aεxxx) and ηk

ε
aε = aεq

kε(aεxxx). Hence, using our

results in the Appendix, there exists a unique solution to (4.1).

4.1. Properties of the local solution.

Lemma 4.1. The solution (wwwkε, qkε) of (4.1) has the following properties:

1. If aε = o(ε3), then wwwkε → eeek in HHH1(Ω), qkε → 0 in L2(Ω).

2. If aε = O(ε3), then wwwkε ⇀ eeek in HHH1(Ω), qkε ⇀ 0 in L2(Ω).

Proof. First, we extend wwwkε by periodicity to all of R3. Since the number of micro-

scopic cells, Y ε
� , included in |Ω| is equivalent to |Ω|/ε3, we have∫

Ω

μ e(wwwkε) : e(wwwkε) dxxx � |Ω|
ε3

∫
Bε

�

μ e(wwwkε) : e(wwwkε) dxxx= |Ω|aε
ε3

∫
B

ε
aε
�

μ e(χχχk ε
aε ) : e(χχχk ε

aε ) dxxx.

From Remark 9.1 in the Appendix, the corresponding limit of the last term above

exists as ε → 0. Hence, for a positive constant C (independent of ε), we have∫
Ω

e(wwwkε) : e(wwwkε) dxxx ≤ C.

Furthermore, by Korn’s inequality on Bε
� and the fact that e(eeek) = 0, we note that∥∥wwwkε − ek

∥∥
HHH1(Ω)

≤
∑
�

∥∥wwwkε − ek
∥∥
HHH1(Bε

�)
≤

∑
�

C

∫
Bε

�

e(wwwkε) : e(wwwkε) dx ≤ C.

Therefore, we get that
∥∥wwwkε

∥∥
HHH1(Ω)

< C. Hence, by taking a subsequence still denoted

by wwwkε we have

wwwkε ⇀www weakly in HHH1(Ω).

Since χ∪�∈NεY ε
� \Bε

�
converges in the weak topology of LLL2(Ω) to the non-zero constant

|Ω|(1− π/6) and wwwkε = eeek on Y ε
� \Bε

� , we get that www = eeek. �
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5. Convergence results. Using (3.6), let us define the energy functional Eε : HHH1
0(Ω)

�→ R ∪ {+∞} by

Eε(uuu) =

∫
Ω

με e(uuu) : e(uuu) dxxx+ IV ε(uuu). (5.1)

Our goal is to show that the sequence (Eε)ε Γ-converges to E in the weak topology of

HHH1
0(Ω) where

E(uuu) =

∫
Ω

μ2 e(uuu) : e(uuu) dxxx+

3∑
k,m=1

Mmk

∫
Ω

um uk dxxx+ IV (uuu), (5.2)

with V the closed subspace of HHH1
0(Ω) defined by

V =
{
www ∈HHH1

0(Ω) | div www = 0
}
,

and M = (Mmk)mk the positive definite, symmetric matrix defined by

Mmk = m lim
ε→0

∫
B

ε
aε
�

μ e(χχχm ε
aε ) : e(χχχk ε

aε ) dxxx, (5.3)

and

m = lim
ε→0

aε
ε3

.

Theorem 5.1. The sequence (Eε)ε defined by (5.1) Γ-converges in the weak topology of

HHH1
0(Ω) to the functional E defined by (5.2).

Proof. We first remark that for every uuu ∈HHH1
0(Ω) which is not divergence-free in Ω one

derives that

Γ− lim inf
ε→0

Eε(uuu) = Γ− lim sup
ε→0

Eε(uuu) = +∞.

Hence, we only have to deal with divergence-free functions. Specifically, we have to

prove the following two assertions:

(a) For all vvv0 ∈ V there exists a vvvε ∈ V ε, vvvε ⇀ vvv0 inHHH1
0(Ω) such that limε→0 E

ε(vvvε) =

E(vvv0).

(b) For all uuu0∈V and for all uuuε∈V ε, uuuε ⇀uuu0 inHHH1
0(Ω) such that lim infε→0 E

ε(uuuε) ≥
E(uuu0).

Part (a). Let vvv0 ∈ DDD(Ω) such that div vvv0 = 0. Define the sequence vvvε in the following

way (see [7], [20]):

vvvε(xxx) =

⎧⎪⎪⎨⎪⎪⎩
vvv0(xxx) in Y ε

� −Bε
� ,

vvv0(xxx) + (wwwkε(xxx)− eeek)v
0
k(xxx

�
C)− curl (ṽvvε�φε�) in Bε

� − T ε
� ,

v0k(xxx
�
C)www

kε(xxx) in T ε
� ,

(5.4)

where ṽvvε� is the vector valued function associated with vvv0(xxx)− vvv0(xxx�
C) such that∑

�∈Nε

curl (ṽvvε�φε�) → 000 strongly in HHH1
0(Ω) as ε → 0,

with

φε�(xxx) = φ�(xxx/ε) , φε�(xxx) ∈ D(Bε
�) , φε�(xxx) =

{
1 if xxx ∈ T ε

� ,

0 if xxx ∈ Bε
� − B̂aε

� ,
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and the supp(φε�) ⊂ B̂aε

� , where B̂aε

� is the ball with center the center of cell � ∈ N ε

and radius a
2/3
ε . One can now verify that the sequence vvvε is divergence free, belongs in

HHH1
0(Ω), vvv

ε = ccc × (xxx − xxx�
C) on Sε

� and vvvε ⇀ vvv0 in HHH1
0(Ω). Hence, computing Eε(vvvε) we

obtain:

Eε(vvvε) =
∑
�∈Nε

∫
Y ε
� −T ε

�

μ2 e(vvv
0) : e(vvv0) dxxx+

∑
�∈Nε

∫
Bε

�

μ v0k(xxx
�
C)v

0
m(xxx�

C)e(www
kε) : e(wwwmε) dxxx

+
∑
�∈Nε

∫
Bε

�−T ε
�

2μ2 v
0
k(xxx

�
C)e(vvv

0) : e(wwwkε) dxxx

−
∑
�∈Nε

∫
Bε

�−T ε
�

2μ2 e(vvv
0) : e(curl (ṽvvε�φε�)) dxxx

−
∑
�∈Nε

∫
Bε

�−T ε
�

2μ2 v
0
k(xxx

�
C)e(www

kε) : e(curl (ṽvvε�φε�)) dxxx

+
∑
�∈Nε

∫
Bε

�−T ε
�

μ2 e(curl (ṽvvε�φε�)) : e(curl (ṽvvε�φε�)) dxxx

=

∫
Ω\Ω1ε

μ2 e(vvv
0) : e(vvv0) dxxx+

∑
�∈Nε

∫
Bε

�

μ v0k(xxx
�
C)v

0
m(xxx�

C)e(www
kε) : e(wwwmε) dxxx+ o(1)

=

∫
Ω\Ω1ε

μ2 e(vvv
0) : e(vvv0) dxxx

+

( ∑
�∈Nε

v0k(xxx
�
C)v

0
m(xxx�

C)ε
3

)
1

ε3

∫
Bε

�

μ e(wwwkε) : e(wwwmε) dxxx+ o(1)

=

∫
Ω\Ω1ε

μ2 e(vvv
0) : e(vvv0) dxxx

+

( ∑
�∈Nε

v0k(xxx
�
C)v

0
m(xxx�

C)ε
3

)
aε
ε3

∫
Bε

�

μ e(χχχk ε
aε ) : e(χχχm ε

aε ) dxxx+ o(1).

By the smoothness of vvv0 we get

lim
ε→0

Eε(vvvε) =

∫
Ω

μ2 e(vvv
0) : e(vvv0) dxxx+

3∑
k,m=1

Mmk

∫
Ω

v0m v0k dxxx.

For vvv0 ∈HHH1
0(Ω) we use a diagonalization process to complete the argument.

Part (b). Let uuuε,uuu0 ∈ HHH1
0(Ω) be such that div uuuε = div uuu0 = 0, uuuε = ccc × (xxx − xxx�

C)

on Sε
� , and uuuε ⇀ uuu0 in HHH1(Ω). Let vvv0 ∈ DDD(Ω) be such that div vvv0 = 0 and define the

sequence vvvε as before. Using a sub-differential type inequality we get

Eε(uuuε) ≥ Eε(vvvε) +

∫
Ω

2με e(vvvε) : e(uuuε − vvvε) dxxx. (5.5)

In order to pass to the limit in the last term we make use of Lemma 9.3 and obtain

the following bound for the stress:∥∥σσσkε
∥∥
LLL2(∂Bε

� )
≤ Cε3

∥∥−eeek + ccc× (yyy − yyy�C)
∥∥
LLL2(S�)

.
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Therefore, the last term of (5.5) becomes∫
Ω

με e(vvv
ε) : e(uuuε − vvvε) dxxx =

∑
�∈Nε

∫
Y ε
�
−Bε

�

μ2 e(vvv
0) : e(uuuε − vvvε) dxxx

+
∑
�∈Nε

∫
Bε

�
−T ε

�

μ2 e(vvv
0) : e(uuuε − vvvε) dxxx+

∑
�∈Nε

∫
Bε

�
−T ε

�

μ2 v
0
k(xxx

�
C) e(uuu

ε − vvvε) : e(wwwkε) dxxx

−
∑
�∈Nε

∫
Bε

�
−T ε

�

μ2 e(uuu
ε − vvvε) : e(curl (ṽvvε�φε�)) dxxx+

∑
�∈Nε

∫
T ε
�

μ1 u
0
k(xxx

�
C) e(uuu

ε − vvvε) : e(wwwkε) dxxx

=

∫
Ω\Ω1ε

μ2 e(uuu
ε − vvvε) : e(vvv0) dxxx+

∑
�∈Nε

∫
Bε

�

μ v0k(xxx
�
C) e(uuu

ε − vvvε) : e(wwwkε) dxxx+ o(1).

We rewrite the last term as

1

2

∑
�∈Nε

v0k(xxx
�
C)

∫
Bε

�

σσσkε : ∇(uuuε − vvvε) dxxx =
1

2

∑
�∈Nε

v0k(xxx
�
C)

∫
∂Bε

�

σσσkεnnn · (uuuε − vvvε) dxxx

≥ −C

(∑
�∈Nε

v0k(xxx
�
C) ε

3

)
·
∥∥−eeek + ccc× (yyy − yyy�C)

∥∥
LLL2(S�)

‖uuuε − vvvε‖LLL2(Ω) .

Putting everything together we get

Eε(uuuε) ≥ Eε(vvvε) +

∫
Ω\Ω1ε

2μ2 e(uuu
ε − vvvε) : e(vvv0) dxxx

− C

(∑
�∈Nε

v0k(xxx
�
C) ε

3

)∥∥−eeek + ccc× (yyy − yyy�C)
∥∥
LLL2(S�)

‖uuuε − vvvε‖LLL2(Ω) .

Passing to the limit first as ε → 0, then using a diagonalization argument to make

vvv0 → uuu0 in the strong topology of HHH1
0(Ω), we get

lim inf
ε→0

Eε(uuuε) ≥ E(uuu0).

�
The immediate consequence is

Corollary 5.2. The sequence {vvvε} of solutions to (3.5) is weakly convergent in the

weak topology of HHH1
0(Ω) to the vvv solution to{

Find vvv ∈HHH1
0(Ω) such that

J(vvv) = min
uuu∈HHH1

0(Ω)
J(uuu), (5.6)

where

J(uuu) =

∫
Ω

μ2e(uuu) : e(uuu) dxxx+

∫
Ω

Muuu · uuudxxx−
∫
Ω

fff · uuu dxxx+ IV (uuu) (5.7)

and

V =
{
www ∈HHH1

0(Ω) | div www = 0 in Ω
}
.

The Brinkman law obtained here takes into account the geometry of the droplets and

their viscosity. For μ1 → ∞ one can show that the result yields the Brinkman law for

rigid particles obtained in [1] and [7].
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6. Spherical droplets. In this section we determine the matrix M = (Mmk)mk

in (5.3) for the case of spherical droplets. In accordance with Section 2.2 the emulsion

problem simplifies in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div σσσε = fff in Ω1ε ∪ Ω2ε,

σσσε = −pεI + 2με e(vvvε),

div vvvε = 0 in Ω,

�σσσεnnn� = (�σσσεnnn� · nnn)nnn on Sε
� ,

vvvε ·nnn = 0 on Sε
� ,

�vvvε� = 000 on Sε
� ,

vvvε = 000 on Γ.

(6.1)

The balance of forces and torque is given by (2.12). The balance of torque is auto-

matically satisfied in this case, while the balance of forces we do not write down since it

is de-coupled from problem 6.1. Moreover, the variational formulation is the same as in

(3.4) where V ε simplifies to

V ε =
{
www ∈HHH1

0(Ω) | div www = 0 in Ω, www · nnn = 0 on Sε
�

}
.

6.1. The local problem for spheres. Let us consider the local transmission problem for

cell Y ε
� for some � ∈ N ε:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div σσσkε = 0 in Bε
�\Sε

� ,

σσσε = −pεI + 2μ e(wwwkε),

div wwwkε = 0 in Bε
� ,

�σσσkεnnn� = (�σσσkεnnn� · nnn)nnn on Sε
� ,

wwwkε · nnn = 0 on Sε
� ,

�wwwkε� = 000 on Sε
� ,

wwwkε = eeek on ∂Bε
� .

(6.2)

Problem (6.2) admits an explicit solution. Indeed due to the spherical symmetry we

look for a solution in spherical coordinates (r, θ, φ) with θ being the angle between xxx and

eeek and with no dependence on φ:

wwwkε = f(r) cos(θ)eeer + g(r) sin(θ)eeeθ, (6.3a)

qkε = h(r) cos(θ). (6.3b)

Here (eeer, eeeθ, eeeφ) denote the unit vectors in spherical coordinates. Substituting (6.3a),

(6.3b) into (6.2) we obtain the following system of differential equations:

μ (f ′′ + 2
r f

′ − 4
r2 (f + g)) + h′ = 0,

μ (g′′ + 2
r g

′ − 2
r2 (f + g))− 1

4h = 0,

f ′ + 2
r (f + g) = 0,

(6.4)
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in each domain Bε
� −T ε

� and T ε
� . By eliminating g and h we obtain an Euler equation for

f :
r2

2
f (4) + 4 r f (3) + r f ′′ − 4

r
f ′ = 0. (6.5)

Thus the solution for (6.2) is given by

f(r) = C1 r
2 + C2 +

C3

r
+

C4

r3
, (6.6a)

g(r) = −2C1 r
2 − C2 −

C3

2 r
+

C4

2 r3
, (6.6b)

h(r) = −μ

(
10 r C1 +

C3

r2

)
(6.6c)

inside Bε
� and similar solutions, with different constants, say K1 , K2 , K3 , K4, for

Bε
� − T ε

� . Also, by requiring wwwkε, qkε to be in LLL2(Bε
�) we get C3 = C4 = 0. Furthermore,

the boundary conditions yield the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 a
2
ε + C2 = 0,

K1 a
2
ε +K2 +

K3

aε
+ K4

a3
ε
= 0,

−2C1 a
2
ε − C2 = −2K1a

2
ε −K2 − K3

2aε
+ K4

2a3
ε
,

μ1 C1 aε = μ2

(
K1 +

K4

a4
ε

)
,

K1ε
2 +K2 +

K3

ε + K4

ε4 = 1,

−2K1ε
2 −K2 − K3

2ε + K4

2ε4 = −1,

which determines uniquely C1, C2, K1, K2, K3 and K4. For instance,

K1 =

(
3μ1aε

2 − ε2 (3μ1 + 2μ2)
)
aεε

(aε − ε)
3
(4 aε3(μ1 − μ2) + 3 aε2ε(μ1 − 2μ2)− 3 aεε2(μ1 + 2μ2)− 4 ε3(μ1 + μ2))

.

We will next study the behavior of wwwkε, qkε as ε → 0.

Lemma 6.1. The solution (wwwkε, qkε) of (6.2) has the following properties:

1. If aε = o(ε3), then wwwkε → eeek in HHH1(Ω), qkε → 0 in L2(Ω).
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2. If aε = O(ε3), then wwwkε ⇀ eeek in HHH1(Ω), qkε ⇀ 0 in L2(Ω), and there exists

γ ∈ H−1(Ω) such that〈
div

(
μ∇wwwkε − qkεI

)
, φuuuε

〉
→ 〈γeeek , φuuu〉 ,

for any uuuε ⇀ uuu in HHH1
0(Ω) with uuuε · nnn = 0 on Sε

� and for any φ ∈ D(Ω). Moreover, if

aε = mε3, then

γ = −m
π

4
μ2

3μ1 + 2μ2

μ1 + μ2
.

Proof. Take ψψψ ∈HHH1
0(Ω) with ψψψ · nnn = 0 on Sε

� . From (6.2) one gets〈
div

(
μ∇wwwkε − qkεI

)
, ψψψ

〉
=

∫
∂Bε

(
μ2 ∇wwwkε − qkεI

)
ψψψ · nnnds, (6.7)

where ∂Bε = ∪�∈Nε∂Bε
� and the right-hand side can be estimated since(

μ2 ∇wwwkε − qkεI
)
eeer = (−h(ε) + μ2 f

′(ε))(eeek · eeer)eeer + μ2 g
′(ε)(eeek · eeeθ)eeeθ

= F (ε)(eeek · eeer)eeer +G(ε)(eeek · eeeθ)eeeθ. (6.8)

Therefore (6.8) becomes〈
div

(
μ∇wwwkε − qkεI

)
, ψψψ

〉
= F (ε)

∫
∂Bε

(eeek · eeer)eeer ds+G(ε)

∫
∂Bε

(eeek · eeeθ)eeeθ ds. (6.9)

On the other hand, one has (see [9], [1]) the following convergences:∑
�∈Nε

ε δε� eeek → S3

23
eeek, strongly in W−1,∞

loc (R3), (6.10)

∑
�∈Nε

ε δε� (eeek · eeer)eeer → 1

3

S3

23
eeek, strongly in W−1,∞

loc (R3), (6.11)

∑
�∈Nε

ε δε� (eeek · eeeθ)eeeθ → 2

3

S3

23
eeek, strongly in W−1,∞

loc (R3), (6.12)

where δε� is the measure supported on ∂Bε and S3 is the surface of the unit sphere. Thus

in order to pass the limit in (6.9) we have to compute the limit of F (ε)/ε and G(ε)/ε.

Therefore, we have

F (ε)

ε
=

−h(ε) + μ2f
′(ε)

ε
= μ2

(
10K1 +

K3

ε3

)
+ μ2

(
2K1 −

K3

ε3
− 3

K4

ε4

)
,

which implies

F (ε)

ε
∼ μ2

3μ1 + 2μ2

μ1 + μ2

(
−10

10 aε
ε3

− aε
2 ε3

− aε
2 ε3

+
aε
2 ε3

+ 0

)
,

and hence

lim
ε→0

F (ε)

ε
= −3mμ2

3μ1 + 2μ2

μ1 + μ2
. (6.13)

Similarly,
G(ε)

ε
=

μ2

ε
g′(ε) = μ2

(
−4K1 +

K3

2 ε3
− 3K4

2 ε5

)
,

which implies
G(ε)

ε
∼ μ2

3μ1 + 2μ2

μ1 + μ2

(aε
ε3

− aε
4 ε3

)
,
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and hence

lim
ε→0

G(ε)

ε
= mμ2

3(3μ1 + 2μ2)

4(μ1 + μ2)
. (6.14)

Relations (6.9)− (6.14) yield〈
div

(
μ∇wwwkε − qkεI

)
, ψψψ

〉
→ −mμ2

π

4

3μ1 + 2μ2

μ1 + μ2

∫
Ω

eeek · φuuu dxxx, (6.15)

for any uuuε ⇀uuu in HHH1
0(Ω) with uuuε ·nnn = 0 on Sε

� , and for any φ ∈ D(Ω). �
Using Lemma 6.1 we can now compute (5.3). Indeed, we have

aε
ε3

∫
B

ε
aε
�

μ e(χχχm ε
aε ) : e(χχχk ε

aε ) dxxx =
1

ε3

∫
Bε

�

μ e(wwwmε) : e(wwwkε) dxxx (6.16)

=
1

2|Ω|

∫
Bε

2μ e(wwwmε) : e(wwwkε) dxxx =
1

2|Ω|

∫
Bε

σmε
ij

∂wkε
i

∂xj
dxxx =

1

2|Ω|
〈
−div σσσmε , wwwkε

〉
,

where the last term was obtained using integration by parts and properties of the local

problem (6.2). As ε → 0 we obtain

Mmk = mμ2
π

8

3μ1 + 2μ2

μ1 + μ2
δmk.

7. Time-dependent case. The results obtained for the time stationary Stokes equa-

tion can be extended to the time-dependent case by using the fact that Γ-convergence of

Eε to E in the weak topology HHH1
0(Ω) is equivalent to Mosco-convergence of Eε to E in

LLL2(Ω). Then using the connection between Mosco-convergence and the convergence of

solutions for a class of evolution problems we can get convergence in the time-dependent

case. We begin with some auxiliary results.

Let HHH = LLL2(Ω) and for any ε > 0 let Eε be the convex functional on HHH , with

dom(Eε) = V ε, defined by

Eε(uuu) =

⎧⎨⎩
∫
Ω

με e(uuu) : e(uuu) dx uuu ∈ V ε,

+∞ uuu /∈ V ε.

The sub-differential of Eε, ∂Eε, is

∂Eε(uuu) = {ξξξ ∈HHH : (ξξξ,vvv − uuu) ≤ Eε(vvv)− Eε(uuu) for all vvv ∈ dom(Eε)}.

Thus, if uuuε ∈ V ε, then ξξξ ∈ ∂Eε(uuuε) if and only if for every vvvε ∈ dom(Eε),

Eε(vvvε) ≥ Eε(uuuε) + (ξξξ,vvvε − uuuε). (7.1)

Select vvvε = uuuε + λφφφ where φφφ ∈DDD(Ω1ε) with div φφφ = 0 and λ ∈ R. Substitute vvvε in (7.1)

to obtain ∫
Ω1ε

2με e(uuuε) : e(φφφ) dxxx = (ξξξ,φφφ). (7.2)

This implies that there exists a distribution pε1 ∈ LLL2(Ω1ε) such that −div σσσ1ε = ξξξ in the

sense of distribution in Ω1ε. In a similar manner if we select φφφ ∈DDD(Ω2ε) with div φφφ = 0 we

obtain that −div σσσ2ε = ξξξ in the sense of distribution in Ω2ε, or we can write −div σσσε = ξξξ

in the sense of distribution in Ω1ε ∪Ω2ε. Furthermore, in exactly the same way as in the
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Appendix, we obtain the remaining boundary conditions and balance of torque on each

fluid particle.

Let I = (0, T ); the time-dependent problem for the emulsion is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uuuε(t,xxx)

∂t
− div σσσε = fff(t,xxx) in I × (Ω1ε ∪ Ω2ε),

div uuuε(t,xxx) = 0 in I × Ω,

�uuuε(t,xxx)� = 000 on I × Sε
� ,

uuuε(t,xxx) = ccc× (xxx− xxx�
C) on I × Sε

� ,

uuuε(t,xxx) = 000 on I × ∂Ω,

uuuε(t,xxx) = uuuε(xxx) on {0} × (Ω1ε ∪ Ω2ε),∫
Sε
�

(xxx− xxx�
C)× �σσσεnnn� ds = 0.

(7.3)

We associate with uuuε(t,xxx) a mapping ûuuε : [0, T ] �→ HHH defined by [ûuuε(t)](xxx) : = uuuε(t,xxx)

where xxx ∈ Ω1ε ∪Ω2ε and 0 ≤ t ≤ T . In other words we are going to consider uuuε(t,xxx) not

as a function of xxx and t but as a mapping ûuuε of t into HHH of functions of xxx. We interpret

fff(t,xxx) in a similar manner.

The variational formulation of (7.3) is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find uuuε ∈ L2(0, T ;HHH) such that

d

dt

∫
Ω

uuuε(t,xxx) ·φφφ(xxx) dxxx+

∫
Ω

2με e(uuuε(t,xxx)) : e(φφφ(xxx)) dxxx

=

∫
Ω

fff(t,xxx) · φφφ(xxx) dxxx for all φφφ ∈ V ε.

(7.4)

Equivalently, using (7.2), we can write (7.4) as⎧⎨⎩
dûuuε(t)

dt
+ ∂Eε(ûuuε(t)) � f̂ff(t), 0 < t < T,

ûuuε(0) = uuuε.
(7.5)

Therefore we have obtained an equivalence between (7.3) and (7.5).

In a similar manner, if we define

E(uuu) =

⎧⎨⎩
∫
Ω

μ2 e(uuu) : e(uuu) dxxx+

∫
Ω

uuu�Muuu dxxx for uuu ∈ V,

+∞ for uuu /∈ V,

in HHH with dom(E) = V and M the matrix defined in equation (5.2), we obtain an

equivalence between the time-dependent homogenized suspensions problem,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uuu(t,xxx)

∂t
− μ2 Δuuu+∇p+Muuu = fff(t,xxx) in I × Ω,

div uuu(t,xxx) = 0 in I × Ω,

uuu(t,xxx) = 000 on I × ∂Ω,

uuu(t,xxx) = uuu(xxx) on {0} × Ω,

(7.6)
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and ⎧⎨⎩
dûuu(t)

dt
+ ∂E(ûuu(t)) � f̂ff(t), 0 < t < T,

ûuu(0) = uuu.
(7.7)

Using well-known results from the theory of non-linear semigroups and maximal mono-

tone operators in Hilbert spaces (see [6], [17]), well-posedness as well as existence and

uniqueness of solutions of both (7.5) and (7.7) are established.

We are now ready to state the main result of this section:

Theorem 7.1. Assume that uuuε → uuu in HHH. Then the solution ûuuε converges uniformly to

ûuu on [0, T ] and ∫ T

0

t

∥∥∥∥dûuuε(t)

dt
− dûuu(t)

dt

∥∥∥∥2
HHH

dt → 0.

If in addition uuuε ∈ dom(Eε), uuu ∈ dom(E) and Eε(uuuε) → E(uuu), then

dûuuε(t)

dt
→ dûuu(t)

dt
strongly in L2(0, T ;HHH)

and

Eε(ûuuε(t)) → E(ûuu(t)) uniformly on [0, T ].

Proof. Straightforward application of Theorem 3.66 and Theorem 3.74 in [3] and the

Mosco-convergence of Eε to E. �

8. Conclusions. The problem of dilute emulsions formed by two newtonian fluids in

which one fluid is dispersed in the form of droplets of arbitrary shape, in the presence of

surface tension, is formulated in the homogenization framework.

In the case of droplets with fixed centers of mass, we prove, using Γ-convergence in

Theorem 5.1, that if aε = O(ε3) the limit behavior is described by a Brinkman type law,

while for the case of convected droplets the limit is given by the unperturbed Stokes flow.

For aε = o(ε3), in both cases the limit is given by the unperturbed flow. The Brinkman

law obtained here takes into account the geometry of the droplets and their viscosity;

for μ1 → ∞ one can show that the result yields the Brinkman law for rigid particles

obtained in [1] and [7].

For spherical droplets we can actually compute the solutions of the local problems and

thus the tensor appearing in the Brinkman law in Lemma 6.1. This also gives the form

for the suspension of rigid particles in the limit for μ1 → ∞.

The time-dependent problem is studied using the consequences of the Mosco-conver-

gence for the energy functionals corresponding to the elliptic case.
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9. Appendix.

9.1. Equivalence between PDE and variational formulation for the emulsion problem.

We seek a vector function uuuε representing the velocity of the fluid and a scalar function

pε representing the pressure, which are defined in Ω1ε ∪ Ω2ε and satisfy the following

equations and boundary conditions:

−div σσσε = fff in Ω1ε ∪ Ω2ε, (9.1a)

σσσε = −2με e(vvvε) + pεI, (9.1b)

div vvvε = 0 in Ω, (9.1c)

with boundary conditions on the surface of each droplet T ε
� , � ∈ N ε,

�vvvε� = 000 on Sε
� , (9.2a)

vvvε = ccc× (xxx− xxx�
C) on Sε

� , (9.2b)

vvvε = 000 on Γ , (9.2c)

and an additional condition that comes from the balance of torques,∫
Sε
�

(xxx− xxx�
C)× �σσσεnnn� ds = 0. (9.3)

If fff , uuuε, and pε are smooth functions satisfying (9.1) − (9.3), then, taking the scalar

product of (9.1a) with a function www in V ε, where

V ε =
{
www ∈ DDD(Ω) | div www = 0 in Ω, www = ccc× (xxx− xxx�

C) on Sε
� , ccc ∈ R

3
}
,

we obtain

−
∫
Ω1ε∪Ω2ε

div σσσε ·www dxxx =

∫
Ω1ε∪Ω2ε

fff ·www dxxx.

Thus we get

−
∑
�∈Nε

∫
Sε
�

�σσσεnnn� ·www dxxx+

∫
Ω1ε∪Ω2ε

σσσε : ∇www dxxx =

∫
Ω1ε∪Ω2ε

fff ·www dxxx,

and using condition (9.3), properties of symmetric matrices, and the fact that the fluid

is incompressible we get∫
Ω

2μεe(vvvε) : e(www) dxxx =

∫
Ω

fff ·www dxxx for all www ∈ V ε. (9.4)

Equality (9.4) is still valid by continuity for each www ∈ V ε, the closure of V ε in HHH1
0(Ω).

Therefore we have the following conclusion:

vvvε ∈ V ε and satisfies

∫
Ω

2μεe(vvvε) : e(www) dxxx =

∫
Ω

fff ·www dxxx for all www ∈ V ε. (9.5)

Conversely, assume that vvvε ∈ V ε satisfies (9.5). Since vvvε ∈ HHH1
0(Ω) we immediately get

vvvε = 000 on Γ in the sense of the traces. Furthermore, since vvvε ∈ V ε we obtain that

div vvvε = 0 in the distributional sense, �vvvε� = 000 and vvvε = ccc× (xxx− xxx�
C) on Sε

� , for ccc ∈ R
3,

in the sense of the traces.

Let φφφ ∈ DDD(Ω1ε) with div φφφ = 0. Then φφφ ∈ V ε (pick ccc ∈ R
3 to be the zero vector), and

using (9.5), we get〈
−div (2μ1 e(vvv

1ε))− fff , φφφ
〉
= 0 for all φφφ ∈ DDD(Ω1ε).
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Using Propositions 1.1 and 1.2 in [18] we find that there exists a distribution pε1 ∈ LLL2(Ω1ε)

such that

−div (2μ1 e(vvv
1ε))− fff = −∇pε1,

in the sense of distributions in Ω1ε. Similarly if we pick a φφφ ∈ DDD(Ω2ε) with div φφφ = 0

and proceed the same way as above we will obtain

−div (2μ2 e(vvv
2ε))− fff = −∇pε2,

in the sense of distributions in Ω2ε.

The last condition that we need to recover is (9.3). Consider φφφ ∈ V ε; using (9.5)∫
Ω

2με e(vvvε) : e(φφφ) dxxx =

∫
Ω

fff · φφφ dxxx for all φφφ ∈ V ε,

adding the pressure distribution in the above equation and integrating by parts we obtain∑
�∈Nε

∫
Sε
�

�σσσεnnn� · φφφ ds+ 〈−div σσσε − fff , φφφ〉 = 0,

which implies condition (9.3).

9.2. Auxiliary local problems and bounds on the stresses. Consider the solution

{χχχiR, ηiR} of the following auxiliary local problem in BR, the ball of radius R centered

at 0, with T a subset of Y =
(
− 1

2 ,
1
2

)3
, for R > R0 where R0 is such that Y � BR0

:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ(yyy)Δ χχχiR +∇ηiR = 000 in BR\∂T,
div χχχiR = 0 in BR,

�χχχiR� = 000 on ∂T,

χχχiR = −eeei + ccc× yyy on ∂T,

χχχiR = 000 on ∂BR,

(9.6)

and ∫
∂T

yyy × �σσσ
(
χχχiR, ηiR

)
nnn� ds = 0. (9.7)

In similar fashion, we denote by {χχχi, ηi} the solution of auxiliary local problem in free

space, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−μ(yyy)Δ χχχi +∇ηi = 000 in R
3\∂T,

div χχχi = 0 in R
3,

�χχχi� = 000 on ∂T,

χχχi = −eeei + ccc× yyy on ∂T,

χχχi → 000 at ∞,

(9.8)

and ∫
∂T

yyy × �σσσ
(
χχχi, ηi

)
nnn� ds = 0. (9.9)
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Properties of χχχiR and χχχi. Due to [12] (Thm. 8.2), χχχiR is defined as the unique mini-

mizer of the bilinear form �BR
(·, ·) over the closed, convex, non-empty set

KR
i =

{
uuu ∈HHH1

0(BR) | div uuu = 0 on BR, uuu = −eeei + ccc× yyy on ∂T
}
,

where

�BR
(vvv,vvv) =

∫
BR

μ e(vvv) : e(vvv) dxxx.

Similarly, χχχi is defined as the unique minimizer of the bilinear form �R3(·, ·) over the

closed, convex, non-empty set

Ki =
{
uuu ∈XXX | div uuu = 0 on R

3, uuu = −eeei + ccc× yyy on ∂T
}
,

where the Hilbert space XXX is defined as the closure of divergence free vector fields in

DDD(R3).

Remark 9.1. From the fact that χχχiR is a minimum, we observe that if R2 > R1, then

�BR2
(χiR2 , χiR2) ≤ �BR2

(χiR1 , χiR1) = �BR1
(χiR1 , χiR1).

Hence, the limit as R → ∞ of �BR
(χχχiR,χχχiR) exists.

Lemma 9.2. χχχi and ηi satisfy the following pointwise estimates for |xxx| > R0:

|Dαχχχi(x)| ≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

|xxx|1+|α| for |α| ≤ 2,

|Dαηi(x)| ≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

|xxx|2+|α| for |α| ≤ 1.

Proof. See [15, Lemma 5.6]. �

Lemma 9.3. There exists a constant C such that for every R > R0 we have∥∥σσσ (
χχχiR, ηiR

)∥∥
LLL2(∂BR)

≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

R2
.

Proof. Take φ to be a smooth cut-off function defined to be zero in the neighborhood

of Y and 1 outside BR0
. The pair {φχχχiR, φηiR} satisfies the following Stokes system:⎧⎪⎪⎨⎪⎪⎩
−μ2 Δ (φχχχiR) +∇(φηiR) = fffR in BR,

div (φχχχiR) = gR in BR,

φχχχiR = 000 on ∂BR.

If {χ̃χχi, η̃i} is the solution pair for the corresponding Stokes system in free space, then by

the previous lemma we have the following pointwise estimates for |xxx| > R0:

|Dαχ̃χχi(x)| ≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

|xxx|1+|α| for |α| ≤ 2,

|Dαη̃i(x)| ≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

|xxx|2+|α| for |α| ≤ 1.

Using the above estimates for any R > R0 we get∥∥Dαχ̃χχi
∥∥
LLL2(B2R\BR)

≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

R2|α|−1
,
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∥∥Dαη̃i
∥∥
LLL2(B2R\BR)

≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

R2|α|+1
,

and furthermore we obtain the following bound for the stress:∥∥σσσ (
χ̃χχi, η̃i

)∥∥
LLL2(∂BR)

=
∥∥2μ2e(χ̃χχ

i)− η̃iI
∥∥
LLL2(∂BR)

≤ C{
∥∥Dχ̃χχi

∥∥
LLL2(∂BR)

+
∥∥η̃i∥∥

L2(∂BR)
}

≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

R2
.

After changing variables we obtain∥∥∥∥χ̃χχi

(
R

R0
·
)∥∥∥∥

HHH2(B2R0
\BR0

)

≤ C ‖−eeei + ccc× yyy‖LLL2(∂T )

1

R

and ∥∥∥∥η̃i ( R

R0
·
)∥∥∥∥

HHH1(B2R0
\BR0

)

≤ C ‖−eeei + ccc× yyy‖LLL2(∂T )

1

R2
.

Define uuui = φχχχiR
(

R
R0

xxx
)
−φχ̃χχi

(
R
R0

xxx
)
and pi = R

R0
φηiR

(
R
R0

xxx
)
− R

R0
φη̃i

(
R
R0

xxx
)
. The pair

{uuui, pi} satisfies the following Stokes system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−μ2 Δ uuui +∇pi = 000 in BR0

,

div uuui = 0 in BR0
,

uuui = −χ̃χχi

(
R

R0
xxx

)
on ∂BR0

.

The regularity results in [18, Proposition 2.2] yield∥∥uuui
∥∥
HHH2(BR0

)
+
∥∥pi∥∥

H1(BR0
)
≤

∥∥∥∥−χ̃χχi

(
R

R0
xxx

)∥∥∥∥
HHH3/2(∂BR0

)

≤ C

∥∥∥∥−χ̃χχi

(
R

R0
xxx

)∥∥∥∥
HHH2(B2R0

\BR0
)

≤
C ‖−eeei + ccc× yyy‖LLL2(∂T )

R
.

Using the results above we can compute∥∥σσσ (
uuui, pi

)∥∥
LLL2(∂BR0

)
=

∥∥2μ2e(uuu
i)− piI

∥∥
LLL2(∂BR0

)

≤ C
{∥∥uuui

∥∥
HHH2(BR0

)
+
∥∥pi∥∥

H1(BR0
)

}
≤

C ‖−eeei + ccc× yyy‖LLL2(∂T )

R
.

Applying a change of variable yet again we obtain∥∥σσσ (
uuui, pi

)∥∥
LLL2(∂BR0

)
=

∥∥σσσ (
χχχiR, ηiR

)
− σσσ

(
χ̃χχi, η̃i

)∥∥
LLL2(∂BR)

.

Hence, ∥∥σσσ (
χχχiR, ηiR

)∥∥2
LLL2(∂BR)

≤ C ‖−eeei + ccc× yyy‖2LLL2(∂T )

1

R2
.

�
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