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Abstract. We consider an emulsion formed by two newtonian fluids in which one
fluid is dispersed under the form of droplets of arbitrary shape in the presence of surface
tension. We consider both cases of droplets with fixed centers of mass and of convected
droplets. In the non-dilute case, for spherical droplets of radius a. of the same order
as the period length ¢, the two models were studied by Lipton-Avellaneda (1990) and
Lipton-Vernescu (1994). Here we are interested in the time-dependent, dilute case when
the characteristic size of the droplets a., of arbitrary shape, is much smaller than e.
We study the limit behavior when ¢ — 0 in each of these two models. We establish a
Brinkman type law for the critical size a. = O(€?®) in the first case, whereas in the second
case there is no “strange” term, and in the limit the flow is unperturbed by the droplets.

1. Introduction. The literature on emulsions, and in particular the study of their
effective properties, is vast and starts with the work on dilute emulsions by Taylor [19],
who considered an emulsion formed by two newtonian, incompressible fluids, one of which
is dispersed in the other in the form of spherical droplets, with fixed centers of mass, and
derived the form of its effective viscosity:

eff _ Sp1 + 2p2 2 )
i (1 ot g ® 06 ) e (1.1)

in the case of droplets that have fixed centers of mass (i.e. are not convected with
the flow). Here p; and ¢ are the viscosity and respectively the volume fraction of the
droplets, and py the viscosity of the continuous liquid phase. The formula generalizes
Einstein’s celebrated formula for the viscosity of suspensions of spherical, rigid particles
(as p1 — o0), and considers the so-called “zero-th order” approximation, i.e. the case
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when the droplets remain spherical. The “first order” approximation of the droplet
deformation was considered in the case of dilute emulsions by Schowalter, Chaffey and
Brenner [I6] and Frankel and Acrivos [10], who derived a non-newtonian behavior of the
emulsions that exhibit “fluid memory” effects.

Another model of dilute fluid droplets was introduced by Ammari et al. [2]. While
for the limit case of rigid particles, Einstein’s formula can be recovered from this work,
Taylor’s formula (L) cannot be obtained, as Ammari et al.’s model, while using the
equations in the Eulerian frame, imposes the boundary conditions in the Lagrangian
frame. The same model is used by Bonnetier, Manceau and Triki [5], who extend to the
case with surface tension for droplets of known curvature.

In the non-dilute case, constitutive equations for emulsions have been derived by Choi
and Schowalter [§], who considered “first order” approximation of the droplet deforma-
tion. In the framework of periodic homogenization, the effective behavior of emulsions
was studied by Lipton and Vernescu [I4] in the case of spherical droplets that are con-
vected with the fluid, results that extended the case of spherical droplets with fixed
centers studied by Lipton and Avellaneda [I3]. In the former an effective viscosity was
derived consistent with the effective stress formula of Batchelor [4]. In the latter, ne-
glecting the bubble velocity, the problem yielded a Darcy flow, since it is equivalent to a
flow around fixed obstacles.

The present paper focuses on the dilute case of droplets in the periodic homogenization
framework. We consider the time-dependent, slow motion of a two-fluid dilute emulsion
formed by two newtonian, incompressible fluids, one of which is dispersed in the other
in the form of droplets, and derive its effective behavior. We consider only the “zero-th
order” problem, in which the effects of droplet deformation are not taken into account.
Thus if we denote by €; the domain occupied by the droplets of viscosity w1, and by {2
the domain occupied by the continuous liquid phase of viscosity po, and by S the union
of the bubble surfaces (i.e. S = Q; NQy), the problem is described by

w_ div (—=pl+2pu@)e(w)) =f in O UQ, (1.2)

ot
divv=0 in, (1.3)

where p(z) = py if x € Q1 and p(z) = pe if x € Qo.

The droplets are periodically distributed, and the size of the period is much larger than
the characteristic length of the droplets. This corresponds to a zero limit concentration
of droplets. We assume that the fluid velocity is continuous across the droplet surface
and both a kinematic and a dynamic condition are imposed on the fluid interface. In
addition we impose the condition that the droplets are neutrally buoyant.

The formulation of the stationary problem is discussed in Section 2, where, for the
reader’s convenience, we give details on the boundary conditions that need to be imposed
on the fluid interface S, the droplets’s boundary: (i) a no-slip condition, (ii) a kinematic
condition (that expresses the fact that droplet boundary is a material boundary) and
(iii) a dynamic condition (expressing the stress jump in terms of the surface tension).
In addition, the balance equations for the forces and torques on each droplet need to
be imposed, a condition expressing the fact that the droplets are neutrally buoyant.
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More details on boundary conditions can be found in the monographs of Leal [11] and
Zapryanov and Tabakova [21].

In Section 3 we formulate the periodic homogenization problem for droplets of arbi-
trary shapes as a variational problem. While two interesting cases can be derived, the
case of convected or non-convected droplets, we further detail the case of droplets with
fixed centers of mass and give its weak formulation. In the case of non-zero center of
mass velocity, the computations of the limit problem are similar but easier, so we do not
detail them here; we will merely state the final result.

Section 4 is dedicated to the so-called “local problem”. We identify a critical size of
droplets for which the sequence of solutions looses compactness.

In Section 5 we give the main result, the I'-convergence of the functionals describing
the periodic problem to a limit functional, which has in the critical case an extra term,
the limit in this case being a Brinkman type equation. The limit problem is of the form

—div (=pI +2pse())+ Mv=f inQ, (1.4)
dive=0 inQ, (1.5)

where M is a symmetric second order tensor that depends on the geometry of the droplets
and on the two fluid viscosities. The Brinkman law obtained by Brillard [7] and Allaire
[1] can be obtained from here when p; — +o00. For the problem of convected droplets,
the limit corresponds to the unperturbed flow, i.e. M = 0.

The particular case of spherical droplets is considered in Section 6, and in this case
the explicit form of the tensor M is found:

2[3u1+2u25
8 1+ pe

with m = lim. ¢ ¢5. Let us remark here that in the case of suspensions of spherical rigid

Mk = mp

mk>

particles, the tensor reduces to

3T
Mmk: = M2 ?5771/@
The time-dependent case is treated via Mosco-convergence in Section 7. The Appendix
contains the derivation of the weak formulation and some technical results regarding the
local problems.

2. Problem statement.

2.1. Balance of mass and momentum. Let us denote by £ the domain occupied by
the emulsion, by ; the domain occupied by the droplets of viscosity 1, and by 9 the
domain occupied by the continuous liquid phase of viscosity pus and Q = Q; U Q. The
droplets are denoted by T, and their surface by Sy; the union of the bubble surfaces
S = Q;NQy. The problem is described by the balance of momentum and mass equations

—div (—pI +2u(z)e(v)) = f in U, (2.1)
dive = 0 in{, (2.2)

where v and p represent the fluid velocity and pressure, f denotes the body forces, and
the viscosity p(z) = p1 if £ € Q4 and p(x) = po if x € Q2. The stress tensor will be
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denoted by ¢ = —pI + 2 u(z) e(v), where e(v) = 1/2(Vv + (Vo)T) is the strain rate
tensor.

2.2. Boundary conditions on droplet surfaces. (i) A kinematic boundary condition
needs to be imposed on the droplet boundary, which expresses the fact that the boundary
remains an interphase boundary.

Let us assume that the shape of the droplets is given by the surface F'(¢,2) = 0. Then

_dF _OF

s zF Y
a = o TV
and thus the normal velocity of the droplet boundary is given by
or
Ot
v-n Sk

The kinematic boundary condition on the droplet surface imposes the normal velocity of
both fluids to be equal to the normal velocity of the surface:

oF

— _ ot
[v-n]=0andv-n= Sk (2.3)
Let us now assume that although it moves, the droplet shape does not change in time;
thus F(t,x2) = G(z'), where &’ are the coordinates of a point on the droplet surface in
a moving frame, with orthonormal base {e’;}, centered at the center of mass z& of the
droplet Ty. Thus

e’
dt

with A = (4;;) an antisymmetric matrix. Then

_dG oG dx; N o ¢ o
0= G = oar g~ =00) i+ @=L - (Aue'n))

L

z' =z -z, and = A;;€e;,

and thus the normal velocity of the interface S, is given by
v-n=(5+ Al —2z%)) n. (2.4)

Thus the kinematic boundary condition (23]) becomes

[v-n]=0andv-n=(v5+ Az —2%)) -n. (2.5)
The angular velocity ¢ can be defined in R3 as ¢ = (¢, ¢2, ¢3) as ¢; = —Aaz, 2 = — A3y,
and C3 = —A127 and
de’s _ cxée;
dt - (28]

and the kinematic boundary condition (23] becomes

[v-n]=0andv -n=@5+cx(z—1z5)) n (2.6)

REMARK 2.1. Let us observe that the kinematic boundary condition (Z3]) implies

1

— vdzx.
Te| Jr,

v =
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Indeed using the incompressibility condition we have

/ mivjnjds = / (vjéij —+ xldlv ’U)d.’B = vidx,
Se T, T

and using the interphase velocity equation (2.4 we obtain

/Sa:ivjnjds = /S((vé)j:l:mj—I—xi(xl—xél)Aljnj)ds
£ £

T(wE: + [

T

(J,'l — LL‘ZCI)AlZd.’L‘ +/ LL'Z‘A”d.'E. (27)

T
The last integral above cancels because of the antisymmetry of A, and the one before
last from the definition of the center of mass. In this case the kinematic condition (Z4])

becomes )
v-n= <—/ vda:+A(z—:z:é)) ‘n.
Te| Jr,

In the particular case of spherical droplets, & — :l:é is parallel to n, and thus the

kinematic condition (23 reduces to

[[v.n]}:()andu.nzTiMUTlvdx)-n. (2.8)

(ii) A second type of boundary condition connects the stress in each fluid at the
boundary. Indeed on the droplet surface there is a stress jump [on] # 0, and 1)) is
only valid in ; and )3, and therefore we have

—div o = [on]ds, + f in Q, (2.9)
o=—pl+2pe(v), (2.10)

with dg, the Dirac measure on Sy. The stress jump can be obtained from the principle
that the forces on an element of interfacial area of arbitrary shape and size must be in
equilibrium, because the interface is assumed to have zero thickness and thus zero mass.
One can thus obtain [IT]
[on] = s(Vs-n)n — Vs,

where s is the surface tension and Vs = V —n(n - V) is the surface gradient operator.
If the surface tension is uniform, the stress has only a normal jump across the interface,
which is proportional to the surface tension and the mean curvature.

(iii) A third type of boundary condition needs to be imposed if the droplets do not
change shape. In this case the droplet surface acts as a rigid surface that needs to be in
equilibrium as the viscous stresses act on it, and thus the balance of forces and torques
needs to be satisfied:

/ [on]ds = 0 and / (x — z5) x [on]ds = 0. (2.11)
Se Sy

If the droplets are not allowed to translate, the balance of forces and torques becomes

[on]ds + F¢dcs = 0 and / (x —x%) x [on]ds = 0, (2.12)
S[ Sé
where F'y is a pointwise force centered at the center of mass of each droplet, which keeps

the droplet from translating with the fluid but which thus gives no extra torque; ¢y is
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the Dirac mass at the center of the droplet. In this case the balance of forces equation
[212) can be used to determine F.

Let us observe that in the case of spherical droplets of radius R with constant surface
tension s = const. the stress jump becomes

[on] = %n,

and the balance of forces on the droplet surface is automatically satisfied:

[on]ds = 0.
Se
2.3. Boundary conditions on the exterior boundary. For simplicity on the exterior
boundary we will consider a no-slip condition:

v =0 on 0N (2.13)

3. Periodic homogenization for droplets of arbitrary shape. Let Q C R? be
a bounded open set with Lipschitz boundary I' = 0f2, and let Y = (—%, %)3 be the unit
cube in R3. For every e > 0, let N¢ be the set of all points £ € Z3 such that e({ +Y) is
strictly included in Q and denote by |N€| their total number. Let T be the closure of an
open connected set with Lipschitz boundary, compactly included in Y. For every ¢ > 0
and ¢ € N¢ we consider the set T € (¢ +Y), where T} = el + a.T, where a. < €. The
set T; represents one of the droplets suspended in the fluid, and S; = 01} denotes its
surface. We now define the following subsets of 2:

Qe = U TZE ) Qe = Q\Q—léa
LeN¢
where €. is the domain occupied by the droplets of viscosity 1, and s, is the domain
occupied by the surrounding fluid, of viscosity uo. Let m be the unit normal on the
boundary of 25, that points outside the domain.
The problem describing the flow of the emulsion is described by

—div o€ = f in Q1 U Qo, (3.1a)
0 = —pI+2ue(ve), (3.1b)
div v =01in Q, (3.1c)

with boundary conditions (see (Z5) and (2.12)) ) on the surface of each droplet T, £ € N°:

[v]=0 on S}, (3.2a)

v =cx(x—x5) onS§, (3.2b)

/ (x —2%) x [o°n] ds = 0, (3.2¢)
S

and, for simplicity, a zero velocity condition on the exterior boundary

v“=0 onl, (3.3)
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where [-] denotes the jump across S, ¢ is an unknown, constant vector in R3, .’L’é is the
position vector of the center of mass of the droplet T, and the viscosity u° is defined as

. pr o if x € Qe
pe(x) = .
pe if x € Q.

Condition (B.2a) is the no-slip condition at the interface of the two fluids, and (B.2h)),

B2d), and B.3) follow from 23], 2I2) and @2I3).
3.1. Weak formulation. The emulsion flow problem in (81]) — (B3]) has the equivalent

variational formulation:
For any f € L?(Q), find v¢ € V€ such that

/ 2ufe(ve): e(w) de = / f-wdz, for any w € V<, (3.4)
Q Q

where V¢ is the closed subspace of H((2) given by
Ve={weHi(Q) [divw=0inQ, w=ecx(@—z;)onS, ceR}.
A weak solution to Bl — (B3) is any v that satisfies (84). Conversely, (81 — (33)

can be obtained from (B4 in the sense of distributions; the details are presented in the
Appendix. The existence and uniqueness of a weak solution of the emulsion flow problem
follow from the Lax-Milgram lemma.

Furthermore, any v¢ solution to (34 is the unique solution of the problem

Find v¢ € H}(Q) such that
{ J(w) = min J(u), (3-5)
ueH}(Q)
where
T (u) = / iee(u): e(u) dz — / foude + Iy (u), (3.6)
and Ig represents the indicats(ir function of the setQS , defined by

0 if s €5,
IS(S)_{ too  ifséS.

We are interested in studying the I'-convergence of the sequence {J} when € — 0.

4. The local problem. Let us consider the local problem for a reference cell Y : =
e(£+Y) for some £ € N€.

—div ™ =0 in B§\Sg,
o.kte _ _qk:eI + 2/146('11}]%),
div w" =0 in Bj,
[w"] =0 on S§, (4.1)
wh =cx (y—yb) on Sy,
wk‘€ = e on aBE,
| w=ve) x [t nds =0,

4
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where Bj is the ball with center the center of cell £ € N and radius €/2, ey, is the k-th -
unit vector of the cartesian base and p = p; in Ty and p = po in Bj — T_;.
Define " = w*e — e;,. Then (@) becomes

—div 6" =0 in B{\S;,
6" = —g* I+ 2 pe(w™),
div@* =0 in B,
[w"] =0 on S5,
W' = —ep +ex (y—yo) on S,
W™ =0 on dBf,
[ =) <o n s o
:

Applying a change of variable we get w"“(acx) and ac.g*(a.x) are solutions for a
problem of type ([@.6]) , where xFae = 'zi)ke(aea:) and n*ac = a.qgk* (acz). Hence, using our
results in the Appendix, there exists a unique solution to (..

4.1. Properties of the local solution.

LEMMA 4.1. The solution (w*<, ¢*¢) of (@) has the following properties:
1. If ac = o(€?), then wk¢ — e, in H(Q2), ¢*¢ — 0 in L3(Q).
2. If a. = O(€?), then w*e — e;, in H(Q), ¢* — 0 in L3(1).

Proof. First, we extend w"*¢ by periodicity to all of R?. Since the number of micro-
scopic cells, Yy, included in |Q] is equivalent to |2]/€3, we have

. 19

€ € € € Qe £ €
/Que('wk ): e(w” )dz ~ = pe(wte): e(w” )dx:|Q|6—3/BaLpe(xkae): e(x"e) de.
4

Bj

From Remark in the Appendix, the corresponding limit of the last term above
exists as e — 0. Hence, for a positive constant C' (independent of €), we have

/ e(wk): e(w™) dz < C.
Q

Furthermore, by Korn’s inequality on Bj and the fact that e(ex) = 0, we note that
[[we — ekHHl(Q) <Dt~ 6kHHl(B;) < ZC/ e(w*): e(w") dz < C.
14 4 [

Therefore, we get that H'wk o < C. Hence, by taking a subsequence still denoted

[l
by w"¢ we have
wh —~w  weakly in H'(Q).
Since Xu,eyeve\ps converges in the weak topology of L%(Q) to the non-zero constant
|Q|(1 — 7/6) and w*® = e, on Y\ Bg, we get that w = ey. O
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5. Convergence results. Using (3.6)), let us define the energy functional E: H} ()
— RU {400} by

Ef(u) = /Quﬁ e(u): e(u) dx + Iy (u). (5.1)

Our goal is to show that the sequence (E€). I'-converges to E in the weak topology of
H}(Q) where

3
E(u):/guge(u): e(u) dz + Z Mok /Qumukda:—i-lv(u), (5.2)

k,m=1
with V' the closed subspace of H{(Q) defined by
V={weHQ)|divw=0},
and M = (M1 )mk the positive definite, symmetric matrix defined by

e—0 B;e

and

. Q¢
m = lim —.
e—0 63

THEOREM 5.1. The sequence (E¢), defined by (5] T'-converges in the weak topology of
H(Q) to the functional E defined by (5.2).

Proof. We first remark that for every u € H}(Q2) which is not divergence-free in {2 one
derives that
I' — liminf F°(u) =T — limsup F‘(u) = +o0.
=0 e—0

Hence, we only have to deal with divergence-free functions. Specifically, we have to
prove the following two assertions:
(a) Forallv® € V there exists av® € V¢, v¢ — v" in H}(2) such that lim._,o E€(v¢) =
E@°).
(b) For allu® €V and for all u € V¢, u¢ — u® in H{(Q) such that liminf._,o E¢(u) >
E(uY).
Part (a). Let v° € D(Q) such that div v° = 0. Define the sequence v¢ in the following
way (see [7], [20]):

v(z) in £ — B,
v(x) = < v0(z) + (W (z) —ex)vl(zh) — curl (Vepder) in Bf — T, (5.4)
vp(aE ) whe(x) in 77,

where ¢ is the vector valued function associated with v°(z) — v°(z%) such that

Z curl (Uepper) — 0 strongly in H(Q) as € — 0,
teN«

with

1 ifgeTy,

Pet(x) = do(x/€) ; det(x) € D(BY) ; pet(T) = {0 itz e B B
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and the supp(gbég) B?ﬁ, where B“e is the ball with center the center of cell £ € N¢

and radius a6 . One can now verify that the sequence v€ is divergence free, belongs in
Hi(Q), v¢ = ¢ x (z — &) on S§ and v¢ — v in H}(Q2). Hence, computing E€(v¢) we
obtain:

Z/Y - pae(v 0 da + Z/ pvl(x5)00 (x5)e(w"e) : e(w™) dx

fen LeEN¢E
' Z;V:e /B Ts 2 Ug(a,‘lc)e('uo): e(,wke) dx
- Ppae v°): e(curl (Berer)) da
_zezNe/B - 2 g V9 (25 )e(w™) : e(curl (Depder)) da
+ / M2€ (curl (Veeer)): e(curl (Veeger)) daw
(eN®
B key . me
R /smk paelv” d“gv:e/ 1@l (@) e(w™) : (™) d + o(1)

+ (Z v2<xé>v%<wé>e3> % [ et el da + o),

LENE

By the smoothness of v° we get

: €(ny€) 0
251(1)E(’U)—/(;Mg€(’0 ): e(v?) dx + Z /\/lmk/v vy de.

k,m=1
For v° € H}(2) we use a diagonalization process to complete the argument.

Part (b). Let u¢,u® € H}(Q) be such that div u¢ = div u’ = 0, u¢ = ¢ x (z — z5)
on S§, and u¢ — u’ in H'(Q). Let v° € D(Q) be such that div v® = 0 and define the
sequence v°¢ as before. Using a sub-differential type inequality we get

B (uf) EEWH/ 24 e(v°): eus — v°) da. (5.5)

Q

In order to pass to the limit in the last term we make use of Lemma and obtain
the following bound for the stress:

HakeHLZ(aBg) <CE |~ext+ex(y _yéC)Hw(se) :
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Therefore, the last term of (5.5]) becomes

/uee('u) e(u® —v°)dx = Z/ ,uze 9: e(u® —v°) de

teNe
+Z/ ILL26 e(u® —v° da:+Z/ ugvkmc Ye(u® —v°): e(w™) da
LeEN€E (ENE
_ Z/ 2 e(us —v°): e(curl (Berder)) dz + Z/ 1 uf(xe) e(us —v): e(w®) de
tene Bj—T§ rene
:/ w2 e(u® —v° 0y dx + Z/ pop(xE) e(u® —v°): e(w™) de + o(1).
Q\Qle leENE

We rewrite the last term as

- Z v (x / o"<: V(u —v°)de = % Z vg(xé)/ o"n - (u —v°)dzx

2 e~ LeN*® 9B;
> —C (Z vg(Zé) 53) ‘ H_ek +ex(y _yé)HLQ(Se) [uf _v6||L2(Q) ‘
LeN<
Putting everything together we get

E(u®) > E(v°) +/ 2 o e(u —v°): e(v?) da
O\

-C ( Z ’Ug(.’l,‘é) 63) H_ek +c X (y - yKC)HLz(Se) ||’u’6 - 'U€HL2(Q) .
LeN¢
Passing to the limit first as e — 0, then using a diagonalization argument to make
v% — u in the strong topology of H}(Q), we get
liminf E€(u¢) > E(u’).
e—0
O

The immediate consequence is

COROLLARY 5.2. The sequence {v°} of solutions to (B1) is weakly convergent in the
weak topology of H}(Q) to the v solution to

Find v € H}(Q) such that
Jw)= min J(u), (5.6)
ueHL(Q)
where
() = / tse(u): e(u) dz +/ Mu - udz — / foude+ Iy (w) (5.7)
Q Q Q
and

V={weH|Q)|divw=0inQ}.

The Brinkman law obtained here takes into account the geometry of the droplets and
their viscosity. For ;3 — oo one can show that the result yields the Brinkman law for
rigid particles obtained in [1] and [7].



100 GRIGOR NIKA Axp BOGDAN VERNESCU

6. Spherical droplets. In this section we determine the matrix M = (Muk)mk
in (&3) for the case of spherical droplets. In accordance with Section 2.2 the emulsion
problem simplifies in the following way:

—dive‘=f in Q1 U Qo
0 = —pIT+2p e(v),
dive* =0 in Q,
[en] = (Jen] - n)n on Sg, (6.1)
v°-n=0 on Sy,
[v] =0 on Sy,
v°=0 onT.

The balance of forces and torque is given by ([2I2). The balance of torque is auto-
matically satisfied in this case, while the balance of forces we do not write down since it
is de-coupled from problem Moreover, the variational formulation is the same as in
B4) where V¢ simplifies to

Ve={weHi(Q)|divw=0inQ, w-n=0o0n5j}.

6.1. The local problem for spheres. Let us consider the local transmission problem for
cell Y/ for some £ € N¢:

—div o™ =0 in B§\Ss,
0¢ = —pI + 2 pe(w),
div wke =0 in B,
[e*n] = ([e*“n] -n)n  on S, (6.2)
wh.-n =0 on Sj,
[w™] =0 on S§,
whe = ey, on 0Bj.

Problem (62) admits an explicit solution. Indeed due to the spherical symmetry we
look for a solution in spherical coordinates (r, 6, ¢) with 6 being the angle between z and
e and with no dependence on ¢:

wh = f(r) cos(A)e, + g(r)sin(f)es, (6.3a)
q"¢ = h(r) cos(d). (6.3b)

Here (e,,eg,e4) denote the unit vectors in spherical coordinates. Substituting (6.3al),
(E3D) into ([6.2) we obtain the following system of differential equations:

p(f"+2f = 5(f+9)+n = 0,
p(g"+29 = E(f+9)—1h = 0, (6.4)
f+2(f+9) = 0,
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N —diveke =0

—div gk =0

in each domain Bj — T_; and 7. By eliminating g and h we obtain an Euler equation for

f:

2
4
%f(4) +4r fO) 4 — - f'=o. (6.5)
Thus the solution for ([62) is given by
C; C

f(r):Clr2+Cz+T3+r—§7 (6.62)

C C

_ 2 3 4
g(r)==2C11" = Gy — o+ o5, (6.6b)
h(r)=—u <1OTC'1 + %) (6.6¢)

inside Bj and similar solutions, with different constants, say K; , Ko , K3 , K4, for
B§ —Ty. Also, by requiring w*<, ¢* to be in L*(B§) we get C5 = Cy = 0. Furthermore,
the boundary conditions yield the system:

Cy af +Cy =0,

Kya? + Ky + 52 + 44 =0,

—2010,? — CQ = —2K1af —KQ - % + %,
w1 Crae = p2 (K1 + %)a
K€+ Ko+ £+ Ko —

—2K1€2 — KQ — % —|— Ky = —1,

2t

which determines uniquely C;, Cs5, K1, Ky, K3 and K. For instance,
(3 prac® — e (3 + 2 ug)) ace

(ac — €)° (4a3(p — p2) + 3ac2e(pus — 2 p12) — 3ace(puy + 2 p2) — 4€3(py + pi2))
ke

K =

We will next study the behavior of w*¢, ¢*¢ as e — 0.

LEMMA 6.1. The solution (w*, ¢*¢) of (62) has the following properties:
1. If ac = o(€?), then wk¢ — e, in H1(Q), ¢"¢ — 0 in L*(Q).
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%), then wke — e in H(Q), ¢* — 0 in L?(2), and there exists
) such that

<d1V (/.l/vwke — quI) 5 (bu€> — <’Yek ) @l’>7
for any u¢ — u in H}(Q) with u*-n = 0 on S§ and for any ¢ € D(2). Moreover, if
a. = me>, then

2. IfaezO(
vye HHQ

v = —mTy 3 + 2u
47 o+ pe
Proof. Take ¥ € H{(Q) with ¢ -n =0 on S§. From (62) one gets
(div (uVw* —g*I) | p) = / (p2 V' — ¢*I) 9y -nds, (6.7)
OB«

where 0B¢ = Ugen-0B; and the right-hand side can be estimated since
(2 Ve — ¢ I) e, = (= h(€) + pa f'(€))(ex - &) €r + 2 g'(€)(ex - €0) €9
= F(e)(ex -e-) e, + G(e)(eg - eg)eq. (6.8)
Therefore (6.8) becomes
(div (pVwke —g*1) | o) = F(e)/ (e -e.)e.ds + G(e)/ (e -eg)eqds. (6.9)
oB« oB«

On the other hand, one has (see [9], [1]) the following convergences:

S3
Z ed;e, — 53 €k strongly in W, 1> (R?), (6.10)
LeN®
€ 1 S 1 00 3
Z €d; (e -e.)e, — 3 336k strongly in W, "> (R”), (6.11)
LeN«
2 S5 1,00 /13
Z €d;(er-ep)eg — = 3 93¢k strongly in W, """ (R”), (6.12)
LeN©

where §j is the measure supported on 0B¢ and S3 is the surface of the unit sphere. Thus
in order to pass the limit in (€3] we have to compute the limit of F(¢)/e and G(e)/e.
Therefore, we have

Fe) _ =h(e) +paf'(e) _ <1OK1+K)+#2<2K1 = 3_)

€ € et

which implies

F(e) 3pur+2us 10 a, Qe Qe Qe
~ -10 ———— 4+ —+40
€ H2 11+ o €3 2¢3 263+263+ ’
and hence P 5 5
i F0) g, 3 T 20 (6.13)
e—0 € M1+ o
Similarly,
Gl pa Ky 3K,
== = 4K, 3 24
P P g (6) 2 1+ 2 63 2 65 )

which implies

G(E)NM3M1+2M2 (ae ae)

€ it \S8 46
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and hence © ( )
. Gle 33 1 + 2 s
1 = _ 6.14
e T (6.14)
Relations ([6.9) — (614) yield
: 3p1+2p2
div (pVawke — g* 1) | ¥) = —m s~ / da, 6.15
(div (p ¢"I) . ¥) e - du (6.15)
for any u® — u in H§(Q2) with u®-n =0 on S§, and for any ¢ € D(Q). O
Using Lemma [6.1] we can now compute (5.3). Indeed, we have
Qe m— P 1 me €
% [ el el = 5 [ uew™): ew)da (6.16)
£ £
1 1 owre 1
_ ) mey . ke d ome L - —di me ke
2] [, et ew)de = o |0l e 21| (=div o™, w'),

where the last term was obtained using integration by parts and properties of the local
problem ([G2)). As ¢ — 0 we obtain

7T3M1+2M25

Mok =
k= M2 8 1+ pio

mk-

7. Time-dependent case. The results obtained for the time stationary Stokes equa-
tion can be extended to the time-dependent case by using the fact that I'-convergence of
E* to E in the weak topology H(Q) is equivalent to Mosco-convergence of E€ to E in
L%(Q). Then using the connection between Mosco-convergence and the convergence of
solutions for a class of evolution problems we can get convergence in the time-dependent
case. We begin with some auxiliary results.

Let H = L%(Q) and for any € > 0 let E€ be the convex functional on H, with
dom(E€) = V¢, defined by

/ ue(u): e(u) dx ueVe,
+Qoo u¢ Ve
The sub-differential of E€, OF¢, is
OFE‘(u)={€ € H:(§£v—u) < E(v) — E(u) for all v € dom(E*)}.
Thus, if u¢ € V¢, then £ € 9E(u®) if and only if for every v¢ € dom(E°),
E¢(v) > E(u) + (§,v° —u°). (7.1)

Select v = u® + A@ where ¢ € D(2;) with div ¢ = 0 and A € R. Substitute v¢ in ([T
to obtain

E¢(u) =

A 21 e(u): e(@) dz = (€.9). (7.2)

This implies that there exists a distribution p§ € L?(Q.) such that —div ¢'¢ = £ in the
sense of distribution in Q.. In a similar manner if we select ¢ € D(s) with div ¢ = 0 we
obtain that —div 2 = £ in the sense of distribution in g, or we can write —div ¢ = &
in the sense of distribution in Q. U s.. Furthermore, in exactly the same way as in the
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Appendix, we obtain the remaining boundary conditions and balance of torque on each
fluid particle.
Let I = (0,T); the time-dependent problem for the emulsion is

% —dive® = f(t,x) in I x (Q1eUQs),
div uf(t,z) = in I x €,
[uc(t, )]]_0 on I x S,
ut(t,x) = ¢ x (m zt) on I x S, (7.3)
ut(t,z) = on I x 09,
u(t, x) = u(x) on {0} x (21 U ae),
/E(x —zt) x [o°n] ds = 0.

We associate with u¢(¢,2) a mapping @“: [0,7] — H defined by [a°(t)](z): = uc(t,z)
where £ € ;.U Qs and 0 < ¢t < T. In other words we are going to consider u*(¢,z) not
as a function of £ and ¢ but as a mapping 4° of ¢ into H of functions of £. We interpret
f(t,z) in a similar manner.

The variational formulation of (T3)) is

Find u¢ € L?(0,T; H) such that

d

pn / u(t,z) - d(x) dx + /Q 2pce(u(t,x)) : e(d(x)) de (7.4)

/fta: z)dx for all ¢ € V©.

Equivalently, using (2], we can write (Z4]) as

dﬁe() €(4€ .
7t +O0E‘(u(t)) > f(t), 0<t<T, (7.5)
4°(0) = u°.

Therefore we have obtained an equivalence between (Z3) and (TH).
In a similar manner, if we define

Eu) = /QM2 (u): e(u )dx+/QuTMudx foru eV,

+ o0 foru ¢V,

in H with dom(E) = V and M the matrix defined in equation (52]), we obtain an
equivalence between the time-dependent homogenized suspensions problem,

t
W—ugAu—i—Vp%-Mu:f(t,x) inI xQ,
div U(t,.’E) =0 in I x Q, (76)
u(t,z) =0 on I x 09,

u(t,z) = u(z) on {0} x Q,
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and

WO | opn) > Fa), 0<t<T.

u(0) = u.

(7.7)

Using well-known results from the theory of non-linear semigroups and maximal mono-
tone operators in Hilbert spaces (see [6], [17]), well-posedness as well as existence and
uniqueness of solutions of both () and (1) are established.

We are now ready to state the main result of this section:

THEOREM 7.1. Assume that u¢ — u in H. Then the solution 4° converges uniformly to
4 on [0,7T] and

2

dt — 0.
H

[

If in addition u¢ € dom(E°), u € dom(FE) and E¢(u¢) — E(u), then

strongly in L*(0,T; H)

and
E<(u“(t)) = E(u(t)) uniformly on [0, 7).

Proof. Straightforward application of Theorem 3.66 and Theorem 3.74 in [3] and the
Mosco-convergence of E€ to E. ]

8. Conclusions. The problem of dilute emulsions formed by two newtonian fluids in
which one fluid is dispersed in the form of droplets of arbitrary shape, in the presence of
surface tension, is formulated in the homogenization framework.

In the case of droplets with fixed centers of mass, we prove, using I'-convergence in
Theorem B.] that if a. = O(€3) the limit behavior is described by a Brinkman type law,
while for the case of convected droplets the limit is given by the unperturbed Stokes flow.
For a. = o(€?), in both cases the limit is given by the unperturbed flow. The Brinkman
law obtained here takes into account the geometry of the droplets and their viscosity;
for 41 — oo one can show that the result yields the Brinkman law for rigid particles
obtained in [I] and [7].

For spherical droplets we can actually compute the solutions of the local problems and
thus the tensor appearing in the Brinkman law in Lemma 6.1. This also gives the form
for the suspension of rigid particles in the limit for p; — oco.

The time-dependent problem is studied using the consequences of the Mosco-conver-
gence for the energy functionals corresponding to the elliptic case.
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9. Appendix.

9.1. Equivalence between PDE and variational formulation for the emulsion problem.
We seek a vector function u¢ representing the velocity of the fluid and a scalar function
p¢ representing the pressure, which are defined in ;. U Q9. and satisfy the following
equations and boundary conditions:

—div o€ = f in Q1 U Qo, (9.1a)
o = —-2ue(v®) + p°I, (9.1b)
divv®*=01in Q, (9.1c)
with boundary conditions on the surface of each droplet T, £ € N°¢,
[v]=0 on S;, (9.2a)
v =cx(x—z5) onSf, (9.2b)
v“=0 onl, (9.2¢)

and an additional condition that comes from the balance of torques,
/ (x —x&) x [oen] ds = 0. (9.3)
S
If f, u¢, and p¢ are smooth functions satisfying (@) — ([@3), then, taking the scalar
product of ([@Tal) with a function w in ¥¢, where

Y ={weDQ)|divw=0inQ, w=ecx(@—z;)ons, ceR},

—/ divaf-wdx:/ f-wdx.
Q1UQ5, Q1UQo
Thus we get

- E / [[aén}]~wdx—|—/ o Vwdr = fwdz,
vene /s Q1.UQs, Q1.UQs,

we obtain

and using condition ([@.3]), properties of symmetric matrices, and the fact that the fluid
is incompressible we get

/ 2ufe(ve): e(w) de = / f-wdz for all w € 7°. (9.4)
Q Q

Equality ([@4) is still valid by continuity for each w € V¢, the closure of ¥ in H} ().

Therefore we have the following conclusion:

v¢ € Ve and satisﬁes/ 2ue(v): e(w)de = | f-wdz for all w € V©. (9.5)
Q Q

Conversely, assume that v¢ € V¢ satisfies ([@.5]). Since v¢ € H}() we immediately get
v¢ = 0 on I' in the sense of the traces. Furthermore, since v¢ € V¢ we obtain that
div v¢ = 0 in the distributional sense, [v¢] =0 and v¢ = ¢ x (z — z5) on S, for ¢ € R3,
in the sense of the traces.

Let ¢ € D(Qy.) with div ¢ = 0. Then ¢ € ¥ (pick ¢ € R? to be the zero vector), and
using ([@.3]), we get

(—div (2p1e(®')) — f, ¢) =0 for all ¢ € D(Q.).
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Using Propositions 1.1 and 1.2 in [18] we find that there exists a distribution p§ € L?(£2,)
such that

—div (241 e(v')) — f = Vs,
in the sense of distributions in Q.. Similarly if we pick a ¢ € D(Qsg.) with div ¢ = 0
and proceed the same way as above we will obtain

—div (2p2 e(v*)) — f = —Vp§,

in the sense of distributions in €.
The last condition that we need to recover is ([@3]). Consider ¢ € ¥¢; using (@3]

/2/fe(ve):e(¢)dz=/f-¢dxforall¢€”76,
Q Q

adding the pressure distribution in the above equation and integrating by parts we obtain

Z / [en] - pds + (=dive*—f, ¢) =0,
teN<’5;
which implies condition (@.3)).

9.2. Auziliary local problems and bounds on the stresses. Consider the solution
{x*E,n'f} of the following auxiliary local problem in Bg, the ball of radius R centered
at 0, with 7" a subset of Y = (—%, %)3, for R > Ry where Ry is such that Y € Bp,:

—uy) A x B+t =0 in BR\OT,
div x'' =0 in Bg,
X1 =0 on JT, (9.6)
X =—e +exy on 0T,
x2=0 on OBg,
and
/aTy x [o (x'",n"")n] ds = 0. (9.7)

In similar fashion, we denote by {x*, '} the solution of auxiliary local problem in free
space,

—p@)Ax +Vn' =0 inR\AT,
divx'=0 in R3,
Ix']=0 on 9T, (9.8)

1: —

X' =—€e +ecxy on J7T,

x'—0 at oo,

and

/ y x [o (x',n")n] ds = 0. (9.9)
aT
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Properties of X' and x*. Due to [12] (Thm. 8.2), x#* is defined as the unique mini-
mizer of the bilinear form S, (-, ) over the closed, convex, non-empty set

K ={ue H\(Bg)|divu=0o0on B, u=—€ +ecxyondl},

where
Spg(v,v) :/B we(): e(v) de.

Similarly, x* is defined as the unique minimizer of the bilinear form Sgs(-,-) over the
closed, convex, non-empty set

Ki={ueX|divu=0onR? u=—e+ecxyondl},

where the Hilbert space X is defined as the closure of divergence free vector fields in
D(R3).
REMARK 9.1. From the fact that x*? is a minimum, we observe that if Ry > Ry, then

S, (X2, X)) < g, (X X)) = Sy, (KT X™).

Hence, the limit as R — oo of Sp, (x5, x7) exists.

LEMMA 9.2. X% and 7’ satisfy the following pointwise estimates for |z| > Ro:
n

Cll—ei +exyll2om) for

D ()] < M.

o] <2,

; Cll—ei +exyllp2(om)
|Dn (x)] < ] for

la| < 1.

Proof. See [15, Lemma 5.6]. O

LEMMA 9.3. There exists a constant C' such that for every R > Ry we have

Cll—ei +exyllp2om)

iR) ||L2(8BR) = R2

lo (™.
Proof. Take ¢ to be a smooth cut-off function defined to be zero in the neighborhood
of Y and 1 outside Bg,. The pair {¢x'f, pn'F} satisfies the following Stokes system:
—p2 A (0x*) + V(en'™) = f*  in Bg,
div (¢x') = ¢™ in Bg,
ox*F=0  on dBg.
If {)Zi, 7'} is the solution pair for the corresponding Stokes system in free space, then by

the previous lemma we have the following pointwise estimates for |z| > Ry:

. Cll—e;+¢cx
DX (z)| < I =e: Yllze o) for

- |z|L+el lof <2

)

; Cll—ei +exyllp2(om)
| DY ()] < PR for |a] < 1.

Using the above estimates for any R > Ry we get

Cll—ei +exyllp2(om)

|‘Da)~(i|‘L2(BQR\BR) = R2lal-1 ’
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Cll—ei +exyllp2(om)
HLz(BQR\BR) = R2lal+1 J
and furthermore we obtain the following bound for the stress:

HDaﬁi

||° (Xi’ﬁi)HL?(aBR) = HQIL?QO?) - ﬁiIHLQ(aBR)

< CUIDK 205, + 17|20,

- Cll—ei + e xyllp2(om)
p— R2 .

After changing variables we obtain

(R |
X (5 SCH—ei‘i‘cxyHL?(aT)}_%
0 H?2(B2ry\Bry)

and

n(R)H < Cll—es + ¢ x yllgarpp —
o s Ci—e L2(9T) T2°
Ry H'(Bap,\Bnry) 01) R
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Define u* = ¢y~ (%m) — X (R%m) and p' = £-on'ft (R%a:) — i’ (%.’L’). The pair

{u?, p'} satisfies the following Stokes system:
—pp Aut +Vpi =0 in Bpg,,

divu’ =0 in Bp,,

ul = —x' (J%w) on OBg,.

The regularity results in [I8, Proposition 2.2] yield
1 g+ 1 sy < |5 (72|
(Brg) (Brg) Ry H3/2(9B 1)

) Cll—e; +ex
<c H_Xl (Ea:) H < | y”L?(BT).
Ry H2(Bygr,\Br,) R

Using the results above we can compute

o (ui>pi)HL2(aBRo) = |2 p2e(u’) _piIHm(aBRO)

. ; Cll—ei +¢xyllp20
< Ol ga s + 1911 } < Adlica)

Applying a change of variable yet again we obtain

o (“ivpi)HL?(aBRo) = o (0" —o (iivﬁi)Hm(aBR)'

Hence,

. ) 1
o ™ ™) 2oy < Cll—€i € x lzegor) 7

O
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