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Abstract. In this paper, we derive a uniform estimate of the strong solution to the
incompressible magneto-hydrodynamic (MHD) system with a slip boundary condition
in a conormal Sobolev space with viscosity weight. As a consequence of this uniform
estimate, we obtain that the solution of the viscous MHD system converges strongly to
a solution of the ideal MHD system from a compactness argument.
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1. Introduction. The homogeneous incompressible magneto-hydrodynamic systems
(MHD) model the interaction between a magnetic field and a viscous incompressible fluid
of moving electrically charged particles. It is governed by the following equations:

Ou—eAu+ (u-Viu—(H-V)H+Vp=0, (1.1)
OH —eAH+ (u-V)H — (H -V)u =0, (1.2)
Vou=0, V-H=0, (1.3)

in the domain t € [0,T), z = (21, 72,73) €  C R3, where u € R® and H € R3 denote
the fluid velocity and magnetic field respectively, p(t, z) is the fluid pressure, and ¢ is the
viscosity coeflicient. Here we have assumed the viscosites for the fluid and magnetic field
are the same. We impose the following impermeable and friction boundary conditions
for the equations (LI))-(T3):
u-n=0, (D(u)-n); +Bur, =0 on [0,T) x 99, (1.4)
H-n=0, (D(H)-n); +vH; =0 on [0,T) x 01, (1.5)
where D(u) = 1(Vu + (Vu)T) and D(H) = £(VH + (VH)T) are the rate of the strain
tensors, n and 7 are unit normal and tangent vectors on the boundary 092, with w,, H,
denoting the tangential components of u, H respectively, e.g. u, = u - 7. The boundary
condition (I4)) means that the slip velocity is proportional to the shear stress; it was
introduced by Navier [I8] in studying the large eddy simulation, so it is also called the
Navier friction boundary condition. The condition ([H]) is adaptable to the systems,
since it ensures the boundary balance of the quantities on the boundary, as explained in
[26].

One important question in fluid mechanics is, when the viscosities tend to zero whether
the viscous flows can be approximated by the inviscid flows. In general, this approxi-
mation does not hold; as Prandtl observed in [2I], there are boundary layers near the
physical boundary as the viscosities vanish. The behavior of boundary layers in problems
with the non-slip boundary condition was formally studied by Prandtl in [2I], and the
well-posedness of the Prandtl boundary layer equations has been studied by many math-
ematicians; cf. [11[BHELI6LI9L20,28] and references therein. One of the most challenging
problems is to establish a rigorous theory on the Prandtl boundary layer theory, i.e.
whether the viscous flows converge to the superposition of the inviscid flows away from
the boundary and the Prandtl boundary layers in a neighborhood of boundary when the
viscosities go to zero. This problem is wide open except in the cases where the data is
analytically studied [22], the flows are circularly symmetric ([13]) or, the recent work [17]
that the initial vorticity is supported away from the boundary in two space variables.
Another approach had also been given by Kato [10], and improved later by Temam, Wang
[23] and Kelliher [I1], for seeking necessary and sufficient conditions on vorticity to have
the vanishing viscosity limit of solutions to the Navier-Stokes equations with no-slip
boundary conditions converging to a strong solution of the Euler equations. There are
also many interesting works on problems with the Navier slip boundary conditions. For
the two-dimensional problem, Yodovich [29] and Lions [I2] studied the vanishing viscos-
ity limit for the incompressible Navier-Stokes equations with a free boundary condition,
u-n = 0 and curl u = 0 on 92 with curl u denoting the vorticity. For the two-dimensional
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Navier-Stokes equations with the Navier friction condition, Clopeau, Mikelic and Robert
(2]), Lopes Filho, Nussenzveig Lopes and Planas ([I4]) obtained the vanishing viscos-
ity limit under certain boundedness assumptions on the initial vorticity when the slip
length is a constant. Recently, Iftimie and Sueur in [9], and Wang, Wang and Xin [25]
have investigated the boundary layer behavior of the Navier-Stokes equations with the
Navier boundary condition for different scales of slip length; other related works can be
found in [T1L26]27] and references therein. Recently, Masmoudi and Rousset in [I5] have
obtained a uniform estimate of solutions to the Navier-Stokes equations with the Navier
boundary condition in the conormal spaces, from which follows the small viscosity limit
result immediately.

Till now, there have been few works on the small viscosity limit for the initial boundary
value problem of the magneto-hydrodynamic system, except that the compressible MHD
equations with a non-characteristic boundary condition have been studied in [7], and
Xiao and Xin [26] have studied the problem of the incompressible magneto-hydrodynamic
equations ([I)-(LE) with the complete slip case, 5 = v = 0, and showed that any regu-
larity solution of the viscous incompressible MHD system converges to a corresponding
solution of the ideal MHD system. The main goal of this work is to use the idea of [I5] to
study the problem of the incompressible magneto-hydrodynamic system ([Il)-(T3]) with
the general Navier friction boundary conditions (L4)-(TH).

For simplicity of presentation, we shall consider only the problem (LI))-(L3) in the
half plane @ = R3 = {z = (21,22, 23), 23 > 0}. In this case, the boundary conditions
can be simplified as

uz =0, Osu; =2Bu;, i=1,2 on[0,T) x 99, (1.6)
H; =0, 0sH;=2vyH;, i=1,2 onl0,T) x 0. (1.7)
In this paper, we are interested in establishing a uniform bound in a time interval

independent of ¢ € (0,1] for the strong solution of the problem (I)-(3) with the
boundary conditions (L8)-(L7), from which we deduce that as the viscosity € goes to
zero, this solution converges strongly to a solution of the ideal MHD system,

ou+u-Vu—H-VH+Vp=0, in [0,T)xQ

OH+u-VH—-H -Vu=0, in [0,T)xQ

V-u=0, V-H=0, in [0,T)xQ

u-n=0, H-n=0 on [0,T)x 0.

(1.8)

The remainder is organized as follows. In Section 2, we state the main result on
the uniform bound of solutions to the equations (LI))-(3)), (LE) and (7). Section 3
is devoted to the proof of the main result, in which we first give an energy estimate
in conormal spaces; then we turn to estimating the normal derivatives of velocity and
magnetic field, and the pressure. Finally, by deriving an L°° estimate by using the
maximal principle and combining all estimates, we conclude the uniform a priori estimate.

2. Statement of main results. Before stating the main results, we first recall the
notation of conormal spaces as given in [6] and [15]. Introduce the tangential vector fields
of the boundary {x3 = 0}, Z; = 0;, i = 1,2, Z3 = ¢(x3)0s,, where p(z3) is a smooth
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bounded function such that ¢(0) = 0, ¢’(0) # 0. Define the conormal Sobolev spaces
H () for an integer m as

Hp(Q) = {f € L*(Q)| Z°f € L*(Q),¥|a| < m}
equipped norms || f||2, = > || Z°f||%., with Z% = Z{" Z$? Z$?. Similarly, we define

jal<m
W) = {f € L=(Q)] Z2°f € L®(Q),Y|a| < m}
with || fllmee = > 12 fllo~-

lor|<m
Throughout this paper, we denote by || - || i<, || - ||+~ the usual Sobolev norms, and
by || - || and (-,-) the L? norm and scalar product respectively for functions defined in

Q, while | - [gm (p) denotes the standard Sobolev norms of functions defined on 9§2. We
shall also use the notation z = x3 and z = (z1,22,2) € Ri, u = (up,u3)’ € R and
H = (Hy,, H3)T € R3 with up, = (uy,u2)?, Hy, = (Hy, Ho)T, and E™ = {u € H?,Vu €
Hg’;fl .

The main results of this paper can be stated as follows:

THEOREM 2.1. For a fixed integer m > 6, assume that (ug, Hy) € (E™(R3.))? satisfy
(Vug, VHy) € (WL*(R3))2, V-ug =0,V - Hy = 0 and (u§, HY)|.—o = 0, with u§ and
HY denoting the third components of uy and Hy respectively. Then, for any smooth
solution of the problems (II))-([3]), (CH)-(L17) with the initial data

ulg=0 = uo, H|—o = Hy (2.1)

in (¢,x) € [0,T] x R%, there exists C' > 0 independent of £ € (0, 1] and 3,7 such that the
a priori estimate

Qum(t) < C(Qm(o) + (1 +t+e%?) /Ot(Qm(s) + an(s))ds), vt € (0,7 (2.2)
holds, where
Qu(t) = lu®)17, + IVu®) 71 + IVullf oo + TH@, + IVH®]7 -1 + [ VH o
Furthermore, we have

THEOREM 2.2. For a fixed integer m > 6, let the initial data ug and Hj satisfy the same
conditions as given in Theorem 2.1. Then there exists T' > 0 independently of ¢ € (0, 1],
such that the problems (1), (I2), (L3), (L6), (L7) and 2I) have a unique solution
(uf, H®) € (C([0,T]; E™))%. Moreover, there exists C' > 0 independently of ¢ such that
the following estimate holds:

sup (|| (u®, HY)()[[m + [[(V®, VHT) (@) [l m—1 + [[(Vu®, VHZ) (#)]]1,00)

t€[0,T]
T
+6/0 ([Au(8) [l -y + |AH(5)[7,—1)ds < C. (2.3)

REMARK 2.3. (1) The estimate (2.3]) shall be obtained from (2.2)) directly. The exis-
tence of a strong solution to the initial boundary value problems (1), (I2), (IL3), (L4),
(7)) and [ZI) can be obtained in a standard manner as given in [I5,23] by smoothing
the initial data and using the a priori estimate given in Theorem 2.1 and the strong
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compactness argument. The uniqueness of the solution is clear by noting the Lipschitz
regularity of the solutions.

(2) By using Theorem 2.2 and a strong compact argument, and passing to the limit
as € — 0, one also can obtain the existence of a local strong solution to the ideal MHD
equations and the convergence from the problem of viscous MHD equations (I.T), (2],
(C3), [@C6), (C0) and @) to the corresponding problem of the ideal MHD equations
T3).

In the following discussion, we shall always use the notation A < B to denote the
inequality A < C'B holding for an absolute constant C' > 0. In the proof of Theorem
2.1, we shall frequently use the following elementary inequalities on the product of two
functions, the commutators and the Sobolev embedding in the conormal Sobolev spaces;
their proofs can be found in [6I5]:

LEMMA 2.4. (1) For any given u,v € L* N HX, m > 0, we have

co»
1Z%u - ZP0l] S Nullpoefollm + ol llwllm, |l + 18] = m. (2.4)

(2) For any integer m > 1, g € H? ' N L>* and f € H? with Zf € L>, we have
125 Flgll S 1Z = lgllns + lgllz= s 1< ol < m. (25)

(3) For m > 1, it holds that

1o sy S N0 Fllnll Fllim + 1F 117 (2.6)

3. Proof of main results. The remaining main task is to prove the a priori estimate
given in Theorem 2.1. It will be divided into the following four subsections.

3.1. Energy estimates in conormal Sobolev spaces. In this subsection, we establish
energy estimates in the conormal Sobolev spaces. First, we have the following identity.

PROPOSITION 3.1. Assume that (u, H) is a smooth solution of the problem ([III)-(L3),
(CO)-([T). Then the following energy identity holds:

| =

(lu@I* + IH @) +e(IVu@* + [VH @)

+2e(Blun(t)[72(00) + YHA(B)|L2(00)) = 0. (3.1)

N —
o

t

Proof. Multiplying (1)) by v and (L2) by H, respectively, and integrating the re-
sulting equations with respect to the space variables over Ri, we get the identity (BII)
immediately by using the divergence free condition (L3]) and the boundary conditions
(L8). (D). O

In what follows, we study the conormal energy estimates. They will involve the es-
timates of pressure and normal derivatives, which will be discussed in the next two
subsections.



32 Y. MENG AND Y.-G. WANG

PROPOSITION 3.2. Assume that (u, H) is a smooth solution of the systems (LI)-(L3)),
([L6)-(CT). Then for any m > 0, 8,y > 0, the following estimate holds:

%(HU(t)an +IH®)7.) + Coe(IVu®)17, + IVH®)]17,)
S A+ lu)llwree + [1H @) lwr) x (lu)]5 + [H @),
HOzu®) -y + 10:H@)70—1) + IVl [[u(t) 1, (3.2)
for a constant Cy > 0 independent of e.

Proof. The case m = 0 is easily obtained from Proposition 3.1 by using the convention
I-|Jx=0ask<—1.

For m > 1, applying the operator Z(|a] = m) to the equations (1)) and (2)), one
gets

hZ% —eAZ%u+ (v-V)Z% — (H-V)Z*°H +VZ% = Ry, (3.3)
O ZOH — eAZ°H + (u-V)Z°H — (H - V)Z%u = S,
where
4 3
RIZZlea S1ZZSU,
j=1 j=1
with

R11 :E[ZQ,A]U, R12 Z—[ZQ,U'V]U, R13 == [ZQ,H-V]H, R14 == —[Za,V]p,
and
511 :€[ZQ,A]H, 512:—[ZQ,U~V]H, 313: [Za,H'V]U.
Multiplying B33)) by Z%u, 84) by Z“H, respectively, integrating with respect to the

space variables and summing up the resulting equations, we obtain
1d
ol
+e ( 03Z%u - Z%uds +
a0

Zul? + 122 H|?) + (V2% + [V Z°H]|?)

93 7°H - ZaHds>
o

—/ Z%pZ “usds —/ Z%(V - (Z%))dz
o9 Q
= (Ry,Z%) + (S1,Z°H). (3.5)

Now, we study (B5) in the following three steps.
STEP 1. Study of the boundary terms.
Notice that from the boundary conditions (L) and (L), we have

Z%3 =0,0,Z%y, = 2BZ%y, — [Z2°,0,|up, € 09,

Z%Hs =0,0,Z%Hyp = 2vZ“Hy, — [Z%,0,)Hy, =z € 09,
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which imply

03Z%u - Z%uds = 20 | Z%uy, |2ds — / [(Z9, 0, up - Z%upds, (3.6)

a0 a0 a0
03Z“H - Z%Hds = 27/ |Z*Hp|?ds — / [Z¢,0,|Hp, - Z“Hyds, (3.7)

1) a0 ble)
/ Z%pZ*uzds = 0. (3.8)
a0
Thanks to the trace theorem and the Young inequality, one gets
el | (2%, 0:]un - Z%unds| < el[Z%, 0:]un|2(00)| Z unl L2 00
o0

A

1 a a
Felvz up||® + Cllull? + Cel[Z, 0:]unlT2(00).  (3.9)
On the other hand, since [Z;,0.] = 0 (i = 1,2) and [Z3,0.]unlan = —¢'(2)0.unlon =
—2B¢'(z)unlaq, it follows that

ellZ2, 0:Junlt200) S elunltm—1(00) S eldzullm—1llullm—1 (3.10)

by using the trace theorem. Consequently,

1
el [ 2% 0:un - Zwnds| < Sl VZ0un|? + Clull?, + Celldsull i ull 1. (311)
N

Similarly, we have

1
| [ (2°,0.)Hy- 2° Hyds| < 52|V 2 Hl + C|HI, + O 0. H s | H -1 (3.12)
o0

STEP 2. Estimate of the term [, Z%p- (V- (Z%u))dzx.
It follows from the divergence free conditions (L3 that
V - (Z%) = [0y, Z%]us. (3.13)

Since [0, Z;Jug = 0 (i = 1,2), [04, Z3|ug = ¢'(2)0,uz = —¢'(2)V} - up, we easily deduce
that
11025 2% us|| < [lwllm- (3.14)

Consequently, we have
| [ 229 (20)de] S |95l (3.15)
Q

Plugging estimates [B.6)-B.8) and BII)), BI12) and BI5) into [B.5) and noting that
1e|[VZouy|? and ie||VZ¥Hy|? in BII) and ([BI2) can be absorbed by the left hand

side in ([3.0)), we obtain
d
12l + 127 H|?) + e(IVZ2°ul* + [ VZ*H]]?)

+26(B1Z%un| 200y + V12 Hul72(50))
SIVDPllm—illwllm + |0zl m—1lwllm—1 + [0: Hl[ 1 || H |l m—1
+llullz, + 1HIZ, + [(Ry, Z%u)| +|(S1, ZH)|. (3.16)

STEP 3. Estimate of commutators.
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Since
[Zi, Alu=0, i=1,2, [Z3, Alu = —2¢'0%u — ©"0,u, (3.17)
one gets by using this property repeatedly
[(Ruy, Z2%u)| Ry + el|0zull5—y + [lull?, (3.18)
with Rjy = ) €|(C,82Z¥u, Z@u)| for some functions C,, depending on the deriva-

0<[y|<m—1
tives of .

By using integration by parts and 9, Z5'u = (Z§* + Zﬁgl Cy.mZ)0.u with Cj ,,, only
depending on the derivatives of ¢, we deduce
(CLO2Z5u, Z%u)|
S 0:ullmlO:ullm—1 + [[ullml0:ullm—1 + 10sunlL2(00)| 2% ulL2(a0)
S 0:ullml0zullm—1 + [[wllml|0ztllm—1 + |ul2(00)| 2% ul 2 (50
S 10zullml|0zullm—1 + lullm 10zt]lm—1 + [[ullm |0 ullm- (3.19)

In the third line above, we use the boundary condition 0,u; = 28uy, and in the fourth

line we apply the trace theorem. Consequently, by plugging (319) into (BI8) it follows
that

(Ru, Z2%u)| S e(0:ullm—r + ullm) [0zl + 10z0l 7y + [[ull7,- (3.20)
Performing the same arguments as above, we deduce that
(Su, 22 H)| S e(10:Hllm—1 + [ H ) 10=H || + 10 H |7y + [ H I3, (3.21)
We go on investigating the estimates of Ri2 and R13. Obviously, we have
Rip=—[Z%u-Viu= > CrpZ Z"(Vu) —u-[Z% V]u,
AMr=a,|A[>1
with
lu- (2% Vul = Jus - [2%,0:Jul S D llus-0.2"u|
lv|<m—1
_ us v+1 <
- > H@ 27| S 10usl e [[ullm
<m-1 ¥
and

122 2" (Vu)l| S 127 - 2" (Vaw)l| + [ 27 us - 27 (9.u)|

S NZullzee (lullm 4+ [102ullm—1) + [|0zull Lo [ Zus|lm—1
S IVaullzes ([ullm + [10ztllm-1),

where we use the inequality (24) in Lemma 2.4. Thus, we get

[Bizll S [Vl zee (lullm + 10:wllm—1)- (3.22)

Similarly, one can obtain

[Busll S IVHI| Lo (1 H [l + [[0=H [ —1)- (3.23)
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Applying the same argument as above to estimates ||S1z2|| and ||S13]|, we get

Sip=-[Z%u-VIH= Y C\,Z%-2"(VH)—u-[Z° V]H,
Ar=a,|A|>1
with
lu-[2*VIH| S Y s 0:2"H| S |0z oo | H |m
v|<m—1
and

|Z%u- 2" (VH)| S 127 un - 22 (VaH)|| + 1| 2 ug - 27 (0. H)|
S Zullee [Hllm + Vo H || zoo | Zunllm—-1 + | Zus| o< |0:H|lm—1 + [|0: H|| o [| Zus [ m—1
S IVl pee (1H i + 10:H [lm—1) + IVH || o< [l
Thus, it follows that
[S12]l S [[Vullzoe ([[H|lm + 10:Hl[m-1) + [[VH|| oo [l (3.24)
Similarly, one has S13 = [Z%, H - V]u satisfying
1S3l S (IVH] oo ([[ullm + [|0:ullm—1) + [[Vul[ Lo [| H [|m- (3.25)
For the term R4, obviously we have
[ R1all S IVDl[m—1- (3.26)

Combining (B16) and the commutator estimates (320)-(326]), using the Young inequal-
ity, and noting that the terms e(||0;ul/m + [|0.H||m) can be absorbed by the left hand
side of (3I0]), one obtains the estimate ([B.2l). O

REMARK 3.3. In the boundary conditions (L6l and (1), if 3,7 <0, as in [9], we can
apply the trace theorem and the Young inequality to estimate |up|r2(90) and [Ha|r2(00)
as follows:

lunlL2(00) < ClIVullllull < 6]Vl + C (@) |ul?,
|Hnlr200) < CIVH|H| < 8|[VH|* + C(8)[|H|.
Then for the third term on the left hand side of (310, one has

2(B8|Z%unl72 a0y +|Z" Hnl12(50)) < %6(||VZ°“U||2+HVZQH||2)+C(€)(||UH§1+HHllfn)a
(3.27)
and the estimate ([3:2) still holds.
3.2. Normal derivative estimates. In this subsection, our aims are to estimate
|0:6)|m—1 and ||0,H||;m—1. First from the divergence free condition, we have

10zusl[m—1 < l[ullm, (3.28)

0= Hslm—1 < [ Hlm, (3.29)

so it is sufficient to study 0,up and 0, Hy, to estimate 0,u and 0, H.
As in [15], by introducing w, = V X u, wyg =V x H, then (w,,wp) satisfies

Orwy — €AWy +u - Vw, —wy - Vu— H - Vg +wy - VH =0, (3.30)
Owyg —elAwyg +u-Vwg —w, - VH — H -Vw, +wyg -Vu=0. (3.31)
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From the boundary conditions (L)), (I0), we have
(wa)n = 2Buy,  (wr)n = 2yHj ,x € 09,

where ujt = (—ug2,u1)t and Hjt = (—Ha, Hp)'.
Denote by
V = (wu)n — 28up, W = (wi)n — 2vHj; (3.32)

then V]gg =0, W|gq = 0.
It follows from (B32):

10=unllm—1 S l[wllm + 1V ]lm—1, (3-33)

10=Hnllm—1 S [Hllm + [|Wlm—1- (3.34)

Combining B28), B29), B33) and (B34), it is sufficient to estimate ||V]|;,—1 and
Wl —1-

From 330), B31) and B32)), (V, W) satisfies the following problem:
OV —eAV + (u- V)V — (H-VIW = (w, - V)up — (wgr - V)H, +26Vip in Q, (3.35)
OW —eAW + (u- VYW — (H-V)V = (w, - V)Hp, — (wg - V)u, in Q,  (3.36)
Vipa = Wlaa = 0. (3.37)
PROPOSITION 3.4. For any m > 1, every smooth solution (V, W) of the problem (3.33)-
B310) satisfies the following estimate:
%(llV(t)an_l W5 -1) + Cre(IVV @71 + IVW®) 7 -1)
SNVPlm sVl + (14 fullooo + 1H 12,00 + 1001100 + [0:H [100) - (3:38)
(VIR —y + el + W, 1 + 1)

for a constant C7 > 0 independent of €.

Proof. Multiplying (335)) and ([336]) by V and W, respectively, and integrating with
respect to the space variables and noticing the boundary conditions (L6]) and (L7), one
gets

1d
5 AV O +IWOI) + (VY + [VW]1?)
SIVAIIVI -+ ll@a - D)unllIV + @ - V) Ha [V (3.39)
+l(wu - VIHR W + [[(wa - V)un[[[W].
We estimate each term of the above inequality as follows:
[(wu - Vuall S IVullellwall S 1Vl (VI [ull),
[(wr - V)Hp|| S IVH | e llwn |l S IVH |z (W] + [[HI1),
(W - V)Hi| S IVH [ |wull S NIVH Lo (V] + llull),
(

l(wr - V)un|l S [Vullzelwnll S [Vulze (W + [[H]1)-
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Summing up, we get
1d

- t 2 t 2 2 2
5 VO + W) + <19V + [VW]?) 0
SIVRIVI+ (Vull e + IV H o)AV + TWI + [[ull + [ HI7).-
Applying Z*(Ja] =m — 1) to B35) and B30]), we get
WZV —eAZ*V + (u-V)Z°V — (H -V)Z*W (3.41)
3.41
= Z“((wu . V)uh) — Za((wH . V)Hh) + QﬁZQVﬁp + Ro
and
WZW —eAZW + (u-V)Z*W — (H -V)Z*V (3.42)
3.42
= Za((wu . V)Hh) - Z“((wH . V)uh) + Sy,
where
3
Ry = Ry £c[Z% AV —[2°u- VIV + 2, H - VIW (3.43)
j=1
and
3
Sy = So; £ e[Z% AW — [Z%u-VIW + (2% H - V]V. (3.44)
j=1

By using a standard energy estimate and noting that Z*V and Z°W vanish on the
boundary, one obtains

1d
5 UZoVIE+1Z2°WN2) +e(IVZV P + [VZ2W|1?)

< (I - Dnllos + 1@ - ) Hnllmos + [90lm-1) [Vl + (B2, 22| (3:45)
(I - V)t + @51 - )t ) [W 1 + (2, 22V
By using the inequality (24]) in Lemma 2.4 and [B:33)) and [B.34]), we get
(W - Vunllm-1 S llwallLoe [Vtunllm—1 + IVun |l Lo wullm-1
S IVullee (ullm + 1V l[m-1),
[(wa - V)Hpllm—1 S llwr ||z [VHnllm—1 + |V Hpl| Lo |lwp[lm—1
SIVH| L= ([Hlm + [Wlm-1),

(3.46)

(3.47)

and
(wu - V)Hnllm-1 S lwullzoe [VHRllm—1 + [VHz [ o< lwullm-1
SVl oo (1H [l + W llm—1) + IVH | zoo (Jullm + 1V lm-1),
(3.48)
l(wr - V)unllm—1 S lwa |z IVunllm—1 + [Vunl Lo [wr [l m—1
SIVH| zoe ([l + 1V lm—1) + Vel oo (1H [[n + W [[m—1)-
(3.49)
Similarly to (820) and B.21), for Ry; and Sa; defined in (343) and (3.44)), respectively,

we have

|(Ro1, Z°V)| S €llOV i1 (IV llm—1 + [10:Vlm—2) + V17,1 + 10:V 75 (3.50)
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and
(S21, Z°W)| S ellOW [l 1 (W1 + 10:Wlm—2) + W71 + [0-W |2, (3.51)

The estimates of the terms Raa, Roz, S22 and Soz can be studied similarly, but with
slightly more complicated computations. For example, let us consider Rys in detail:

Ry =—[Z%u-VIV= Y C\,Z-Z"VV —u-[Z%V]V, (3.52)
Ar=a,|A|>1
where C',,, depends only on the derivatives of ¢. First, we have
lu- 122 VIVIIS Y usd.Z5VI| S 1|0usl| oo |V [lm—1, (3.53)
lv|<m—2
by noting [Z;, V] = 0 with j = 1,2, and
ICxwZru-Z" (V)| SN Z%un - Z¥ (ViaV)|| + |20 us - 270.V ||
SN Zunllz |V Im—1 + [VIIz [ullm + 12 us - 270 V.
(3.54)
Since one can’t expect to have a uniform estimate in € on [|0,V||;,—1 and [|0, V||, the

term || Z*us - Z¥0.V|| can’t be estimated by using the inequality (Z4). To this end, we
apply the technique in [I5] and rewrite

Z s - ZV0,V = LzAug - 0(2)270.V
o(2)
and
1 1 1
ZMug = [——, ZMus + 2* ug),
o7 = gy 2l 2y e)

©(2)270,V = [p(2), Z2"]0.V + Z¥ (Z5V).

Obviously, one has

L Mu = A=\ 1 )\lu

[(p(z)’Z Jus /\%/\Z (<p(z))Z ,
_ NZAM 1 L Ay A Lu
_A§<:|)\SD( )Z (gp(z))<[<p(z)7z ] 3+ 7 (@(Z) 3))
_ Loy, L
_AgAC)\I([QO(ZyZ Jus +2 (go(z) 3))7

with C, being a smooth bounded function.

Considering [(p(lz) , ZM)ug by using the same argument as [ﬁ, ZMus, we finally get

1 5, 1

[ , ZMug = Z C5ZMN(——=us);
z g z

p(2) S o(2)

then
1 1, 1
Z)\’U,g = C~Z)\(—’UJ3).
p(2) 2. G p(2)

[PYRSPY
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Similarly, thanks to the fact that Z”¢(z) has a similar property as ¢(z), one can deduce
0(2)Z7(0.V) = Y CoZ"(p(2)0:V).
[71<|v]
Consequently, we get
- 1 -
ZMug - 29,V = > A us) - Z%(ZsV). (3.55)
[A+17[<al,|7|#]af

When A = 0, |7| < m — 2, we have

~ 5 1
122 (—us) - Z7(ZsV)| < ”MUSHL””V”Tnfl

S NOzuslLelVIim-1 S lulltcol[Vilm—1,  (3.56)
thanks to the boundary condition (LG) and the property of ¢(z).
When A # 0, by using the inequality (2.4]) we have
1

M. 77 LTI ) 2 ,
1z ((p(z) 3) - Z (ZgV)IISIIZ((p(Z) )z [VIlm—1 + 125V 2 IIZ((p(Z) 3)lm—2.
(3.57)

Since Z%ug3 vanishes on the boundary, we get from the Hardy inequality and the diver-
gence free condition that

1
o(2)

1 .
12t s S 10-(Zaus) e S [0t lct S s §=1.2, (358)
1Zs(——ti3) 2 S | tsllm2 + [Ostisllm2 S [Bsttgllm—s < [ (3.59)
3l—7=U3)||lm—2 5 || —7U3||lm—2 U3 |[|lm—2 U3 Im—1 S [[U||m- .
©(z) ©(z)

We also have

1

Consequently, noting | 2V .= < [|ull2,cc + 9 ull1.0c, we obtain from (B5E)-@H0) that

||Zx($w;) - Z(Z3V)|| S (lull2,00 + [10zull1,00) (lullm + [V [lm—1)- (3.61)
So, from ([B.53]) we get
12%us - 270 V)| S (ull2,00 + 10:ull1,00) ([ullm + IV [n-1)- (3.62)
Plugging ([B:62)) into (B:54)) and combining with (853), it follows that
[[Roz|l < (] )l + [V lm—1)- (3.63)

Similarly, we deduce that
[ Rasll < ([ Hll2,00 + 10:H [|1,00) (IH [[m + [[Wlm-1), (3.64)
S22l S llull2,c0[Wlm—1 + (1 H 2,00 + 102H [[1,00) [l m. (3.65)

and
1523l S I1H 2,00 [V [ m—1 + (| MH |- (3.66)

Combining (B45)-BXE]1) and B63)-B60), we obtain ([B37). O
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3.3. Pressure estimate. In this subsection, we focus on pressure estimate ||Vp||m—1.

Rewrite (L)) as
Ou—eAu+Vp=F= —(u-V)u+ (H-V)H, V-u=0. (3.67)
For the above Stokes problem, we quote a result from [I5, Theorem 11] as follows:

LEMMA 3.5 ([I5]). For every m > 2, there exists C' > 0 such that for every ¢ > 0, the
following estimate holds:
IVl S 1 Ellm—1 + IV - Fllm—z + el Vullm-1 + ullm-1- (3.68)

Now, we need to study || F||;m—1 and |V - F||;m—2. From [B67), we get by using the
inequality (2.4)

[Ellm—1 S lulleee [[Vullm-1 + [[Vull oo [[ullm—1 + [ Hl| Lo [V H|lm—1 + [V H][ Lo [[H [ -1

S lullwroe ([[ullm + (10:ullm—1) + | Hl|wr.oo (| H ||m + |0=H [|m—1)
(3.69)
and

IV Fllm-z S Ve Vullmo+[VH - VH|m—2
S IVullpe< [Vullm—z + [VH o< [V H [ m—2

S llullwree (lullm—1 + 10z ullm—2) + [ H|[wr.oe (1H lm-1 + 102 H[m—2)-
(3.70)
Plugging (3:69) and B.70) into B.5]), we get the following:

PROPOSITION 3.6. The smooth solution of (LI)-([3), (L6) and (7)) satisfies the esti-
mate
IVPllm-1 S e(lfullm + 18z ullm—1) + (1 + lullwro ) ([[ellm + 10z ullm—1)
(3.71)
FlH fw oo (HH i+ []0=H [ —1)-

3.4. L estimates. To conclude the main estimate (22) from Propositions 3.2, 3.4
and 3.6, it remains to estimate the L°°—norm of the solution. To do this, similarly to

[15], we set
G (t) = a5 + VO -1 + VO o + IH O + W7y + WO oo
By using simple computations, we have the following estimates:

PROPOSITION 3.7. For any fixed mg > 2, we have

1
|1,oo < G,

~ mo+3*

[ull2,00 + 1 H[|2,00 + IVul[1,00 + [[VH (3.72)

Proof. By definition and the anisotropic Sobolev embedding inequality (2.0l), for mq >
2, we have

[ull3 e = llullie + 1 Zulli~ + [ Z2ulli~

S N0zullmolullme + 102 Ztlmo | Zullmg + 10:2%ullmo | Z2ullmo + [[l72q +2-
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Since [|0: Zullmy < [10:ullmo+1, 10:2%ullmy S [10:tllimo+2 + |ullmo+1. one gets

[ullf co S 10zl ltllmg + 10z tllmo-41[[ullmo+1 + 10ztllmg+2l[ullmo+2 + ullF 12
S 0:ullmot2lwllmor2 + lell7g 4o

S IV s2 +lullfg s S Gmots(®)-
(3.73)
On the other hand, by using the divergence free conditions, (332) and B73]), we deduce
that

[Vullioo S IVullze +12Vullpee S [[Viullzee + 10:ullLe + 12V aulLoe + (| Z0-u] L

1
S llull2,co + 10-unllpoe + (| Z20zunllLoe S [lull2,00 + V100 S Grrg45()-

One can study the estimates of H similarly. Consequently, the estimate ([B272]) holds.

(I

It remains to estimate ||V||1,00 and ||[W|1,00- By using the special structure of the

system, we shall see that both V 4+ W and V — W satisfy scalar degenerate para-

bolic equations, from which one can get estimates of ||V pee, ||W|lLee, ||Z;V ||z and

|Z:;W | L (i =1,2) by using the maximal principle. But ||Z3V |1~ and ||Z3W || can-

not be estimated similarly due to the bad commutator [Z3, d,]. To this end, we introduce

a cut-off function y(z) equal to one near z = 0 and supported in [0,1]. Rewrite V' and
W as

ProPoOSITION 3.8. For m > 6, the following estimate holds:

t
VI oo + W o S Gin(0) + (1 + ¢+ %) /0 (Gm(s)? + Gin(s))ds. (3.74)

Proof.

STEP 1 (Estimates of ||[V™||; » and [[W™||; ). Since the norm H is equivalent
to the usual H™ norm away from the boundary, it follows from the definitions of V' and
W and the usual Sobolev embedding that for m > 4,

< Ga,. (3.75)

~

V™ 100 + W™ 100 S Nullm + 1 H lm

STEP 2 (Estimates of |[V°||pe, [|[WP||ze, | Z:V?||L~ and || Z;w®| = (i = 1,2)). From
(B37) and [B36), V* and W solve

VY + (u-V)VP — (H - V)W —ed?VP = eA, VP + xFy + By 2 1,

(3.76)
OWb + (u- VYWt — (H - V)V —c02W?b = e AW + xFy + Eq £ I,

with the boundary and initial conditions

(VO W) e =0, VP(0,2) = V{(x), WP(0,2) = W{(x),
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where
Fi = (wy - Vup, — (wg - V)Hp + QﬁVﬁp,
Fy = (wy - V)Hp — (wg - V)up,
Ey=—=[x,u- VIV +[x,H - VIW +¢[x, A]V,
Ey =—=Du-VIW+[x, H - V]V +¢[x, A]W.
Let

fr=VPe Wt o=V W’ (3.77)
Then from B.706) f; and f2 solve
Mfi+(w-V)fs —(H-V)fi —e0ifi =1 + I (3.78)
and
Ofo+ (u-V)fo+ (H-V)fy —edZfo =1 — I, (3.79)
with the boundary conditions f;(¢,y,0) = f2(t,y,0) = 0, and the initial conditions
Ni(0,2) = f(2) £ V5 + W, f2(0,2) = f5(w) & Vg — WG, (3.80)

By using the maximum principle for the initial-boundary value problems [B.78), (3.79)

and (B.80), one gets

t
Ifillzoe + 1 F2llzoe S NPz + 12 Lo +/O (12 (s)l[Le + [[T2(s)[| Lo )ds,

which implies
t
IVillzoe + Wl S IV llzee + IWQ L +/0 (M2 (s)llzoe + [[T2(s)[[ L )ds.  (3.81)

Applying the operator 9; (i =1,2) to B.78)) and 73], we have

00 fr+ (u-V)0; fr — (H-V)0; f1 — €020, f1 = 0i(Iy + ) — Ou-V f1 + 0, H -V 1, (3.82)

010 fo+ (u- V)i fo+ (H -V)0ifo —€020; fo = 0i(Iy — Is) — Ou -V fo — O;H - V f2. (3.83)

By using the maximum principle again, one obtains

t

10i fillLos + 10 f2llLoe SN0 fY ]I Lo + 110i f3 || Lo +/ ([10: 1] Loe + [|0s L2|| o<
0

+[0iw -V fillpee + |0:H -V fillLee + [|0u - V fa|lpee + |0:H - V fo|[ £ )ds,

which implies
i
10: VO | + [0 W[ Lo S 105V e + [0, W5 | Lo +/0 (N9: 1l Lo + |10s 12| Lo
+[|0su - VVO || Lo + [|0;H - VW oo + [|0su - VWP Lo + |0:H - VV| 1 )ds.
(3.84)
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Next, we need to estimate the terms of I; and I appearing in [B.8I) and (B.84).
By using the anisotropic Sobolev embedding inequality (2.6) and the Cauchy-Schwartz

inequality, we have for mg > 2 and m > mo + 4 > 6,
t t
2 1 1
L8 ) s 2( [ o8,V i 1AV I,
1 1 2
1028V 28,V o + 18,V g 1)ds)
t 1 1 t 2
S (10 sl Vs + [ IVl rads) (359)
t t
Se [NV ads+ 8 4 <) [ VIR, ds
0 0

t i
S 5/ IVV |2, 1ds + (%1% + 52t)/ G (s)ds,
0 0

thanks to Proposition 3.7. Similarly, we also have
(3.86)

t t ¢
(5/ ||Abe||1,OO)2 < 5/ VW2, ds + (3> + szt)/ G (s)ds.
0 0 0

Due to Proposition 3.7, one gets
IXFillt00 S llwullr,e0lVtunllico + w100 [V Hnll1,00 + [ Vipl1,00

S Gm(t) + thp |1,<>o-

~

S N3 o0 + 1H13 00 + 1 Vapll1,00
On the other hand,
IVapllioe S 10:Vipli, + 1Vaplin, + 10:(ZVap) g + 112V0pl5, S IVPI -1

for m —1 > mg + 2 > 4, thanks to the anisotropic Sobolev embedding inequality (26)).
Thus, it follows from B7I) and Proposition 3.7 that
1
IXFill1,00 S Gm(t) + Gin(t). (3.87)
Similarly, we have
1
IXF2ll1.00 S Gm(t) + Gin(t). (3.88)

Noting 9,x and 9%y are supported away from the boundary, by using the usual Sobolev

embedding, we obtain
1
1B 11,00 + | Ballico S Nl + llully + 1 HIE, S Gin(t) + Gi(t), for m>5. (3.89)

Combining (B:85)-([389) and the Cauchy-Schwartz inequality, for m > 6 we get
t
[ A9VIE L+ I9WIE, s

2 <
+(1 432 + t)/t(Gm(s) + G2 (s))ds.
’ (3.90)

~

</Ot(||11(8)||1,oo + HIQ(S)HLOO)ds)
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On the other hand, thanks to the Hardy inequality and the divergence free conditions,
we have

||81U . VVbHLoc SJ ||(9luh . thb”Loo + HaﬂLg . anbHLoo
1
S llulltoolVP 1,00 + == Bius - Z3V°| Lo
©(z)
S lull,0 V01,00 + 1105 05us ]| L= [V

< lullzss VP[00 S Gm(),  m > 5.

(3.91)

|1,oo

In a similar way, we also obtain
10; H - VWP oo + |05t - VWO oo + |0 H - VV || oo < Gralt), m>5.  (3.92)
Consequently, combining (B:31]), (3:84), (3:90), (3:91]) and (3:92)), and using the Cauchy-

Schwartz inequality, we deduce that

IV + WP + [V VE e + [V 2
t
< Gn(0) e / (IOVI2 s + [VW]2,_y)ds (3.93)
t
A+ e3t2)/ (Gon(5) + G (s)2)ds, m > 6.
0

StEP 3 (Estimates of || Z3V?||L~ and || Z3W?||1=). Rewrite (3.78) and (B.79) as

atfl + Zazu?ﬁ(ta Y, O)aZfl - ZaZH?)(ta Y, O)azfl + uh(ta Y, O) : vhfl

(3.94)
—Hp(t,9,0) - Vpfi—ed?fi=hL+1—J —Ja
and
Oufa + 20-us(t,y, 0)0- fo + 2. Ha(t, y,0)0. fo + un(t, y,0) - Vi fo (3.95)
+Hy(t,y,0) - Vifo —€d2fo =1 — Io — J1 + Ja,
where
Ji = (up(t, @) — up(t,y,0)) - ViV + (us(t, ) — 20,u3(t, y,0))9,V° (3.96)
—(Hp(t,x) — Hy(t,y,0)) - VpaWb — (Hs(t, z) — 20, Hs(t, y,0))0.W?,
Jo = (un(t,z) — un(t,y,0)) - VaW? + (us(t, x) — 20,us(t, y, 0))9, W" (3.97)

—(Hp(t,z) — Hp(t,y,0)) - Vi, VO — (Hs(t,x) — 20, Hs(t,y,0))0. V.

Let S;(t,7) and Sa(t, 7) be the C? evolution operators generated by the left hand side of
the equations ([3.94) and ([3.95), respectively. This means that g, (¢,y, z) = Si(¢,7)¢%(y, 2)
and g2 (t7 Y, Z) = 82 (ta T)gg(y7 Z) solve

3t91 + Zazu3(t7 Y, 0)8291 - ZazHB(ta Y, O)azgl + uh(t7 Y, 0) ! vhgl
—Hp(t,9,0) - Vg1 —e0%g1 =0, 2>0, t>r7, (3.98)

gl(Tayvz) :g?(y,Z), 91(t7y70) =0
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and
Org2 + 20;u3(t, y,0)0:92 + 20:Hs(t, y,0)0:92 + un(t,y,0) - Viga
+Hp(t,y,0) - Viaga —d2g2 =0, 2>0, t>r, (3.99)
92(7.y.2) = 93(y,2),  ga(t,y,0) =0.
For the problems (3.98)) and (3.99]), we have the following estimates:

LEMMA 3.9. For t > 7 > 0, the following estimates hold:
120:81(t, )l S g2 llpee + (120297 || o (3.100)

and
120:Sa(t, 7)o | Lo S |95l noe + (20295l L= - (3.101)

This lemma can be proved in the same way as Lemma 15 in [I5].

By using the Duhamel formula, we obtain

fi(t) = S1(t,0) 7 + /O Si(t,7)(I + Iy — Jy — Jo)(7)dT (3.102)
and
t
fg(t) = SQ(t, O)fg + /0 Sg(t, T)(Il — Iy — Ji + JQ)(T)d’T. (3103)
Consequently, we have
1 t
V() = (S0 + S0 + [ (Sutr)+ T = 5= 1)
+Sg(t,7’)([l — IQ + J1 - JQ))dT)
and
1 t
Wo(t) = 5(31(1570)1"9 — So(t,0) f5 +/0 (S1(t, )y + T2 — J1 — J2)
~So(t, )y — Lo+ Jy — JQ))dT).

It follows from Lemma 3.9 that
123V || Lo + | ZsW?]| L~

SN + 113l + 1120 fll Lo + 11202 f3 ]| 1
t
[l + el + 11l + 2l 5100
t
+/ (||Z(9Z11||Loo + HzazIQHLOC + ||z@ZJ1||Loo + HzazJZHLm)dS
0

SIve

t
1,00 + W 11,00 +/0 (I1M1ll1,00 + (201,00 + [[T1][1,00 + [1/1]]1,00)ds-
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From (3.96), noting wus(t,y,0) = Hs(t,y,0) = 0, and Proposition 3.7, and using the
Taylor formula and the divergence free condition, we have

[l < lunlle IVOll1oe + 10:usl| Lo |1 Z5VP | 2o + | Hall 2o WP ]l1,00
102 H | oo | Z5 W] (3.105)
S Nullo [V lI100 + HH 1,00 WP ll1,00 S Gi(t), m > 5.
Similarly, one gets
1 allz= el ool ltoe + I oo IVl 10 S Grn®), > 5. (3.106)
On the other hand, we deduce that
1Zlze S lullzo VO ll1co + 1H 12,00 WP ll100 + [ (un (t, @) — un(t,y,0) ZVEV?|| e
+|(us(t, @) — 20:us(t,y,0) 20V ||Loe + || (Hn(t, x) — Hn(t,y,0)) ZVaW®| Lo
+|(H3(t, x) — 20.Hs(t,y,0)) Z0.W?| L
S lullzo IV ll1co + 1H (|20 WP ll100 + 10:un Lo 0(2) 22V Lo
HOZusl| e ll9® (2)Z0:VP ||Loe + 110=Hallpo |0(2) 22V | poe
+H|02 Hs|| Loe [|¢? (2) Z0:W* || L
S Gm(t) + 10:ull1,0ll(2) 22V |22 + 10=H ||1.00l0(2) 22 WP Lo,

by using V-u=V-H =0.
Thanks to the anisotropic Sobolev embedding ([2:6)), we have, for mgy > 2,

I 22V e 122V g+ 10:(2(2) 22V sy S (VP lmoss S Gnh):
Similarly, we have
lo(:)Z2W" |1~ S GA(t),
for m > mg + 3 > 5. Consequently, for m > 5 we have
IZJ1||Le + |1 Z T2z S Gmn(t). (3.107)
Combining (BI04)-BI017) and using the Cauchy-Schwartz inequality, one gets

t
123V |2 0 + |1 Z3W0)2 0 < Ga(0) + (1 + 322 +t)/ (G2.(s) + Gp(s))ds.  (3.108)
0

Finally, collecting (B75), (376), (3:93) and BI08]), we get (B4). The proof of Propo-

sition 3.8 is complete. g

Proof of Theorem 2.1. Combining Propositions 3.3, 3.4, 3.6, 3.7 and 3.8, the a priori

estimate (2.2)) given in Theorem 2.1 follows immediately. O
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