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Abstract. In this paper we discuss a novel High–Order Perturbation of Surfaces

(HOPS) method for the simulation of linear acoustic waves in a three–dimensional

layered, periodic structure. The model we consider is that of linear time–harmonic

wave propagation which generates three–dimensional, quasiperiodic, outgoing solutions

of Helmholtz equations, coupled across irregular layer interfaces. We significantly en-

hance and stabilize the approach of the author and D. Ambrose, which is a formulation

of the problem utilizing the integral equation formalism of Fokas and collaborators. The

method is phrased in terms of interfacial variables resulting in a method which has an

order of magnitude fewer unknowns than a volumetric approach to this problem. In con-

trast to classical integral equation formulations, the current contribution does not require

specialized quadratures or periodized fundamental solutions. Additionally, as a result of

the HOPS philosophy, our new approach is not only faster and better conditioned than

the algorithm of the author and Ambrose, it also delivers the scattering returns of an

entire family of solutions with a single simulation rather than requiring a new approxi-

mation for each profile of interest. Detailed numerical simulations are presented which

demonstrate the efficiency, fidelity, and spectral accuracy which can be realized with this

new methodology.

1. Introduction. The scattering of linear waves by three dimensional periodic struc-

tures is an important phenomena in electromagnetics (e.g., extraordinary optical trans-

mission [12], surface enhanced spectroscopy [26], surface plasmon resonance biosensing

[17,20]), acoustics (e.g., remote sensing [41], nondestructive testing [38], and underwater

acoustics [6]), and elastodynamics (e.g., full waveform inversion [5,42] and hazard assess-

ment [14,36]). Clearly, the capability to rapidly and robustly simulate such interactions

with high accuracy is of fundamental importance to many disciplines.
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In a recent contribution [2] the author and D. Ambrose devised a novel integral equa-

tion (IE) formulation of a popular model for such problems based upon the surface

formulation of the author [27] and the recent developments of Fokas and collaborators

[1, 13, 39, 40]. The resulting numerical method based upon these “Fokas integral equa-

tions” (FIE) was shown to be not only rapid and highly accurate, but also quite simple

to implement. We build upon this work by showing how a High–Order Perturbation

Surfaces (HOPS) methodology which the author has pursued with F. Reitich in [28–30]

can be brought to bear upon this problem, yielding a new algorithm with significant

enhancements which we outline below.

The most popular approach to these problems (particularly in the engineering liter-

ature) are volumetric numerical methods. For instance, from the geosciences literature

alone, formulations based upon finite differences (see, e.g., [33]), finite elements (see, e.g.,

[43]), and spectral elements (see, e.g., [18]) are common. These methods suffer from the

requirement that they discretize the full volume of the problem domain, which results

in both a prohibitive number of degrees of freedom and also the difficult question of

appropriately specifying the far–field boundary condition explicitly.

For these reasons, surface methods are an appealing alternative, particularly those

based upon boundary integrals (BIM) or boundary elements (BEM) (see, e.g., [11, 37]).

The approach we followed in [2] fell into this category and, as with all BIM/BEM, re-

quired only discretization of the layer interfaces. Further, due to the choice of Green’s

function, these BIM/BEM satisfy the far–field boundary condition exactly. While these

methods can deliver high–accuracy simulations with greatly reduced operation counts,

there are several difficulties which need to be addressed [35]. First, high–order simulations

can only be realized with specially designed quadrature rules which respect the singular-

ities in Green’s function (and its derivative, in certain formulations) [11]. Additionally,

BIM/BEM typically give rise to dense linear systems to be solved which require care-

fully designed preconditioned iterative methods (with accelerated matrix–vector prod-

ucts, e.g., by the Fast–Multipole Method [16]) for configurations of engineering interest

[35]. Finally, for periodic structures Green’s function must be periodized, which greatly

increases the computational cost (see [19] for an exhaustive discussion of this issue).

HOPS methods have emerged as an appealing strategy which maintain the reduced

number of degrees of freedom of BIM/BEM while avoiding some of the complications of

these latter methods. Among these are the requirement of special quadrature formulas,

the need for preconditioned iterative solution procedures for dense systems, and the

necessity of periodizing the relevant fundamental solution. The central theme of this

contribution is to implement these strategies in the context of the FIE derived in [2].

The original implementations of HOPS methods are: (i) the Method of Field Expansions

(Variation of Boundaries) due to Bruno and Reitich [7–9] for doubly layered media and

the generalization of Malcolm and Nicholls [22, 27] to multiply–layered structures, and

(ii) the Method of Operator Expansions due to Milder [24, 25] (see also improvements

in [10]), which was generalized to multiple layers by Malcolm and Nicholls [21, 27]. We

also direct the interested reader to the recent SPR simulations using HOPS of Reitich,

Johnson, Oh, and Meyer [34] and the author, Reitich, Johnson, and Oh [31].
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As we noted in [2], Fokas’ approach to deriving integral relations (the FIE referenced

above) relating Dirichlet to Neumann data for elliptic boundary value problems yields

formulas which do not involve the fundamental solution. Instead they feature smooth,

“conjugated” solutions of the quasi–periodic Helmholtz problem, meaning that simple

quadrature rules (e.g., Nyström’s Method [11]) may be utilized while kernel periodization

is unnecessary. In addition, due to use of a clever alternative to the standard Green’s

identity, the derivative of the interface shapes never appears in the FIEs, meaning that

configurations of rather low smoothness can be accommodated in comparison with alter-

native approaches.

This new approach cannot avoid the requirement that dense linear systems must

be solved to realize a solution. However, we note that in the case of a trivial (flat)

interface, these integral operators can be inverted rapidly via the Fast Fourier Transform

(FFT) algorithm due to the fact that they are Fourier multipliers [15]. In order to take

advantage of this fact for nontrivial deformations we appeal to a HOPS method: The

solution in this case is the flat–interface solution plus a correction which can be computed

(recursively) to very high order [7, 24, 29]. A particularly appealing feature of FIEs in

this context is how simple the resulting recursions become, as this amounts to a simple

expansion of (complex) exponentials in power series. In addition to the remarkable

acceleration of the resulting algorithm (essentially an order of magnitude faster for a low

to moderate number of quadrature points and a small number of perturbation orders),

two additional benefits of a HOPS approach to this problem which we explore are: (i)

the relevant integral operators are much better conditioned in the flat–interface case, and

(ii) HOPS methods allow for the solution of problems for entire families of configurations

by choosing different values of the perturbation parameter.

For the former, as we shall see, our HOPS approach will require the repeated (at

every desired perturbation order) solution of a linear system with the same, flat–interface

operator. This matrix is not only of convolution–type (enabling solution via FFT), but

also much better conditioned than the general–interface case. For the latter we will

see that our method will deliver the Fourier coefficients, say Vn, in an expansion of the

quantity of interest, V , so that we may approximate

V (ε) ≈ V N (ε) :=
N∑

n=0

Vnε
n.

For a particular configuration one can simply sum the right–hand side (using one of

several alternatives) at the relevant value of ε. However, we note that, with essentially

no additional work, V N can be computed for any number of values of ε (provided they

are points of analyticity), thereby obtaining the scattering returns for an entire family

of structures.

The rest of the paper is organized as follows: In §2 we recall the governing equations of

layered media scattering and a convenient surface formulation in §2.1. An implementation

of this using FIEs is described in §2.2. A HOPS scheme for simulating these FIEs is

outlined in §3 with specific details at order zero given in §3.1, and the general case

specified in §3.2. Detailed numerical experiments are presented in §4 with comparisons

to exact solutions in §4.3 and layered–media simulations in §4.4. In §4.5 we close with



64 D. P. NICHOLLS

configurations that are beyond the capabilities of the method outlined in [2] but which

can be addressed with our new approach.

2. Governing equations. As we mentioned above, the current contribution presents

a significant enhancement to the numerical algorithm presented by the author and D. Am-

brose [2] for the simulation of scattering returns by three–dimensional, periodic, layered

media. We utilize the same formulation of the problem and, therefore, present only a

brief summary of the developments for completeness. We refer the interested reader to

[2] for full details.

In this three–dimensional formulation in Cartesian coordinates, (x, y) = (x1, x2, y),

the laterally d = (d1, d2)–periodic layered media is specified by (see Figure 1):

(1) Interfaces at

y = ḡ(m) + g(m)(x1, x2) = ḡ(m) + g(m)(x), 1 ≤ m ≤ M,

where x = (x1, x2), ḡ
(m) are constants, and

g(m)(x+ d) = g(m)(x1 + d1, x2 + d2) = g(m)(x1, x2) = g(m)(x),

with upward pointing normals Nm := (−∇xg
(m), 1)T .

(2) Constant–density layers (each with constant velocity c(m)) specified by

S(0) :=
{
y > ḡ(1) + g(1)(x)

}
S(m) :=

{
ḡ(m+1) + g(m+1)(x) < y < ḡ(m) + g(m)(x)

}
, 1 ≤ m ≤ M − 1

S(M) :=
{
y < ḡ(M) + g(M)(x)

}
.

Each layer has wavenumber k(m) := ω/c(m), which characterizes the properties

of the material and the frequency of radiation.

(3) Plane–wave insonification from above specified by

uinc(x, y, t) = e−iωtei(α·x−βy) =: e−iωtvinc(x, y), α = (α1, α2)
T .

This time–dependent problem can be restated as a time–harmonic one of time–inde-

pendent reduced scattered fields, v(m)(x, y), which, in each layer, are α–quasiperiodic

[32]:

v(m)(x+ d, y) = ei(α·d)v(m)(x, y).

These fields each satisfy a Helmholtz equation

Δv(m) + (k(m))2v(m) = 0, in S(m), 0 ≤ m ≤ M,

and for the incident radiation to be a solution we have |α|2+β2 = (k(0))2. At the material

interfaces the fields are coupled through Dirichlet and Neumann boundary conditions:

v(m−1) − v(m) = ζ(m), at y = ḡ(m) + g(m)(x), 1 ≤ m ≤ M, (2.1a)

∂N(m)

[
v(m−1) − v(m)

]
= ψ(m), at y = ḡ(m) + g(m)(x), 1 ≤ m ≤ M, (2.1b)
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y = ḡ (m)+ g (m)

v i = exp(iαx − iβy)

k (m) = ω/c(m)

Δv (m)+ (k (m))2v(m) = 0

Fig. 1. Depiction of a multiply layered media insonified from above
by plane–wave radiation.

∂N(m) := N (m) · ∇. In the case of insonification from above

ζ(1) = −vinc(x, ḡ(1) + g(1)(x))

ψ(1) = −(∂N(1)vinc)(x, ḡ(1) + g(1)(x))

ζ(m) ≡ 0 2 ≤ m ≤ M

ψ(m) ≡ 0 2 ≤ m ≤ M.

Finally, outgoing wave conditions are enforced on v(0) and v(M) at positive and negative

infinity, respectively.

2.1. Boundary formulation. To recall the boundary formulation of [2] we define the

(lower and upper) Dirichlet traces:

V (m),l(x) := v(m)(x, ḡ(m+1) + g(m+1)(x)) 0 ≤ m ≤ M − 1

V (m),u(x) := v(m)(x, ḡ(m) + g(m)(x)) 1 ≤ m ≤ M,
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and the (lower and upper) exterior Neumann traces:

Ṽ (m),l(x) := −(∂N(m+1)v(m))(x, ḡ(m+1) + g(m+1)(x)) 0 ≤ m ≤ M − 1

Ṽ (m),u(x) := (∂N(m)v(m))(x, ḡ(m) + g(m)(x)) 1 ≤ m ≤ M.

We further recall the integral relations which couple the Dirichlet and Neumann traces

(through the solution of the relevant Helmholtz equations) [2]:

A(0)Ṽ (0),l −R(0)V (0),l = 0, (2.2a)(
Auu(m) Aul(m)

Alu(m) All(m)

)(
Ṽ (m),u

Ṽ (m),l

)
−
(
Ruu(m) Rul(m)

Rlu(m) Rll(m)

)(
V (m),u

V (m),l

)
=

(
0

0

)
, (2.2b)

1 ≤ m ≤ M − 1,

A(M)Ṽ (M),u −R(M)V (M),u = 0. (2.2c)

In terms of the Dirichlet and Neumann traces, and using the integral relations above, the

author and Ambrose showed [2] that the layered media scattering problem is equivalent

to

MV(l) = Q (2.3)

where

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0) −R(0) 0 · · · 0

−Auu(1) −Ruu(1) Aul(1) −Rul(1) · · · 0

−Alu(1) −Rlu(1) All(1) −Rll(1) · · · 0
...

...

0 · · · −Auu(M − 1) −Ruu(M − 1) Aul(M − 1) −Rul(M − 1)

0 · · · −Alu(M − 1) −Rlu(M − 1) All(M − 1) −Rll(M − 1)
0 · · · 0 −A(M) −R(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V(l) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ṽ (0),l

V (0),l

...

Ṽ (M−1),l

V (M−1),l

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Auu(1)ψ(1) −Ruu(1)ζ(1)

Alu(1)ψ(1) −Rlu(1)ζ(1)

...

Auu(M − 1)ψ(M−1) −Ruu(M − 1)ζ(M−1)

Alu(M − 1)ψ(M−1) −Rlu(M − 1)ζ(M−1)

A(M)ψ(M) −R(M)ζ(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2.2. Fokas integral equations. In [2] we showed that the operators in (2.2) can all be

stated generically as

Âp

[
Ṽ
]
= R̂p [V ] , p ∈ Z, (2.4)

and we term the approximation of these by Nyström’s method the “Direct Method” of

[2]. More specifically, in the top layer, if

Ṽ = G, V = ξ, g(1)(x) = g(x),
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then (abbreviating the double integral over [0, d1]× [0, d2] by
∫ d

0
) we have

Âp(g) [G] =

∫ d

0

eiβ
(0)
p ge−iαp·xG(x) dx, (2.5a)

R̂p(g) [ξ] =

∫ d

0

eiβ
(0)
p ge−iαp·x

{
iαp

iβ
(0)
p

· ∇x +
(k(0))2

iβ
(0)
p

}
ξ(x) dx, (2.5b)

where, for m = 0, . . . ,M ,

αp :=

(
α1 + 2πp1/d1
α2 + 2πp2/d2

)
, β(m)

p :=

⎧⎨
⎩
√
(k(m))2 − |αp|2 p ∈ U (m)

i
√

|αp|2 − (k(m))2 p �∈ U (m),

and the set of propagating modes are

U (m) :=
{
p | |αp|2 < (k(m))2

}
.

We point out that if we specify the Dirichlet data V = ξ, then solving for Ṽ = G produces

the output of the Dirichlet–Neumann operator (DNO).

In the bottom layer, if

Ṽ = J, V = ζ, g(M)(x) = g(x),

then

Âp(g) [J ] =

∫ d

0

e−iβ(M)
p ge−iαp·xJ(x) dx, (2.6a)

R̂p(g) [ζ] =

∫ d

0

e−iβ(M)
p ge−iαp·x

{
iαp

iβ
(M)
p

· ∇x +
(k(M))2

iβ
(M)
p

}
ζ(x) dx. (2.6b)

Finally, in a middle layer, if

Ṽ =

(
Ṽ u

Ṽ �

)
=

(
U

L

)
, V =

(
V u

V �

)
=

(
ζ

ξ

)
,

ḡ(m) = ū, ḡ(m+1) = �̄, g(m)(x) = u(x), g(m+1)(x) = �(x),

then

Âp(u, �)

[(
U

L

)]
=

∫ d

0

(
C(u) + cop S(u) csp S(�)

− csp S(u) C(�)− cop S(�)

)(
U

L

)
e−iαp·x dx, (2.7a)

R̂p(u, �)

[(
ζ

ξ

)]
=

∫ d

0

(
− cop C(u)− S(u) csp C(�)

csp C(u) − cop C(�) + S(�)

)
, (2.7b)

×
{

iαp

iβ
(m)
p

· ∇x +
(k(m))2

iβ
(m)
p

}(
ζ

ξ

)
e−iαp·x dx, (2.7c)

where

cop := coth(iβ(m)
p (ū− �̄)), csp := csch(iβ(m)

p (ū− �̄)),

C(u) := cosh(iβ(m)
p u), S(u) := sinh(iβ(m)

p u),

C(�) := cosh(iβ(m)
p �), S(�) := sinh(iβ(m)

p �).
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3. A High–Order Perturbation of Surfaces (HOPS) method. At this point we

depart from the methodology of [2] and, rather than simply enforcing the equations (2.4)

directly using, e.g., Nyström’s method [11], we recognize that these FIEs depend upon

the boundary perturbation (e.g., g in (2.5)) in a rather simple way. In fact, considering

(2.5), if we set g(x) = εf(x), then the integral operators Âp and R̂p depend analytically

upon ε (sufficiently small) so that, e.g.,

Âp(g) = Âp(εf) =
∞∑

n=0

Âp,n(f)ε
n, R̂p(g) = R̂p(εf) =

∞∑
n=0

R̂p,n(f)ε
n. (3.1)

In light of these expansions one can posit the forms

V (g) = V (εf) =

∞∑
n=0

Vn(f)ε
n, Ṽ (g) = Ṽ (εf) =

∞∑
n=0

Ṽn(f)ε
n. (3.2)

In particular, for the problem of computing a Dirichlet–Neumann operator [28–30], given

analytic Dirichlet data (so that the first expansion in (3.2) converges strongly), we fully

anticipate that the corresponding Neumann data will also be analytic [28] so that the

second expansion is also valid.

If we insert the expansions (3.1) and (3.2) into (2.4), this results in( ∞∑
n=0

Âp,nε
n

)[ ∞∑
m=0

Ṽmεm

]
=

( ∞∑
n=0

R̂p,nε
n

)[ ∞∑
m=0

Vmεm

]
.

This, evidently regular, perturbation expansion can now be equated at successive orders

of ε delivering,

Âp,0

[
Ṽn

]
= R̂p,0 [Vn] +

n−1∑
m=0

R̂p,n−m [Vm]−
n−1∑
m=0

Âp,n−m

[
Ṽm

]
. (3.3)

This recursion describes a natural HOPS scheme for the simulation of quantities of in-

terest which is advantaged over (2.4) in a number of ways.

First, the solution of (2.4) requires the formation and inversion of Âp(g), which, as

we shall show, can become quite ill–conditioned as the boundary deformation g departs

significantly from zero. By contrast, in solving (3.3) one must (repeatedly) invert the

operator Âp,0 = Âp(0), which, as we will see, is both well–conditioned and can be ac-

complished rapidly using the FFT algorithm.

Second, one may perceive that a disadvantage of utilizing (3.3) is that this system

must be solved at every perturbation order n desired, which would make it much more

computationally intensive than inverting (2.4) once. However, this is, in fact, a strength,

as it allows one to compute the Neumann data for an entire family of profiles g(x) = εf(x)

with one simulation. That is, upon solving (3.3) for 0 ≤ n ≤ N , we can form

Ṽ N (x; ε) :=

N∑
n=0

Ṽn(x)ε
n (3.4)

and approximate Ṽ corresponding to g = εf for any ε by a simple summation (with

linear cost). By contrast, if one wished to do the same with (2.4), the operator Âp(g)

must be formed and inverted with every new instance of g.
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At this point we simply require forms for the Taylor coefficients of the integral opera-

tors Âp and R̂p, namely {Âp,n, R̂n,p}. As we now show, the matter is a simple one, and,

in fact, in [2] we identified the “flat interface” operators {Âp,0, R̂p,0} explicitly (though

we made no particular use of them). We reproduce that simple analysis in the next

subsection.

3.1. Flat interfaces. In the class of flat interfaces (g ≡ 0, u ≡ 0, � ≡ 0) we have, in

the top layer (2.5),

Âp(0) [G] =

∫ d

0

e−iαp·xG(x) dx, (3.5a)

R̂p(0) [ξ] =

∫ d

0

e−iαp·x

{
iαp

iβ
(0)
p

· ∇x +
(k(0))2

iβ
(0)
p

}
ξ(x) dx, (3.5b)

in the bottom layer

Âp(0) [J ] =

∫ d

0

e−iαp·xJ(x) dx, (3.6a)

R̂p(0) [ζ] =

∫ d

0

e−iαp·x

{
iαp

iβ
(M)
p

· ∇x +
(k(M))2

iβ
(M)
p

}
ζ(x) dx, (3.6b)

and in the middle layers

Âp(0, 0)

[(
U

L

)]
=

∫ d

0

(
1 0

0 1

)(
U

L

)
e−iαp·x dx, (3.7a)

R̂p(0, 0)

[(
ζ

ξ

)]
=

∫ d

0

(
− cop csp
csp − cop

){
iαp

iβ
(m)
p

· ∇x +
(k(m))2

iβ
(m)
p

}(
ζ

ξ

)
e−iαp·x dx.

(3.7b)

Recognizing the Fourier transform

ψ̂p = F [ψ] =

∫ d

0

e−iαp·xψ(x) dx

and using the fact that (iαp) · (iαp) + (k(m))2 = −(iβ
(m)
p )2, we find in the top layer

Âp(0) [G] = Ĝp

R̂p(0) [ξ] =

{
iαp

iβ
(0)
p

· (iαp) +
(k(0))2

iβ
(0)
p

}
ξ̂p = −(iβ(0)

p )ξ̂p,

in the bottom layer

Âp(0) [J ] = Ĵp

R̂p(0) [ζ] =

{
iαp

iβ
(M)
p

· (iαp) +
(k(M))2

iβ
(M)
p

}
ζ̂p = −(iβ(M)

p )ζ̂p,
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and in the middle layer

Âp(0, 0)

[(
U

L

)]
=

(
1 0

0 1

)(
Ûp

L̂p

)

R̂p(0, 0)

[(
ζ

ξ

)]
=

(
− cop csp
csp − cop

){
iαp

iβ
(m)
p

· (iαp) +
(k(m))2

iβ
(m)
p

}(
ζ̂p
ξ̂p

)

=

(
− cop csp
csp − cop

)
(−iβ(m)

p )

(
ζ̂p
ξ̂p

)
.

From these we recover the classical flat–interface results

Ĝp = −(iβ(0)
p )ξ̂p, Ĵp = −(iβ(M)

p )ζ̂p,

(
Ûp

L̂p

)
= (iβ(m)

p )

(
cop − csp
− csp cop

)(
ζ̂p
ξ̂p

)
.

3.2. Higher–order corrections. Based on the forms for (2.5), (2.6), and (2.7), it is

straightforward to compute the Âp,n and R̂p,n. In particular, for the upper layer, if

g(x) = εf(x), then (2.5) gives

Âp,n(f) [G] =

∫ d

0

(iβ(0)
p )nFn(x)e

−iαp·xG(x) dx, (3.8a)

R̂p,n(f) [ξ] =

∫ d

0

(iβ(0)
p )nFn(x)e

−iαp·x

{
iαp

iβ
(0)
p

· ∇x +
(k(0))2

iβ
(0)
p

}
ξ(x) dx, (3.8b)

where Fn(x) := f(x)n/n!. In the lower layer, if g(x) = εf(x), then (2.6) gives

Âp,n(f) [J ] =

∫ d

0

(−iβ(M)
p )nFn(x)e

−iαp·xJ(x) dx, (3.9a)

R̂p,n(f) [ζ] =

∫ d

0

(−iβ(M)
p )nFn(x)e

−iαp·x

{
iαp

iβ
(M)
p

· ∇x +
(k(M))2

iβ
(M)
p

}
ζ(x) dx. (3.9b)

Finally, in a middle layer, if u(x) = εfu(x) and �(x) = εf�(x), then (2.7) delivers

Âp,n(fu, f�)

[(
U

L

)]
=

∫ d

0

(
(Cn + cop Sn)Fu,n csp SnF�,n

− csp SnFu,n (Cn − cop Sn)F�,n

)(
U

L

)
e−iαp·x dx,

(3.10a)

R̂p,n(fu, f�)

[(
ζ

ξ

)]
=

∫ d

0

(
(− cop Cn − Sn)Fu,n csp CnF�,n

csp CnFu,n (− cop Cn + Sn)F�,n

)

×
{

iαp

iβ
(m)
p

· ∇x +
(k(m))2

iβ
(m)
p

}(
ζ

ξ

)
e−iαp·x dx, (3.10b)

where

Fu,n := (fu(x))
n/n!, F�,n := (f�(x))

n/n!,

and, for j = 0, 1, . . . ,

C2j := (iβ(m)
p )2j , C2j+1 := 0, S2j := 0, S2j+1 := (iβ(m)

p )2j+1.

At this point we are able to make a crucial observation which gives an unexpected

computational benefit to our approach as opposed to the one advanced in [2]. Specifically,
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we note that in (3.8), (3.9), and (3.10) we are able to separate the wavenumber (p)

dependence from the spatial (x) dependence in the following ways. For (3.8) we write

Âp,n(f) [G] = (iβ(0)
p )n

∫ d

0

e−iαp·xFn(x)G(x) dx, (3.11a)

R̂p,n(f) [ξ] = (iβ(0)
p )n

(
iαp

iβ
(0)
p

)
·
∫ d

0

e−iαp·xFn(x)∇xξ(x) dx

+(iβ(0)
p )n

(
(k(0))2

iβ
(0)
p

)∫ d

0

e−iαp·xFn(x)ξ(x) dx. (3.11b)

For (3.9)

Âp,n(f) [J ] = (−iβ(M)
p )n

∫ d

0

e−iαp·xFn(x)J(x) dx, (3.12a)

R̂p,n(f) [ξ] = (−iβ(M)
p )n

(
iαp

iβ
(M)
p

)
·
∫ d

0

e−iαp·xFn(x)∇xζ(x) dx

+(−iβ(M)
p )n

(
(k(M))2

iβ
(M)
p

)∫ d

0

e−iαp·xFn(x)ζ(x) dx. (3.12b)

Finally, for (3.10) we can state that

Âp,n(fu, f�)

[(
U

L

)]
=

(
Cn + cop Sn csp Sn

− csp Sn Cn − cop Sn

)∫ d

0

e−iαp·x
(
Fu,nU

F�,nL

)
dx, (3.13a)

R̂p,n(fu, f�)

[(
ζ

ξ

)]
=

(
− cop Cn − Sn csp Cn

csp Cn − cop Cn + Sn

)(
iαp

iβ
(m)
p

)

·
∫ d

0

e−iαp·x
(
Fu,n∇xζ

F�,n∇xξ

)
dx

+

(
− cop Cn − Sn csp Cn

csp Cn − cop Cn + Sn

)(
(k(m))2

iβ
(m)
p

)∫ d

0

e−iαp·x
(
Fu,nζ

F�,nξ

)
dx. (3.13b)

The important observation to make about all of these is that they are convolution opera-

tors which can be rapidly evaluated by the FFT algorithm. For instance, in using (3.11)

one could perform the following sequence of steps to evaluate the action of Ân,p on the

function G(x) evaluated at Nx equally–spaced points on [0, d]:

(1) Multiply G(x) by Fn(x) pointwise in “physical space” (Cost: O(Nx)).

(2) Fourier transform the product via the FFT (Cost: O(Nx log(Nx))).

(3) Multiply pointwise by the diagonal operator (iβ
(0)
p )n in “Fourier space” (Cost:

O(Nx)).

We point out that, at this point, it is quite natural to move back to “physical space” by

inverse Fourier transform. We use this convention for the rest of this contribution, which

amounts to replacing (3.3) by

A0

[
Ṽn

]
= R0 [Vn] +

n−1∑
m=0

Rn−m [Vm]−
n−1∑
m=0

An−m

[
Ṽm

]
, (3.14)
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where

An =
1

|d|

∞∑
p=−∞

Âp,ne
iαp·x̃, Rn =

1

|d|

∞∑
p=−∞

R̂p,ne
iαp·x̃.

3.3. Computing far–field information: The efficiencies. In periodic layered media

scattering the “far field” information is encoded in the efficiencies [32], and in this section

we describe a simple approach to garnering this information in our current formulation.

We start by recalling the Rayleigh expansions [32], which state that above the structure

(y > ḡ(1) +
∣∣g(1)∣∣

L∞) the scattered field can be expressed as

v(0)(x, y) =

∞∑
p=−∞

B(0)
p eiαp·x+iβ(0)

p y, (3.15)

while below the structure (y < ḡ(M) −
∣∣g(M)

∣∣
L∞),

v(M)(x, y) =
∞∑

p=−∞
B(M)

p eiαp·x−iβ(M)
p y.

The upper and lower efficiencies are defined by

e(0)p :=
β
(0)
p

β

∣∣∣B(0)
p

∣∣∣2 , p ∈ U (0), (3.16a)

e(M)
p :=

β
(M)
p

β

∣∣∣B(M)
p

∣∣∣2 , p ∈ U (M). (3.16b)

At a plane y = ā > ḡ(1) +
∣∣g(1)∣∣

L∞ the Rayleigh expansion (3.15) is exact , so that if

one of our problem unknowns is U(x) := v(0)(x, ā), then

∞∑
p=−∞

Ûpe
iαp·x = U(x) = v(0)(x, ā) =

∞∑
p=−∞

B(0)
p eiαp·x+iβ(0)

p ā,

so that

B(0)
p = Ûpe

−iβ(0)
p ā, (3.17)

and the efficiencies are simple to compute from (3.16). Of course the same considerations

at y = −b̄ < ḡ(M) −
∣∣g(M)

∣∣
L∞ coupled to (3.3) yield, for W (x) := v(M)(x,−b̄),

B(M)
p = Ŵpe

−iβ(M)
p b̄. (3.18)

Therefore, if we always choose two flat “artificial” boundaries (the material properties

are the same on both sides) away from the structure, then the efficiencies can be trivially

estimated from (3.17) and (3.18).

Remark 3.1. There is a principle of conservation of energy for lossless media which

states that ∑
p∈U(0)

e(0)p +
∑

p∈U(M)

e(M)
p = 1,

which gives a diagnostic of convergence, the “energy defect”

δ := 1−
∑

p∈U(0)

e(0)p −
∑

p∈U(M)

e(M)
p . (3.19)
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4. Numerical results. At this point we are in a position to present results of numer-

ical simulations conducted with our new algorithm. As we mentioned above, the scheme

is simply Nyström’s method applied to each of the integral equations (3.14) which appear

in the full layered–medium system (2.3).

4.1. Exact solutions. Once again, following the developments of [2], we observe that,

in building a numerical solver for a homogeneous PDE and boundary conditions

Lu = 0 in Ω

Bu = 0 at ∂Ω,

it is often just as easy to construct an algorithm for the corresponding inhomogeneous

problem:

Lu = R in Ω

Bu = Q at ∂Ω.

Selecting an arbitrary function w, we can compute

Rw := Lw, Qw := Bw,

and now have an exact solution to the problem

Lu = Rw in Ω

Bu = Qw at ∂Ω,

namely u = w. In this way we can test our inhomogeneous solver for which the homoge-

neous solver is a special case. This is valuable as, for nontrivial boundary perturbations,

there are no exact solutions for plane–wave scattering.

As in [2], we select w which has the same “behavior” as solutions u of the homogeneous

problem: We specify w such that Rw ≡ 0. To be more specific, consider the functions

v(m)
r (x, y) = A(m)ei(αr·x+β(m)

r y) +B(m)ei(αr ·x−β(m)
r y), 0 ≤ m ≤ M, (4.1)

with r ∈ Z and A(M) = B(0) = 0. These are outgoing, α–quasiperiodic solutions of

the Helmholtz equation, so that Rw ≡ 0 in the notation above. However, the boundary

conditions satisfied by these functions are not those satisfied by an incident plane wave.

With the construction of the Qw in mind we compute the surface data

ζ̃(m) := v(m−1)
r − v(m)

r y = ḡ(m) + g(m)(x), 1 ≤ m ≤ M

ψ̃(m) := ∂N(m)

[
v(m−1)
r − v(m)

r

]
y = ḡ(m) + g(m)(x), 1 ≤ m ≤ M.

This is a family of exact solutions against which to test our numerical algorithm for any

choice of deformations {g(1), . . . , g(M)}.
4.2. Numerical implementation and error measurement. We utilize Nyström’s method

[11] to simulate the integral equations (3.14) appearing in (2.3). In this setting this

amounts to enforcing these equations at Nx = (Nx1
, Nx2

) equally spaced gridpoints,

xj = (x1,j1 , x2,j2), on the period cell [0, d1]× [0, d2], with unknowns being the functions

{Ṽ (m),l, V (m),l} evaluated at these same gridpoints xj .

To finish our discussion of the numerical implementation, we point out that one may

choose among several methods to sum the truncated (at order N) Taylor series which
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appear in our algorithm (see, e.g., (3.4)). In addition to simple direct (Taylor) summa-

tion, we have found that the classical numerical analytic continuation method of Padé

approximation [3] has been very useful for HOPS methods in other contexts [7,30,31,34],

and we use it here as well. The approximant has the remarkable property that, for a wide

class of functions, not only is the convergence faster at points of analyticity but it also

may converge for points outside the disk of convergence. We direct the interested reader

to §2.2 of Baker and Graves–Morris [3] and the calculations in §8.3 of Bender and Orszag

[4] for a complete discussion of the capabilities and limitations of Padé approximants.

With these approximations in hand we measure the error in our simulated solutions

V (m),l,Nx,N (x; ε) :=
N∑

n=0

Nx/2−1∑
p=−Nx/2

V̂ (m)
p,n eiαp·xεn,

Ṽ (m),l,Nx,N (x; ε) :=
N∑

n=0

Nx/2−1∑
p=−Nx/2

ˆ̃V (m)
p,n eiαp·xεn,

versus the exact solutions (4.1), by computing the defect in the lower Dirichlet and

Neumann traces. For the results described in §4.3 we measure

εrel := sup
0≤m≤M−1

⎧⎨
⎩
∣∣∣Ṽ (m),l

r − Ṽ
(m),l,Nx,N
r

∣∣∣
L∞∣∣∣Ṽ (m),l

r

∣∣∣
L∞

,

∣∣∣V (m),l
r − V

(m),l,NxN
r

∣∣∣
L∞∣∣∣V (m),l

r

∣∣∣
L∞

⎫⎬
⎭ . (4.2)

4.3. Convergence studies. For our convergence studies we follow the developments in

[2] and begin with two–dimensional and 2π–periodic profiles which are independent of

the x2–variable. Recall the three profiles introduced in [29] for precisely this purpose:

The sinusoid

fs(x) = cos(x), (4.3a)

the “rough” (C4 but not C5) profile

fr(x) =
(
2× 10−4

){
x4(2π − x)4 − 128π8

315

}
, (4.3b)

and the Lipschitz boundary

fL(x) =

{
−(2/π)x+ 1, 0 ≤ x ≤ π

(2/π)x− 3, π ≤ x ≤ 2π.
(4.3c)

We point out that all three profiles have zero mean, approximate amplitude 2, and

maximum slope of roughly 1. The Fourier series representations of fr and fL are listed

in [29], and in order to minimize aliasing errors we approximate these by their truncated

P–term Fourier series, fr,P and fL,P , with P = 40.

We begin with the two three–layer configurations outlined in [2]:
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(1) (Two Smooth Interfaces, Figure 2). Physical and numerical parameters:

α = 0.1, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x) = εfs(x), g(2)(x) = εfs(x),

ε = 0.005, 0.01, 0.05, 0.1, d = 2π,

Nx = 30, N = 0, . . . , 10. (4.4)

(2) (Rough and Lipschitz Interfaces, Figure 3). Physical and numerical parameters:

α = 0.1, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x) = εfr,40(x), g(2)(x) = εfL,40(x),

ε = 0.001, 0.005, 0.01, 0.05, d = 2π,

Nx = 320, N = 0, . . . , 10. (4.5)
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Fig. 2. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional smooth–smooth configuration, (4.4), with Nx = 30.

By simulating (4.4), we demonstrate that a small number of quadrature points

(Nx ≈ 30) and perturbation orders (N ≈ 6) are required to realize machine precision (up

to the conditioning of our algorithm) for small (e.g., ε = 0.01), smooth profiles, (4.3a),

which displays the spectral accuracy of the scheme. Configuration (4.5) tests our method

in the case of lower and upper interfaces shaped by rough, (4.3b), and Lipschitz, (4.3c),

profiles respectively (both truncated after P = 40 Fourier series terms) provided that Nx

and N are chosen sufficiently large.

We choose two more representative configurations in the two–dimensional setting:
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Fig. 3. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturbation

order N for various perturbation parameters ε. Results for the two–
dimensional rough–Lipschitz configuration, (4.5), with Nx = 320.

(1) (Six–Layer, Figure 4). Physical and numerical parameters:

α = 0.1, β(m) = 1.1 +m, 0 ≤ m ≤ 5,

g(1)(x) = εfs(x), g(2)(x) = εfr,40(x), g(3)(x) = εfL,40(x),

g(4)(x) = εfr,40(x), g(5)(x) = εfs(x),

ε = 0.001, 0.005, 0.01, 0.05, d = 2π,

Nx = 120, N = 0, . . . , 10. (4.6)

(2) (21–Layer, Figure 5). Physical and numerical parameters:

α = 0.1, β(m) =
m+ 1

10
, 0 ≤ m ≤ 20,

g(m)(x) = εfs(x), 1 ≤ m ≤ 20,

ε = 0.001, 0.005, 0.01, 0.05, d = 2π,

Nx = 30, N = 0, . . . , 10. (4.7)

Again, our algorithm provides highly accurate solutions in a stable and rapid manner

provided that a sufficient number of quadrature points, Nx, and perturbation orders, N ,

are retained.

We now move to the more general case of (2π)× (2π) periodic interfaces in a three–

dimensional structure. Again, we follow [2] and select the following interface shapes: The

sinusoid

f̃s(x1, x2) = cos(x1 + x2), (4.8a)

the “rough” (C2 but not C3) profile

f̃r(x1, x2) =

(
2

9
× 10−3

){
x2
1(2π − x1)

2x2
2(2π − x2)

2 − 64π8

225

}
, (4.8b)
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Fig. 4. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturbation

order N for various perturbation parameters ε. Results for the
two–dimensional smooth–rough–Lipschitz–rough–smooth configura-
tion, (4.6), with Nx = 120.
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Fig. 5. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional 21–layer configuration, (4.7), with Nx = 30.

and the Lipschitz boundary

f̃L(x1, x2) =
1

3
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 + (2/π)x1, x1 ≤ x2 ≤ 2π − x1

3− (2/π)x2, x2 > x1, x2 > 2π − x1

3− (2/π)x1, 2π − x1 < x2 < x1

−1 + (2/π)x2, x2 < x1, x2 < 2π − x1.

(4.8c)

Again, all three profiles have zero mean, approximate amplitude 2, and maximum slope

of roughly 1. The Fourier series representations of f̃r and f̃L are given in [29] and in
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order to minimize aliasing errors we approximate these by their truncation after P = 20

coefficients, f̃r,P and f̃L,P .

We now consider two three–layer configurations outlined below.

(1) (Two smooth interfaces, Figure 6). Physical and numerical parameters:

α1 = 0.1, α2 = 0.2, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x1, x2) = εf̃s(x1, x2), g(2)(x1, x2) = εf̃s(x1, x2),

ε = 0.005, 0.01, 0.05, 0.1, d1 = 2π, d2 = 2π,

Nx1
= Nx2

= 24, N = 0, . . . , 10. (4.9)

(2) (Rough and Lipschitz interfaces, Figure 7). Physical and numerical parameters:

α1 = 0.1, α2 = 0.2, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x1, x2) = εf̃r,20(x1, x2), g(2)(x1, x2) = εf̃L,20(x1, x2),

ε = 0.001, 0.005, 0.01, 0.05, d1 = 2π, d2 = 2π,

Nx1
= Nx2

= 64, N = 0, . . . , 10. (4.10)
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Fig. 6. (a) Relative error versus perturbation parameter ε for various pertur-
bation orders N . (b) Relative error versus perturbation order N for various
perturbation parameters ε. Results for the three–dimensional smooth–smooth
configuration, (4.9), with Nx1 = Nx2 = 24.

Again, our algorithm produces highly accurate results in a stable and reliable manner.

The behavior is independent of interface shape provided that a sufficient number of

quadrature points and perturbation orders are used.

4.4. Layered medium simulations. Having verified the validity of our codes, we demon-

strate the utility of our approach by simulating plane–wave scattering from the configura-

tions described in the previous section. For this there is no exact solution for comparison,

so we resort to our diagnostic of energy defect (3.19).

We observe in Figure 8 that we achieve full double precision accuracy with merely

N = 6 perturbation orders for the smooth–smooth configuration (ε = 0.005, 0.01), (4.4),

while in Figure 9 we show that the same can be realized for the rough–Lipschitz problem,
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Fig. 7. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturba-

tion order N for various perturbation parameters ε. Results for
the three–dimensional rough–Lipschitz configuration, (4.10), with
Nx1 = Nx2 = 64.

(4.5). We note the same behavior for the six–layer configuration, (4.6), and the 21–layer

device, (4.7), which are displayed in Figures 10 and 11, respectively. Finally, we display

three–dimensional results corresponding to the three–layer problems, (4.9) and (4.10),

and the quantitative results are given in Figures 12 and 13, respectively.
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Fig. 8. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional smooth–smooth configuration, (4.4), with Nx = 30.

4.5. Layered media simulations requiring the new algorithm. We close with simulations

which mandate the use of our new approach due to the enormous conditioning and speed

advantages that our novel HOPS algorithm can exhibit in comparison with the “Direct”
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Fig. 9. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional rough–Lipschitz configuration, (4.5), with Nx = 320.

10
−3

10
−2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Relative Error versus ε

ε

R
e
la
ti
v
e
L

∞
E
rr
o
r

 

 

N = 4
N = 6
N = 8
N = 10

(a) Energy defect versus ε

2 4 6 8 10

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Relative Error versus N

N

R
e
la
ti
v
e
L

∞
E
rr
o
r

 

 

ε = 0.001
ε = 0.005
ε = 0.01
ε = 0.05

(b) Energy defect versus N

Fig. 10. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
order N for various perturbation parameters ε. Results for the
two–dimensional smooth–rough–Lipschitz–rough–smooth configura-
tion, (4.6), with Nx = 120.

approach advocated in [2]. To guide this discussion we recall three noteworthy aspects

of our new recursions:

(1) Whereas the “Direct” method of [2] entails the inversion of the operator Âp(g)

in (2.4), our recursive HOPS method requires the (repeated) inversion of Âp,0 =

Âp(0). Not only can this be accomplished rapidly (via an FFT [15] with cost

O(Nx log(Nx))), this operator is much better conditioned.

(2) The operators Ân,p can be seen to be the composition of physical products and

convolution integrals (see steps 1–3) which can be stably and rapidly (again,
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Fig. 11. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional 21–layer configuration, (4.7), with Nx = 30.
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Fig. 12. (a) Energy defect versus perturbation parameter ε for various pertur-
bation orders N . (b) Energy defect versus perturbation order N for various
perturbation parameters ε. Results for the three–dimensional smooth–smooth
configuration, (4.9), with Nx1 = Nx2 = 24.

via FFT) evaluated. By contrast, Âp(g) has no such structure, and a direct

application strategy will cost O(N2
x), while inversion takes time O(N3

x).

(3) Our HOPS approach admits the possibility of alternate summation mechanisms

such as Padé approximation [3] which have their own remarkable properties of

accuracy and stability enhancement.

To illustrate these points we now revisit the two–dimensional, smooth–smooth con-

figuration (4.4), but now with much larger values of the deformation amplitude ε =

0.1, 0.15, 0.2, 0.25. Due to these much larger perturbations, many more Taylor orders

(N ≈ 30) are required for well–resolved solutions. Correspondingly, as the n–th order
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Fig. 13. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
orderN for various perturbation parameters ε. Results for the three–
dimensional rough–Lipschitz configuration, (4.10), with Nx = 30.

correction requires the n–th power of f(x) (see, e.g., (3.8)) this demands many more

quadrature points (we use Nx = 200) to realize high–order accuracy.

We begin with point 1 and display in Figure 14(a) estimates of the condition number of

A(g) and A(0) versus number of quadrature points Nx using MATLAB’s cond command

[23]. While this quantity grows for A(0), the rate is extremely slow and certainly dwarfed

by the catastrophic growth displayed by A(g). One consequence of this characteristic is

the deteriorating accuracy of the Direct method as the number of quadrature points is

increased (see Figure 14(b)), which is the hallmark of an ill–conditioned algorithm. This

is compared to our new algorithm with the Padé summation algorithm utilized.
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Fig. 14. (a) Condition number versus Nx for Direct and HOPS
methods. (b) Relative error versus Nx for Direct and HOPS (Padé
summation, N = 30) methods. Results for the two–dimensional
smooth–smooth configuration, (4.4).
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Regarding point 2, in Figure 15 we plot timings (scaled by the time of a HOPS simu-

lation with Nx = 200 and N = 30) of the Direct method and our new HOPS approach

as the number of quadrature points is increased. Here the great advantage in speed of

our new approach is on display, which enables the high–order approximation of config-

urations of interest with our new, well–conditioned approach. Due to the large number

of perturbation orders (N = 30) computed, the Direct approach (independent of N) is

quicker for Nx very small; however, as Nx is increased this advantage quickly evaporates,

and the onerous cost of the Direct method overwhelms our rapid new algorithm.
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Fig. 15. Relative elapsed time versus Nx for Direct and HOPS meth-
ods. Results for the two–dimensional smooth–smooth configuration,
(4.4).

To close, we turn to point 3 and display, in Figures 16 and 17, results comparing the

performance of Taylor summation versus Padé approximation. We note from Figure 16(a)

that with Taylor summation, one always realizes better results for larger values of N

provided that it is not chosen too large. However, as Figure 16(b) shows, this does

not hold uniformly over all perturbation orders, and, as N is increased, a certain ill–

conditioning sets in, which has been noticed for other HOPS methods (see [28–30]). On

the other hand, as we show in Figure 17, while not solving the underlying issues explicitly,

Padé summation is able to ameliorate these problems and return simulations which are

both robust and highly accurate. The effect becomes more pronounced for large values

of N and/or ε, meaning that with this “Padé enhancement” we have the capability to

simulate configurations of large size and severe roughness.

We conclude with the results of a simulation which demonstrate a final advantage of

our new HOPS scheme which we mentioned earlier, namely the ability to simulate scat-

tering returns from an entire family of profiles in a single computation. In Figure 18 we

display, for the two–dimensional smooth–smooth configuration (4.4), the specular (order

zero) efficiencies in the upper–most, B
(0)
0 , and lower–most, B

(M)
0 , layers as a function of

the deformation size, ε. While this plot could have easily been generated with the Direct

approach, the 101 data points displayed here would have required 101 simulations. By

comparison, a single HOPS simulation followed by simple post–processing with negligible

cost produced this plot. Furthermore, if further investigation merits the evaluation at

any intermediate value, this can be accomplished with very little extra effort.
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Fig. 16. (a) Relative error versus perturbation parameter ε for var-
ious perturbation orders N . (b) Relative error versus perturbation

order N for various perturbation parameters ε. Results for the two–
dimensional smooth–smooth configuration, (4.4), with Nx = 200 and
Taylor summation.
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Fig. 17. (a) Energy defect versus perturbation parameter ε for var-
ious perturbation orders N . (b) Energy defect versus perturbation
order N for various perturbation parameters ε. Results for the two–
dimensional smooth–smooth configuration, (4.4), with Nx = 200 and
Padé summation.
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gorithm with Padé summation (Nx = 200 and N = 30) for the
two–dimensional smooth–smooth configuration, (4.4).
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