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Abstract. In the last few years considerable attention has been paid to the role

of the prolate spheroidal wave functions (PSWFs) to many practical signal and image

processing problems. The PSWFs and their applications to wave phenomena modeling,

fluid dynamics and filter design played a key role in this development. It is pointed out

in this paper that the operator W arising in the Helmholtz equation after the prolate

spheroidal change of variables is the sum of three operators, Sξ,α, Sη,β and Tφ, each
of which acts on functions of one variable: two of them are modified Sturm-Liouville

operators and the other one is, up to a variable coefficient, the Chebyshev operator.

We believe that this fact reflects the essence of the separation of variables method in

this case. We show that there exists a theory of functions with quaternionic values and

of three real variables which is determined by the Moisil–Theodorescu-type operator

with quaternionic variable coefficients, and that it is intimately related to the modified

Sturm-Liouville operators and to the Chebyshev operator (we call it in this way, since

its solutions are related to the classical Chebyshev polynomials). We address all the

above and explore some basic facts of the arising quaternionic function theory. We

further establish analogues of the basic integral formulae of complex analysis such as those
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of Borel-Pompeiu, Cauchy, and so on, for this version of quaternionic function theory.

We conclude the paper by explaining the connections between the null-solutions of the

modified Sturm-Liouville operators and of the Chebyshev operator, on one hand, and

the quaternionic hyperholomorphic and anti-hyperholomorphic functions on the other.

1. Introduction.

1.1. Prolate spheroidal wave functions revisited. The prolate spheroidal wave functions

(PSWFs) have long been successfully used in many different fields of numerical analysis,

nuclear modeling, signal processing and communication theory, electromagnetic model-

ing and physics [8, 9]. The PSWFs were originally introduced by C. Niven in [20] while

studying the conduction of heat in an ellipsoid of revolution, which leads to the Helmholtz

operator in spheroidal coordinates. Of course, we refer to the second order partial dif-

ferential operator that is obtained by the underlying change of variables in the initial

Helmholtz operator. PSWFs usually appear in the process of solving Dirichlet problems

in spheroidal domains arising in hydrodynamics, elasticity and electromagnetism. For

the solvability of boundary value problems of radiation, scattering, and propagation of

acoustic signals and electromagnetic waves radiated by sources with spheroidal shapes,

PSWFs are frequently encountered. These applications have stimulated a growth of

new ideas and methods, both theoretical and applied, and have reawakened an inter-

est in spectrum analysis, approximation theory, potential theory, the theory of partial

differential equations, and so forth. The connection between PSWFs and the energy con-

centration problem was first introduced by D. Slepian and H.O. Pollak [23] in the 1960’s.

They are also known as Slepian functions and solutions of a Sturm-Liouville problem for

solving elliptic boundary value problems in spheroidal geometry. The general theory and

background on PSWFs is contained in the monograph by C. Flammer [3].

For a given real number c > 0, the PSWFs denoted by {χc(x)}∞n=0 have been known

since the early 1930’s as the eigenfunctions of the Sturm-Liouville operator Lc defined

on C2([−1, 1]) by

Lc(χc) = (1− x2)
d2χc

dx2
− 2x

dχc

dx
− c2x2χc; x ∈ [−1, 1]. (1.1)

The above operator arises via the method of separation of variables for the Helmholtz

equation with the use of the prolate spheroidal coordinates (ξ, η, φ), which are related

to the Cartesian coordinates (x, y, z) by the following transformation (cf. E. Hobson [4],

N. Lebedev [10]):

x = f
√
(ξ2 − 1)(1− η2) cosφ,

y = f
√
(ξ2 − 1)(1− η2) sinφ,

z = fξη,

where f > 0 is a scale factor; ξ, η and φ are parameters such that 1 < ξ < ∞, −1 < η < 1

and 0 ≤ φ < 2π, which have the following meanings: ξ is the radius, η is the azimuthal

angle about the major z-axis, and φ is the rotation term.

The family of confocal prolate spheroids is given by surfaces of constant ξ with major

axis of length 2fξ and minor axis of length 2f
√
ξ2 − 1, and corresponding foci at the
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Fig. 1. The prolate spheroidal coordinate system (ξ, η, φ).

points (0, 0,±f):

x2 + y2

f2(ξ2 − 1)
+

z2

f2ξ2
= 1.

Following [24] (cf. [11]), a family of solutions to the Helmholtz equation

Δ3χc + k2χc = 0 (1.2)

in prolate spheroidal coordinates can be represented in the following form:

χc(ξ, η, φ) := R(ξ; c)S(η; c) Φ(φ), c := fk.

The previous product sometimes bears the name of “Lamé products”. The separation of

variables in (1.2) implies the following three differential equations:

(ξ2 − 1)
d2R

dξ2
+ 2ξ

dR

dξ
−
(
λ(c)− c2ξ2 +

m2

ξ2 − 1

)
R = 0, (1.3)

(1− η2)
d2S

dη2
− 2η

dS

dη
+

(
λ(c)− c2η2 − m2

1− η2

)
S = 0, (1.4)

d2Φ

dφ2
+m2Φ = 0, (1.5)

where λ(c) and m are parameters introduced during the separation of variables method.

Equations (1.3) and (1.4) are called, respectively, radial and angular prolate spheroidal

equations; we will call them modified Sturm-Liouville equations (compare with operator

(1.1)). The solutions of (1.3) and (1.4) are called radial and angular prolate spheroidal

functions. As a matter of fact, because the bandwidth tuning parameter c (also known in
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the literature as Slepian frequency) and m are constants, one has two families of ordinary

differential equations parameterized by the same parameters c and m. It is worth noting

that when the interfocal distance 2f becomes zero (i.e. c = 0) the previous radial and

angular equations reduce to the Legendre’s differential equations which are satisfied,

respectively, by the classical associated Legendre functions of the first and second kinds.

The periodicity of Φ requires that m is a positive integer or zero. Hence solutions of

(1.5) are

Φ(φ) :=

{
cos(mφ),

sin(mφ),

where cos(mφ) and sin(mφ) are trigonometric polynomials that are related to the Cheby-

shev algebraic polynomials of the first and second kinds, respectively, Tm and Um, in the

following way:

cos(mφ) =: Tm(cosφ) and sin(mφ) =: Um−1(cosφ) sin(φ).

Multidimensional PSWFs were first studied by D. Slepian in [24], which provided many

of their analytical properties, as well as properties that support the construction of

numerical schemes (cf. A.I. Zayed [30]). Very recently, in [6] the authors introduced

the generalized PSWFs for offset linear canonical transform in Clifford analysis. These

generalized spheroidal functions were successfully applied for the analysis of Slepian’s

concentration problem. In this line of research, in [15,16] two distinct sets of monogenic

orthogonal polynomials (in the sense of the usual generalized Cauchy-Riemann opera-

tor) were constructed over the interior of prolate spheroids (with a bandwidth parameter

c = 0) which could be expressed in terms of products of associated Legendre functions

multiplied by Chebyshev polynomial factors. Studies showed that the underlying gener-

alized prolate functions play an important role in computing the monogenic Szegö kernel

function in prolate spheroidal domains [17]. These results were used to investigate a par-

ticular class of approximation properties for monogenic functions over prolate spheroids

in terms of special systems [18].

1.2. Helmholtz equation in prolate spheroidal coordinates. In three-dimensional Carte-

sian coordinates the Helmholtz equation has the form(
Δ3 + k2

)
[u] :=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ k2u = 0, u ∈ R

3, k ∈ R. (1.6)

In general, the parameter k can be complex or even quaternionic; see, e.g., [7].

The Helmholtz operator
(
Δ3 + k2

)
acts on the space of functions C2(R3). For conve-

nience, we consider its restriction onto C2(Ωx,y,z), where

Ωx,y,z := R
3 \ {(x, y, z) ∈ R

3 |x = y = 0, z ∈ R}.

In the sequel, consider a domain Ξ in a copy of R3 with the coordinates (ξ, η, φ). Now, we

define a change of variables in the domain Ξ; i.e., there exists a mapping ϕ : (ξ, η, φ) ∈
Ξ �→ ϕ(ξ, η, φ) = (x = ϕ1(ξ, η, φ), y = ϕ2(ξ, η, φ), z = ϕ3(ξ, η, φ)) ∈ Ωx,y,z , such that

ϕ ∈ C2(Ξ) makes a one-to-one correspondence between both domains.
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Assume that ψ = (ψ1(x, y, z), ψ2(x, y, z), ψ3(x, y, z)) is the inverse mapping, ψ :

Ωx,y,z �→ Ξ, i.e., so that ϕ(ψ(x, y, z)) = (x, y, z) for any (x, y, z) ∈ Ωx,y,z and ψ(ϕ(ξ, η, φ))

= (ξ, η, φ) for any (ξ, η, φ) ∈ Ξ.

Let us introduce the operators of the change of variables:

Wϕ : u ∈ C2(Ωx,y,z) �→ u ◦ ϕ =: ũ ∈ C2(Ξ),

Wψ = W−1
ϕ : ũ ∈ C2(Ξ) �→ ũ ◦ ψ =: u ∈ C2(Ωx,y,z).

Note, in passing, that Wϕ is an isomorphism of C2(Ωx,y,z) onto C2(Ξ), whereas Wψ is an

isomorphism of C2(Ξ) onto C2(Ωx,y,z).

Let A be an arbitrary linear operator acting on C2(Ωx,y,z) and B be an arbitrary

operator acting on C2(Ξ). Define the operators Ã and B̃ as

WϕAWψ =: Ã,

WψBWϕ =: B̃.

Obviously, Ã acts on C2(Ξ) while B̃ acts on C2(Ωx,y,z).

Now, let L(C2(Ωx,y,z)) and L(C2(Ξ)) denote the algebras of all linear operators acting

on the respective function spaces. Then the mapping

A ∈ L(C2(Ωx,y,z)) �→ WϕAWψ = Ã ∈ L(C2(Ξ))

is an isomorphism of algebras.

Now, let us take A = Δ3 + k2. Consider

WϕAWψ = WϕΔ3Wψ +Wϕk
2Wψ. (1.7)

First of all, for any ũ ∈ C2(Ξ), we note that

Wϕk
2Wψ[ũ] = Wϕk

2[u] = Wϕ[k
2u] = k̃2u = k2ũ,

and therefore, it follows that

Wϕk
2Wψ = k2I,

where I is the identity operator.

Furthermore, we call attention to the fact that

WϕΔ3Wψ = Wϕ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Wψ

= Wϕ
∂2

∂x2
Wψ +Wϕ

∂2

∂y2
Wψ +Wϕ

∂2

∂z2
Wψ

=

(
Wϕ

∂

∂x
Wψ

)(
Wϕ

∂

∂x
Wψ

)
+

(
Wϕ

∂

∂y
Wψ

)(
Wϕ

∂

∂y
Wψ

)
+

(
Wϕ

∂

∂z
Wψ

)(
Wϕ

∂

∂z
Wψ

)
. (1.8)
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Now, we apply all the above to the aforementioned prolate spheroidal change of variables,

namely, ⎧⎪⎪⎨⎪⎪⎩
ϕ1(ξ, η, φ) = f

√
(ξ2 − 1)(1− η2) cosφ,

ϕ2(ξ, η, φ) = f
√
(ξ2 − 1)(1− η2) sinφ,

ϕ3(ξ, η, φ) = fξη.

(1.9)

Straightforward computations show that

Wϕ(Δ3 + k2)Wψ =
1

h2
1(ξ, η)

[
Wξ,η,φ + c2(ξ2 − η2)

]
, (1.10)

where

Wξ,η,φ := (ξ2 − 1)
∂2

∂ξ2
+ (1− η2)

∂2

∂η2
+ 2ξ

∂

∂ξ
− 2η

∂

∂η
+

h2
1(ξ, η)

h2
2(ξ, η)

∂2

∂φ2
(1.11)

with

c = fk, h2
1(ξ, η) := f2(ξ2 − η2), h2

2(ξ, η) := f2(ξ2 − 1)(1− η2).

It is clear that ker(Δ3 + k2) is isomorphic to ker
(
Wξ,η,φ + c2(ξ2 − η2)

)
.

The preceding conclusions are true if (1.9) is a one-to-one correspondence. Hence

we assume that the operator Wξ,η,φ + c2(ξ2 − η2) acts on C2(Ωξ,η,φ) where Ωξ,η,φ :=

(1,∞) × (−1, 1) × [0, 2π); more precisely, (1.9) is a C∞-diffeomorphism between Ωx,y,z

and Ωξ,η,φ.

2. Modified Sturm-Liouville and Chebyshev operators (MSLCOs).

2.1. Relations between MSLCOs. Let us introduce the following notation:

W1 :=
1

h2
1(ξ, η)

[
Wξ,η,φ + c2(ξ2 − η2)

]
=:

1

h2
1(ξ, η)

W .

Consider the operator W and assume that it acts on C2(Ξ) with Ξ being of a special

shape, namely, let Ξ be a Cartesian product of three intervals: Ξ = Ξξ × Ξη × Ξφ. It is

known that in this case the Cartesian product

C2(Ξ) = C2(Ξξ)⊗ C2(Ξη)⊗ C2(Ξφ)

holds. Such a decomposition of the space C2(Ξ) generates a decomposition of the operator

W . Indeed, every element of C2(Ξξ)⊗ C2(Ξη)⊗ C2(Ξφ) is of the form

gc(ξ, η, φ) =

∞∑
i=1

Ri(ξ; c)⊗ Si(η; c)⊗ Φi(φ)

where the elementary tensor

Ri(ξ; c)⊗ Si(η; c)⊗ Φi(φ)

is just a pointwise product of the three functions Ri ∈ C2(Ξξ), Si ∈ C2(Ξη) and Φi ∈
C2(Ξφ). In particular, if Iη is the identity operator on C2(Ξη) and Iφ is the identity
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operator on C2(Ξφ), then the operator d2

dξ2 ⊗ Iη ⊗ Iφ acts, by definition, on C2(Ξξ) ⊗
C2(Ξη)⊗ C2(Ξφ) by the following rule:

d2

dξ2
⊗ Iη ⊗ Iφ

[ ∞∑
i=1

Ri ⊗ Si ⊗ Φi

]
=

∞∑
i=1

d2

dξ2
⊗ Iη ⊗ Iφ [Ri ⊗ Si ⊗ Φi]

=

∞∑
i=1

d2Ri

dξ2
⊗ Iη[Si]⊗ Iφ[Φi]

=

∞∑
i=1

d2Ri

dξ2
· Si · Φi

=
∂2gc(ξ, η, φ)

∂ξ2
.

Hence
∂2

∂ξ2
=

d2

dξ2
⊗ Iη ⊗ Iφ. In a similar way, we obtain that

∂2

∂η2
= Iξ ⊗

d2

dη2
⊗ Iφ and

∂2

∂φ2
= Iξ ⊗ Iη ⊗ d2

dφ2
. A quite analogous reasoning shows that 2ξ

∂

∂ξ
= 2ξ

d

dξ
⊗ Iη ⊗ Iφ

and 2η
∂

∂η
= Iξ ⊗ 2η

d

dη
⊗ Iφ.

For simplicity of presentation, we set α(ξ) := λ(c)− c2ξ2 + m2

ξ2−1 and β(η) := λ(c) −
c2η2 − m2

1−η2 . All this means that the operator W can be seen as

W = (ξ2 − 1)
d2

dξ2
⊗ Iη ⊗ Iφ + 2ξ

d

dξ
⊗ Iη ⊗ Iφ − α(ξ)Iξ ⊗ Iη ⊗ Iφ

+ Iξ ⊗ (1− η2)
d2

dη2
⊗ Iφ − Iξ ⊗ 2η

d

dη
⊗ Iφ + Iξ ⊗ β(η)Iη ⊗ Iφ

+
1

ξ2 − 1
Iξ ⊗ Iη ⊗

d2

dφ2
+ Iξ ⊗

1

1− η2
Iη ⊗

d2

dφ2

+
1

ξ2 − 1
Iξ ⊗ Iη ⊗ m2Iφ + Iξ ⊗

1

1− η2
Iη ⊗ m2Iφ.

In order to state our results, we shall need some further notation:

Sξ,α :=

[
(ξ2 − 1)

d2

dξ2
+ 2ξ

d

dξ
− α(ξ)Iξ

]
⊗ Iη ⊗ Iφ,

Sη,β := Iξ ⊗
[
(1− η2)

d2

dη2
− 2η

d

dη
+ β(η)Iη

]
⊗ Iφ,

Tφ := Iξ ⊗ Iη ⊗
(

d2

dφ2
+m2Iφ

)
,
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and

Sξ,α := (ξ2 − 1)
d2

dξ2
+ 2ξ

d

dξ
− α(ξ)Iξ,

Sη,β := (1− η2)
d2

dη2
− 2η

d

dη
+ β(η)Iη,

Tφ :=
d2

dφ2
+m2Iφ,

giving, of course, that

Sξ,α[R] := (ξ2 − 1)
d2R

dξ2
+ 2ξ

dR

dξ
− α(ξ)R,

Sη,β [S] := (1− η2)
d2S

dη2
− 2η

dS

dη
+ β(η)S,

Tφ[Φ] :=
d2Φ

dφ2
+m2Φ,

which immediately leads to the equations (1.3)-(1.5) for arbitrary values of the constants

c and m.

For this reason we will use the names of Modified Sturm-Liouville and Chebyshev

Operators (MSLCOs) for Sξ,α, Sη,β and Tφ. We will call them in this way, since their

solutions are related, respectively, to the modified Sturm-Liouville equations (1.3)-(1.4)

and Chebyshev equation (1.5). Therefore we conclude that

W = Sξ,α + Sη,β +
h2
1(ξ, η)

h2
2(ξ, η)

Tφ. (2.1)

We note that this decomposition has been obtained for parallelepiped domains with sides

parallel to the coordinate axes only.

2.2. On the kernels of the MSLCOs. For simplicity of presentation, we set

C :=
h2
1(ξ, η)

h2
2(ξ, η)

= C1(ξ) + C2(η),

where C1(ξ) :=
1

ξ2−1 and C2(η) :=
1

1−η2 . On the same parallelepiped we consider now

ker(Sξ,α + Sη,β + CTφ) and kerSξ,α ⊗ kerSη,β ⊗ kerTφ.

Given an elementary tensor g1 ⊗ g2 ⊗ g3 ∈ kerSξ,α ⊗ kerSη,β ⊗ kerTφ, there holds:

W [g1 ⊗ g2 ⊗ g3] = (Sξ,α + Sη,β + CTφ)[g1 ⊗ g2 ⊗ g3]

= (Sξ,α ⊗ Iη ⊗ Iφ)[g1 ⊗ g2 ⊗ g3]

+ (Iξ ⊗ Sη,β ⊗ Iφ)[g1 ⊗ g2 ⊗ g3]

+ [C1(ξ)Iξ ⊗ Iη ⊗ Tφ] [g1 ⊗ g2 ⊗ g3]

+ [Iξ ⊗ C2(η)Iη ⊗ Tφ] [g1 ⊗ g2 ⊗ g3]

= Sξ,α[g1] · g2 · g3 + g1 · Sη,β [g2] · g3 + [C1(ξ) + C2(η)] g1 · g2 · Tφ[g3]

= 0,
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that is, g1⊗g2⊗g3 ∈ ker(Sξ,α+Sη,β+CTφ). Since Sξ,α, Sη,β and Tφ are linear operators,

every element

∞∑
i=1

ai g1i ⊗ g2i ⊗ g3i ∈ kerSξ,α ⊗ kerSη,β ⊗ kerTφ, ai ∈ R,

belongs to ker(Sξ,α + Sη,β + CTφ). We conclude, then, from the foregoing that

kerSξ,α ⊗ kerSη,β ⊗ kerTφ ⊆ ker(Sξ,α + Sη,β + CTφ) = kerW . (2.2)

Now take an elementary tensor g1 ⊗ g2 ⊗ g3 ∈ C2(Ξξ) ⊗ C2(Ξη) ⊗ C2(Ξφ), where g3 ={
cos(mφ),

sin(mφ),
which belongs to ker(Sξ,α + Sη,β + CTφ) = kerW ; then

0 = W [g1 ⊗ g2 ⊗ g3]

= (Sξ,α + Sη,β + CTφ)[g1 ⊗ g2 ⊗ g3]

= (Sξ,α ⊗ Iη ⊗ Iφ)[g1 ⊗ g2 ⊗ g3]

+ (Iξ ⊗ Sη,β ⊗ Iφ)[g1 ⊗ g2 ⊗ g3]

+ [C1(ξ)Iξ ⊗ Iη ⊗ Tφ] [g1 ⊗ g2 ⊗ g3] + [Iξ ⊗ C2(η)Iη ⊗ Tφ] [g1 ⊗ g2 ⊗ g3]

= Sξ,α[g1] · g2 · g3 + g1 · Sη,β [g2] · g3 + C g1 · g2 · Tφ[g3]

= Sξ,α[g1] · g2 · g3 + g1 · Sη,β [g2] · g3 .

Assuming that g1(ξ) 
= 0 for all ξ ∈ Ξξ and g2(η) 
= 0 for all η ∈ Ξη, the above equality

is equivalent to

d1 :=
1

g1
Sξ,α[g1] = − 1

g2
Sη,β [g2] ,

and this implies that

d1 =
1

g1

[
(ξ2 − 1)

d2g1
dξ2

+ 2ξ
dg1
dξ

− α(ξ)g1

]
is equivalent to

(ξ2 − 1)
d2g1
dξ2

+ 2ξ
dg1
dξ

− [α(ξ) + d1] g1 = 0. (2.3)

Analogously, we obtain that

−d1 =
1

g2

[
(1− η2)

d2g2
dη2

− 2η
dg2
dη

+ β(η)g2

]
is equivalent to

(1− η2)
d2g2
dη2

− 2η
dg2
dη

+ [β(η) + d1] g2 = 0. (2.4)

The formulae (2.3) and (2.4) imply that g1⊗ g2 ⊗ g3 ∈ kerSξ,α+d1
⊗kerSη,β+d1

⊗kerTφ.
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We shall observe that different elementary tensors in ker(Sξ,α + Sη,β + CTφ) give

rise to different constants d1, so we conclude that the set of elementary tensors in

ker(Sξ,α + Sη,β + CTφ) = kerW is contained in the set⋃
α,β

(kerSξ,α ⊗ kerSη,β ⊗ kerTφ) .

3. Notion of Dk-hyperholomorphic function. In the previous sections we estab-

lished a direct relation between the MSLCOs (and, hence, the PSWFs) and the operator

W . On the other hand, it turns out that there exists a quaternionic function theory

which is related to the operator W in the same way as complex analysis in one vari-

able, classic quaternionic analysis and Clifford analysis are related to the corresponding

Laplace operators. Even though there is no straightforward relation, we still manage to

relate the PSWFs to a quaternionic function theory.

We proceed by introducing and developing some basic facts of this version of the

quaternionic analysis and its associated function theory. Since most applications related

to the PSWFs take a general complex wave number k, we shall also take k ∈ C in the

forthcoming analysis. This consideration makes sense, however, since the underlying

theory is connected with the α-hyperholomorphic function theory developed in [7].

Throughout the paper, let H(R) and H(C) be the sets of real and complex quaternions.

Each quaternion w is represented in the form

w := w0 + w1i+ w2j+ w3k.

The set {wk} is in R for real quaternions and {wk} is in C for complex quaternions, and

{i, j,k} are the quaternionic imaginary units which obey the usual laws of multiplication:

i2 = j2 = k2 = −1; ij = k = −ji, jk = i = −kj, and ki = j = −ik. As usual, we

denote the imaginary unit in C by i; by definition, i commutes with all the quaternionic

imaginary units. H(R) is a skew-field; meanwhile H(C) is a complex non-commutative,

associative algebra with zero divisors.

The scalar and vector parts of w, Sc(w) and Vec(w) are defined as the w0 and w1i+

w2j+w3k terms, respectively. For a complex quaternion w we consider its quaternionic

conjugate w̄ defined by

w̄ := w0 −Vec(w).

Let Ω be a bounded multi-connected domain in Ωξ,η,φ with a piecewise smooth bound-

ary, and denote by Ω̄ its closure. A central notion in quaternionic analysis is that of

Dk-hyperholomorphy (resp. Dk-anti-hyperholomorphy). On the set C1(Ω,H(C)) we con-

sider the following first-order partial differential operators with variable quaternionic

coefficients:

Dk := k +

[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
∂

∂ξ

+

[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
∂

∂η
(3.1)

+

[
1

h2(ξ, η)
(− sinφi+ cosφj)

]
∂

∂φ
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and

Dk := k −
[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
∂

∂ξ

−
[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
∂

∂η
(3.2)

−
[

1

h2(ξ, η)
(− sinφi+ cosφj)

]
∂

∂φ
.

These operators are well-defined on

R
3 \ {(ξ, η, φ) ∈ R

3 |h1(ξ, η) 
= 0 and h2(ξ, η) 
= 0},

but in order to unify the notation and to simplify the calculations further, we choose

them acting on Ωξ,η,φ. These operators can act on the right, in which case they will be

written as Dk,r and Dk,r. We denote by D0 the operator in (3.1) with k = 0.

The motivation of introducing both operators is explained in detail in Section 5.

Definition 3.1. Any solution g ∈ C1(Ω,H(C)) of the equation Dk[g] = 0 is called a

Dk-hyperholomorphic function. Analogously, for solutions of the equation Dk[g] = 0 a

reasonably natural name is Dk-anti-hyperholomorphic functions.

Denote the set of Dk-hyperholomorphic functions by Mk:

Mk := Mk(Ω,H(C)) := kerDk,

and define in a similar way Mk,r as

Mk,r := kerDk,r.

Straightforward computations show that

Dk · Dk = Dk · Dk =
1

h2
1(ξ, η)

[
Wξ,η,φ + c2(ξ2 − η2)

]
=

1

h2
1(ξ, η)

W = W1, (3.3)

where Wξ,η,φ is given by (1.11).

The above means that Dk-hyperholomorphic functions indeed play the same role for

the W operator as the usual holomorphic functions in one complex variable or hyper-

holomorphic functions of quaternionic or Clifford analysis play for the corresponding

Laplace operators, and they are in striking analogy with related investigations about

α-hyperholomorphic functions for the Helmholtz operator in [7]. At the same time, there

exists a deep difference since the operators (3.1) and (3.2) have variable, not constant,

coefficients, and it is well-known that function theories using such operators are much

more sophisticated.

4. Integral formulae for Dk-hyperholomorphic functions. This section presents

main integral theorems and formulae for the class of functions introduced in the previous

section.
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Consider the following function:

Kk(ξ, η, φ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

4π

1

|ζ|e
ik|ζ|

(
k +

ζst
|ζ|2 − ik

ζst
|ζ|

)
, Im k > 0,

− 1

4π

1

|ζ|e
−ik|ζ|

(
k +

ζst
|ζ|2 + ik

ζst
|ζ|

)
, Im k < 0,

(4.1)

where

ζ =
(
f
√
ξ2 − 1

√
1− η2 cosφ, f

√
ξ2 − 1

√
1− η2 sinφ, fξη

)
is such that |ζ| = f

√
ξ2 + η2 − 1 and

ζst := f
√
ξ2 − 1

√
1− η2 cosφi+ f

√
ξ2 − 1

√
1− η2 sinφj+ fξηk.

We note that the function Kk is well-defined on the set

R
3 \ {(ξ, η, φ) ∈ R

3 | ξ2 + η2 = 1, 0 ≤ φ < 2π},

but for our purposes we choose to define it on Ωξ,η,φ.

In case k = 0 both formulae in (4.1) give − 1

4π

ζst
|ζ|3 , which is the fundamental solution

of the Moisil-Theodorescu operator. The function Kk does indeed play the role of the

Cauchy kernel for the Dk-hyperholomorphic function theory.

We set

ω : = if2

[
− sinφ

(
ξ2 − η2√

ξ2 − 1
√
1− η2

)
dξ ∧ dη

+
(
η
√
ξ2 − 1

√
1− η2 cosφ

)
dξ ∧ dφ+

(
ξ
√
ξ2 − 1

√
1− η2 cosφ

)
dη ∧ dφ

]

+ jf2

[
cosφ

(
ξ2 − η2√

ξ2 − 1
√
1− η2

)
dξ ∧ dη (4.2)

+
(
η
√
ξ2 − 1

√
1− η2 sinφ

)
dξ ∧ dφ+

(
ξ
√
ξ2 − 1

√
1− η2 sinφ

)
dη ∧ dφ

]
+ kf2

[
−ξ(1− η2)dξ ∧ dφ+ η(ξ2 − 1)dη ∧ dφ

]
.

Let ds be the surface element in Ωξ,η,φ. Then |ω| = ds, and if Γ is a smooth surface,

then

ω = in1ds+ jn2ds+ kn3ds = nstds,

where

nst(Λ1,Λ2,Λ3) = n1(Λ1,Λ2,Λ3)i+ n2(Λ1,Λ2,Λ3)j+ n3(Λ1,Λ2,Λ3)k

is a unit vector of the outward normal to Γ at the point (Λ1,Λ2,Λ3) ∈ Γ seen as a

quaternion.

In order to simplify calculations and to present the basic ideas, we will consider piece-

wise smooth surfaces Γ, although the whole reasoning is valid for more general surfaces

as well.
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Now consider {g1, g2} ⊂ C1(Ω̄,H). If we apply the exterior differentiation operator d

to the differential form g1 · ω · g2 we obtain:

d(g1 · ω · g2) = dg1 ∧ ω · g2 − g1 · ω ∧ dg2

= (D0,r[g1] · g2 + g1 · D0[g2]) fh
2
1(ξ, η) dξ ∧ dη ∧ dφ.

It then follows that

d(g1 · ω · g2) = (Dk,r[g1] · g2 + g1 · Dk[g2]− 2kg1g2) fh
2
1(ξ, η) dξ ∧ dη ∧ dφ. (4.3)

We are now ready to formulate the main results of this section.

Theorem 4.1 (Stokes’ formula compatible with Dk-hyperholomorphy). Let Ω be a do-

main in Ωξ,η,φ and let its boundary Γ be a piecewise smooth surface such that ∂Ω = Γ.

Then for any g1, g2 ∈ C1(Ω̄)
⋂
C(Ω ∪ Γ) the following formula holds:∫

Γ

g1 · ω · g2 =

∫
Ω

(Dk,r[g1] · g2 + g1 · Dk[g2]− 2kg1g2) fh
2
1(ξ, η) dξ ∧ dη ∧ dφ.

Proof. The proof is a direct consequence of the usual “real” Stokes theorem and for-

mula (4.3). �

Corollary 4.1 (Analogue of the Cauchy integral theorem). Under the conditions of

the preceding theorem and if, in addition, g2 ∈ Mk(Ω̄,H(C)) and g1 ∈ Mk,r(Ω̄,H(C)),

then ∫
Γ

g1 · ω · g2 = −2k

∫
Ω

g1 · g2 · fh2
1(ξ, η) dξ ∧ dη ∧ dφ.

We proceed by generalizing two classical one-dimensional complex operators: the

Cauchy-type operator and the T -operator. Consider the Cauchy kernel Kk given by

formula (4.1). Let Tk and Kk be the operators defined by the formulae:

Tk[g](ξ, η, φ) (4.4)

:=

∫
Ω

Kk(ξ − μ, η − ν, φ− �)g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�

for (ξ, η, φ) ∈ Ωξ,η,φ and

Kk[g](ξ, η, φ) (4.5)

:= −
∫
Γ

Kk(ξ − μ, η − ν, φ− �)nst(μ, ν, �)g(μ, ν, �) dΓ(μ,ν,
)

for (ξ, η, φ) ∈ Ωξ,η,φ \ Γ where Ω is as above with a piecewise smooth boundary Γ.

For the integral operators introduced above, we now deduce some theorems which are

the exact structural analogues of the corresponding facts of one-dimensional complex

analysis and which express profound properties of the Dk-hyperholomorphic function

theory, as well as important relations between this theory and operator theory.

Theorem 4.2 (Quaternionic Borel-Pompeiu formula). Let Ω be a domain in Ωξ,η,φ and

Γ be a piecewise smooth surface such that ∂Ω = Γ. Let k ∈ C and g ∈ C1
(
Ω̄,H(C)

)⋂
C
(
Ω̄,H(C)

)
. Then

g(ξ, η, φ) = Kk[g](ξ, η, φ) + Tk · Dk[g](ξ, η, φ), ∀ (ξ, η, φ) ∈ Ω.
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Proof. Let w = (μ, ν, �) and ρ = (ξ, η, φ). By definition of the operator Tk we have:

Tk · Dk[g](ξ, η, φ)

=

∫
Ω

Kk(ξ − μ, η − ν, φ− �)Dk,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d� (4.6)

= lim
ε→0

∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)Dk,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�,

where the subindex w in Dk,w means differentiation with respect to the variable w, and

ϑε:=
{
(μ,ν,
)|

∣∣∣f
√

(ξ−μ)2−1
√

1−(η−ν)2 cos(φ−
),f
√

(ξ−μ)2−1
√

1−(η−ν)2 sin(φ−
),f(ξ−μ)(η−ν)
∣∣∣≤ε

}
.

Now ∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)Dk,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

=

∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)D0,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

+ k

∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�

=

∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)D0,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

+ k

∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�

−
∫
Ω\ϑε

D0,r,w [Kk(ξ − μ, η − ν, φ− �)] g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�

+

∫
Ω\ϑε

D0,r,w [Kk(ξ − μ, η − ν, φ− �)] g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�.

It is a simple matter to verify that

−D0,r,w [Kk(ξ − μ, η − ν, φ− �)] =−D0,w [Kk(ξ − μ, η − ν, φ− �)]

=D0,ρ [Kk(ξ − μ, η − ν, φ− �)] .

Hence we get:∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)Dk,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

=

∫
Ω\ϑε

{
Kk(ξ − μ, η − ν, φ− �)D0,w [g(μ, ν, �)]

+D0,r,w [Kk(ξ − μ, η − ν, φ− �)] g(μ, ν, �)
}
fh2

1(μ, ν) dμ ∧ dν ∧ d�

+

∫
Ω\ϑε

{
kKk(ξ − μ, η − ν, φ− �)

+D0,ρ [Kk(ξ − μ, η − ν, φ− �)]
}
g(μ, ν, �)fh2

1(μ, ν) dμ ∧ dν ∧ d�.
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Applying Stokes’ formula in Theorem 4.1 we have:∫
Ω\ϑε

Kk(ξ − μ, η − ν, φ− �)Dk,w[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

=

∫
γε

Kk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dγ
ε

+

∫
Ω\ϑε

Dk [Kk(ξ − μ, η − ν, φ− �)] g(μ, ν, �)fh2
1(μ, ν) dμ ∧ dν ∧ d�,

where γε := ∂(Ω \ ϑε). The second integral equals zero, and turning back to (4.6) we

finally obtain:

Tk · Dk[f ](ξ, η, φ)

= lim
ε→0

∫
γε

Kk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dγ
ε

= lim
ε→0

∫
Γ

Kk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dΓ

+ lim
ε→0

∫
∂ϑε

Kk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) d∂ϑε

=−Kk[g](ξ, η, φ) + g(ξ, η, φ).

This concludes the proof. �
As an immediate consequence of this theorem we obtain the quaternionic version of

Cauchy’s integral formula.

Theorem 4.3 (Quaternionic Cauchy integral formula). Let Ω be a domain in Ωξ,η,φ and

let Γ be a piecewise smooth surface with Γ = ∂Ω. Let g ∈ Mk(Ω̄)
⋂
C
(
Ω̄
)
and k ∈ C.

Then

g(ξ, η, φ) = Kk[g](ξ, η, φ), ∀ (ξ, η, φ) ∈ Ω. (4.7)

Let Lp (Ω,H(C)) be the set of H(C)-valued functions such that each component is in

the usual Lp(Ω,C); this set forms a right H(C) module. We are now in a position to give

a quaternionic version of Morera’s Theorem.

Theorem 4.4 (Quaternionic Morera theorem). Let k ∈ C, g ∈ C1 (Ω,H(C)), and Dk[g] ∈
Lp (Ω,H(C)) for some p > 1. If for any piecewise smooth surface Γ such that I(Γ) ⊂ Ω

with Ω ⊂ Ωξ,η,φ and I(Γ) the interior region, we have that∫
Γ

nst · g dΓ = −
∫
Ω

gkfh2
1(ξ, η) dξ ∧ dη ∧ dφ; (4.8)

then g is Dk-hyperholomorphic in Ω.

Proof. Let {Ω�}�∈N be a regular sequence of domains converging to the point

(ξ0, η0, φ0) ∈ Ω, and let Γ� be the boundary of Ω�. Then by Lebesgue’s theorem (cf.

[25]) for any h ∈ Lp(Ω,H(C)) (p > 1) there holds

lim
�→∞

1

|Ω�|

∫
Ω�

h(ξ, η, φ) dξ ∧ dη ∧ dφ =: h̃(ξ0, η0, φ0)
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and h = h̃ in Lp (Ω,H(C)). If we choose h := D0[g]fh
2
1(ξ, η), then, by hypothesis, it

follows that

1

|Ω�|

∫
Ω�

Dk[g](ξ, η, φ)fh
2
1(ξ, η) dξ ∧ dη ∧ dφ

=
1

|Ω�|

∫
Ω�

(D0[g](ξ, η, φ) + kg(ξ, η, φ)) fh2
1(ξ, η) dξ ∧ dη ∧ dφ

=
1

|Ω�|

∫
Ω�

D0[g](ξ, η, φ)fh
2
1(ξ, η) dξ ∧ dη ∧ dφ

− 1

|Ω�|

∫
Γ�

nst(Λ1,Λ2,Λ3) · g(Λ1,Λ2,Λ3) dΓ�.

From Stokes’ formula we have:∫
Ω�

D0[g](ξ, η, φ)fh
2
1(ξ, η) dξ ∧ dη ∧ dφ =

∫
Γ�

nst(Λ1,Λ2,Λ3) · g(Λ1,Λ2,Λ3) dΓ�.

Therefore

1

|Ω�|

∫
Ω�

Dk[g](ξ, η, φ)fh
2
1(ξ, η) dξ ∧ dη ∧ dφ = 0, � ∈ N ∪ {0}.

Taking the limit as � → ∞ we obtain Dk[g](ξ0, η0, φ0) = 0, and since (ξ0, η0, φ0) is an

arbitrary point in Ω the result follows. �
Let us end this section with one last result.

Theorem 4.5 (Right inverse for the quaternionic Cauchy-Riemann operator). Let k ∈ C,

Ω ⊂ Ωξ,η,φ and g ∈ C1
(
Ω̄,H(C)

)⋂
C
(
Ω̄,H(C)

)
. Then the following representation for

g holds:

g(ξ, η, φ) = Dk · Tk[g](ξ, η, φ), ∀ (ξ, η, φ) ∈ Ω. (4.9)

Proof. Let (ξ, η, φ) ∈ Ωξ,η,φ. The fundamental solution of the Helmholtz operator in

prolate spheroidal coordinates is

θk(ξ, η, φ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

4π

1

|ζ|e
ik|ζ|, Im k > 0,

− 1

4π

1

|ζ|e
−ik|ζ|, Im k < 0,

(4.10)

where ζ = (f
√
ξ2 − 1

√
1− η2 cosφ, f

√
ξ2 − 1

√
1− η2 sinφ, fξη). It follows from Theo-

rem 4.1 that if Γ = ∂Ω is a piecewise smooth surface and Λ = (Λ1,Λ2,Λ3), then∫
Γ

θk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dΓΛ

=

∫
Ω

{
Kk(ξ − μ, η − ν, φ− �)g(μ, ν, �)

− θk(ξ − μ, η − ν, φ− �)Dk [g(μ, ν, �)]
}
fh2

1(μ, ν) dμ ∧ dν ∧ d�.
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It can be seen that

Tk[g](ξ, η, φ) =

∫
Ω

θk(ξ − μ, η − ν, φ− �)Dk[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

+

∫
Γ

θk(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dΓΛ.

If we apply Dk and the Borel-Pompeiu formula we get:

Dk · Tk[g](ξ, η, φ)

= −
∫
Ω

Dk [θk(ξ − μ, η − ν, φ− �)]D−k[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

+

∫
Γ

Dk [θk(ξ − Λ1, η − Λ2, φ− Λ3)]nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dΓΛ

=

∫
Ω

K−k(ξ − μ, η − ν, φ− �)D−k[g](μ, ν, �)fh
2
1(μ, ν) dμ ∧ dν ∧ d�

−
∫
Γ

K−k(ξ − Λ1, η − Λ2, φ− Λ3)nst(Λ1,Λ2,Λ3)g(Λ1,Λ2,Λ3) dΓΛ

= (T−k · D−k +K−k) [g](ξ, η, φ)

= g(ξ, η, φ). �

5. Relation with the α-hyperholomorphic function theory. This section de-

scribes the direct relation between the obtained results and their analogues constructed

in the framework of α-hyperholomorphic function theory.

For the Helmholtz operator in three-dimensional Cartesian coordinates, the following

factorization holds:

Δ3 + k2 =

(
k + i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)(
k − i

∂

∂x
− j

∂

∂y
− k

∂

∂z

)
=: Dk ◦Dk.

Therefore, the Helmholtz operator in prolate spheroidal coordinates can be written as

1

h2
1(ξ, η)

[
Wξ,η,φ + c2(ξ2 − η2)

]
= Wϕ

(
Δ3 + k2

)
Wψ

= Wϕ (Dk)WψWϕ

(
Dk

)
Wψ

= Wϕ

(
k + i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
WψWϕ

(
k − i

∂

∂x
− j

∂

∂y
− k

∂

∂z

)
Wψ.

A direct computation shows that

Wϕ
∂

∂x
Wψ =

h2(ξ, η)

h2
1(ξ, η)

(
ξ
∂

∂ξ
− η

∂

∂η

)
cosφ− sinφ

h2(ξ, η)

∂

∂φ
;

similarly,

Wϕ
∂

∂y
Wψ =

h2(ξ, η)

h2
1(ξ, η)

(
ξ
∂

∂ξ
− η

∂

∂η

)
sinφ+

cosφ

h2(ξ, η)

∂

∂φ
,
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and

Wϕ
∂

∂z
Wψ =

f

h2
1(ξ, η)

[
(ξ2 − 1)η

∂

∂ξ
+ (1− η2)ξ

∂

∂η

]
.

With these computations at hand we obtain

Wϕ ◦Dk ◦Wψ (5.1)

= Wϕ

(
k + i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
Wψ

= k +

[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
∂

∂ξ

+

[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
∂

∂η

+

[
1

h2(ξ, η)
(− sinφi+ cosφj)

]
∂

∂φ

= Dk. (5.2)

This means that the image of the operator Dk, after the prolate spheroidal change of

variables, is the operator Dk defined in (3.1). Hence, kerDk is isomorphic to kerDk;

that is, if f ∈ kerDk after applying the operator Wϕ, we obtain a function f̃ ∈ kerDk

and vice versa. Therefore all the results obtained for the α-hyperholomorphic function

theory (see [7]) can be achieved for the function theory generated by the Dk operator.

This also means that an alternative way of obtaining the preceding results is to apply the

prolate spheroidal change of variables to the results produced in the α-hyperholomorphic

function theory, as we will see next.

Let t = (x, y, z) ∈ R3\{(0, 0, 0)}. The fundamental solution of the Helmholtz operator

is given by (see [7])

Θk(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

4π

1

|t|e
ik|t|, Im k > 0,

− 1

4π

1

|t|e
−ik|t|, Im k < 0.

(5.3)

Formula (5.3) leads to the fundamental solution of the operator Dk, which plays an

important role as an analogue of the classical Cauchy kernel. It is defined as follows:

Kk(t) : =

(
k − i

∂

∂x
− j

∂

∂y
− k

∂

∂z

)
[Θk](t)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

4π

1

|t|e
ik|t|

(
k +

tst
|t|2 − ik

tst
|t|

)
, Im k > 0,

− 1

4π

1

|t|e
−ik|t|

(
k +

tst
|t|2 + ik

tst
|t|

)
, Im k < 0,

where tst = xi+ yj+ zk.
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Having in mind (4.1), after the prolate spheroidal change of variables it follows that

Wϕ(Kk) = Kk ◦ ϕ

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

4π

1

|ζ|e
ik|ζ|

(
k +

ζst
|ζ|2 − ik

ζst
|ζ|

)
, Im k > 0,

− 1

4π

1

|ζ|e
−ik|ζ|

(
k +

ζst
|ζ|2 + ik

ζst
|ζ|

)
, Im k < 0

= Kk,

where

ζ =
(
f
√
ξ2 − 1

√
1− η2 cosφ, f

√
ξ2 − 1

√
1− η2 sinφ, fξη

)
is such that |ζ| = f

√
ξ2 + η2 − 1 and

ζst = f
√
ξ2 − 1

√
1− η2 cosφi+ f

√
ξ2 − 1

√
1− η2 sinφj+ fξηk.

For the variable t = (x, y, z) we define the differential form σ of the surface area as

follows:

σ := −idy ∧ dz + jdx ∧ dz − kdx ∧ dy.

Direct computations show that in prolate spheroidal coordinates, σ has the form of (4.2).

This means we have the tools necessary to construct all the theory developed above.

6. Relation between Dk-hyperholomorphic functions and solutions of the

prolate spheroidal and Chebyshev equations. In this section we show how to di-

rectly relate the solutions of the prolate spheroidal equations and Chebyshev equation

with the Dk-hyperholomorphic function theory. As we will see, our approach allows the

generation of Dk-hyperholomorphic and Dk-anti-hyperholomorphic functions from the

solutions of the prolate spheroidal wave equations and Chebyshev equation.

Let ũ(ξ, η, φ) be a null-solution to the operator 1
h2
1(ξ,η)

W . We set

g1 :=
1

2k
Dkũ (6.1)

and

g2 :=
1

2k
Dkũ. (6.2)

Then

Dkg1 = Dk

(
1

2k
Dkũ

)
=

1

2k
Dk · Dkũ =

1

2k

1

h2
1(ξ, η)

(W)ũ = 0

and

Dkg2 = Dk

(
1

2k
Dkũ

)
=

1

2k
Dk · Dkũ =

1

2k

1

h2
1(ξ, η)

(W)ũ = 0,

so that g1 + g2 = ũ. Hence the function ũ is decomposed into ũ = g1 + g2, where

g1 is a Dk-hyperholomorphic function and g2 is a Dk-anti-hyperholomorphic function.

This is related to the fact that if ũ is a metaharmonic function (i.e., Δ3ũ + k2ũ = 0),

then there exist (uniquely) two functions ũ1 and ũ2 from the conjugate classes of Dk-

hyperholomorphy such that ũ = ũ1+ ũ2 (see [7]). Let us compare this with the harmonic
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case; it is known that ker ∂
∂z

⋂
ker ∂

∂z̄ = C. This implies that the general representation

for each harmonic function w is w = F +G with F = f + c, G = g− c where f ∈ ker ∂
∂z ,

g ∈ ker ∂
∂z̄ and c is an arbitrary complex constant.

Now, let R(ξ) be a solution of the radial equation (1.3), S(η) be a solution of the

angular equation (1.4), and Φ(φ) be a solution of the Chebyshev equation (1.5). Consider

ũ(ξ, η, φ) := R(ξ)S(η)Φ(φ).

The operator D0 = DMT can be seen as the three-dimensional gradient in prolate spher-

oidal coordinates since

gradξ,η,φ : = Wϕ

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
Wψ

=

[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
∂

∂ξ

+

[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
∂

∂η

+

[
1

h2(ξ, η)
(− sinφi+ cosφj)

]
∂

∂φ
.

Then for g1 in (6.1) and g2 in (6.2) there holds:

g1 =
1

2k
(k − gradξ,η,φ)[R(ξ)S(η)Φ(φ)],

g2 =
1

2k
(k + gradξ,η,φ)[R(ξ)S(η)Φ(φ)].

Hence,

g1(ξ, η, φ) =
1

2
R(ξ)S(η)Φ(φ)

− 1

2k

[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
dR

dξ
S(η) Φ(φ)

− 1

2k

[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
R(ξ)

dS

dη
Φ(φ)

− 1

2k

[
1

h2(ξ, η)
(− sinφi+ cosφj)

]
R(ξ)S(η)

dΦ

dφ
,

and

g2(ξ, η, φ) =
1

2
R(ξ)S(η)Φ(φ)

+
1

2k

[
h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) ξ +
f

h2
1(ξ, η)

(ξ2 − 1)ηk

]
dR

dξ
S(η) Φ(φ)

+
1

2k

[
−h2(ξ, η)

h2
1(ξ, η)

(cosφi+ sinφj) η +
f

h2
1(ξ, η)

(1− η2)ξk

]
R(ξ)

dS

dη
Φ(φ)

+
1

2k

[
1

h2(ξ, η)
(− sinφi+ cosφj)

]
R(ξ)S(η)

dΦ

dφ
.
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The last two equations show us that each triple of solutions of the prolate spheroidal

wave and Chebyshev equations generate a Dk-hyperholomorphic function and a Dk-

anti-hyperholomorphic function. Hence prolate spheroidal wave functions generate Dk-

hyperholomorphic and Dk-anti-hyperholomorphic functions. All this departing from the

fact that every metaharmonic function can be decomposed into the direct sum of two

functions from the conjugate classes of Dk-hyperholomorphy.

7. Concluding remarks and perspectives. We have announced that the opera-

tors defining the left-hand sides of (1.3)-(1.5) are tightly related to the operator W . This

operator can be decomposed into the product of two first order linear partial differential

operators (p.d.o.), Dk and Dk, with variable quaternionic coefficients, and for each of

the factorizing p.d.o. the corresponding analysis can be developed in a very similar man-

ner to that of complex analysis in one variable or classic quaternionic analysis for the

Fueter and the Moisil-Theodorescu operators or quaternionic analysis for the Helmholtz

operator; see [7].

The primary purpose of this study was to give a wide and detailed description of

the above ideas together with a number of related questions. In Subsection 1.2, it is

shown that the prolate spheroidal change of variables generates two mutually inverse

operators that realize a relation of similarity between the initial Helmholtz operator (in

Cartesian coordinates) and its image 1
h2
1(ξ,η)

W under the change of variables. Section

2 deals with the operator W , and it establishes that this operator can be seen as the

sum of two modified Sturm-Liouville operators and Chebyshev operator (MSLCOs) (we

have assigned these names since they are generated directly by the operators in (1.3)-

(1.5)). We find also some relations between the null-solutions of the operator W , on

one hand, and of the MSLCOs, on the other. Section 3 introduces the basic definitions

of the quaternionic analysis for the operator W ; the corresponding functions are called

Dk-hyperholomorphic, and one finds here an explanation of the reasons for introducing

such an analysis. Section 4 is a continuation of the previous one and it establishes the

main integral formulae of the introduced quaternionic analysis: Stokes’ formula compat-

ible with Dk-hyperholomorphy, Cauchy’s integral theorem and the formulae based on an

analogue of the Cauchy kernel. The obtained statements strongly resemble their ana-

logues constructed in the framework of α-hyperholomorphic function theory which serves

for the Helmholtz equation. Thus, in Section 5 we explain that, indeed, there exists a

direct relation between both. Finally, in Section 6 we show how to directly relate the

solutions of the MSLCOs with the Dk-hyperholomorphic function theory. To be more

precise, we can produce Dk-hyperholomorphic and Dk-anti-hyperholomorphic functions

from the solutions of the MSLCOs.
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framework of COFAA and SIP programs. The second and third authors are supported

by the Asociación Mexicana de Cultura, A. C.
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