
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXIV, NUMBER 1

MARCH 2016, PAGES 49–59

http://dx.doi.org/10.1090/qam/1422

Article electronically published on December 3, 2015

THE SPACE CHARGE PROBLEM

AND THE NONLINEAR RESISTOR

By

GIOVANNI CIMATTI

Department of Mathematics, Largo Bruno Pontecorvo, 5, 56100 Pisa, Italy

Abstract. We propose the constitutive equation J = f(q)E, where J is the current

density, q the charge density, E the electric field and f(q) a given function to describe the

current-voltage laws appearing in certain special materials. A theorem of existence and

uniqueness of solution is also given for the related nonlinear boundary value problem.

1. Introduction. In many cases the simple linear relation

V = RI (1.1)

between electric current and potential is not verified and more complex current-voltage

laws are present. This happens e.g. in the Ovshinsky material [11], in thin films of

insulators [13], in semiconductors [6] and in memristors [14]. These space-charge effects

are globally described by nonlinear relations of the form

V = F(I), (1.2)

which takes the place of (1.1). Multiple conductance states are often present: two or more

different currents are possible in correspondence with the same difference of potential and

negative resistance, i.e. regions where F ′(I) < 0 can be observed [12]. In particular (see

[13]), the current in a thin chromium film was found to obey the relationship

I = AV +BV n, (1.3)

where A and B are constants at constant temperature and n is a number equal to or

greater than 2. Many explanations [8] have been proposed based on the first principle

of quantum physics. However, it is difficult in this way to predict the observed current-

voltage laws. In this paper we adopt a purely phenomenological approach. We take as

starting point a generalization of the classical space-charge constitutive equation

J = qE (1.4)
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assuming

J = f(q)E, (1.5)

where J is the current density, q the charge density, E the electric field and f(q) a given

function. This model gives rise to a wide variety of voltage-current characteristics, and

it is also capable of predicting multiple solutions. The space-charge problem based on

the classical assumption (1.4) has received great attention, starting with the paper [7].

We quote among others [3], [2], [1], [4], [9], [10] and [5].

If diffusion effects are taken into consideration, instead of (1.5) we have the equation

J = −κ∇q + f(q)E, (1.6)

where κ is the diffusion coefficient. If (1.5) holds we have from the equation of conserva-

tion of charge ∇ · J = 0,

∇ · (f(q)∇ϕ) = 0 (1.7)

where ϕ is the electric potential and E = −∇ϕ. If we assume (1.6) we have, instead of

(1.7),

−κΔq −∇ · (f(q)∇ϕ) = 0.

Let Ω be a bounded and open subset of R3 with a regular boundary Γ. Assuming

(1.6), we have, for the determination of ϕ and q, the boundary value problem

−Δϕ = q in Ω, (1.8)

ϕ = ϕb on Γ, (1.9)

−κΔq −∇ · (f(q)∇ϕ) = 0 in Ω, (1.10)

q = qb on Γ, (1.11)

where qb and ϕb are functions given on Γ. If we assume as starting point the constitu-

tive relation (1.5) we have the following boundary value problem which generalizes the

classical space-charge problem [3], [4]:

−Δϕ = q in Ω, (1.12)

ϕ = ϕb on Γ, (1.13)

∇ · (f(q)∇ϕ) = 0 in Ω, (1.14)

q = qb on Γ+ =
{
x ∈ Γ,

dϕ

dn
(x) > 0

}
, x = (x1, x2, x3). (1.15)

This problem when f(q) = q is studied in [5].

In Section 2 we present a theorem of existence and uniqueness of small solutions for

problem (1.8)-(1.11) and a theorem of existence under general assumptions on the data

for the same problem. In Section 3 we consider the one-dimensional version of problem

(1.12)-(1.15) which corresponds to the case of an indefinite slab. If

f(q) = qα, α ≥ 1,

we obtain the current-voltage relationship (1.3) and one and only one solution for problem

(1.12)-(1.15). On the other hand, if

f(q) =
1

1 + qα
, α ≥ 1,
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we have either none or two solutions. Finally, in Section 4 we study a special case of the

problem without diffusion adopting a different boundary condition.

2. Existence and uniqueness of solutions for the problem with diffusion. If

qb is small in a suitable norm problem, (1.8)-(1.11) has one and only one solution. In

fact, we have

Theorem 2.1. Let ϕb ∈ C4,α(Γ), qb ∈ C2,α(Γ) and

f(q) ∈ C2(R1), f(0) ≥ 0. (2.1)

Then there exists N > 0 such that if

‖qb‖C2,α(Γ) ≤ N, (2.2)

the problem

−Δϕ = q in Ω, (2.3)

ϕ = ϕb on Γ, (2.4)

−κΔq −∇ · (f(q)∇ϕ) = 0 in Ω, (2.5)

q = qb on Γ (2.6)

has one and only one solution.

Proof. We apply the inverse function theorem in Banach spaces. Let ϕ0 be the solution

of the problem

Δϕ0 = 0 in Ω, ϕ0 = ϕb on Γ.

Then (ϕ, q) = (ϕ0, 0) is the solution of the problem (2.1)-(2.6) corresponding to the

boundary data ϕb, and qb = 0. Define

X = {ϕ(x) ∈ C4,α(Ω̄), ϕ = ϕb on Γ} × C2,α(Ω̄),

Y = (C2,α(Ω̄)× C0,α(Ω̄))× C2,α(Γ)

and the operator F : X → Y :

F (ϕ, q) = ((−Δϕ− q, −κΔq − f(q)∇q · ∇ϕ+ qf(q)), q|Γ).
We have

F (ϕ0, 0) = ((0, 0), 0).

Moreover, in view of (2.1) F (ϕ, q) ∈ C1(X ,Y). Computing the first differential of the

operator F we find

F ′(ϕ0, 0)[Φ, Q] = ((−ΔΦ−Q, κΔQ− f ′(0)∇Q · ∇ϕ0 + f(0)Q), Q|Γ).
Let α(x) ∈ C2,α(Ω̄), β(x) ∈ C0,α(Ω̄), γ(x) ∈ C2,α(Γ). The system

−ΔΦ−Q = α in Ω, Φ = 0 on Γ,

−ΔQ− f ′(0)∇Q · ∇ϕ0 + f(0)Q = β in Ω,

Q = γ on Γ

is easily uncoupled, and it has one and only one solution by (2.1). We conclude that

there exists N such that if (2.2) holds, the equation F (ϕ, q) = ((0, 0), qb) has one and

only one solution which solves (2.3)-(2.6). �
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A similar result of existence and uniqueness of small solutions does not hold if κ = 0

under the sole assumption (2.1). See, in this respect, the second example of Section 3.

The next theorem is based on the a priori estimates for the solutions of elliptic equa-

tions, which we quote below for the problem at hand (see [15], page 203). Let u ∈ H1,2(Ω)

be a solution of the problem

−Δu+∇b · ∇u+ au = h in Ω, u = ub on Γ, b = (b1, b2, b3).

If a ≥ 0, ub ∈ H2,q(Ω), q > 3 and

‖b‖Lq(Ω) ≤ μ, ‖a‖Lq/2(Ω) ≤ μ, ‖ub‖H2,q(Ω) ≤ μ, ‖h‖Lq(Ω) ≤ μ,

then

‖u‖H2,q(Ω) ≤ C, (2.7)

where the constant C depends only on μ and Ω. Moreover, adopting the Schauder point

of view, if

‖b‖C0,α(Ω̄) ≤ μ, ‖a‖C0,α(Ω̄) ≤ μ, ‖h‖C0,α(Ω̄) ≤ μ, ‖ub‖C2,α(Γ̄) ≤ μ

we have

‖u‖C2,α(Ω) ≤ C, (2.8)

where the constant C depends only on μ and Ω.

Theorem 2.2. Let

f(q) ∈ C2(R1), f(q) ≥ 0, (2.9)

qb ∈ C2,α(Ω̄), qb ≥ 0, ϕb ∈ H2,p(Ω), p > 3. (2.10)

Then there exists at least one solution of the problem

−Δϕ = q in Ω, (2.11)

ϕ = ϕb on Γ, (2.12)

−κΔq +∇ · (f(q)∇ϕ) = 0 in Ω, (2.13)

q = qb on Γ. (2.14)

Proof. Define qM = maxΩ̄ qb and

A = {q(x) ∈ C0,α(Ω̄), qM ≥ q(x) ≥ 0}.
Let q(x) ∈ A and (v, q̄) be the solution of the problem

−Δv = q in Ω, v = ϕb on Γ, (2.15)

−Δq̄ − f ′(q)∇q̄ · ∇v + f(q)q̄ = 0 in Ω, q̄ = qb on Γ. (2.16)

From (2.15) and (2.7) we have, using the Sobolev embedding theorem,

‖v‖C1,α(Ω) ≤ C
(
qM , ‖ϕb‖H2,q(Ω),Ω

)
, q > 3. (2.17)

To estimate the solution q̄(x) of the problem (2.16) we note that f ′(q)∇v and f(q) are

both bounded in the norm Lq(Ω) with q > 3 by a constant which depends only on qM ,

‖ϕb‖H2,q(Ω) and Ω by (2.9) since q(x) belongs to A. Thus, by (2.7) and by the Sobolev

embedding theorem we have, in addition to (2.17),

‖q̄‖C1,α(Ω) ≤ C(qM , ‖ϕb‖H2,q(Ω),Ω), q > 3. (2.18)
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Moreover, the maximum principle applies to the problem (2.16). Therefore

0 ≤ q̄(x) ≤ qM .

If q̄ = T (q) is the operator defined by (2.16) we have T (A) ⊂ A; moreover T (A) is

a compact subset of C0,α(Ω̄) by (2.18). We claim that T is a continuous operator. Let

q ∈ A and q̄ = T (q), i.e.

−Δv = q in Ω, v = ϕb on Γ,

−Δq̄ − f ′(q)∇q̄ · ∇v + f(q)q̄ = 0 in Ω, q̄ = qb on Γ. (2.19)

Let qn ∈ A and q̄n = T (qn), i.e.

−Δvn = qn in Ω, vn = ϕb on Γ, (2.20)

−Δq̄n − f ′(qn)∇q̄n · ∇vn + f(qn)q̄n = 0 in Ω, q̄n = qb on Γ. (2.21)

Assume ‖qn − q‖C0,α(Ω̄) → 0; we claim that ‖q̄n − q̄‖C0,α(Ω̄) → 0, for from (2.20) we have

‖vn‖C2,α(Ω̄) ≤ C.

On the other hand, f ′(qn)∇vn and f ′(qn) are both bounded in C0,α(Ω̄) independently

of n. Hence, by (2.8), we have

‖q̄n‖C2,α(Ω̄) ≤ C.

Setting wn = q̄n − q̄ we have, by difference from (2.19) and (2.21),

−Δwn + f ′(qn)∇v · ∇wn + f(qn)wn (2.22)

= f ′(qn)∇q̄n · ∇(vn − v) + (f ′(qn)− f ′(q))∇q̄ · ∇v − q̄(f(qn)− f(q)),

wn = 0 on Γ.

Since f ′(qn)∇v and f(qn) are both bounded in C0,α(Ω) by a constant not depending

on n, the Schauder estimate (2.7) applies to (2.22). We claim that the right hand side

of (2.22) tends to zero in C0,α(Ω), for ∇vn → ∇v in C1,α(Ω̄). Moreover, by (2.9) we

have f ′(qn) − f ′(q) = f ′′(ξ)(qn − q) with |f ′′(ξ)| bounded. Since qn → q in C0,α(Ω̄) we

conclude that wn → 0 in C2,α(Ω̄). Hence T is continuous. By the Schauder fixed point

theorem T has a fixed point, which gives a solution to problem (2.11)-(2.14). �
Remark 2.3. It appears natural to look at the limit as the diffusion κ → 0 in problem

(2.11)-(2.14). This is done in [5] for the case f(q) = q. However, the proof of [5] does

not apply to present more general situations.

3. Nonexistence and nonuniqueness for the problem without diffusion. We

consider in this section the one-dimensional counterpart of the problem (1.12)-(1.15), i.e.

−ϕ′′ = q in (0, L), L > 0, (3.1)

ϕ(0) = V, V > 0, (3.2)

ϕ(L) = 0, (3.3)

(f(q)ϕ′)′ = 0 in (0, L), (3.4)

q(0) = qb, qb > 0. (3.5)
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We assume f(q) ∈ C1([0,∞)), f(q) ≥ 0, and y = f(q) globally invertible with inverse

denoted q = g(y). Since E = −ϕ′ is the electric field we have for the unknown current

J ,

J = f(q)E.

Hence, from (3.1)

f(E′) =
J

E
and

dE

dx
= g

( J

E

)
. (3.6)

On the other hand, we have for x = 0,

E(0) =
J

f(qb)
. (3.7)

Separating variables in (3.6) and taking into account (3.7), we get

F(E, J, qe) = x (3.8)

where

F(E, J, qe) =

∫ E

J
f(qb)

dt

g(Jt )
. (3.9)

If F(E, J, qb) = x is solvable with respect to E and we have E = E(x, J, qb), the current-

voltage law is given by

V =

∫ L

0

E(x, J, qb)dx. (3.10)

The total current J in terms of the data V and qb can be obtained from (3.10). We may

well have more than one current J corresponding to the same V . If J̄ is one of these

values the corresponding potential is given by

ϕ(x) = V −
∫ x

0

E(t, J̄, qb)dt.

As a first example, let us assume f(q) = qα with α ≥ 1. Since g(y) = y1/α, in this

case (3.8) reads ∫ E

J
qα
b

dt

(Jt )
1/α

= x,

i.e.
α

(1 + α)J1/α

(
E

1+α
α − J

1+α
α q

−(1+α)
b

)
= x. (3.11)

Solving (3.11) with respect to E we obtain

E =
[1 + α

α
xJ1/α + J

1+α
α q−(1+α)

e

] α
1+α

.

Thus (3.10) now reads∫ L

0

[1 + α

α
xJ1/α + J

1+α
α q−(1+α)

e

] α
1+α

dx = V,
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and, after a simple calculation,

α

(1 + 2α)q1+2α
b

[(
J

2(1+α)
1+2α +

1 + α

α
q1+α
b LJ

1
1+2α

) 1+2α
1+α −

(
J

2(1+α)
1+2α

) 1+2α
1+α

]
= V. (3.12)

If we define

ξ = J
2(1+α)
1+2α , H(ξ) = ξ

1+2α
1+α , G(ξ) =

1 + α

α
Lq1+α

b ξ
1

2(1+α) ,

the equation (3.12) can be rewritten as

α

(1 + 2α)q1+2α
b

[
H(ξ +G(ξ))−H(ξ)

]
= V.

This equation in ξ has for every value of α ≥ 1, qb > 0, L > 0 and V > 0 one and only

one solution as a consequence of the following elementary lemma.

Lemma 3.1. Let H(ξ) ∈ C2((0,∞)) ∪ C0([0,∞)), H ′(ξ) > 0, H ′′(ξ) > 0 for ξ > 0,

G(ξ) ∈ C1((0,∞)) ∪ C0([0,∞)), G(ξ) > 0, G′(ξ) > 0 for ξ > 0. Then the function

F (ξ) = H(ξ +G(ξ))−H(ξ) is strictly increasing.

Proof. Simply note that F ′(ξ) = H ′(ξ +G(ξ))(1 +G′(ξ))−H ′(ξ) ≥ H ′(ξ)G′(ξ). �
Since the right hand side of (3.12) tends to infinity when J tends to infinity, we

conclude that problem (3.1)-(3.5) has one and only one solution if f(q) = qα. Taking the

principal part of the left hand side of (3.12) with respect to J
1

1+α we have

α

1 + α

(1 + α

α

)
L

1+2α
1+α J

1
1+α + o

(
J

1
1+α

)
= V.

Thus, defining

K =
α

1 + 2α

(1 + α

α

) 1+2α
1+α

we have, within the limit of the above approximation,

L
1+2α
1+α KJ

1
1+α = V.

Hence

J = BV 1+α, B =

(
1+2α

α

)1+α(
α

1+α

)1+2α

L1+2α
,

which is compatible with (1.3) and with the result of [13] since 1 + α ≥ 2.

We now consider problem (3.1)-(3.5) when

f(q) =
1

1 + qα
, α ≥ 1. (3.13)

This will give an example of nonuniqueness and of nonexistence. Let α > 1. We have

g(y) =
(1− y

y

)1/α

and, by (3.8) and (3.9), ∫ E

J(1+qαb )

( t− J

J

)−1/α

= x,

i.e.
Jα

α− 1

[(E − J

J

)α−1
α −qα−1

b

]
= x.
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Solving with respect to E we obtain

E = J +
γ

Jα−1
(x+ β)

α
α−1

where

β = qα−1
e , γ =

(α− 1

α

) α
α−1

.

From (3.10) we have, in this case,∫ L

0

[
J +

γ

Jα−1
(x+ β)

α
α−1

]
dx = V (3.14)

or

F(J) = V

where

F(J) = JL+MJ
1

1−α and M =
γ(α− 1)

2α− 1

[
(L+ β)

2α−1
α−1 − β

2α−1
α−1

]
> 0. (3.15)

Since 1
1−α < 0 by (3.13) we obtain for F(J) the graph of Figure 1. We conclude that if

0 < V < F(Jc) where Jc =
(Lα− L

M

) 1−α
α

> 0

problem (3.1)-(3.5) (when f(q) = 1
1+qα , α > 1) has no solution. If

JJc

V=F(J)

V

Fig. 1

F(Jc) < V

the same problem has exactly two solutions. The case α = 1 is better treated separately,

for from (3.14) and (3.15) we have the linear equation

Jϕ′′ − ϕ′ − J = 0. (3.16)

Taking into account the boundary conditions (3.2), (3.3) and (3.5) we obtain

F1(J) = V (3.17)

where now

F1(J) = qbJ
2
(
e

L
J − 1

)
+JL.
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It is easily seen that for every qb > 0, L > 0 there exists V̄ > 0 such that if 0 ≤ V < V̄

the equation (3.17), and therefore problem (3.1)-(3.5), has no solution. If V > V̄ the

equation (3.17), and therefore problem (3.1)-(3.5), has one and only one solution.

4. The problem with other boundary conditions. The system of partial differ-

ential equations

−Δϕ = q in Ω, (4.1)

−κΔq −∇ · (f(q)∇) = 0 in Ω (4.2)

can, in principle, be supplemented also with boundary conditions of the Dirichlet-

Neumann type. Let Γ, the boundary of Ω, consist of two regular surfaces Γ1 and Γ2

such that Γ1 ⊂ Γ2 and Γ1 ∩ Γ2 = ∅, Γ2 
= ∅. We could add to (4.1) and (4.2) e.g. the

conditions

ϕ = ϕb, q = qb on Γ2,
dϕ

dn
= 0,

dq

dn
= 0 on Γ1. (4.3)

Using the Schauder estimates for elliptic second-order equations with mixed boundary

conditions, a theorem of existence of a weak solution for problem (4.1), (4.2), (4.3) can

be proved.

In this last section we prefer to propose a nonstandard formulation for the problem

without diffusion. Let the potential ϕ be given on Γ1 and Γ2,

ϕ = V on Γ1, ϕ = 0 on Γ2, (4.4)

where V > 0 is a constant. We assume J·n to be assigned on Γ1, where n is the unit vector

normal to Γ1 pointing outward with respect to Ω. Recalling that J = −f(−Δϕ)∇ϕ we

obtain

∇ · (f(−Δϕ)∇ϕ) = 0 in Ω (4.5)

and

−f(−Δϕ)
dϕ

dn
= K on Γ1. (4.6)

We show in the next example that, in certain cases, this problem has a unique solution.

Let f(q) = q, Ω = {(ρ, θ), 1 < ρ < R, 0 ≤ θ < 2π}, Γ1 = {(1, θ), 0 ≤ θ < 2π},
Γ2 = {(R, θ), 0 ≤ θ < 2π}, R > 1, K > 0. If we search for a solution depending only on

ρ, equation (4.5) takes the form

1

ρ

d

dρ

(
ρ
(1

ρ

d

dρ

(
ρ
dϕ

dρ

))dϕ

dρ

)
= 0. (4.7)

The conditions (4.4) become

ϕ(1) = V, V > 0, (4.8)

ϕ(R) = 0. (4.9)

Moreover (4.6) gives
d

dρ

(
ρ
dϕ

dρ

)dϕ

dρ

∣∣∣
ρ=1

= K. (4.10)

From (4.10) and (4.7) we have

d

dρ

(
ρ
dϕ

dρ

)dϕ

dρ
= K for 1 < ρ < R. (4.11)
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The problem (4.11), (4.8) and (4.9) can be solved elementarily. In fact, from (4.11) we

have (dϕ

dρ

)2

+
1

2
ρ
d

dρ

(dϕ

dρ

)2

= K (4.12)

or, if we define z =
(

dϕ
dρ

)2

,

z +
ρ

2

dz

dρ
= K. (4.13)

This gives

z(ρ) = K +
ξ

ρ2
(4.14)

and

dϕ

dρ
= −

√
Kρ2 + ξ

ρ2
. (4.15)

Integrating and taking into account (4.9) and (4.8) we obtain for the determination of

the constant of integration ξ the equation

h(ξ;K,R) = V, (4.16)

where

h(ξ;K,R)=
√
KR2 + ξ−

√
ξ ln

2(ξ+
√
ξ
√
KR2 + ξ)

R
−

√
K +ξ+

√
ξ ln 2(ξ+

√
ξ
√
K+ξ).

(4.17)

For every fixed R > 1 and K > 0 the function h(ξ,K,R) is strictly increasing in 0 < ξ <

∞. Moreover,

lim
ξ→0+

h(ξ,K,R) =
√
K(R− 1), (4.18)

lim
ξ→∞

h(ξ,K,R) = ∞. (4.19)

We conclude that if

0 < V <
√
K(R− 1)

the problem (4.7)-(4.10) has no solution. If
√
K(R− 1) ≤ V < ∞

the problem (4.7)-(4.10) has one and only one solution. The one-dimensional analogue

of the problem is easily stated with Ω = (0, L). We find a similar result of existence and

of nonexistence. If

0 < V <
2

3
2L

3
2K

1
2

3
the problem has no solution. If

2
3
2L

3
2K

1
2

3
≤ V < ∞

the problem has one and only one solution. These examples suggest that the problem

may have solutions also in other doubly connected plane domains.
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[8] C. B. Duke, Tunneling in solids, Academic Press, New York and London, 1969.
[9] N. Felici, Recent advances in analysis of DC ionized electric fields, I, Direct Currents, September

1963, 252-260.
[10] N. Felici, Recent advances in analysis of DC ionized electric fields, II, Direct Currents, October

1963, 278-287.

[11] H. Fritzsche and Stanford R. Ovshinsky, A sketch, Phys. Status Solidi B 249 (2012), 1827-1830.
[12] T. W. Hickmott, Low-frequency negative resistance in thin anodic oxide films, J. Appl. Phys. 33

(1962), 2669-2682.
[13] A. A. Milgram and C. Lu, Field effect and electrical conduction mechanism in discontinuous thin

metal films, J. Appl. Phys. 37 (1966), 4773-4779.
[14] D. B. Strukov, G. S. Sneider, D. R. Stewart, and R. S. Williams, The missing memristor found,

Nature 453 (2008), 80-83.
[15] Olga A. Ladyzhenskaya and Nina N. Ural′tseva, Linear and quasilinear elliptic equations, translated

from the Russian by Scripta Technica, Inc., translation editor: Leon Ehrenpreis, Academic Press,
New York-London, 1968. MR0244627 (39 #5941)

http://www.ams.org/mathscinet-getitem?mr=0233554
http://www.ams.org/mathscinet-getitem?mr=0233554
http://www.ams.org/mathscinet-getitem?mr=1159834
http://www.ams.org/mathscinet-getitem?mr=1159834
http://www.ams.org/mathscinet-getitem?mr=1036238
http://www.ams.org/mathscinet-getitem?mr=1036238
http://www.ams.org/mathscinet-getitem?mr=983746
http://www.ams.org/mathscinet-getitem?mr=983746
http://www.ams.org/mathscinet-getitem?mr=1052510
http://www.ams.org/mathscinet-getitem?mr=1052510
http://www.ams.org/mathscinet-getitem?mr=0244627
http://www.ams.org/mathscinet-getitem?mr=0244627

	1. Introduction
	2. Existence and uniqueness of solutions for the problem with diffusion
	3. Nonexistence and nonuniqueness for the problem without diffusion
	4. The problem with other boundary conditions
	References

