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Abstract. In this paper, we study the long-time behavior of solutions to the fast

diffusion equation with a memory boundary condition. The problem corresponds to a

model introduced in previous studies of tumor-induced angiogenesis. We establish global

existence and finite time blow-up results for the problem.

1. Introduction. In this paper, we study the long-time behavior of solutions to the

fast diffusion equation with a memory boundary condition:

ut = Δ(um) x ∈ Ω, t > 0,

∇(um) · n = uq(x, t)

∫ t

0

up(x, s)ds x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω,

(1.1)

where 0 < m < 1, p > 0, q ≥ 0, Ω is a bounded domain in R
N with smooth boundary

∂Ω, and n is the outward normal. The initial condition u0 is a nonnegative, continuous

function on Ω.

Our first motivation for the study of (1.1) comes from a previously introduced model

of capillary growth in solid tumors as initiated by angiogenesis growth factor [5], wherein

Levine et al. developed a model for the transmission of growth factor across a capillary

wall that takes the following form:

ut = ∇ · (∇φ(x, t, u) + b(x, t, u)) + h(x, t, u) x ∈ Ω, t > 0,

(∇φ(x, t, u) + b(x, t, u)) · n = g(x, t, u, v) x ∈ ∂Ω, t > 0,

u = u0 x ∈ Ω

(A)
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with gv ≥ 0 on ∂Ω× {t > 0}; gv ≡ 0 on (∂Ω \ Σ)× {t > 0}; and

vt = f(x, t, u, v) +G(u)t x ∈ Σ, t > 0,

v = v0 x ∈ Σ.
(B)

Here, Σ is a relatively open subset of ∂Ω, which represents the capillary wall.

In (B), if we let

v(x, t) ≡
∫ t

0

up(x, s)ds

and Σ = ∂Ω, then the problem (1.1) may be seen to be of the type (A)-(B) with φ = um,

g = uqv, f = up, G = 0, and v0 = 0.

Our second motivation comes from a corresponding localized model which has been

extensively studied in the literature:

ut = Δ(um) x ∈ Ω, t > 0,

∇(um) · n = uq+p x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) x ∈ Ω.

(1.2)

For the one-dimensional case, in [4] by introducing auxiliary functions and the comparison

principle, Filo proved that if p+ q < (m+1)/2, every solution of (1.2) is global, whereas

if p + q > (m + 1)/2, all solutions blow up in finite time. Wu [8] then showed that

the critical exponent p + q = (m + 1)/2 belongs to the global existence case. Later,

Wolanski [7] generalized these results to an N-dimensional ball via integral estimates and

the maximum principle. For a general bounded domain Ω in R
N , Wang [6] successfully

established the same results by constructing suitable supersolutions and subsolutions.

Because of the presence of the memory term in (1.1), however, all the arguments used

for the localized model (1.2) seem not applicable to (1.1). Therefore, for (1.1) in one-

dimensional space, we developed various integral estimates to prove the global existence

result and constructed appropriate subsolutions to show finite time blow-up in [3]. It

turns out that our results for (1.1) in one-dimensional space are the same as those in

[4,8] for (1.2). Nevertheless, certain techniques used in [3] cannot be extended to (1.1) in

N-dimensional space. Hence, our main objective here is to establish the global existence

and blow-up results for (1.1) on Ω ∈ R
N . Specifically, in the sequel we will establish the

following results.

Theorem 1.1. If p + q < (m + 1)/2, every solution of (1.1) exists globally, whereas if

p+ q > (m+ 1)/2, all solutions of (1.1) blow up in finite time.

The critical case p + q = (m + 1)/2 cannot be discussed by the techniques employed

in the current work, and it will be left for a future study.

2. Proof of global existence for p + q < (m + 1)/2. In order to carry out our

program, we first present an important property possessed by solutions of problem (1.1),

which will be used in the sequel.
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Lemma 2.1. Let u(x, t) be the solution of the following problem:

ut = Δ(um) x ∈ Ω, t > 0,

∇(um) · n = uq(x, t)

∫ t

0

up(x, s)ds x ∈ ∂Ω, t > 0,

u(x, 0) ≡ c x ∈ Ω,

(2.1)

where 0 < m < 1, p > 0, q ≥ 0, and c is a positive constant. Then u(x, t) is nondecreasing

in time.

Proof. By the subsolution comparison principle established in [2], it is easy to see that

the solution of (2.1) satisfies u(x, t) ≥ c. Let v(x, t) = u(x, t+κ) (κ > 0); then v satisfies

vt = Δ(vm) and v(x, 0) = u(x, κ) ≥ c.

Moreover, for x ∈ ∂Ω,

∇(vm) · n = uq(x, t+ κ)

∫ t+κ

0

up(x, s)ds ≥ vq(x, t)

∫ t

0

up(x, s)ds.

By the comparison principle for the fast diffusion equation with a local boundary condi-

tion (cf. [1]), v(x, t) ≥ u(x, t) for x ∈ Ω, t ≥ 0, which implies that u is nondecreasing in

t. �
Clearly, the solution of (1.1) is a subsolution of the following problem:

ut = Δ(um) x ∈ Ω, t > 0,

∇(um) · n = uq(x, t)

∫ t

0

up(x, s)ds x ∈ ∂Ω, t > 0,

u(x, 0) = ‖u0‖∞ x ∈ Ω.

(2.2)

Furthermore, by Lemma 2.1, the solution of (2.2) satisfies∫ t

0

up(x, s)ds ≤
∫ t

0

up(x, t)ds = tup(x, t).

Thus, by the comparison principle for the fast diffusion equation with a local boundary

condition, to establish the global existence result for (1.1), it suffices to study the following

problem: ⎧⎪⎪⎨
⎪⎪⎩

ut = Δ(um) x ∈ Ω, t > 0,

∇u · n =
t

m
u1−m+p+q(x, t) x ∈ ∂Ω, t > 0,

u(x, 0) = ‖u0‖∞ x ∈ Ω.

(2.3)

Since (2.3) is a localized problem, motivated by [6], we seek a global supersolution of

(2.3). Consider two cases.

Case 1 (p+ q ≤ m). Let α = 1−m+ p+ q; then 0 < α ≤ 1. We define ϕ to satisfy

the following: ⎧⎨
⎩ϕ′(ζ) =

1

m
ϕα(ζ) ζ > 0,

ϕ(0) = ‖u0‖∞.
(2.4)

Then ϕ(ζ) exists globally, and limζ→∞ ϕ(ζ) = ∞.
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Let h(x) be the solution of the problem{
Δh = k in Ω,

∇h · n = 1 on ∂Ω,
(2.5)

where k = |∂Ω|/|Ω|. Since h(x) + c is also a solution of (2.5) for any positive constant c,

we may assume that h(x) > 0 on Ω.

We then let g(t) be the solution of the following problem:{
g′(t) = (k + L2)

[
mϕm−1 (g(t)) + (m+ α− 1)ϕm+α−2 (g(t))

]
t > 0,

g(0) = 0,

where L = maxΩ (h(x) + |∇h(x)|). In view of (2.4), since m + α − 1 = p + q < 1,

m+ 2α − 2 = 2(p+ q) −m < 1, g(t) exists globally. We now construct a supersolution

of (2.3) as follows:

ū(x, t) = ϕ
(
g(t3 + t2) + th(x)

)
.

For simplicity, let s = t3 + t2 and τ = g(s) + th(x). Then by (2.4) and (2.5), we have

that

ūt = ϕ′(τ )
[
g′(s)(3t2 + 2t) + h(x)

]
,

∇ū = tϕ′(τ )∇h(x),

Δū =
α

m
t2ϕα−1(τ )ϕ′(τ )|∇h|2 + ktϕ′(τ ).

Thus we further have

Δ (ūm) = mūm−1Δū+m(m− 1)ūm−2|∇ū|2

= ϕ′(τ )
[
mktϕm−1(τ ) + (m+ α− 1)t2ϕm+α−2(τ )|∇h|2

]
.

Since m < 1, m+ α − 2 = p+ q − 1 < 0, h(x) > 0, and ϕ′(τ ) > 0, we then find that on

Ω× {t > 0},

ūt ≥ ϕ′(τ )(3t2 + 2t)g′(s)

= ϕ′(τ )(3t2 + 2t)(k + L2)
[
mϕm−1(g(s)) + (m+ α− 1)ϕm+α−2(g(s))

]
≥ ϕ′(τ )(3t2 + 2t)(k + L2)

[
mϕm−1(τ ) + (m+ α− 1)ϕm+α−2(τ )

]
≥ Δ(ūm) .

Furthermore, on the parabolic boundary, we have

∇ū · n = tϕ′(τ )∇h · n =
t

m
ϕα(τ ) =

t

m
ū1−m+p+q(x, t) x ∈ ∂Ω, t > 0

and

ū(x, 0) = ϕ(0) = ‖u0‖∞ x ∈ Ω.

Hence, ū(x, t) is a desired supersolution of problem (2.3).

Case 2 (m < p+ q < (m+1)/2). Again let α = 1−m+ p+ q; then α > 1. We define

ϕ(ζ) to be

ϕ(ζ) =

[
ε+

1

m
(1− α)ζ

] 1
1−α

, ζ ≥ 0,
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where ε > 0 is sufficiently small. Let ζ0(ε) = mε/(α− 1). Then ϕ(ζ) → ∞ as ζ → ζ0(ε),

and

ϕ′(ζ) =
1

m
ϕα(ζ), ζ > 0. (2.6)

Let λ0 be the first eigenvalue of the Laplace equation with homogeneous Dirichlet

boundary condition and h0 be the corresponding eigenfunction, that is,{
Δh0 = −λ0h0 x ∈ Ω,

h0 = 0 x ∈ ∂Ω.

Then λ0 > 0, h0 > 0 in Ω, and ∇h0 · n < 0 on ∂Ω. Without loss of generality,

we may assume h0(x) ≤ 1/2. We then introduce the notation c1 = maxΩ |∇h0(x)|,
c2 = min∂Ω(−∇h0 · n) > 0, and l = 1/c2.

We now let g(t) be the solution of the problem⎧⎨
⎩ g′(t) = M

[
ε+

1

m
(1− α)g(t)

]
= Mϕ1−α(g(t)) t > 0,

g(0) = 0,

where M is a positive constant to be determined. Specifically, g takes the form

g(t) =
mε

[
1− e−

M
m (α−1)t

]
α− 1

<
mε

α− 1
= ζ0(ε),

and limt→∞ g(t) = ζ0(ε).

We then construct a supersolution u(x, t) of (2.3) as follows:

u(x, t) = ϕ
(
g(t3 + t2) + δt(1− h0(x))

l/δ
)

=

[
εe−

M
m (α−1)(t3+t2) − δt(α− 1)

m
(1− h0(x))

l/δ

] 1
1−α

.

Here δ = εγ with γ = (2−m− α)/(α− 1) = [1 − (p+ q)]/[(p+ q)−m] > 1. To ensure

the positivity of ū, it suffices to require that

εe−
M
m (α−1)(t3+t2) − δt(α− 1)

m
(1− h0)

l/δ > εe−
M
m (α−1)(t3+t2) − δt(α− 1)

m
> 0,

or equivalently,

M

m
(α− 1)(t3 + t2) + ln t < − ln

(
α− 1

m
εσ−1

)
. (2.7)

Since ln t < t, if M is large enough such that M(α− 1)/m ≥ 1, then (2.7) is valid if we

require that

M

m
(α− 1)(t3 + t2 + t) <

M

m
(α− 1)(t+ 1)3 < − ln

(
α− 1

m
εγ−1

)
.

Therefore, for sufficiently small ε we set

T (ε) =

[
− m

M(α− 1)
ln

(
α− 1

m
εγ−1

)]1/3
− 1.
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Then, ū(x, t) exists on Ω× [0, T (ε)) and is positive there. For simplicity, let s = t3 + t2

and τ = g(s)+ δt(1− h0(x))
l/δ. Making use of (2.6) and the equation Δh0 = −λ0h0, we

have

ūt = ϕ′(τ )
[
g′(t)(3t2 + 2t) + δ(1− h0)

l/δ
]
,

∇ū = − lϕ′(τ )t(1− h0)
(l−δ)/δ∇h0,

Δū =
α

m
l2ϕα−1(τ )ϕ′(τ )t2(1− h0)

2(l−δ)/δ|∇h0|2

+ l

(
l − δ

δ

)
ϕ′(τ )t(1− h0)

(l−2δ)/δ|∇h0|2

+ lλ0ϕ
′(τ )t(1− h0)

(l−δ)/δh0.

Thus, we further have

Δ (ūm) = mūm−1Δū+m(m− 1)ūm−2|∇ū|2

= ϕ′(τ )
[
l2(m+ α− 1)ϕm+α−2(τ )t2(1− h0)

2(l−δ)/δ|∇h0|2

+ml

(
l − δ

δ

)
ϕm−1(τ )t(1− h0)

(l−2δ)/δ|∇h0|2

+ mlλ0ϕ
m−1(τ )t(1− h0)

(l−δ)/δh0

]
≤ lϕ′(τ )

[
lc21(m+ α− 1)ϕm+α−2(τ ) +m

l

δ
c21ϕ

m−1(τ ) +mλ0ϕ
m−1(τ )

]
(t2 + t).

Since m+ 2α− 3 = 2(p+ q)−m− 1 < 0 and (m+ α− 2)/(1− α) = γ, if ε ≤ 1, we find

that

ϕm+α−2(τ ) = ϕ1−α(τ )

[
ε+

1

m
(1− α)τ

](m+2α−3)/(1−α)

≤ ϕ1−α(τ )ε(m+2α−3)/(1−α)

≤ ϕ1−α(τ )

(2.8)

and

ϕm−1(τ ) = ϕ1−α(τ )

[
ε+

1

m
(1− α)τ

](m+α−2)/(1−α)

≤ ϕ1−α(τ )ε(m+α−2)/(1−α)

= δϕ1−α(τ ).

(2.9)

In view of (2.8) and (2.9), we then find

Δ(ūm) ≤ l
[
lc21(m+ α− 1) +mlc21 +mλ0

]
ϕ′(τ )ϕ1−α(τ )(t2 + t).

If we choose M = max
{
m/(α− 1), l

[
lc21(m+ α− 1) +mlc21 +mλ0

]}
, then M is inde-

pendent of ε. Since 1 − α < 0, τ ≥ g(s), and ϕ′(τ ) > 0, we further find that on
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Ω× (0, T (ε)),

Δ(ūm) ≤ Mϕ′(τ )ϕ1−α(τ )(t2 + t)

≤ Mϕ′(τ )ϕ1−α(g(s))(t2 + t)

≤ ϕ′(τ )g′(s)(t2 + t)

≤ ūt.

On the other hand, by (2.6) and the fact that h0 = 0 on ∂Ω, we have that for

(x, t) ∈ ∂Ω× (0, T (ε)),

∇ū · n = lϕ′(τ )t(−∇h0 · n)

≥ t

m
lc2ϕ

α(τ )

=
t

m
ϕα(τ )

=
t

m
ū1−m+p+q(x, t).

Moreover, if ε is sufficiently small, we have

ū(x, 0) = ϕ(0) = ε
1

1−α ≥ ‖u0‖∞.

Hence, ū(x, t) is indeed a supersolution of problem (2.3), and it follows that the solution

u(x, t) of problem (1.1) exists on Ω× [0, T (ε)). Because T (ε) → ∞ as ε → 0, the solution

u(x, t) of (1.1) exists globally.

3. Proof of blow-up in finite time for p+ q > (m+ 1)/2. In order to show that

the solution of problem (1.1) blows up in finite time, by the subsolution comparison

principle established in [2] and Lemma 2.1, it suffices to consider the following problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = Δ(um) x ∈ Ω, t > 0,

∇u · n =
1

m

∫ t

0

u1−m+p+q(x, s)ds x ∈ ∂Ω, t > 0,

u(x, 0) = min
Ω

u0(x) x ∈ Ω.

(3.1)

As in [3], we construct a subsolution of (3.1), which blows up in finite time. Consider

two cases.

Case 1 ((m+ 1)/2 < p+ q < 2−m). We define ϕ to satisfy the following:⎧⎪⎨
⎪⎩

ϕ(ζ) ≡ σ 0 ≤ ζ ≤ 1,

ϕ′(ζ) =
1

m

∫ ζ

1

ϕα(s)ds ζ > 1,

where σ = minΩ u0(x) > 0 and α = 2(1 + p + q − 2m)/3 + 1. Since 0 < m < 1 and

p+ q > (m+ 1)/2 > m, α > 1. Clearly,

ϕ′′(ζ) ≡ 0 for 0 ≤ ζ < 1 and ϕ′′(ζ) =
1

m
ϕα(ζ) for ζ > 1. (3.2)
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Multiplying the second equation in (3.2) by ϕ′(ζ) and integrating over (1, ζ), we obtain

ϕ′(ζ) =

[
2

m(α+ 1)

(
ϕα+1(ζ)− σα+1

)] 1
2

for ζ > 1. (3.3)

We then have that for ζ > 1,

ϕ′(ζ) ≤
√

2

m(α+ 1)
ϕ

α+1
2 (ζ). (3.4)

On the other hand, since ϕ′(ζ) > 0 for ζ > 1 and ϕ(1) = σ, there exists ζ1 > 1 such

that ϕ(ζ1) = 2σ. In view of (3.3), we then have that for ζ ≥ ζ1,

ϕ′(ζ) ≥
{

2

m(α+ 1)

[
ϕα+1(ζ)−

(
ϕ(ζ)

2

)α+1
]} 1

2

=

[
2

m(α+ 1)

(
1− 1

2α+1

)
ϕα+1(ζ)

] 1
2

≥
√

1

m(α+ 1)
ϕ

α+1
2 (ζ).

(3.5)

Let c3 =
√

1
m(α+1) and c4 =

√
2

m(α+1) . By (3.4) and (3.5), we obtain

c3ϕ
α+1
2 (ζ) ≤ ϕ′(ζ) ≤ c4ϕ

α+1
2 (ζ) for ζ ≥ ζ1. (3.6)

We then integrate the above inequality from ζ1 to ζ to find that for ζ ≥ ζ1,{
c3(α−1)

2

[
2(2σ)

1−α
2

c3(α−1) + ζ1 − ζ

]} 2
1−α

≤ ϕ(ζ) ≤
{

c4(α−1)
2

[
2(2σ)

1−α
2

c4(α−1) + ζ1 − ζ

]} 2
1−α

.

(3.7)

Since α > 1, the lower bound on ϕ(ζ) in (3.7) shows that ϕ(ζ) blows up in finite time.

Thus, there exists ζ̂ > ζ1 such that if ζ → ζ̂, ϕ(ζ) → ∞. Let g(t) be the solution of the

following problem:{
g′(t) = Mϕm−1+α−1

2 (g(t) + 1) t > 0,

g(0) = 0,
(3.8)

where M (> 0) is to be determined, and m− 1 + (α− 1)/2 = (p+ q +m− 2)/3 < 0. In

view of the upper bound on ϕ in (3.7), there exists t1 > 0 such that g(t1) + 1 = ζ1 and

g(t) + 1 ≥ ζ1 for t ≥ t1. Applying the lower bound on ϕ in (3.7), we have

g′(t) ≤ M

{
c3(α− 1)

2

[
2(2σ)

1−α
2

c3(α− 1)
+ ζ1 − g(t)− 1

]} 2m+α−3
1−α

.

Since p+ q > (m+ 1)/2, (2m+ α− 3)/(1− α) = (2− p− q −m)/(1 + p+ q − 2m) < 1.

Thus, g(t) exists for all t ≥ 0, which, in conjunction with (3.7), implies that there exists

T < ∞ such that g(T ) + 1 = ζ̂.
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We then introduce a function h1(x) defined by

h1(x) = x1 + x2 + · · ·+ xN for x = (x1, x2, . . . , xN ) ∈ Ω

and we let λ = min{1/N, 1/2Nd}, where d > |xi| (1 ≤ i ≤ N) for x ∈ Ω. Then λ|h1(x)|
≤ λNd ≤ 1/2, and it follows that there exists η ≥ 1/2 such that 0 ≤ η + λh1(x) ≤ 1 for

x ∈ Ω and η +maxΩ{λh1(x)} = 1. We now construct a subsolution of (3.1) as follows:

u(x, t) = ϕ(g(t) + η + λh1(x)) x ∈ Ω, 0 ≤ t < T.

For simplicity, let τ = g(t) + η + λh1(x). Then we find that

ut = ϕ′(τ )g′(t), ∇u = λϕ′(τ )∇h1, and Δu = λ2ϕ′′(τ )|∇h1|2.

If 0 < τ ≤ 1, since ϕ′(τ ) = ϕ′′(τ ) = 0, one can see that ut = Δ(um). If τ > 1, in view

of (3.2), (3.3), and (3.6), we have that

Δ (um) = mum−1Δu+m(m− 1)um−2|∇u|2

= mλ2ϕm−1(τ )ϕ′′(τ )|∇h1|2 +m(m− 1)λ2ϕm−2(τ ) (ϕ′(τ ))
2 |∇h1|2

= λ2ϕm+α−1(τ )|∇h1|2 +
2(m− 1)

α+ 1
λ2ϕm−2(τ )

[
ϕα+1(τ )− σα+1

]
|∇h1|2

=
2m+ α− 1

α+ 1
λ2ϕm+α−1(τ )|∇h1|2 +

2(1−m)

α+ 1
λ2σα+1ϕm−2(τ )|∇h1|2

≥ Nλ2(2m+ α− 1)

α+ 1
ϕm+α−1(τ )

≥ Mϕm−1+α−1
2 (τ )ϕ′(τ ),

(3.9)

where M = min{1, Nλ2(2m + α − 1)/c4(α + 1)}, which depends only on m, p, q, σ,N ,

and d. Since m− 1 + (α− 1)/2 = (p+ q +m− 2)/3 < 0 and ϕ′ > 0, one can see that

ut = Mϕm−1+α−1
2 (g(t) + 1)ϕ′(τ ) ≤ Δ(um).

Thus, we find that ut ≤ Δ(um) a.e. in Ω× (0, T ).

On the parabolic boundary, we have that for x ∈ ∂Ω, 0 < t < T ,

∇u · n = λϕ′(τ )∇h1 · n ≤ λN

m

∫ τ

1

ϕα(ξ)dξ

≤ 1

m

∫ t

0

ϕα(g(s) + η + λh1(x))g
′(s)ds

=
M

m

∫ t

0

ϕα(g(s) + η + λh1(x))ϕ
m−1+α−1

2 (g(s) + 1)ds

≤ M

m

∫ t

0

ϕm−1+ 3α−1
2 (g(s) + η + λh∗(x))ds

≤ 1

m

∫ t

0

u1−m+p+q(x, s)ds,

(3.10)

and for x ∈ Ω,

u(x, 0) = ϕ(η + λh1(x)) ≤ ϕ(1) = σ ≤ u0(x).
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Hence, u(x, t) is indeed a subsolution of (3.1). Since ϕ(ζ) → ∞ as ζ → ζ̂, and g(T )+η+

maxΩ{λh1(x)} = g(T ) + 1 = ζ̂, u(x, t) blows up in finite time, and so does the solution

u(x, t) of (1.1).

Case 2 (p+ q ≥ 2−m). We define ϕ to satisfy the following:⎧⎪⎨
⎪⎩

ϕ(ζ) ≡ σ 0 ≤ ζ ≤ 1,

ϕ′(ζ) =
1

m

∫ ζ

1

ϕα(s)ds ζ > 1,

where σ = minΩ u0(x) and α = 1 −m + p + q. Since p + q ≥ 2 −m > (m + 1)/2 > m,

α > 1. Analogously as in Case 1, there exist ζ2 > 1 and ζ̃ > ζ2 such that ϕ(ζ2) = 2σ

and ϕ(ζ) → ∞ as ζ → ζ̃. In addition, we have

c3ϕ
α+1
2 (ζ) ≤ ϕ′(ζ) ≤ c4ϕ

α+1
2 (ζ) for ζ ≥ ζ2. (3.11)

Let h1(x), λ, and η be the same as in Case 1. We then construct a subsolution of (3.1)

as follows:

u(x, t) = ϕ(μt+ η + λh1(x)),

where μ is a positive constant to be chosen. For simplicity, we let τ = μt+ η + λh1(x).

Repeating the same process as (3.9), we find

Δ (um) ≥ Nλ2(2m+ α− 1)

(α+ 1)
ϕm+α−1(τ ).

Sincem−1+(α−1)/2 = (p+q+m−2)/2 ≥ 0 and ϕ′ ≥ 0, taking (3.11) into consideration,

we have

ut = μϕ′(τ ) ≤ Δ(um) ,

where the positive constant μ is chosen as

μ = min

{
1,

Nλ2(2m+ α− 1)

c4(α+ 1)
σm−1+α−1

2

}
.

On the other hand, we have that

∇u · n = λϕ′(τ )∇h1 · n ≤ λN

m

∫ τ

1

ϕα(ξ)dξ

≤ μ

m

∫ t

0

ϕα(μs+ η + λh1(x))ds

≤ 1

m

∫ t

0

u1−m+p+q(x, s)ds

and

u(x, 0) = ϕ(η + λh1(x)) ≤ ϕ(1) = σ.

Thus, u(x, t) is a subsolution of (3.1). Clearly, there exists 0 < T < ∞ such that

μT + η + maxΩ{λh1(x)} = ζ̃, which implies that u(x, t) blows up in finite time. The

proof is completed.
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