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Abstract. We investigate the partial reachability of a thermoelastic plate with mem-

ory, a variant of a system studied earlier by Lagnese and Lions (1988) without memory.

The well posedness of the system is established by transposition after having established

the well posedness of the adjoint system by using Volterra equations and the Galerkin

method. The partial reachability is deduced from classical theorems on Kirchhoff plates

by a perturbation technique.

1. Introduction. The purpose of this paper is to investigate the reachability of the

following system: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w′′ − γΔw′′ +Δ2w + β1Δθ = 0 in Q,

β2θ
′ − β0Δθ − k ∗Δθ − β3Δw′ = 0 in Q,

w = 0, ∂w
∂ν = u and θ = 0 on Σ,

w(0) = w′(0) = θ(0) = 0 on Ω.

(1.1)

Here Ω is a bounded open domain of Rn with a boundary Γ of class C2, T > 0 is a

given number, Q = (0, T ) × Ω, Σ = (0, T ) × Γ, β0, β1, β2, β3, γ are positive constants,

ν denotes the outward unit normal vector to Γ, the Laplacian operator Δ acts on the
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space variables, k : [0, T ] → R is a continuously differentiable function with k(0) �= 0,

and the convolution product is defined by the formula

(k ∗ g)(x, t) :=
∫ t

0

k(t− s)g(x, s) ds.

This system is a memory-containing version of a model formerly investigated by Lagnese

and Lions [12].

We study the set of final states (w(T ), w′(T )) when v runs over some natural set of

controls.

Following the important work of Dafermos [5] on linear thermoelasticity systems, many

models of thermoelastic plates have already been investigated by various methods: see,

e.g., [1]–[4], [6]–[10], [12]–[13], [16] and their references. Our result, related to one of the

first models, seems to be new.

2. Adjoint system. We will define the solutions of the system (1.1) by the transpo-

sition method. For this we introduce a dual system by the following formal computation.

Let ϕ, ψ be two functions in Q, satisfying the boundary conditions

ϕ =
∂ϕ

∂ν
= ψ = 0 on Σ.

If (w, θ) solves (1.1), then multiplying (1.1)1 by ϕ, (1.1)2 by ψ and integrating by parts

their sum, we obtain the following identity:

0 =

∫
Q

(
w′′ − γΔw′′ +Δ2w + β1Δθ

)
ϕ+ (β2θ

′ − β0Δθ − k ∗Δθ − β3Δw′)ψ dQ

=

∫
Q

w
(
ϕ′′ − γΔϕ′′ +Δ2ϕ+ β3Δψ′)+ θ (−β2ψ

′ − β0Δψ − k ◦Δψ + β1Δϕ) dQ

+

∫
Ω

w′(ϕ− γΔϕ) + w(ϕ′ − γΔϕ′) + (β2θ − β3Δw)ψ dx |t=T

+

∫
Σ

∂w

∂ν
Δϕ dΣ,

where we use the notation

(k ◦ g)(x, t) :=
∫ T

t

k(s− t)g(x, s) ds.

Hence, if ϕ, ψ solve the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ′′ − γΔϕ′′ +Δ2ϕ+ β3Δψ′ = 0 in Q,

−β2ψ
′ − β0Δψ − k ◦Δψ + β1Δϕ = 0 in Q,

ϕ = ∂ϕ
∂ν = ψ = 0 on Σ,

ϕ(T ) = ϕ0, ϕ′(T ) = ϕ1 and ψ(T ) = ψ0 on Ω,

(2.1)

then we obtain the simple identity∫
Ω

w′(ϕ− γΔϕ) + w(ϕ′ − γΔϕ′) + (β2θ − β3Δw)ψ dx |t=T = −
∫
Σ

vΔϕ dΣ. (2.2)
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Moreover, this identity and its proof remain valid if we replace T by any 0 < T ′ < T and

Q, Σ by (0, T ′)× Ω and (0, T ′)× Γ, respectively:∫
Ω

w′(ϕ− γΔϕ) + w(ϕ′ − γΔϕ′) + (β2θ − β3Δw)ψ dx |t=T ′ (2.3)

= −
∫ T ′

0

∫
Γ

vΔϕ dΓ dt.

Let us investigate the well posedness of the adjoint system (2.1). We are going to

establish the following:

Proposition 2.1. For any given ϕ0, ϕ1 and ψ0 satisfying

ϕ0 ∈ H2
0 (Ω), ϕ1 ∈ H1

0 (Ω) and ψ0 ∈ H1
0 (Ω), (2.4)

the system (2.1) has a unique solution satisfying

(ϕ, ϕ′, ψ, ψ′) ∈ C([0, T ];H2
0 (Ω)×H1

0 (Ω)×H1
0 (Ω)× L2(Ω))

and

ψ′ ∈ L2(0, T ;H1
0 (Ω)).

Furthermore, the linear map

(ϕ0, ϕ1, ψ0) �→ (ϕ, ϕ′, ψ, ψ′)

is continuous for the indicated topologies.

For the proof of the Proposition 2.1 we will use the following classical lemma on the

Volterra equation

r(t)−
∫ t

0

K(t, s)r(s) ds = f(t), t ∈ [0, T ]. (2.5)

Lemma 2.2. If K : [0, T ]× [0, T ] → R and f : [0, T ] → R are continuous functions, then

the equation (2.5) has a unique continuous solution r : [0, T ] → R.

See, e.g., [17, pp. 165–169] or [18, 145–147] for a proof.

Proof of Proposition 2.1. It is convenient to reverse the time. Setting

ω(t, x) = ϕ(T − t, x) and η(t, x) = ψ(T − t, x),

We find that (2.1) takes the following equivalent form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω′′ − γΔω′′ +Δ2ω − β3Δη′ = 0 in Q,

β2η
′ − β0Δη − k ∗Δη + β1Δω = 0 in Q,

ω = ∂ω
∂ν = η = 0 on Σ,

ω(0) = ϕ0, ω′(0) = −ϕ1 and η(0) = ψ0 on Ω.

(2.6)

Differentiating (2.6)2 we get

β2η
′′ − β0Δη′ − k(0)Δη − k′ ∗Δη + β1Δω′ = 0 in Q, (2.7)

and we also deduce from (2.6)2 that

β2η
′(0) = β0Δψ0 − β1Δϕ0 on Ω. (2.8)
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We simplify (2.7) by introducing the new unknown function

v := k(0)η + k′ ∗ η (2.9)

instead of η. Hence

v(0) = k(0)η(0) = k(0)ψ0,

and differentiating (2.9) we get

v′(0) = k(0)η′(0) + k′(0)η(0)

=
k(0)

β2
(β0Δψ0 − β1Δϕ0) + k′(0)ψ0.

In order to obtain an inverse relation we introduce the solution r of the resolvent

equation

k(0)r + k′ ∗ r = − k′

k(0)
. (2.10)

We apply Lemma 2.2 with K(t, s) := −k′(t− s)/k(0) and f(t) := −k′(t)/k(0)2.

We have

v + k(0)r ∗ v = k(0)η + k′ ∗ η + k(0)r ∗ (k(0)η + k′ ∗ η)
= k(0)η + k′ ∗ η + k(0)(k(0)r + k′ ∗ r) ∗ η
= k(0)η + k′ ∗ η − k′ ∗ η
= k(0)η,

so that

η =
v

k(0)
+ r ∗ v. (2.11)

We deduce from (2.10) the equality

k(0)2r(0) + k′(0) = 0,

whence

v′(0) =
k(0)

β2
(β0Δψ0 − β1Δϕ0)− k(0)2r(0)ψ0.

Differentiating (2.11) we obtain

η′ =
v′

k(0)
+ r(0)v + r′ ∗ v (2.12)

and

η′′ =
v′′

k(0)
+ r(0)v′ + r′(0)v + r′′ ∗ v. (2.13)
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Using (2.9), (2.12), (2.13) and the boundary and initial conditions in (2.6) and (2.8), we

obtain from (2.6) and (2.7) the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω′′ − γΔω′′ +Δ2ω − β3

k(0)Δv′ = β3 (r(0)Δv + r′ ∗Δv) in Q,
β2

k(0)v
′′ − β0

k(0)Δv′ −Δv + β1Δω′ = β0(r(0)Δv + r′ ∗Δv)

−β2 (r(0)v
′ + r′(0)v + r′′ ∗ v) in Q,

ω = ∂ω
∂ν = v = 0 on Σ,

ω(0) = ϕ0, ω′(0) = −ϕ1, v(0) = k(0)ψ0

and v′(0) = k(0)
β2

(β0Δψ0 − β1Δϕ0)− k(0)2r(0)ψ0 on Ω.

(2.14)

Multiplying (2.14)1 by ω′, (2.14)2 by β3

β1k(0)
v′, and integrating by parts their sum in

Q, we obtain the following identity:

E(T )− E(0) +
β0β3

β2k(0)2

∫
Q

|∇v′|2 dQ (2.15)

= − β0β3

β2k(0)

∫
Q

(r(0)∇v + r′ ∗ ∇v) · ∇v′ dQ

− β3

∫
Q

r(0)(∇v · ∇ω′) + (r′ ∗ ∇v) · ∇ω′ dQ

− β2β3

β1k(0)

∫
Q

r(0) |v′|2 + r′(0)vv′ + (r′′ ∗ v)v′ dQ,

where we use the energy notation

E =
1

2

∫
Ω

|ω′|2 + γ |∇ω′|2 + |Δω|2 + β2β3

β1k(0)2
|v′|2 + β3

β1k(0)
|∇v|2 dx.

Majorizing the right side by applying the Cauchy–Schwarz, Young and Poincaré in-

equalities, we deduce the estimate

E(T ) +
β0β3

2β2k(0)2

∫
Q

|∇v′|2 dQ ≤ E(0) + C1

∫ T

0

E(t) dt (2.16)

with some constant C1.
1 We have used here the positivity of the coefficient of the integral

on the left side of (2.15) in order to eliminate the same integral on the right side, coming

from the application of the Young inequality.

The same computation, and hence the estimate (2.16), holds if we replace T by any

0 ≤ T ′ < T . Applying the Gronwall inequality and the Galerkin method, using (2.4)

and the Poincaré inequality in H1
0 (Ω), we deduce from these estimates that the system

1Here and in the sequel all constants Ci are independent of the particular initial data.
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(2.14) has a unique solution (ω, v) satisfying the following regularity conditions:

ω ∈ C([0, T ];H2
0 (Ω)),

ω′ ∈ C([0, T ];H1
0 (Ω)),

v ∈ C([0, T ];H1
0 (Ω)),

v′ ∈ C([0, T ];L2(Ω)),

v′ ∈ L2(0, T ;H1
0 (Ω)).

Since η and v have the same regularity by (2.9), the proposition follows. �

3. Well posedness of the original system. In view of the considerations of the

preceding section leading to the introduction of the dual system, we define the solutions

of (1.1) as follows:

Definition 3.1. By a solution of (1.1) we mean a continuous function

(w,w′, θ) : [0, T ] → H1
0 (Ω)× L2(Ω)×H−1(Ω)

satisfying the identity (2.3) for all ϕ0 ∈ H2
0 (Ω), ϕ1 ∈ H1

0 (Ω), ψ0 ∈ H1
0 (Ω), and for all

0 ≤ T ′ ≤ T , where (ϕ, ψ) denotes the corresponding solution of (2.2).

In order to justify this definition we need the following corollary of Proposition 2.1:

Corollary 3.2. Under the conditions of Proposition 2.1 the solutions of (2.1) satisfy

Δϕ ∈ L2(Σ), and the estimate

‖Δϕ‖L2(Σ) ≤ C2

(
‖ϕ0‖H2

0 (Ω) + ‖ϕ1‖H1
0 (Ω) + ‖ψ0‖H1

0 (Ω)

)
holds with a constant C2.

Proof. Since

f := −β3Δψ′ ∈ L2(0, T ;H−1(Ω))

by Proposition 2.1, the corollary follows from classical results on the system⎧⎪⎪⎨
⎪⎪⎩
ϕ′′ − γΔϕ′′ +Δ2ϕ = f in Q,

ϕ = ∂ϕ
∂ν = 0 on Σ,

ϕ(T ) = ϕ0 and ϕ′(T ) = ϕ1 on Ω,

as in [12, p. 157]. �
Proposition 2.1 and Corollary 3.2 yield at once the following well posedness result:

Proposition 3.3. For any given u ∈ L2(0, T ;L2(Γ)), the system (1.1) has a unique

solution. Furthermore, the linear map f �→ (w,w′, θ) is continuous for the indicated

topologies.



REACHABILITY OF A THERMOELASTIC PLATE 241

4. Partial reachability. The reachable space for the w component of the system

(1.1) is defined by

R :=
{
(w(T ), w′(T )) : u ∈ L2(0, T ;L2(Γ))

}
.

It follows from Proposition 3.3 that

R ⊂ H1
0 (Ω)× L2(Ω).

We are going to prove that under some assumptions we have equality here.

Theorem 4.1. If β3 is sufficiently small, then

R = H1
0 (Ω)× L2(Ω).

First we establish a converse of Corollary 3.2. Fix an arbitrary point x0 ∈ R
n and set

Γ+ := {x ∈ Γ : (x− x0) · ν(x) > 0} , Σ+ := Γ+ × (0, T )

and

T0 := max {|x− x0| : x ∈ Γ+} .

Proposition 4.2. Let T > T0. If β3 is sufficiently small, then there exists a positive

constant C3 such that the solutions of (2.1) with ψ0 = 0 satisfy the following inequality:

‖Δϕ‖L2(Σ+) ≥ C3

(
‖ϕ0‖H2

0 (Ω) + ‖ϕ1‖H1
0 (Ω)

)
. (4.1)

Proof. The component ϕ of the solution of (2.1) may be written in the form ϕ = χ+β3ξ

where χ and ξ solve respectively the problems⎧⎪⎪⎨
⎪⎪⎩
χ′′ − γΔχ′′ +Δ2χ = 0 in Q,

χ = ∂χ
∂ν = 0 on Σ,

χ(T ) = ϕ0 and χ′(T ) = ϕ1 on Ω

and ⎧⎪⎪⎨
⎪⎪⎩
ξ′′ − γΔξ′′ +Δ2ξ = −Δψ′ in Q,

ξ = ∂ξ
∂ν = 0 on Σ,

ξ(T ) = ξ′(T ) = 0 on Ω.

By classical results on Kirchhoff plates (see, e.g., [12]) we have

‖Δχ‖L2(Σ+) ≥ C4

(
‖ϕ0‖H2

0 (Ω) + ‖ϕ1‖H1
0 (Ω)

)
and

‖Δξ‖L2(Σ) ≤ C5 ‖Δψ′‖L2(Σ)

with suitable positive constants C4, C5. Furthermore, Proposition 2.1 and Corollary 3.2

imply that

‖Δψ′‖L2(Σ) ≤ C6

(
‖ϕ0‖H2

0 (Ω) + ‖ϕ1‖H1
0 (Ω)

)
with a suitable constant C6.
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Combining these estimates we get

‖Δϕ‖L2(Σ+) ≥ ‖Δχ‖L2(Σ+) − β3 ‖Δξ‖L2(Σ+)

≥ (C3 − β3C5C6)
(
‖ϕ0‖H2

0 (Ω) + ‖ϕ1‖H1
0 (Ω)

)
.

This yields (4.1) if β3 is small enough such that C3 − β3C5C6 > 0. �
Now we are ready to prove the theorem.

Proof of Theorem 4.1. We are going to use controls of the form

u =

{
−Δϕ on Σ+,

0 on Σ \ Σ+,
(4.2)

where ϕ is the first component of the solution of the adjoint system with initial data ϕ0,

ϕ1 satisfying (2.4) and ψ0 = 0. By Propositions 2.1, 3.3 and Corollary 3.2 we obtain a

bounded linear map

(ϕ0, ϕ1) �→ (w′(T )− γΔw′(T ),−w(T ) + γΔw(T )) (4.3)

from H2
0 (Ω)×H1

0 (Ω) into its dual space H−2(Ω)×H−1(Ω).

Moreover, the identity (2.2) takes the form∫
Ω

w′(ϕ− γΔϕ) + w(ϕ′ − γΔϕ′) dx |t=T =

∫
Σ+

|Δϕ|2 dΣ. (4.4)

Let us choose β1β3 sufficiently small, so that the inequality (4.1) of Proposition 4.2

is satisfied. Then an application of the Lax–Milgram lemma implies that the linear map

(4.3) is onto. Since, moreover, the operator (I − γΔ)−1 maps H−2(Ω) onto L2(Ω) and

H−1(Ω) onto H1
0 (Ω), we will conclude that H1

0 (Ω) × L2(Ω) ⊂ R. Since the converse

inclusion has already been established, the proof is complete. �
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