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Abstract. The ellipsoid represents the sphere of the anisotropic space. It provides the

appropriate geometrical model for any direction dependent physical quantity. The growth

of a tumour does depend on the available tissue surrounding the tumour, and therefore

it represents a physical case which is realistically modelled by ellipsoidal geometry. Such

a model has been analysed recently by Dassios et al. (2012). In the present work, we

focus on the stability of the growth of an ellipsoidal tumour. It is shown that, in contrast

to the highly symmetric spherical case, where stability can possibly be achieved, there

are no conditions that secure the stability of an ellipsoidal tumour. Hence, as in many

physical cases, the observed instability is a consequence of the lack of symmetry.

1. Introduction. Cancer cells are a result of genetic mutations of normal cells. Tu-

mour colonies obtain their nutrients (oxygen and glucose) and extract waste products

in a similar fashion as the other non-cancerous cells via simple diffusion. At these early

stages, the tumour increases at an exponential rate ([34]), since all cells are well-nourished

and proliferate at their highest rate possible, as supported by the work of [14]. During

the early stages of tumour tissue development, the nutrients are in abundance; thus the

proliferation rate is maximal and the rate of tumour growth is exponential.

As the colony increases in size, oxygen concentration near the tumour centre decreases,

since the nutrients are consumed en route from the outside to the inside of the tumour.

The proliferation rate of central cells is gradually reduced. Further reduction in the

oxygen concentration below a threshold value, especially oxygen, reversibly arrests cell

proliferation, and the non-dividing cells remain alive (see [28]). The cells with arrested

proliferation are known as quiescent, and they can recover to proliferating cells once the

nutrient supply is restored.
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As the tumour increases in size further, the concentrations of nutrients fall even more.

Once they reach a second threshold value, the cells in the centre cannot support their

basic metabolic needs and eventually die, forming a collection of necrotic tissue.

A tumour cross-section consists of an outer zone of fully proliferating cells, an inter-

mediate zone of quiescent cells and a central core of necrotic tissue and cell debris ([30]),

as depicted schematically in Figure 1. Once these three regions are formed, the outer

zone remains constant in size. Every new layer of cells on the outside of the outer ring

is accompanied by a newly formed layer of quiescent cells at the intermediate zone inter-

face. As the tumour continues to develop, the rim of adequately nourished viable cells at

the surface becomes roughly constant in size, leading to a phase of near linear growth, as

suggested by [16], [29] and [7]. Eventually due to the diffusion-limited accumulation of

nutrients and wastes, the action of necrotic disintegration, the mitotic inhibitory factors

and the delayed proliferation rate, the tumour reaches a maximal size (see the work of

[48], [27] and [35]). This dynamic steady state occurs when the death rate equals the

proliferation rate, as supported by the work of [44], [9] and [37]. Experiments of in vitro

growth of nodular carcinomas, which are described by [23] and [33], as well as those

involving techniques for the in vivo isolation of tumours (see [24], [26] and [46]) support

the hypothesis of the existence of a dormant but viable steady state described also in [25]

and [45]. If we assume that this is a spherical-like configuration, its diameter measures

only a few millimetres (around 2 mm as observed by [25]). This structure identifies an

avascular tumour, which as the term implies, is a tumour without its own blood network.

There are tumours that remain in the avascular stage indefinitely. However, under hy-

Fig. 1. Cross-section of the ellipsoidal tumour

poxic stimulation, most tumours exhibit the angiogenic tendencies. A brief description of

angiogenesis tailor-made for mathematical analysis is found in the book written by [34].

Tumour angiogenesis is driven by hypoxia. The cancerous cells release tumour angiogenic

factors (TAFs), a family of proteins that promote angiogenesis in tumours. An important

member of TAFs is vascular endothelial growth factor (VEGF). VEGF acts on the neigh-

bouring vasculature and promotes chemotactic and haptotactic angiogenesis ([1]). The

result of VEGF action is the sprouting of capillary ends towards the tumour following
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the VEGF gradient. Capillary tips that come into close proximity join together, form-

ing anastomoses, through which circulating blood can flow. Secondary sprouts emanate

from the new loops and so the process continues, with increasing numbers of capillary

tips being formed until the new vessels penetrate the tumour. The newly formed vessels

restore the nutrient supply, and the proliferation rate of the tumour increases. Now the

tumour is characterized as vascular, and its size continues to grow beyond the size at the

saturation level (steady state size), as described by [23].

The presence of blood vessels that connect the tumour with the adjacent vasculature

does not only serve for the nourishment of the colony. Small clusters of tumour cells

can detach from the original aggregation and travel to distant tissues via the blood

network of the host. If the conditions in the new sites are favourable, they will establish

secondary tumours or metastases that further weaken the host (see [49]). When that

happens, the tumour has reached the metastatic phase. Moreover, the rapid growth of

vascular tumours may impair the function of neighbouring organs. Invasion is another

key characteristic of tumours. Byrne et al. [9] suggest that contact with the surrounding

tissue stimulates the production of enzymes that digest the tissue, liberating space into

which the tumour cells migrate.

Greenspan [31] was the first to model surface perturbation on an initially spherical

tumour. The extensions and modifications to Greenspan’s original model of multicellular

spheroids (MCS) are now so numerous that it is impossible to do justice to them ([1],

[43], [47] and [44]). Important developments include relaxing the assumption of radially

symmetric growth ([1], [10] and [30]) and distinguishing different cell populations within

the spheroid (see [49]). For example, while Greenspan [31] used analytical techniques to

predict how the invasive boundary of a tumour initially develops, [18] used sophisticated

numerical methods to solve the system of nonlinear equations and relate the irregular

shapes adopted by the tumour to the values of key model parameters.

If the tumour is assumed to be an incompressible fluid and contains no voids or holes,

then cell proliferation and death generate spatial variations in the pressure within the

tumour which drive cell motion, with cells moving down pressure gradients, away from

regions of net cell proliferation and toward regions of net cell death. Surface tension

is also incorporated into the model as a mechanism for maintaining the compactness

of the tumour and counteracting the expansive forces caused by cell proliferation ([8]).

Byrne [8] presented an analysis that provided a mechanism which may explain how the

irregular morphology characterising invasive tumours may be initiated. To understand

this, Byrne [8] considered a uniform cluster of tumour cells for which the surface tension

coefficient is significantly large then the underlying radially symmetric solution is linearly

stable to symmetry-breaking perturbations, including the use of Legendre polynomials.

This particular analysis predicted that such a cluster would remain radially symmetric

through its development.

Suppose now that the cells undergo a transformation which weakens the surface tension

forces holding the tumour cells together. If the reduction is significant, then the tumour

will become unstable to a finite range of asymmetric perturbations and will develop an

irregular morphology. Byrne [8] noted that similar quantitative behaviour is obtained if,

instead of invoking surface tension (and the associated jump in the pressure across the
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tumour boundary), the nutrient concentration is assumed to be discontinuous across the

tumour boundary, with a jump related to the local curvature. The physical motivation

for this boundary condition is that the nutrients (or their energy equivalents) are utilized

by cells on the tumour boundary to maintain its compactness.

Avascular tumours that possess irregular boundaries have also been reported. In order

to understand how such non-uniform boundaries may form, several authors have used lin-

ear techniques to investigate the stability of radially symmetric tumour configurations to

asymmetric perturbations, the underlying spherically symmetric state resembling avas-

cular nodules, as predicted by the work of [31], [15] and [10]. Recently, Byrne [5] has used

weakly nonlinear analysis to resolve these problems. The researchers have studied the

global stability of quasi-steady solutions for a simple mathematical model describing the

growth of a spherical vascularised tumour consisting only of living cells. By assuming the

rates of proliferation and absorption to be increasing nonlinear functions of the nutrient

concentration, they establish the existence of a non-trivial steady solution and conditions

for the existence and uniqueness of a quasi-steady solution for each initial configuration.

Also, we prove that all these quasi-steady solutions converge uniformly to a non-trivial

steady solution. The quasi-steady approach is justified by the smallness of the parameter

that measures the ratio between the timescales for the diffusion of nutrients and growth

of the tumour ([4]).

In our approach, we use the model proposed by Dassios et al. [21] for an ellipsoidal

tumour colony. The approach of the cancer geometry as an ellipsoid is based on ultra-

sound images and other imaging techniques in patients with breast cancer ([50] and [2])

and cervical cancer [38], as well as in experiments in vivo [22] and in in vitro tumour

cultures [39].

The present paper is organised as follows. In Section 2 one can find the equations and

the conditions that are used for the ellipsoidal model. Section 3 refers to the unperturbed

model proposed by [21], while Section 4 is devoted to the perturbed part. Section 5

summarises the results for both unperturbed and perturbed parts with numerical and

graphical examples. A final Section 6 is used for discussion and future plans.

2. Stating the problem and introducing the equations for the model. To

model an avascular tumour, we assume a three–layered structure for its interior cell dis-

tribution. In the centre of the tumour there is a necrotic core occupied by dead cells

and debris. This core is enveloped by a quiescent layer of live but not proliferating cells

(quiescent cells), whereas close to the tumour boundary there is a thin layer of live prolif-

erating cells. For our approach we assume that all three layers are of ellipsoidal shape as

part of the confocal ellipsoidal family with foci (±h2, 0, 0), (±h3, 0, 0), (0,±h1, 0). The

ellipsoidal system is defined by

x1 =
ρμν

h2h3
, (2.1)

x2 =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3
, (2.2)

x3 =

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2
, (2.3)
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where (ρ, μ, ν) and (x1, x2, x3) are the ellipsoidal and Cartesian coordinates respectively.

The referenced ellipsoid is given by

x2
1

α2
1

+
x2
2

α2
2

+
x2
3

α2
3

= 1, 0 < α3 < α2 < α1 < ∞ , (2.4)

in Cartesian coordinates, where

h2
1 = α2

2 − α2
3, h2

2 = α2
1 − α2

3, h2
3 = α2

1 − α2
2 (2.5)

are the semi–focal distances.

The difference between the three areas of the tumour lies in the nutrient concentration

σ. Cells proliferate while the nutrient concentration is larger than the critical level σ1.

A cell stays alive but does not proliferate when the nutrient supply remains over the

critical level σ2 and under σ1. When the nutrient concentration falls under σ2, the cell is

found in the necrotic core. For that, we distinguish the tumour and its surroundings into

four regions (ΩN , ΩQ, ΩP , ΩS). ΩN denotes the ellipsoidal necrotic core, the ellipsoidal

shell ΩQ consists of quiescent cells, the ellipsoidal shell ΩP hosts the proliferating cells

and ΩS stands for the area outside the tumour. In terms of nutrient concentration, the

ellipsoidal regions are specified as

ΩN = {(ρ, μ, ν) : h2 ≤ ρ < ρN , σ(r) < σ2}, (2.6)

ΩQ = {(ρ, μ, ν) : ρN < ρ < ρQ, σ2 < σ(r) < σ1}, (2.7)

ΩP = {(ρ, μ, ν) : ρQ < ρ < ρL, σ(r) > σ1}, (2.8)

ΩS = {(ρ, μ, ν) : ρ > ρL, σ1 < σ(r) < σ∞}, (2.9)

where σ(r) is the nutrient concentration at the point r = (ρ, μ, ν) and σ∞ is the nutrient

concentration from an exterior nutrient source that constantly supplies the tumour.

We assume that the nutrient concentration is in a diffusive steady state, so that

Δσi(r) = 0 , r ∈ Ωi, i = N,L, S, (2.10)

where σN (r), σL(r), σS(r) denote the nutrient concentrations at the point r of ΩN ,

ΩL = ΩQ ∪ ΩP and ΩS respectively.

If we assume that the tumour is modelled by an incompressible fluid, changes in cell

population will result in motion within the structure and thus in alterations in pressure

distribution. This is expressed as

Δp = S1H (|r| − |rN |) + S2H (|rN | − |r|) , (2.11)

where S1 is the constant net rate of cell loss due to apoptosis in the living area (prolifer-

ating and quiescent layer) and S2 is the cell loss rate because of necrosis in the necrotic

core. H is the Heaviside step function and rN denotes a point on the surface of the

necrotic area. On the boundary of the necrotic core, ∂ΩN , we assume continuity for the

nutrient concentration, the pressure distribution and its gradient:

σN (rN ) = σL(rN ) , (2.12)

pN (rN ) = pL(rN ) , (2.13)

n̂ · ∇pN

∣∣∣∣
r=rN

= n̂ · ∇pL

∣∣∣∣
r=rN

, (2.14)
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where pN denotes the pressure in the necrotic region, pL the pressure in the living layer

and n̂ is the unit normal vector. On the boundary of the tumour ∂ΩP , the following

conditions are dictated by the Greenspan model:

n̂ · ∇σL

∣∣∣∣
r=rL

=
γ

k
s(rL) , (2.15)

σL(rL) = σS(rL) , (2.16)

dr

dt
· n̂

∣∣∣∣
r=rL

= −n̂ · ∇p

∣∣∣∣
r=rL

+
β

dt
s(rL) , (2.17)

dr

dt
× n̂

∣∣∣∣
r=rL

= −n̂×∇pL

∣∣∣∣
r=rL

, (2.18)

where γ denotes the rate of mass/volume consumption, k the diffusion constant, β the

mass/volume production, dt the mass density of the tumour colony and s(rL) = hL
ρ (ρL−

ρQ) is the local thickness. The latter parameter provides the key difference from the

Greenspan approach, as instead of using a square root law we introduce the local thickness

s. Note that hL
ρ is one of the metric coefficients defined in Appendix B. Furthermore,

on the outer boundary ∂ΩP , we assume that the pressure satisfies the Young–Laplace

relation (see [20])

pL(rL)− pS(rL) = ακ(rL) , (2.19)

where pL(ρL) = g(ρL) and pS denotes the pressure in the surrounding area of the tumour.

As |r| → 0, pN must be smooth. The source of nutrients is assumed to be constant far

away from the tumour, that is,

σS = σ∞ as r → ∞. (2.20)

Following Greenspan’s approach, we introduce a perturbation on the ellipsoidal coordi-

nate ρ which is relevant to the radial coordinate of the spherical coordinate system. We

are interested in perturbations of the outer tumour boundary, that is,

ρ(t) = ρL(t) + εf(μ, ν, t) , (2.21)

where ε is a small parameter and f(μ, ν) is the spatial variable of the perturbed part

depending on μ, ν, the angular coordinates of the ellipsoidal geometry, and on time. We

introduce the same perturbation factor in the pressure distribution:

pN = p̄N + εp̃N , (2.22)

pL = p̄L + εp̃L , (2.23)

pS = p̄S + εp̃S , (2.24)

and in the nutrient concentration:

σN = σ̄N + εσ̃N , (2.25)

σL = σ̄L + εσ̃L , (2.26)

σS = σ̄S + εσ̃S , (2.27)
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where p̄N , p̄L, p̄N , σ̄N , σ̄L, σ̄S are the variables of the ellipsoidal tumour, and

p̃N , p̃L, p̃N , σ̃N , σ̃L, σ̃S are the variables of the perturbed part. The same applies

for the curvature of the outer boundary,

κ = κ̄+ εκ̃ , (2.28)

and the interior pressure on the outer boundary,

g(ρL) = ḡ(ρL) + εg̃(ρL). (2.29)

3. Unperturbed part. For the unperturbed ellipsoidal part of the tumour, we ob-

tain Laplace equations for the nutrient concentration in the necrotic core, the living layer

and outside the tumour as

Δσ̄N = 0 , (3.1)

Δσ̄L = 0 , (3.2)

Δσ̄S = 0 . (3.3)

In this mode, we assume two different rates of cell death that translate into two different

Poisson equations for the pressure distribution in the core of the tumour p̄N and the shell

of living layers p̄L, that is,

Δp̄N = S1 , (3.4)

Δp̄L = S2 . (3.5)

On the interface between the necrotic core and the living layer we assume continuity for

the nutrient concentration, the pressure and its gradient:

σ̄N = σ̄L , (3.6)

p̄N = p̄L , (3.7)

∂p̄N
∂ρ

=
∂p̄L
∂ρ

. (3.8)

As for the outer tumour boundary, equations (2.15)-(2.17) imply

∂σ̄L

∂ρ
=

γ

k

(
hL
ρ

)2
(ρL − ρQ) , (3.9)

σ̄L = σ̄S , (3.10)(
hL
ρ

)2 dρL
dt

= −∂p̄L
∂ρ

+
β

dt

(
hL
ρ

)2
(ρL − ρQ) . (3.11)

Equation (2.18) represents the evolution of cells on the outer surface of the tumour and

provides the following equations:(
hL
μ

)2 dμ

dt
=

∂p̄L
∂μ

, (3.12)

(
hL
ν

)2 dν

dt
=

∂p̄L
∂ν

. (3.13)

By assuming that

p̄L = ḡ(ρL) , (3.14)
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where ḡ(ρL) is a function of ρ, constant on the boundary ρ = ρL, the exterior pressure

on the outer boundary of the tumour is given by

p̄S = ḡ(ρL)− ακ̄ . (3.15)

The nutrient source uniformly supplies the tumour

σ̄S → σ∞ as r → ∞ . (3.16)

As in [21], the nutrient concentration within the necrotic region is given by

σ̄N = σ2 −
σ∞ − σ2

Λ− Λ′
I12 (ρN )

I10 (ρN )

E1
2(ρ)S

1
2(μ, ν)

3
2πV (ρL)I12 (ρL)E

1
2(ρL)− 1

+
σ∞ − σ2

Λ− Λ′
I22 (ρN )

I10 (ρN )

E2
2(ρ)S

2
2(μ, ν)

3
2πV (ρL)I22 (ρL)E

2
2(ρL)− 1

, (3.17)

where Imn (x) are the elliptic integrals, Em
n (x) the Lamé functions and Sm

n (μ, ν) the surface

ellipsoidal harmonics, all of them defined in Appendix A. For the nutrient concentration

outside the necrotic core, we obtain

σ̄L = σ̄S = σ∞ − (σ∞ − σ2)
I10 (ρ)

I10 (ρN )
− σ∞ − σ2

Λ− Λ′
I12 (ρ)

I10 (ρN )

E1
2(ρ)S

1
2(μ, ν)

3
2πV (ρL)I12 (ρL)E

1
2(ρL)− 1

+
σ∞ − σ2

Λ− Λ′
I22 (ρ)

I10 (ρN )

E2
2(ρ)S

2
2(μ, ν)

3
2πV (ρL)I22 (ρL)E

2
2(ρL)− 1

. (3.18)

Next we state the expressions for the pressure distribution in the core of the tumour:

p̄N =

[
ḡ(ρL) + (S1 − S2)

V (ρN )

4π
I10 (ρN , ρL) +

S1

6

(
ρ2N − ρ2L

)
+

S2

6

(
ρ2 − ρ2N

)]

−
[
(S1 − S2)

V (ρN )

4π
I12 (ρN , ρL) +

S1

(
ρ2N − ρ2L

)
6E1

2(ρN )E1
2(ρL)

+
S2

(
ρ2 − ρ2N

)
6E1

2(ρ)E
1
2(ρN )

]
E
1
2(r)

Λ− Λ′

+

[
(S1 − S2)

V (ρN )

4π
I22 (ρN , ρL) +

S1

(
ρ2N − ρ2L

)
6E2

2(ρN )E2
2(ρL)

+
S2

(
ρ2 − ρ2N

)
6E2

2(ρ)E
2
2(ρN )

]
E
2
2(r)

Λ− Λ′ (3.19)

and the pressure distribution in the living shell:

p̄L =

[
ḡ(ρL) + (S1 − S2)

V (ρN )

4π
I10 (ρ, ρL) +

S1

6

(
ρ2 − ρ2L

)]

−
[
(S1 − S2)

V (ρN )

4π
I12 (ρ, ρL) +

S1

6

ρ2 − ρ2L
E1

2(ρ)E
1
2(ρL)

]
E
1
2(r)

Λ− Λ′

+

[
(S1 − S2)

V (ρN )

4π
I22 (ρ, ρL) +

S1

6

ρ2 − ρ2L
E2

2(ρ)E
2
2(ρL)

]
E
2
2(r)

Λ− Λ′ . (3.20)
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Lastly, we introduce the following equation for the evolution of the unperturbed ellip-

soidal outer boundary of the tumour:

dρL
dt

= −
[
S1

V (ρL)− V (ρN )

V (ρL)
+ S2

V (ρN )

V (ρL)

]
ρL

(
ρ2L − μ2

) (
ρ2L − ν2

)
3E1

2(ρL)E
2
2(ρL)

+
β

dt
(ρL − ρQ) . (3.21)

Using the parameters in Table 1 below we plot equation (3.21) in time, and the result is

depicted in Figure 2. It shows that the unperturbed boundary soon reaches the steady

Table 1. Parameters for plotting the graphs

Parameters Values

α1 7.2/1000

α2 5/1000

α3 6/1000

S1 4

S2 1000

σ1 0.9

σ2 0.4

σ∞ 1

γ/k 1

β/dt 4

ρL(t = 0) 16/1000

state value, 24.41/1000, from the initial value of 16/1000.

4. Perturbed part. For the perturbed part of the tumour we focus on the variables

with the tilde on the top ( σ̃N , σ̃L, σ̃S , p̃N , p̃L, p̃S) and the evolution of the perturbation,

f , which is assumed to depend only on μ, ν and on time, t. The perturbed nutrient

concentration is governed by the Laplace equation

Δσ̃N = 0 , (4.1)

Δσ̃L = 0 , (4.2)

Δσ̃S = 0 (4.3)

in the necrotic core, the living shell and the surrounding area of the tumour, respectively.

The perturbed pressure distribution within the tumour could no longer be obtained by

solving the Poisson equation, but simply by the following Laplace equations:

Δp̃N = 0 , (4.4)

Δp̃L = 0 , (4.5)

where p̃N is the perturbed pressure in the necrotic core and p̃L the perturbed pressure in

the living layer. The equations of continuity on the interface between the necrotic part
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Fig. 2. Boundary evolution of the unperturbed part versus time

and the living part of the tumour, i.e. equations (2.12)-(2.14), are transformed into the

following equations:

σ̃N = σ̃L , (4.6)

p̃N = p̃L , (4.7)

∂p̃N
∂ρ

=
∂p̃L
∂ρ

(4.8)

after we introduce equations (2.22)-(2.26) and the expression for the normal unit vector

on the interface, which can be found in Appendix B. The boundary conditions on the

outer boundary of the tumour are turned into more complicated expressions, due to

the fact that the boundary (ρL), the curvature (κ), the normal unit vector (n̂) and the

gradient on the outer boundary of the tumour are all expressed in terms of ε. The

expressions for n̂ are ∇ can be found in Appendix B. Finally, equation (2.15) assumes

the form

∂σ̃L

∂ρ
+

(
− fρL
ρ2L − μ2

− fρL
ρ2L − ν2

+
fρL

ρ2L − h2
3

+
fρL

ρ2L − h2
2

)[
∂σ̄L

ρ
+

γ

k

(
hL
ρ

)2
(ρL − ρQ)

]

=

(
hL
ρ

)2
(
hL
ν h

L
μ

)2
{

(hL
μ)

2

ρ2L − ν2
∂σ̄L

∂ν

[
fν

√
ρ2L − ν2 − νf√

ρ2L − ν2

]

+
(hL

ν )
2

ρ2L − μ2

∂σ̄L

∂μ

∂

∂μ

[
fμ

√
ρ2L − μ2 − μf√

ρ2L − μ2

]}
+

γ

k
f , (4.9)

while equation (2.16) retains its simple form:

σ̃L = σ̃S . (4.10)
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The metric coefficients on the outer boundary are also expressed in terms of ε (Appendix

B). Equation (2.17) for the perturbed part has the form

(
hL
ρ

)2
ft +

∂p̃L
∂ρ

− β

dt

(
hL
ρ

)2
f + fρL

(
1

ρ2L − μ2
+

1

ρ2L − ν2
− 1

ρ2L − h2
3

− 1

ρ2L − h2
2

)

·
[
(hL

ρ )
2 dρL
dt

− ∂p̄L
∂ρ

− β

dt

(
hL
ρ

)2
(ρL − ρQ)

]
+

(
μf

ρ2L − μ2
− fμ

)(
hL
ρ

)2 [dμ
dt

+
1(

hL
μ

)2 ∂p̄L∂μ

]

+

(
νf

ρ2L − ν2
− fν

)(
hL
ρ

)2 [dν
dt

+
1

(hL
ν )

2

∂p̄L
∂ν

]
= 0 , (4.11)

while equation (2.18) splits into three different equations:

(
fν − νf

ρ2L − ν2

)[(
hL
μ

)2 dμ

dt
− ∂p̄L

∂μ

]
=

(
fμ − μf

ρ2L − μ2

)[(
hL
ν

)2 dν

dt
− ∂p̄L

∂ν

]
, (4.12)

∂p̃L
∂μ

=

(
fμ − μf

ρ2L − μ2

)[(
hL
ρ

)2 dρL
dt

− ∂p̄L
∂ρ

]
+

fρL
ρ2L − μ2

[(
hL
μ

)2 dμ

dt
+

∂p̄L
∂μ

]
, (4.13)

∂p̃L
∂ν

=

(
fν − νf

ρ2L − ν2

)[(
hL
ρ

)2 dρL
dt

− ∂p̄L
∂ρ

]
+

fρL
ρ2L − ν2

[(
hL
ν

)2 dν

dt
+

∂p̄L
∂ν

]
. (4.14)

Next, the pressure from inside the tumour reaches a constant value on the boundary,

g̃(ρL). Depending on the boundary we obtain

p̃L = g̃(ρL) , (4.15)

p̃S = g̃(ρL)− ακ̃ , (4.16)

because of our assumption of the Young-Laplace equation (2.19). For the perturbed

nutrient concentration near the nutrient source we assume

σ̃S → 0, as |r| → ∞ . (4.17)
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We consider harmonic solutions for the perturbation, the nutrient concentration and the

pressure distribution:

f =
∞∑
n=0

2n+1∑
m=1

amn (t)Em
n (ρ)Sm

n (μ, ν) , (4.18)

σ̃N =

∞∑
n=0

2n+1∑
m=1

bmn (t)Em
n (ρ)Sm

n (μ, ν) , (4.19)

σ̃L =

∞∑
n=0

2n+1∑
m=1

[cmn (t) + (2n+ 1) dmn (t)Imn (ρ)]Em
n (ρ)Sm

n (μ, ν) , (4.20)

p̃N =

∞∑
n=0

2n+1∑
m=1

emn (t)Em
n (ρ)Sm

n (μ, ν) , (4.21)

p̃L =

∞∑
n=0

2n+1∑
m=1

[gmn (t) + (2n+ 1)hm
n (t)Imn (ρ)]Em

n (ρ)Sm
n (μ, ν) , (4.22)

σ̃S =
∞∑
n=0

2n+1∑
m=1

(2n+ 1) imn (t)IMn (ρ)Em
n (ρ)Sm

n (μ, ν) , (4.23)

where amn (t), bmn (t), cmn (t), dmn (t), emn (t), gmn (t), hm
n (t), imn (t) are time-dependent coef-

ficients, Em
n (ρ) are the Lamé functions of the first kind, Sm

n (μ, ν) the ellipsoidal surface

harmonics and Imn (ρ) the elliptic integrals. Em
n (ρ), Sm

n (μ, ν), Imn (ρ) are defined in Ap-

pendix A.

In order to determine whether the tumour is stable or not, we need to know whether

f increases or decays. To do that, we need the following equation:

(
hL
ρ

)2 ∞∑
n=0

2n+1∑
m=1

am
′

n (t)Em
n (ρ)Sm

n (μ, ν) +

∞∑
n=0

2n+1∑
m=1

gmn (t)
∂Em

n (ρ)

∂ρ
Sm
n (μ, ν)

− β

dt

(
hL
ρ

)2 ∞∑
n=0

2n+1∑
m=1

amn (t)Em
n (ρ)Sm

n (μ, ν)

− 2

3
ρ2L

[ ∞∑
n=0

2n+1∑
m=1

amn (t)Em
n (ρ)Sm

n (μ, ν)

](
1

ρ2L − μ2
+

1

ρ2L − ν2
− 1

ρ2L − h2
3

− 1

ρ2L − h2
2

)

·
[
S1

V (ρL)− V (ρN )

V (ρL)
+ S2

V (ρN )

V (ρL)

] (
ρ2L − μ2

) (
ρ2L − ν2

)
E1

2(ρL)E
2
2(ρL)

= 0 , (4.24)

which includes the time-derivative of the coefficient of the perturbation, am
′

n (t). However,

there is also the coefficient of p̃L. So, in need of a second equation between gmn (t) and
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amn (t) we choose the following equation:

∞∑
n=0

2n+1∑
m=1

gmn (t)Em
n (ρL)

∂Em
n (μ)

∂μ
Em

n (n)

=

(
hL
ρ

)2√
ρ2L − ν2

∂

∂μ

[√
ρ2L − μ2

∞∑
n=0

2n+1∑
m=1

amn (t)Em
n (rL)

]

·
{

− 2ρL

3
(
hL
ρ

)2
[
S1 − (S1 − S2)

V (ρN )

V (ρL)

] (
ρ2L − μ2

) (
ρ2L − ν2

)
E1

2(ρL)E
2
2(ρL)

+
β

dt
(ρL − ρQ)

}
. (4.25)

In Figures (3)-(5), we depict the ratio
am′
n

am
n

by combining equations (4.24) and (4.25) in

the μ− ν contour. In order to conclude whether f increases, the above fraction must be

positive. When the fraction is negative, then f decays. As seen in the following figures,

using the parameters from Table 1, f increases in all cases.

ν

μ

 

3.75

3.8

3.85

3.9

3.95

Fig. 3. The μ, ν contour for n = 0 and m = 0

This contradicts the spherical case, as predicted by Greenspan, where there were

different cases of f being amplified or decayed depending on the tumour unperturbed

radius. However, in the ellipsoidal case, the anisotropy of the shape inclines towards the

legitimacy of this result. In other words, in a system less symmetrical than the sphere,

we expect the asymmetry to reflect unstable tumour growth from the very start of its

development.

It is depressing to realize that most tumours do not develop in a symmetric way and

therefore no stability of their growth is expected. This is another physical case where

instability appears as a result of lack of symmetry.
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ν

μ

 

8.94

8.95

8.96

8.97

8.98

8.99

9

9.01

9.02

9.03

9.04

Fig. 4. The μ, ν contour for n = 1 and m = 1

ν

μ

 

 

14.39

14.4

14.41

14.42

14.43

14.44

14.45

14.46

14.47

14.48

Fig. 5. The μ, ν contour for n = 2 and m = 1
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5. Appendices.

A. The ellipsoidal system. The anisotropy of the ellipsoidal coordinate system serves

as a better tool to approach shapes more complicated than simple spheres. The reference

ellipsoid is specified when given any three numbers α1, α2, α3 via the equation

x2
1

α2
1

+
x2
2

α2
2

+
x2
3

α2
3

= 1, 0 < α2 < α2 < α1 < +∞, (A.1)

where α1, α2, α3 are the three semi–axes of the ellipsoid which in turn define the semi–

focal distances

h2
1 = α2

2 − α2
3, h2

2 = α2
1 − α2

3, h2
3 = α2

1 − α2
2. (A.2)

The core of the ellipsoidal coordinate system is the focal ellipse, an ellipse on the x1, x2

plane with semi–focal distance h3 and semi–axes h1 and h2.

As depicted in Figure 6 the variable ρ defines a family of confocal ellipsoids, the

variable μ defines a confocal family of hyperboloids of one sheet, while the variable ν

defines a confocal family of hyperboloids of two sheets. The ellipsoidal coordinates are

Fig. 6. Ellipsoidal Coordinate System

connected with the coordinates of the Cartesian system as

x1 =
ρμν

h2h3
, h2 < ρ < +∞, (A.3)

x2 =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

h1h3
, h3 < μ < h2, (A.4)

x3 =

√
ρ2 − h2

√
h2
2 − μ2

√
h2
2 − ν2

h1h2
, 0 < ν < h3. (A.5)
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The ellipsoidal metric coefficients are given by

hρ = ||rρ|| =
√
ρ2 − μ2

√
ρ2 − ν2√

ρ2 − h2
3

√
ρ2 − h2

2

, (A.6)

hμ = ||rμ|| =
√
ρ2 − μ2

√
μ2 − ν2√

μ2 − h3

√
h2
2 − μ2

, (A.7)

hν = ||rν || =
√
ρ2 − ν2

√
μ2 − ν2√

h2
3 − ν2

√
h2
2 − ν2

. (A.8)

The relative solutions to the Laplace equation differ depending on the domain wherein

they are defined. An interior harmonic solution has the form of

E
m
n (ρ, μ, ν) = Em

n (ρ)Em
n (μ)Em

n (ν), (A.9)

where Em
n is the Lamé function of the first kind, of degree n = 0, 1, 2, . . . and order

m = 1, 2, . . . 2n+ 1, whereas an exterior harmonic solution is defined as

F
m
n (ρ, μ, ν) = Fm

n (ρ)Em
n (μ)Em

n (ν), (A.10)

where Fm
n is the Lamé function of the second kind. The latter is given by

Fm
n (ρ) = (2n+ 1)Em

n (ρ)

∫ ∞

ρ

dx

[Em
n (x)]2

√
x2 − h2

3

√
x2 − h2

2

. (A.11)

The functions E
m
n (ρ, μ, ν) and F

m
n (ρ, μ, ν) are called Lamé products or interior and ex-

terior ellipsoidal harmonics, respectively. The surface ellipsoidal harmonics are given

by

Sm
n (μ, ν) = Em

n (μ)Em
n (ν), n = 0, 1, 2, . . . ,m = 1, 2, . . . , 2n+ 1. (A.12)

Lastly, we will state the ellipsoidal harmonics of degree less than or equal to two because

these are the harmonics used in this work. For n = 0, we have the Lamé function

E1
0(x) = 1, (A.13)

where x is one of the ellipsoidal coordinates (ρ, μ, ν), the interior ellipsoidal harmonic

E
1
0(ρ, μ, ν) = 1, (A.14)

and the exterior ellipsoidal harmonic

F
1
0(ρ, μ, ν) =

∫ ∞

ρ

dx√
x2 − h2

3

√
x2 − h2

2

. (A.15)

For n = 1, we have the Lamé functions

E1
1(x) = x, (A.16)

E2
1(x) =

√
|x2 − h2

3|, (A.17)

E3
1(x) =

√
|x2 − h2

2|, (A.18)
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the interior ellipsoidal harmonics:

E
1
1(ρ, μ, ν) = ρμν = h2h3x1, (A.19)

E
2
1(ρ, μ, ν) =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2 = h1h3x2, (A.20)

E
3
1(ρ, μ, ν) =

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2 = h1h2x3, (A.21)

and the exterior ellipsoidal harmonics:

F
1
1(ρ, μ, ν) = 3E1

1(ρ, μ, ν)

∫ ∞

ρ

dx

x2
√
x2 − h2

3

√
x2
2 − h2

2

, (A.22)

F
2
1(ρ, μ, ν) = 3E2

1(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 − h2
3)

3/2
√
x2
2 − h2

2

, (A.23)

F
3
1(ρ, μ, ν) = 3E3

1(ρ, μ, ν)

∫ ∞

ρ

dx√
x2 − h2

3(x
2
2 − h2

2)
3/2

. (A.24)

For n = 2, we have the Lamé functions

E1
2(x) = x2 + Λ− α2

1, (A.25)

E2
2(x) = x2 + Λ′ − α2

1, (A.26)

E3
2(x) = x

√
|x2 − h2

3|, (A.27)

E4
2(x) = x

√
|x2 − h2

2|, (A.28)

E5
2(x) =

√
|x2 − h2

3|
√
|x2 − h2

2|, (A.29)

where

Λ =
1

3

(
a21 + a22 + a23

)
+

1

3

√
h4
1 + h2

2h
2
3, (A.30)

Λ′ =
1

3

(
a21 + a22 + a23

)
− 1

3

√
h4
1 + h2

2h
2
3. (A.31)

The interior ellipsoidal harmonics for n = 2 are

E
1
2(ρ, μ, ν) = (ρ2 + Λ− α2

1)(μ
2 + Λ− α2

1)(ν
2 + Λ− α2

1), (A.32)

E
2
2(ρ, μ, ν) = (ρ2 + Λ′ − α2

1)(μ
2 + Λ′ − α2

1)(ν
2 + Λ′ − α2

1), (A.33)

E
3
2(ρ, μ, ν) = ρμν

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2, (A.34)

E
4
2(ρ, μ, ν) = ρμν

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2, (A.35)

E
5
2(ρ, μ, ν) =

√
ρ2 − h2

3

√
μ2 − h2

3

√
h2
3 − ν2

√
ρ2 − h2

2

√
h2
2 − μ2

√
h2
2 − ν2, (A.36)
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and the exterior ellipsoidal harmonics are given by

F
1
2(ρ, μ, ν) = 5E1

2(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 + Λ− α2
1)

2 √
x2 − h2

3

√
x2
2 − h2

2

, (A.37)

F
2
2(ρ, μ, ν) = 5E2

2(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 + Λ′ − α2
1)

2 √
x2 − h2

3

√
x2
2 − h2

2

, (A.38)

F
3
2(ρ, μ, ν) = 5E3

2(ρ, μ, ν)

∫ ∞

ρ

dx

x2 (x2 − h2
3)

3/2 √
x2
2 − h2

2

, (A.39)

F
4
2(ρ, μ, ν) = 5E4

2(ρ, μ, ν)

∫ ∞

ρ

dx

x2 (x2 − h2
2)

3/2 √
x2 − h2

3

, (A.40)

F
5
2(ρ, μ, ν) = 5E5

2(ρ, μ, ν)

∫ ∞

ρ

dx

(x2 − h2
3)

3/2
(x2 − h2

2)
3/2

. (A.41)

B. Useful expressions. In this appendix, we will present the expressions for the metric

coefficients, the normal unit vectors and the gradient for all areas and boundaries of the

tumour. We begin with the metric coefficients of the boundary of the necrotic core:

hN
ρ =

√
ρ2N − μ2

√
ρ2N − ν2√

ρ2N − h2
3

√
ρ2N − h2

2

, (B.1)

hN
μ =

√
ρ2N − μ2

√
μ2 − ν2√

μ2 − h2
3

√
h2
2 − μ2

, (B.2)

hN
ν =

√
ρ2N − ν2

√
μ2 − ν2√

h2
3 − ν2

√
h2
2 − ν2

. (B.3)

Then, we state the metric coefficients for the boundary of the unperturbed ellipsoidal

tumour:

hL
ρ =

√
ρ2L − μ2

√
ρ2L − ν2√

ρ2P − h2
3

√
ρ2L − h2

2

, (B.4)

hL
μ =

√
ρ2L − μ2

√
μ2 − ν2√

μ2 − h2
3

√
h2
2 − μ2

, (B.5)

hL
ν =

√
ρ2L − ν2

√
μ2 − ν2√

h2
3 − ν2

√
h2
2 − ν2

. (B.6)

However, on the tumour surface, the metric coefficients are expressed in terms of the

perturbation parameter ε:

hρ =

√
ρ2 − μ2

√
ρ2 − ν2√

ρ2 − h2
3

√
ρ2 − h2

2

⇒ hρ =

√
(ρL + εf)2 − μ2

√
(ρL + εf)2 − ν2√

(ρL + εf)
2 − h2

3

√
(ρL + εf)

2 − h2
2

⇒ hρ = hL
ρ

[
1 +

ερLf

ρ2L − μ2
+

ερLf

ρ2L − ν2
− ερLf

ρ2L − h2
3

− ερLf

ρ2L − h2
2

+O
(
ε2
)]

, (B.7)
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hμ =

√
ρ2 − μ2

√
μ2 − ν2√

μ2 − h2
3

√
h2
2 − μ2

⇒ hμ =

√
(ρL + εf)2 − μ2

√
μ2 − ν2√

μ2 − h2
3

√
h2
2 − μ2

⇒ hμ = hL
μ

[
1 +

ερLf

ρ2L − μ2
+O

(
ε2
)]

, (B.8)

hν =

√
ρ2 − ν2

√
μ2 − ν2√

h2
3 − ν2

√
h2
2 − ν2

⇒ hν =

√
(ρL + εf)

2 − ν2
√
μ2 − ν2√

h2
3 − ν2

√
h2
2 − ν2

⇒ hν = hL
ν

[
1 +

ερLf

ρ2L − ν2
+O

(
ε2
)]

. (B.9)

For this model, we will need the reciprocals of the metric coefficients, which are

1

hρ
=

1

hL
ρ

[
1− ερLf

ρ2L − μ2
− ερLf

ρ2L − ν2
+

ερLf

ρ2L − h2
3

+
ερLf

ρ2L − h2
2

+O
(
ε2
)]

, (B.10)

1

hμ
=

1

hL
μ

[
1− ερLf

ρ2L − μ2
+O

(
ε2
)]

, (B.11)

1

hν
=

1

hL
ν

[
1− ερLf

ρ2L − ν2
+O

(
ε2
)]

. (B.12)

The boundary of the necrotic core retains its original ellipsoidal shape. This boundary

is changing only on the ρ direction of the ellipsoidal coordinate system. So, the normal

unit vector is obtained by

n̂ = ρ̂0, (B.13)

while the expression for the gradient on ∂ΩN has the form

∇ =
ρ̂0

hN
ρ

∂

∂ρ
+

μ̂0

hN
μ

∂

∂μ
+

ν̂0

hN
ν

∂

∂ν
. (B.14)

For ∂ΩP , the normal unit vector is expressed in terms of ε as

n̂ = ρ̂0+εhL
ρ f

[
νν̂0

hP
ν (ρ2L − ν2)

+
μμ̂0

hP
μ (ρ2L − μ2)

]
−ε

hL
ρ

hL
ν

fν ν̂0−ε
hL
ρ

hL
μ

fμμ̂0+O
(
ε2
)
, (B.15)

and the gradient on the outer boundary has the form

∇ =
ρ̂0

hρ

∂

∂ρ
+
μ̂0

hμ

∂

∂μ
+
ν̂0

hν

∂

∂ν
−εfρL

ρ̂0

hL
ρ

(
1

ρ2L − μ2
+

1

ρ2L − ν2
− 1

ρ2L − h2
3

− 1

ρ2L − h2
2

)
∂

∂ρ

− εfρL

[
μ̂0

hL
μ

1

ρ2L − μ2

∂

∂μ
+

ν̂0

hL
ν

1

ρ2L − ν2
∂

∂ν

]
+O

(
ε2
)
. (B.16)

For this approach we will also need an expression for the evolution of the outer boundary

in terms of ε, which is

dρL
dt

= hL
ρ

{
dρL
dt

+ ε

[
ft + fρL

(
1

ρ2L − μ2
+

1

ρ2L − ν2
− 1

ρ2L − h2
3

− 1

ρ2L − h2
2

)
dρL
dt

]}
ρ̂0

+ hL
μ

(
1 +

εfρL
ρ2L − μ2

)
dμ

dt
μ̂0 + hL

ν

(
1 +

εfρL
ρ2L − ν2

)
dν

dt
ν̂0 +O

(
ε2
)
. (B.17)
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Most of the above formulae were taken from the paper by [20] and the relative book

([19]).
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