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Abstract. Computation of waves at the interface between two materials with different

wave velocities is an important engineering problem. Transparent boundary conditions

on the input and output boundaries are known for a single velocity wave. Adapting

them in case of two velocities, singularities appear in the computation of the waves. We

precisely exhibit these singularities both with theoretical and numerical points of view.

Introduction. The theory of transparent boundary conditions is a large and deep

domain of mathematical studies. To our knowledge, the first main theoretical paper on

the subject concerns simulations of solutions of a linear wave equation in the exterior of

a bounded domain and is due to B. Engquist and A. Majda ([5]): the authors suggest a

method, based on a Fourier transform in time and the transverse direction, which leads to

exact and non-local transparent boundary conditions. They also perform several series

developments (at different orders) and they obtain approximate but local transparent

boundary conditions. Let us also notice the works of L. Halpern ([10] [11]): she (and

co-authors) studied well-posedness of different boundary conditions and their numerical

schemes.

When one studies solutions of linear wave equations with a unique velocity, the bound-

ary conditions on the input and output boundary are transparent boundary conditions:

they ensure that waves should go out of the domain (there is no reflection) and they

avoid singularity (see Figure 2). In case of a transmission problem, the difference between

wave velocities involves singularities which are localized at the intersections between the

boundary of the domain and the interface of transmission (see Figure 3 and Figure 4).

We give a precise description of them with a mathematical analysis of this phenomenon:
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we prove that the singularities are involved by the gap across the interface on the lateral

boundary of the antisymmetric part of the Neumann derivative of the solution. Let us

notice that there is no singularity for homogeneous Neumann boundary conditions on

the whole boundary of Ω.

Let us illustrate our claim with the following different situations: Figures 1, 2, 3

and 4 below concern solutions of a transmission problem (see system (1)) in the square

Ω =]0, 1[×]0, 1[ and during the time T = 1.2. The interface is localized at y = 0.2, and

the velocities are c = c− if y < 0.2 and c = c+ if y > 0.2 with 0 < c− ≤ c+. Initial data

are null and the right hand side f is localized in the region with velocity c−. Figure 1

shows the support of the right hand side f . Numerical computations are performed in

Matlab. A finite element approximation using first degree polynomials has been used.

The time step integration is performed with a central difference scheme. The damping

term is estimated by a backward difference scheme. But an upgrade is introduced using a

characteristic method for the boundary terms implied. Concerning the intersection point

we used the average velocity. The time step of order 0.001T and space steps (both in the

x and y directions) of
1

120
= 0.0083. Figures 2, 3 and 4 are snapshots at time t = 0.41294

or t = 0.41367 in the three following situations: on Figure 2, one has c− = c+ = 1 and

the right hand side is a high frequency time excitation. One can see that there is no

singularity. In Figure 3, one has c+ = 2 and c− = 1, and the right hand side f is a low

frequency time excitation. In Figure 4, one has c+ = 2 and c− = 0.5, and the right hand

side is a high frequency time excitation. In both Figures 3 and 4, one can see singularities

appearing at the intersection between the interface y = 0.2 and the the boundary x = 0

and x = 1. This is what we explain in the following. Other numerical computations are

given in order to exhibit more precisely these singularities.

In a forthcoming paper, we suggest a way to avoid these singularities introducing

efficient new transparent boundary conditions. Let us notice that our method leads to a

non-local computation which is classical in the derivation of exact transparent boundary

conditions at higher order but new for first order.

Our plan is the following one : in the first section, we present the mathematical

problem and we focus on the singularity. In the second section, we study existence and

regularity results of its solutions. In the third section, we focus on singularities on the

boundary of the interface. In this section, we state our main theorem. All along, the

paper is completed by numerical simulations which have been performed with Matlab

and which illustrate our theoretical results.

1. The wave model used for the discussion. Let us consider a two dimensional

open set Ω =]0, L[×] − a, a[ (L > 0 and a > 0) of R2 as shown on Figure 5. A point

x of Ω has coordinates x = (x1, x2). The wave velocity is denoted by c and is piecewise

constant. It is c+ in Ω+ = Ω ∩ (x2 > 0) and c− in Ω− = Ω ∩ (x2 < 0), and we assume

that 0 < c− ≤ c+.
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Fig. 1. The right hand side’s support

Fig. 2. One material
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Fig. 3. Two materials and low frequency time excitation

Fig. 4. Two materials and high frequency time excitation
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Fig. 5. The open set Ω and the notation for the theoretical discussion

For any given functions f = f(x, t), u0 = u0(x) and u1 = u1(x), let us consider the

u = u(x, t) solution of the following mathematical model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− div(c2∇u) = f in Q = Ω×]0, T [,

∂u

∂ν
= 0 on (Γ+ ∪ Γ−)×]0, T [,

∂u

∂t
+ c

∂u

∂ν
= 0 on (Γe ∪ Γs)×]0, T [,

u(x, 0) = u0(x)
∂u

∂t
(x, 0) = u1(x) in Ω.

(1)

We write Γe+ = Γe×(x2 > 0), Γe− = Γe×(x2 < 0), Σ+ = Γ+×]0, T [, Σ− = Γ−×]0, T [,

Σe = Γe×]0, T [, and Σs = Γs×]0, T [. The interface is Γi = Ω ∩ [x2 = 0] and Σi =

Γi×]0, T [. The letter ν denotes the unit outward normal vector on the boundary Γ of Ω.

For x ∈ R
2, we denote by Vx a small enough open and non-empty neighborhood of x in

R
2. We write 1O for the characteristic function of a set O of R2 and

◦
Γi for the interior

of Γi.

Existence and uniqueness of solutions of system (1) are classical results, even if the

transparent boundary conditions on Γe ∪ Γs (which imply first order time derivative)

require a slightly different strategy from the usual one. Let us summarize them in the

following statement.
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Proposition 1. Let us assume that u0 ∈ H1(Ω), u1 ∈ L2(Ω) and f ∈ L2(Q). Then,

there exists a unique solution u to the system (1) with:

u ∈ L∞(]0, T [;H1(Ω)) ∩W 1,∞(]0, T [;L2(Ω)).

We don’t give the full proof of Proposition 1.1; one can refer to [4] in case of interest: it

is based on a Galerkin method, a priori estimate and weak convergence of a subsequence

solution of a finite dimensional approximation. �
Let us recall the variational formulation of (1).

• The function u is the solution of

∀v ∈ H1(Ω),

∫
Ω

∂2u

∂t2
(x, t)v(x)dx+

∫
Ω

c2∇u(x, t).∇v(x)dx

+

∫
Γe∪Γs

c
∂u

∂t
(x, t)v(x) =

∫
Ω

f(x, t)v(x)dx.
(2)

• The energy is defined by

E(t) =
1

2

∫
Ω

∂u

∂t
(x, t)2dx+

1

2

∫
Ω

c2|∇u(x, t)|2dx, (3)

and one has for f = 0 :

E(t) +

∫
Σe∪Σs

c
∂u

∂t
(x, t)2dx = E(0).

Therefore it decreases with respect to the time variable.

In the general case, there exists a constant d > 0 such that for every data (u0, u1, f) ∈
H1(Ω)× L2(Ω)× L2(Q) :

E(t) +

∫
Σe∪Σs

c|∂u
∂t

(x, t)|2dx ≤ d[E(0) + ||f ||Q]2,

where || ||Q denotes the L2(Q)− norm. These results prove that

∂u

∂t
∈ L2(Σe ∪ Σs).

Since
∂u

∂ν
= −1

c

∂u

∂t
, one has

∂u

∂ν
∈ L2(Σe ∪ Σs).

Furthermore, even if
∂u

∂t
∈ H−1(0, T ;H1(Ω)), the discontinuity of c implies that in

general
∂u

∂ν
�∈ D′(0, T ;H1/2(Γe)) and

∂u

∂ν
�∈ D′(0, T ;H1/2(Γs)).

The function u, the unique solution of (1), satisfies locally:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− c2+Δu = f in Q+ = Ω+×]0, T [,

∂2u

∂t2
− c2−Δu = f in Q− = Ω−×]0, T [,

c2+
∂u

∂νi
− c2−

∂u

∂νi
= 0 on Σi,

(4)

where νi here is one of the two unit normal vectors of Γi and
∂u

∂νi
= ∇u.νi.
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The third equation of (4) implies that whatever the smoothness of the data are there is

in general no hope to have u ∈ D′(0, T ;H2
loc(Ω)) if c is not constant across the separation

line Γi between the two materials.

We now turn to the regularity study of solutions of (1).

2. On the smoothness of u in time and space. Let us study the regularity

of u first with respect to the time variable and then with respect to space variables.

Singularities will be discussed in the next section.

Based on derivative methods with respect to the time t, one can upgrade the results

stated in Proposition 1 by assuming that the initial condition u0 doesn’t cross the in-

terface Γi. Let us define by O+, respectively O−, two open subsets whose closures are

subsets of Ω+ and Ω−.

Theorem 1. If the initial conditions are such that u0 ∈ H2(Ω) with supp(u0) ⊂ O+∪O−,

u1 ∈ H1(Ω) and f ∈ H1(]0, T [;L2(Ω)), then the solution u of (1) is such that

u ∈ W 1,∞(]0, T [;H1(Ω)) ∩W 2,∞(]0, T [;L2(Ω)).

From classical inclusions (see [3]), this implies for instance that

u ∈ C0([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)).

Proof. Let us set u̇ =
∂u

∂t
. The function u̇ is the solution of (1) with data:

ḟ =
∂f

∂t
∈ L2(Q), u̇(x, 0) = u1(x) ∈ H1(Ω) and

∂u̇

∂t
(x, 0) = f(x, 0) + div(c2∇u0).

The assumption on the initial data u0 ensures that∇u0 is null on a neighborhood of the

interface Γi in Ω and thus div(c2∇u0)∈L2(Ω). Moreover, f ∈C0([0, T ];L2(Ω)); therefore

f(x, 0) is in L2(Ω).Applying Proposition 1, we easily deduce that u∈W 1,∞(]0, T [;H1(Ω))

∩W 2,∞(]0, T [;L2(Ω)). �
By iterating Theorem 1, one easily gets:

Theorem 2. With the same notation as in Theorem 1, and if the initial conditions are

such that (u0, u1) ∈ H3(Ω) × H2(Ω) both with compact supports in O+ ∪ O−, and if

f ∈ H2(0, T ;L2(Ω)), then the solution u of (1) is such that

u ∈ W 2,∞(]0, T [;H1(Ω)) ∩W 3,∞(]0, T [;L2(Ω)),

and thus u ∈ C1([0, T ], H1(Ω)) ∩ C2([0, T ], L2(Ω)).

Remark. Let us first recall that if γ is a non-empty and open part of the whole

boundary Γ of Ω, the restriction operator to γ maps H1/2(Γ) onto H1/2(γ), whereas the

extension by zero of a function of H1/2(γ) is not in general a function of H1/2(Γ). In

both cases of Theorems 1 and 2, one has

u|Γe∪Γs
∈ C1([0, T ];H1/2(Γe ∪ Γs))

and therefore

c
∂u

∂ν |Γe∪Γs

∈ C0([0, T ];H1/2(Γe ∪ Γs)).

�
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The function c is discontinuous across Γi and therefore in general (even a piecewise

continuous function is not globally H1/2 of the whole open set)

∂u

∂ν |Γe

�∈ D′(0, T ;H1/2(Γe)) and
∂u

∂ν |Γs

�∈ D′(0, T ;H1/2(Γs)). (5)

We get at least for 0 ≤ s < 1/2,

∂u

∂ν |Γe

∈ C0([0, T ];Hs(Γe)) and
∂u

∂ν |Γs

∈ C0([0, T ];Hs(Γs)).

Let us now turn to the smoothness with respect to the space variables; there are

several cases.

Theorem 3. Let f ∈ H1(Q) and let us assume the initial data as in Theorem 1. Let u

be the solution of system (1). One has:

(1) u1Ω+
∈ L∞(]0, T [;H2

loc(Ω+)) and u1Ω− ∈ L∞(]0, T [;H2
loc(Ω−)).

(2) If x ∈ Γ+ ∪ Γ−, then u ∈ L∞(]0, T [;H2(Vx ∩ Ω̄)).

(3) If x ∈ Γe+ ∪ Γe− ∪ Γs+ ∪ Γs− , then u ∈ L∞(]0, T [;H2(Vx ∩ Ω̄)).

(4) If x ∈
◦
Γi, then

∂u

∂x1
∈ L∞(]0, T [;H1(Vx)).

Proof. (1) On Ω+×]0, T [, one has

div(c2∇u) = c2+Δ(u) =
∂2u

∂t2
∈ L∞(]0, T [;L2(Ω+)).

A classical localization argument leads to u|Ω+
∈ L∞(]0, T [;H2

loc(Ω+)). Of course, the

same argument can be applied in Ω−.

(2) Let x ∈ Γ+ for example. The boundary conditions
∂u

∂ν
= 0 on Σ+ allow us to

apply a symmetry argument and to consider an extension ū of u across Γ+, which is still

the solution of (1) in a neighborhood Vx of x. The first point of this theorem leads to

ū ∈ L∞(]0, T [;H2(Vx)) and thus u ∈ L∞(]0, T [;H2(Vx ∩ Ω)).

(3) Let x ∈ Γe+ . Since
∂u

∂t
∈ L∞(]0, T [;H1(Ω)) and

∂u

∂ν
= −1

c

∂u

∂t
, we obtain

∂u

∂ν
∈

L∞(]0, T [;H1/2(Γe+)). After localization, we get

Δu ∈ L2((Vx ∩ Ω)× (0, T )) and
∂u

∂ν
∈ L∞(0, T ;H1/2(∂(Vx ∩ Ω)).

Classically, this leads to u ∈ L∞(0, T ;H2(Vx ∩ Ω̄)).

(4) Let x ∈
◦
Γi . In this case, let us notice that we can assume that Vx ⊂ Ω̄. There

is no hope (in general) that u ∈ D′(0, T ;H2
loc(Vx)) except for c+ = c−. Let us consider

ρx ∈ D(Ω) with ρx = 1 on Vx and let us write w1 = ρx
∂u

∂x1
. Since Γi is parallel to the

axis and boundary x1, the function w1 is still the solution of a transmission problem

similar to (1) with ⎧⎪⎨
⎪⎩

∂2w1

∂t2
− div(c2∇w1) ∈ L2(Q),

∂w1

∂ν
∈ L∞(]0, T [;H1/2(∂Vx)),

and thus w1 ∈ L∞(]0, T [;H1(Vx)). �
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Remark. One can easily prove that
∂u

∂x1
is L∞(]0, T [, H1(]b1, b2[×] − a, a[)) in any

rectangle ]b1, b2[×]− a, a[ with 0 < b1 < b2 < L. �
We now turn to the main point: the description of the singularities focusing at the

point (x1, x2) = (0, 0) (see Figure 5).

3. Polylog-2 singularities at the junction of the interface Γi and the bound-

ary Γe (or Γs). We focus our study at the point with the coordinates (0, 0), but, of

course, an analogous result is valid at the point with coordinates (L, 0). We introduce an

even function ρ with ρ = ρ(x2) ∈ C∞(R):⎧⎨
⎩

ρ(x2) = 1 for − a

2
< x2 <

a

2

ρ(x2) = 0 for |x2| >
3a

4

. (6)

Let us denote W =]0, b[×] − a

2
,
a

2
[ where 0 < b < L. We consider a function ρW ∈

C∞(Ω) such that {
ρW = 1 in W,

ρW = 0 in a neighborhood of Γ+ ∪ Γ− ∪ Γs.
(7)

Let us set

V = {w ∈ H1(Ω), ρw1Ω+
∈ H2(Ω+), ρw1Ω− ∈ H2(Ω−),

and
∂ρw

∂x1
∈ H1(W )}.

(8)

For a given function h, we denote by Ts and Ta the following symmetric and antisym-

metric part of h defined by

Ts(h)(x1, x2) =
1

2
[h(x1, x2) + h(x1,−x2)] (9)

and

Ta(h)(x1, x2) =
1

2
[h(x1, x2)− h(x1,−x2)]. (10)

When no mistake can be made, we write hs and ha instead of Ts(h) and Ta(h). Of

course, h = hs + ha.

We denote by Im(z) the imaginary part of the complex number z and we introduce

the two following functions:

Li2 is the polylogarithm function of order 2 defined by

Li2(z) =
∑
n≥1

zn

n2
for |z| ≤ 1.

With z = exp[−π

a
(x1 − ix2)], we consider the function S defined by

S(x1, x2) =
2a

π2(c2+ + c2−)
Im[Li2(z)− Li2(−z)].

Let us notice that S ∈ H1(Ω) and that S is null on the interface Γi. The graphs of

the function S and its partial derivatives are given in Figure 6.
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Fig. 6. Graphs of the function S and its partial derivatives :
∂S

∂x1

and
∂S

∂x2

Our main result in the paper is the following one: it gives a splitting of the solution

u in a regular part (ur) and a singular one (usg).

Theorem 4. (i) Let f ∈ H1(Ω×]0, T [), u0 ∈ H1(Ω) and u1 ∈ L2(Ω). Then, there exist

two functions ur and usg in L2(]0, T [;H1(Ω)) with u = ur + usg in Q. The function ur

satisfies
∂ur

∂x1
∈ H−2(]0, T [;V) (where V is defined in (8)).

Furthermore, there exist α0 = α0 ∈ H−2(0, T ) and ε > 0, such that in ]0, ε[×]− ε, ε[,

we have

usg(x1, x2, t) = (c+ − c−)α0(t)S(x1, x2) [
c−
c+

1Ω+
+

c+
c−

1Ω− ]

and

∂usg
∂x2

=
α0(c+ − c−)

π(c2+ + c2−)
Ln|

1 + 2e
−
πx1
a cos(

πx2
a

) + e
−2

πx1
a

1− 2e
−
πx1
a cos(

πx2
a

) + e
−2

πx1
a

|[c−
c+

1Ω++
c+
c−

1Ω− ]. (11)

(ii) If f ∈ H1(Ω×]0, T [), u0 ∈ H2(Ω) and u1 ∈ H1(Ω) both with compact supports in

O+ ∪O−, then α0 ∈ H−1(0, T ).

(iii) If f ∈ H2(Ω×]0, T [), u0 ∈ H3(Ω) and u1 ∈ H2(Ω) both with compact supports

in O+ ∪O−, then α0 ∈ L2(0, T ).

Remark. Let us notice that usg is null if c+ = c−; thus the existence of the singularity

is due to the presence of two materials. We have (with r =
√
x2
1 + x2

2) for c+ �= c− and

near (0, 0):
∂usg

∂x2
∼ 2α0(c+ − c−)

π(c2+ + c2−)
| Ln(r)|.

We then get (still with c+ �= c− and α0 �= 0)

lim
x2→0+

∂usg

∂x2
(0, x2) = lim

x2→0−

∂usg

∂x2
(0, x2) = ±∞.

�
Numerical illustrations. In Figures 7 and 8, the velocities satisfy c+ = 2 and c− = 0.5.

The graph of
∂u

∂x2
is plotted on Γe in Figure 7(a), on an interior line x1 = 0.5 in Figure
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7(b), whereas Figures 8(a) and 8(b) point out the singularity on the outgoing side at the

interface. One can see that the function
∂u

∂x2
presents singularities on the boundaries Γe,

Γs. On the line x1 = 0.5 of the domain Ω (see Figure 7(b)), there is a gap due to the

transmission boundary conditions on the interface Γi. One can point out that the energy

of the solution is mainly in the softest media Ω−. This is in agreement with the fact that

Love waves which are localized in this part of Ω act as an energy trap.

In Figures 9 (a), (b) and 10 (a) and (b), the graph of
∂u

∂x2
is given for the same data

and time as in Figures 7 and 8 but in the case where c+ = c−. One can obviously see

that there is no singularity in this homogeneous case.

The end of the paper is devoted to the proof of Theorem 4.

Proof of Theorem 4. The idea is the following: we prove that the singular part of u on

Γe comes from the antisymmetric part of the singular function −1

c

∂u

∂t
on the boundary

Γe. More precisely, the singularity is strictly connected to the gap at the origin (0, 0) of

this function, a gap that we have to define. In order to point out this fact, we split the

solution of (1) into several parts and write

g = −1

c

∂u

∂t
1Σe∪Σs

. (12)

Let us recall that for (u0, u1) ∈ H1(Ω) × L2(Ω) and f ∈ L2(Q), we have g ∈ L2(Σ)

but g �∈ H−1(]0, T [;H1/2(Γ)). In the same way, if (u0, u1) ∈ H2(Ω) × H1(Ω) with

supp(u0) ⊂ K where K is a compact set in Ω+ ∪ Ω−, even if f ∈ H1(Q), then g �∈
L2(]0, T [;H1/2(Γ)). Since our interest is not far from the interface Γi, we first localize

the function u introducing ũ = ρu where ρ is defined at (6). The function ũ is the

solution of the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ũ

∂t2
− div(c2∇ũ) = f̃ in Q = Ω×]0, T [,

ũ = 0 on (Γ+ ∪ Γ−)×]0, T [,

∂ũ

∂t
+ c

∂ũ

∂ν
= 0 on (Γe ∪ Γs)×]0, T [,

ũ(x, 0) = ρu0(x)
∂ũ

∂t
(x, 0) = ρu1(x) in Ω,

(13)

with f̃ = ρf + c2∇ρ.∇u + div(c2u∇ρ). Since ρ = 1 in a neighborhood of Γi, we have

div(c2u∇ρ) ∈ L2(Q). We denote by g̃ the following function:

g̃ = −1

c

∂ũ

∂t
1Σe∪Σs

. (14)

We get g̃ ∈ L2(Σ) and g̃ = g = −1

c

∂u

∂t
in a neighborhood in Γe of the point (0, 0).
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Waves in a bimaterial with interface at x2 = 0.2

Fig. 7. (a)
∂u

∂x2
on Γe (b)

∂u

∂x2
on x1 = 0.5

Fig. 8. (a)
∂u

∂x2
both on Γe and Γs (b) singularity of

∂u

∂x2
at the interface on Γs

We recall that gs (respectively ga) is the symmetric (respectively antisymmetric) part

of g. We introduce u(1) ∈ L2(0, T ;H1(Ω)) and u(2) ∈ L2(0, T ;H1(Ω)) solutions of:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

div(c2∇u(2)(t)) = 0 in Q = Ω×]0, T [,

u(2)(t) = 0 on {Γ+ ∪ Γ−}×]0, T [,

∂u(2)

∂ν
(t) = g̃a(t) on {Γe ∪ Γs}×]0, T [,

(15)
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Waves in a material with c+ = c− = 1 and interface at x2 = 0.2

Fig. 9. (a)
∂u

∂x2
on Γe (b)

∂u

∂x2
on x1 = 0.5

Fig. 10. (a)
∂u

∂x2
both on Γe and Γs (b)

∂u

∂x2
at the interface on Γs

and u(1) = ũ− u(2). We obtain that u(1) ∈ L2(0, T ;H1(Ω)) is the solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

div(c2∇u(1)) = div(c2∇ũ) = ¨̃u− f̃ in Q,

u(1) = 0 on {Γ+ ∪ Γ−}×]0, T [,

∂u(1)

∂ν
= g̃s on (Γe ∪ Γs)×]0, T [.

(16)

The following two lemmas will be useful for the study of the regularity of u(1).

Lemma 1. Let w ∈ H1(Ω) be a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(c2∇w) = h in Ω,

w = 0 on Γ+ ∪ Γ−,

∂w

∂ν
= g0 on Γe ∪ Γs,

(17)

with h ∈ L2(Ω), g01Γe
∈ H1/2(Γe) and g01Γs

∈ H1/2(Γs). Then w ∈ V (defined in (8)).
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Proof of Lemma 1. We refer to [12] for the main properties of the Sobolev spaces of

order 1/2. The function w1 = ρw is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(c2∇w1) = h1 in Ω,

w1 = 0 on Γ+ ∪ Γ−,

∂w1

∂ν
= g1 on Γe ∪ Γs,

(18)

with

h1 = ρh+ c2∇ρ.∇w + div(c2w∇ρ) and g1 = ρg0 + w∇ρ.ν.

Since ∇ρ = 0 in a neighborhood of Γi, we deduce that c
2∇ρ ∈ C∞(R) and div(c2w∇ρ) ∈

L2(Q) and thus h1 ∈ L2(Q).

Furthermore, g01Γe
∈ H1/2(Γe) implies that g0ρ1Γe

∈ H
1/2
00 (Γe) (and the same argu-

ment is valid on Γs). Let us denote by ḡ1 the extension by zero on the whole boundary

of the function g1. We then have ḡ1 ∈ H1/2(Γ).

Let us set w2 =
∂w1

∂x1
= ρ

∂w

∂x1
. We obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(c2∇w2) =
∂h1

∂x1
in Ω,

w2 = 0 on Γ+ ∪ Γ−,

w2 = −g1 on Γe and w2 = g1 on Γs.

(19)

Since g11Γe
∈ H

1/2
00 (Γe) (and the same on Γs), we get that the function 1Γs

g1−1Γe
g1 ∈

H1/2(Γ). Introducing now G1 ∈ H1(Ω) with G1 = 1Γs
g1−1Γe

g1 on Γ, and w3 = w2−G1,

we deduce that ⎧⎨
⎩

div(c2∇w3) =
∂h1

∂x1
− div(c2∇G1) in Ω,

w3 = 0 on Γ,
(20)

with h3 =
∂h1

∂x1
− div(c2∇G1) ∈ H−1(Ω).

We easily deduce that w3 ∈ H1(Ω); thus w2 = ρ
∂w

∂x1
∈ H1(Ω).

Assertions ρw1Ω+
∈H2(Ω+) and ρw1Ω− ∈H2(Ω−) are easy consequences of Δ(ρw1Ω+

)

∈ L2(Ω+) and
∂ρw

∂x1
∈ H1(Ω) (the same for Ω−). Of course, there is no hope to have

w ∈ H2(W ). Lemma 1 is therefore proved. �

Lemma 2. Let g ∈ L2(Γe) with g1Γe+
∈ H1/2(Γe+) and g1Γe−

∈ H1/2(Γe−). Then, we

have gs ∈ H1/2(Γe).

Let us suppose that Lemma 2 is proved. Since the function g̃ satisfies g̃1Γe+
∈

H−1(0, T,H1/2(Γe+)) (and the same on Γe−), we obtain that g̃s ∈ H−1(0, T ;H1/2(Γe)).
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Moreover, ¨̃u − f̃ ∈ H−1(0, T ;L2(Ω)). We can apply Lemma 1 to the function u(1), and

we get that u(1) ∈ H−1(0, T ;V) if (u0, u1) ∈ H1(Ω)×L2(Ω). In the case where (u0, u1) ∈
H2(Ω)×H1(Ω) with supp(u0) ⊂ K where K is a compact set in Ω+∪Ω−, one can easily

prove that u(1) ∈ L2(0, T ;V) since ¨̃u− f̃ ∈ L2(0, T ;L2(Ω)) g̃s ∈ L2(0, T ;H1/2(Γe)).

Proof of Lemma 2. Let us point out that the time variable is a parameter in Lemma

2 and thus by linearity, the regularity in time comes from that of the function g. There

is nothing to prove for this.

Let us introduce

Ts(g1, g2)(x2) =

⎧⎪⎨
⎪⎩

1

2
[g1(x2) + g2(−x2)] if x2 > 0

[6pt]
1

2
[g2(x2) + g1(−x2)] if x2 < 0

for g1 ∈ L2(Γe+) and g2 ∈ L2(Γe−).

We easily get

T ∈ L(L2(Γe+)× L2(Γe−);L
2(Γe)).

If (g1, g2) ∈ H1(Γe+) × H1(Γe−), then Ts(g1, g2) ∈ H1(Γe) (there is no gap across

x2 = 0); hence

T ∈ L(H1(Γe+)×H1(Γe−);H
1(Γe)).

By interpolation of order 1/2, we deduce Lemma 2. �
We now turn to the proof of Theorem 4 with the study of u(2), the solution of (15),

and we first prove the following result concerning the solution u: it defines the gap of

u|Γe
at the origin.

Proposition 2. Suppose (u0, u1)∈H1(Ω)×L2(Ω). We have ũ1Ω+
∈L2(0, T ;H3/2(Ω+)),

ũ1Ω− ∈ L2(]0, T [;H3/2(Ω−)) and we can write

g̃a = Ta(g̃) = α(t) sign(x2) + gar,

where α ∈ H−2(0, T ) and gar ∈ H−2(]0, T [;H1/2(Γe)).

Furthermore, in the case (ii) (respectively (iii)) of Theorem 4, we have α(t) ∈ H−1(0, T )

(respectively α(t) ∈ L2(0, T )).

Proof of Proposition 2. Let us prove that ũ1Ω+
∈ L2(]0, T [;H3/2(Ω+)). We introduce

ũS and ũA defined by ũA = ũ− ũS and

ũS(x1, x2, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2+ũ(x1, x2, t) + c2−ũ(x1,−x2, t)

c2+ + c2−
if x2 > 0

c2+ũ(x1,−x2, t) + c2−ũ(x1, x2, t)

c2+ + c2−
if x2 < 0.

We have ũS ∈ L2(0, T ;H1(Ω)) and ũS = ũ on Γi. Let us prove that ũS ∈
H−1(0, T ;H2(Ω)). We obtain in Ω+ :

∂ũS

∂x2
=

1

c2+ + c2−
[c2+

∂ũ

∂x2
(x1, x2, t)− c2−

∂ũ

∂x2
(x1,−x2, t)];
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thus (recall that ũ satisfies the transmission condition), we get
∂ũS

∂ν
= 0 on Γi. An

analogous calculus on Ω− proves the normal derivative of ũS through the interface Γi

is also null. Since ũS ∈ L2(0, T ;H1(Ω)), Δ(ũS1Ω+
) ∈ H−1(0, T ;L2(Ω+)), Δ(ũS1Ω−) ∈

H−1(0, T ;L2(Ω−)), with no gap of the normal derivative through Γi, we deduce that

ΔũS ∈ H−1(0, T ;L2(Ω)).

On the other hand, we have on Ω+:

∂ũS

∂x1
=

1

c2+ + c2−
[c2+

∂ũ

∂x1
(x1, x2, t) + c2−

∂ũ

∂x1
(x1,−x2, t)]

and on Ω−:

∂ũS

∂x1
=

1

c2+ + c2−
[c2−

∂ũ

∂x1
(x1, x2, t) + c2+

∂ũ

∂x1
(x1,−x2, t)];

thus
∂ũS

∂ν
is a symmetric function on Γe and on Γs. We can apply Lemma 2 and get that

∂ũS

∂ν
∈ H−1(0, T ;H1/2(Γe ∪ Γs)). We have proved that ũS is the solution of

⎧⎪⎪⎨
⎪⎪⎩

ΔũS ∈ H−1(0, T ;L2(Ω))

ũS = 0 on Γ+ ∪ Γ−
∂ũS

∂ν
∈ H−1(0, T ;H1/2(Γe ∪ Γs)).

Since ũS is null in a neighborhood of Γ+ and Γ−, we deduce that ũ
S ∈H−1(0, T ;H2(Ω)).

Let us now prove that ũA1Ω+
= (ũ− ũS)1Ω+

∈ H−1(0, T ;H3/2(Ω+)). We have ũA ∈
L2(0, T ;H1(Ω)). Since ũ = ũS on Γi, we get ũA|Γi

= 0. Moreover, using that the normal

direction on Γe (respectively Γs) is the −x1’s (respectively x1’s) direction, one can easily

prove that uA satisfies in Ω+ × (0, T ):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔũA ∈ H−1(0, T ;L2(Ω+))

∂ũA

∂ν
=

∂ũ

∂ν
− ∂ũS

∂ν
∈ H−1(0, T ;H1/2(Γe+ ∪ Γs+))

uA = 0 on Γi ∪ Γ+

and therefore ũA ∈ H−1(]0, T [;H3/2(Ω+)) if (u0, u1) ∈ H1(Ω)× L2(Ω). We proved that

ũ ∈ H−1(]0, T [;H3/2(Ω+)) + H−1(]0, T [;H2(Ω+)) and thus ũ ∈ H−1(]0, T [;H3/2(Ω+))

for initial data (u0, u1) in H1(Ω)× L2(Ω). Of course, the same is valid in Ω−.

We deduce that
∂ũ

∂t
|Γe+

and
∂u

∂t
|Γe−

make sense in H−2(]0, T [;H1(Γe+)) and

H−2(]0, T [;H1(Γe−)) and thus their values at point (0, 0) exist. Furthermore,
∂ũ

∂t
∈

H−1(]0, T [;H1/2(Γe)); thus these values are equal. Let α = g̃a|Γe+
be the trace of the



TRANSPARENT BOUNDARY CONDITIONS 459

function g̃a on Γe+ . We have

α(t) = g̃a(0+, t) = −1

2
[
1

c+
∂ũ

∂t
(0, 0+, t)− 1

c−
∂u

∂t
(0, 0−, t)]

=
1

2c+c−
(c+ − c−)

∂ũ

∂t
(0, 0, t).

We write

g̃a(x2, t) = α(t) sign(x2) + gar(x2, t),

where sign denotes the sign function defined by sign(x) = 1 if x > 0 and sign(x) = −1 if

x < 0. The function gar is an odd function with respect to x2, gar1Γe+
∈

H−2(0, T ;H1(Γe+)) and gar1Γe−
∈ H−2(0, T ;H1(Γe−)), and their values at the point

(0, 0) are null. Therefore gar ∈ H−2(]0, T [;H1/2(Γe)), and Proposition 2 is proved.

Finally, let us study the regularity of α in cases (ii) and (iii). In case (ii) of Theorem

4, we obtained that ΔũS ∈ L2(Q), ΔũA ∈ L2(Q), and
∂ũS

∂ν
∈ L2(0, T ;H1/2(Γe ∪ Γs))

and
∂ũA

∂ν
=

∂ũ

∂ν
− ∂ũS

∂ν
∈ L2(0, T ;H1/2(Γe+ ∪Γs+)). Following the proof, it is not difficult

to deduce that u ∈ L2(]0, T [;H3/2(Ω+)) and therefore α(t) ∈ H−1(0, T ). In case (iii) of

Theorem 4, there is one more regularity with respect to the time variable which leads to

α(t) ∈ L2(0, T ). �
Let us return to the proof of our main theorem. We write u(2) = u(3) + u(4) where

u(3) (respectively u(4)) is the solution of (15) with
∂u(3)

∂ν
= gar (respectively

∂u(4)

∂ν
=

α sign(x2)) on Γe. Lemma 1 can be applied to u(3), which leads to u(3) ∈ H−2(0, T ;V).
We deduce that the singular part of the function u is involved by the lack of continuity

at the origin of the odd part of the function
1

c

∂u

∂t
.

Let us study w = u(4). We use the same splitting as in Proposition 2 and we write

w = wS+wA.We get wS ∈ H−1(0, T ;H2(Ω)), and thus it is sufficient to study u(5) = wA.

We know that Δu(5) = 0 separately in Ω+ and Ω− and that u(5) = 0 on Γi ∪ Γ+ ∪ Γ−.

Let us compute
∂u(5)

∂ν
= −∂u(5)

∂x1
on Γe+ and Γe− . We have on Γe+ :

∂u(5)

∂x1
(x1, x2) =

∂u(4)

∂x1
(x1, x2)−

∂wS

∂x1
(x1, x2)

= −α−
c2+

∂u(4)

∂x1
(x1, x2) + c2−

∂u(4)

∂x1
(x1,−x2)

c2+ + c2−

= −α−
c2+(−α) + c2−α

c2+ + c2−
= −α

2c2−
c2+ + c2−

and thus

β+(t) =
∂u(5)

∂ν
=

c−
c+(c2+ + c2−)

(c+ − c−)
∂ũ

∂t
(0, 0, t) on Γe+. (21)
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On Γ−, we get

∂u(5)

∂ν
= −α−

c2−
∂u(4)

∂ν
(x1, x2) + c2+

∂u(4)

∂ν
(x1,−x2)

c2+ + c2−

= −α− c2−(−α) + c2+α

c2+ + c2−
= −α

2c2+
c2+ + c2−

and thus

β−(t) =
∂u(5)

∂ν
= − c+

c−(c2+ + c2−)
(c+ − c−)

∂ũ

∂t
(0, 0, t) on Γe− . (22)

We deduce that the function u(5) is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu(5) = 0 in Ω+,

u(5) = 0 on Γ+ ∪ Γi,

∂u(5)

∂ν
= β+ on Γe+ ∪ Γs+ ,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu(5) = 0 in Ω−,

u(5) = 0 on Γ− ∪ Γi,

∂u(5)

∂ν
= β− on Γe− ∪ Γs− .

(23)

Proposition 3. Let w = w(x) ∈ H1(Ω+) be the solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δw = 0 in Ω+,

w = 0 on Γ+ ∪ Γi ∪ Γs+ ,

∂w

∂ν
= 1 on Γe+ .

(24)

Then there exists ε > 0 such that the behavior near the origin is given by

w(x) =
2a

π2
Im[Li2(e

−π
a (x1−ix2))− Li2(−e−

π
a (x1−ix2))] in ]0, ε[2.

Suppose Proposition 3 is proved. With β = β+ and then β = β− (and a symmetry

argument) where β+ and β− are defined in (21) and (22), we then obtain

u(5)(x1, x2) = β+w(x1, x2)1Ω+
+ β−w(x1,−x2)1Ω− .

This expression is exactly usg. The gradient of usg is easily deduced from the gradient

of the function w which is given below.

Proof. For the sake of simplicity we consider another system which leads to the same

singularity (the problem is a local one). Let us write Ωa = R
+∗×]0, a[ and consider the
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solution v ∈ H1(Ωa) of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δv = 0 in R
+∗×]0, a[,

v = 0 on R
+∗ × {0, a},

∂v

∂ν
= 1 on {0}×]0, a[.

(25)

We write for n ∈ N
∗, wn(x2) =

√
2

a
sin(

nπx2

a
) and

v(x1, x2) =
∑
n≥1

anwn(x2)e
−
nπx1

a ,

the series being convergent in the spaces H1(Ωa) and H2(Ωa ∩ (x2 > 0)).

Let us recall that the functions wn (n > 0) represent an orthonormal basis of L2(]0, a[).

We obtain for p ∈ N
∗,

∫ a

0

v(x1, x2)wp(x2)dx2 = ape
−
pπx1

a

and

∂v

∂x1
(x1, x2) = −π

a

∑
n

an nwn(x2)e
−
nπx1

a ;

thus ∫ a

0

∂v

∂x1
(0, x2)wp(x2)dx2 = −pπ

a
ap,

which leads to

ap =
a

pπ

∫ a

0

wp(x2)dx2 =
a2

p2π2

√
2

a
[1− (−1)p].

We then get

a2p = 0 and a2p+1 =
2a

√
2a

(2p+ 1)2π2

and

v(x1, x2) =
4a

π2

∑
p≥0

1

(2p+ 1)2
sin(

(2p+ 1)π

a
x2)e

−
(2p+ 1)πx1

a . (26)

We set

z = e
−
πx1

a
+ i

πx2

a

and we get

v(x1, x2) = Im[
4a

π2

∑
p≥0

z2p+1

(2p+ 1)2
].
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Let us recall that the dilogarithm function Li2 is defined by Li2(z) =
∑

n≥1

zn

n2

(|z| ≤ 1), and we refer to [15] for very surprising properties of this function. We proved

that

v(x1, x2) =
2a

π2
Im[Li2(z)− Li2(−z)].

Let us compute the gradient of v. One obtains with (26)

∂v

∂x1
= − 4

π

∑
p≥0

1

(2p+ 1)
sin(

(2p+ 1)π

a
x2)e

−
(2p+ 1)πx1

a

and

∂v

∂x2
=

4

π

∑
p≥0

1

(2p+ 1)
cos(

(2p+ 1)π

a
x2)e

−
(2p+ 1)πx1

a ;

thus (notice that
1 + z

1− z
�∈ R

−)

∂v

∂x2
− i

∂v

∂x1
=

4

π

∑
p≥0

z2p+1

(2p+ 1)
=

2

π
log(

1 + z

1− z
)

=
2

π
[Ln|1 + z

1− z
|+ iArg(

1 + z

1− z
)]

where the function Arg takes its values in the open set ]− π,+π[.

One deduces that

∂v

∂x2
=

1

π
Ln|

1 + 2e
−
πx1

a cos(
πx2

a
) + e

−2
πx1

a

1− 2e
−
πx1

a cos(
πx2

a
) + e

−2
πx1

a

|.

On Γi, one has

∂v

∂x2
=

2

π
Ln|1 + e

−
πx1

a

1− e
−
πx1

a

| = 4

π
Ln| coth πx1

2a
|

and

lim
x1→0+

∂v

∂x2
= +∞.

In the same way, one has on Γe+ ,

lim
x2→0+

∂v

∂x2
(0, x2) = +∞.

Theorem 3.1 is proved. �
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Conclusion. In this paper, we have discussed the singularity which appears when one

uses a transparent boundary condition for a bimaterial. This situation occurs for instance

when one tries to simulate wave propagations in an infinite strip replaced by a finite one.

The singularity which belongs to the Dilog family is an artifact which doesn’t exist in

the physical model. Therefore it seems necessary to eliminate it from the solution. The

first step was obviously to make it explicit in order to be able to suggest a method which

would improve the boundary condition. For instance, a numerical method could be to

compute the contribution of this artificial singularity and to subtract it from the global

solution. In fact, this is a way for defining an upgrade transparent boundary condition

for this kind of problem. This will be discussed in a forthcoming paper. Finally, let

us remark that these phenomena appear in the study of the detection of cracks at the

interface between two materials, as noticed in [7].
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