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Abstract. In this paper, we investigate and prove the nonlinear stability of viscous

shock wave solutions of a scalar viscous conservation law, using the methods developed

for general systems of conservation laws by Howard, Mascia, Zumbrun and others, based

on instantaneous tracking of the location of the perturbed viscous shock wave. In some

sense, this paper extends the treatment in a previous expository work of Zumbrun [“In-

stantaneous shock location. . . ”] on Burgers equation to the general case, giving an expo-

sition of these methods in the simplest setting of scalar equations. In particular we give,

by a rescaling argument, a simple treatment of nonlinear stability in the small-amplitude

case.

1. Introduction. The problem we consider here is the nonlinear stability of viscous

shock wave solutions of scalar viscous conservation laws. With full details, we use the

methods developed for general systems of conservation laws in [ZH,MaZ2,MaZ3] in the

simplest setting of a scalar conservation law (1.1). We also extend these methods to

the small-amplitude limiting case, recovering by a simple rescaling argument uniform

bounds obtained by Liu and Zeng ([LZe], system case). This is also in a sense a sequel

to the paper [Z1], in which these techniques were exposed for Burgers equations. The

work [Z1] focused on the nonlinear stability argument and in particular the method

of approximately locating the shock profile, restricting to Burgers equations for which

explicit linearized Green function bounds are available through the Hopf-Cole transform.

The current paper effectively completes the exposition by showing how similar Green

function bounds can be obtained for general scalar equations by the use of inverse Laplace

transform and complex stationary phase estimates.

Our treatment extends the study of scalar shock stability in [Ho] by related techniques.

The main new aspects here are the formulation of the resolvent kernel formula in terms

of dual and forward modes in a way generalizing conveniently to the system case and
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improved bounds on “excited” and y-derivative terms sufficient to close the “tracking”-

type argument that has evolved to treat nonlinear stability in the system case. These

modifications allow the treatment of more general data (merely L1 ∩L∞ as compared to

algebraically decaying data in x) than was treated in [Ho] and, in particular, the sharp

treatment of the small-amplitude limit.

1.1. Problem and equations. We consider the scalar viscous conservation law

ut + f(u)x = uxx, (1.1)

where u ∈ C2(R2 → R), f ∈ C2(R → R), u = u(x, t).

Let us consider the standing wave solution ū = ū(x), limx→±∞ ū(x) = ū± satisfying

the Lax condition f ′(ū+) < 0 < f ′(ū−). Thus ū satisfies

f(ū(x))x = ūxx (1.2)

or equivalently f ′(ū)ūx = ūxx. Linearizing (1.1) about the solution ū, we obtain

vt = Lv := vxx − (f ′(ū)v)x, v(x, 0) = g(x). (1.3)

We call this the homogeneous linearized equation.

1.2. Main result I: Pointwise Green function bounds. The solution of equation (1.3)

may be expressed as

eLtg =

∫ +∞

−∞
G(x, t; y)g(y)dy

where G(x, t; y) is the Green function associated with the linearized evolution equation

(1.3). Following [MaZ] and [ZH], G(x, t; y) has the following representation:

G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y)dλ =

1

2πi
lim

T→∞

∫ η+iT

η−iT

eλtGλ(x, y)dλ,

which is valid for η sufficiently large.

Theorem 1.1 (Pointwise Green function bounds). Assuming the Lax condition, the

Green function G(x, t; y) associated with the linearized evolution equation (1.3) may be

decomposed as

G(x, t; y) = E(x, t; y) + S(x, t; y) +R(x, t; y)

where for y ≤ 0 :

E(x, t; y) = Cū′(x)

(
errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

))
, (1.4)

S(x, t; y) = (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t

(
e−x

ex + e−x

)
+(4πt)−

1
2 e−

(x−y+f′(ū−)t)2

4t

(
ex

ex + e−x

)
,

(1.5)

R(x, t; y) = O
(
e−ηt−θ|x−y|

)
+O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−

1
2 e−

(x−y−f′(ū−)t)2

Mt , (1.6)

Ry(x, t; y) = O
(
e−ηt−θ|x−y|

)
+O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−1e−

(x−y−f′(ū−)t)2

Mt . (1.7)

Please refer to section 8 for more a detailed discussion.
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1.3. Main result II: Nonlinear stability of viscous shock solutions. With the Green

function bounds established, we can deduce the nonlinear orbital asymptotic stability

of the viscous shock solutions; i.e., a perturbation ũ = ū + u remains close to a set of

translates of ū. The translation, α(t), will be defined later on.

Theorem 1.2 (Stability of viscous shock solutions). Viscous shock solutions ū(x) of

(1.1) are nonlinearly stable in L1∩L∞ and nonlinearly orbitally asymptotically stable in

Lp, p > 1, with respect to initial perturbations u0 that are sufficiently small in L1 ∩L∞.

More precisely, for some C > 0 and α ∈ W 1,∞(t),

|ũ(x, t)− ū(x− α(t))|Lp(x) ≤ C(1 + t)−
1
2 (1−

1
p )|ũ− ū|L1∩L∞ |t=0,

|α̇(t)| ≤ C(1 + t)−
1
2 |ũ− ū|L1∩L∞ |t=0,

|α(t)| ≤ C|ũ− ū|L1∩L∞ |t=0,

|ũ− ū|L1∩L∞(t) ≤ C|ũ− ū|L1∩L∞ |t=0,

for all t ≥ 0, 1 ≤ p ≤ ∞, for solutions ũ of (1.1) with |ũ− ū|L1∩L∞ |t=0 sufficiently small.

The proof is given in section 9.

1.4. Main result III: Nonlinear stability of viscous shock solutions in the small-

amplitude setting. Here we we consider the nonlinear stability of weak shocks (small-

amplitude), i.e., viscous shock solutions with shock strength |uε
+ − uε

−| = ε → 0.

Theorem 1.3 (Stability of small-amplitude viscous shock solutions). For 0 < ε ≤ 1,

viscous shock solutions ūε(x) of (1.1) are nonlinearly stable in L1 ∩ L∞ and nonlinearly

orbitally asymptotically stable in Lp, p > 1, with respect to initial perturbations u0 with

L1 ∩ L∞ norm less than or equal to η0 > 0 sufficiently small, where η0 is independent

of 0 < ε ≤ 1. More precisely, for some C > 0 independent of 0 < ε ≤ 1, there is

α ∈ W 1,∞(t) such that

|ũ(x, t)− ūε(x− α(t))|Lp(x) ≤ C(1 + t)−
1
2 (1−

1
p )|ũ− ūε|L1∩L∞ |t=0,

|α̇(t)| ≤ C(1 + t)−
1
2 |ũ− ūε|L1∩L∞ |t=0,

|α(t)| ≤ Cε−1|ũ− ūε|L1∩L∞ |t=0,

|ũ− ūε|L1∩L∞(t) ≤ C|ũ− ūε|L1∩L∞ |t=0,

for all t ≥ 0, 1 ≤ p ≤ ∞, for solutions ũ of (1.1) with |ũ− ūε|L1∩L∞ |t=0 ≤ η0.

1.5. Discussion and future directions. The nonlinear stability of weak shocks in the

general system case was established using more detailed methods in [LZe]; here we use our

pointwise Green function bounds and some rescaling arguments to give a new simplified

proof in the scalar case. See section 11 for more details. Our approach gives very

simple proofs of stability with sharp rates in the small-amplitude limit and completes

the treatment of [Z1]. To investigate the small-amplitude nonlinear stability of the system

case using our approach would be very interesting.
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2. The asymptotic eigenvalue equations. The eigenvalue equation Lw = λw

associated with (1.3) is

w′′ − (f ′(ū)w)′ = λw. (2.1)

Written as a first-order system in the variable W = (w,w′)t, this becomes

W ′ = A(x;λ)W, (2.2)

where A(x;λ) :=

(
0 1

λ+ f ′′(ū)ūx f ′(ū)

)
. We begin by studying the limiting, constant

coefficient systems L±w = λw of (2.1) at ±∞, w′′ − (f ′(ū±)w)
′ = λw or, written as a

first-order system,

W ′ = A±(λ)W, (2.3)

where A±(λ) :=

(
0 1

λ f ′(ū±)

)
, since ū′

± = 0. The normal modes of (2.3) are V ±
j eμ

±
j x,

j = 1, 2, where μ±
j , V

±
j are the eigenvalues and eigenvectors of A±; they are easily seen

to satisfy V ±
j =

(
v±j

μ±
j v

±
j

)
, v±j ∈ C and (μ±

j )
2 − f ′(ū±)μ

±
j − λ = 0. Then we can solve

for μ±
j as μ±

j (λ) =
f ′(ū±)±

√
(f ′(ū±))2+4λ

2 .

Lemma 2.1. Let μ1(λ) = a−
√
a2+4λ
2 and μ2(λ) = a+

√
a2+4λ
2 be two solutions to the

equation μ2 − aμ − λ = 0, where a ∈ R, λ ∈ C. Then Reμ1(λ) < 0 < Reμ2(λ) or

Reμ1(λ) > 0 > Reμ2(λ) (i.e., real parts of two solutions have different signs) if and only

if λ ∈ Λ, where Λ =
{
λ ∈ C : a2Re(λ) + (Im(λ))2 > 0

}
.

From this lemma we know that if the region of consistent splitting Λ of system (2.3)

contains the intersection of the following two sets

Λ± =
{
λ ∈ C : (f ′(ū±))

2Re(λ) + (Im(λ))2 > 0
}
,

then the Lax condition f ′(ū+) < 0 < f ′(ū−) and Lemma 2.1 gives the two eigenvalues

of A± as Reμ1(λ) < 0 < Reμ2(λ).

3. Asymptotic behavior of the stationary solution ū. The stationary wave

solution ū(x) satisfies (1.2): f(ū(x))x = ūxx and the asymptotic conditions

lim
x→+∞

ū(x) = ū+, lim
x→−∞

ū(x) = ū−, lim
x→+∞

ū′(x) = 0, lim
x→−∞

ū′(x) = 0.

We integrate (1.2) from x(> 0) to +∞ to get ūx = f(ū)− f(ū+) and rewrite as

ūx = F (ū) := f(ū)− f(ū+). (3.1)

We notice that ū = ū+ is a critical point of the ODE (3.1); thus for ū to be a stable

solution of ODE (3.1), it is necessary that F ′(ū+) ≤ 0, i.e., F ′(ū+) = f ′(ū+) ≤ 0. Let

φ = ū; then (3.1) reads

φx = F (φ) := f(φ)− f(ū+). (3.2)
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Lemma 3.1. Consider the initial value problem (3.2) with φ(x0) = ū0. If we assume

that f ′(ū+) < 0, then there are positive constants δ > 0 and α > 0 that are independent

of the choice of the initial time x0 such that the solution x 	→ φ(x) of the initial value

problem (3.2) satisfies

|φ(x)− ū+| ≤ |φ(x0)− ū+| e−α(x−x0) (3.3)

for x ≥ x0 whenever |φ(x0)− ū+| ≤ δ.

This lemma can be proved with standard stable manifold techniques.

Notice that we can rewrite (3.1) as ūx = f(ū)− f(ū+) = f ′(ξ)(ū− ū+) so we have the

estimate |ūx| ≤ |f ′|L∞ |ū(x0)− ū+| e−α(x−x0). We then can rephrase Lemma 3.1 as the

following:

Lemma 3.2. Consider the initial value problem (3.2) with ū(x0) = ū0. If we assume that

f ′(ū+) < 0, then there are positive constants δ > 0 and α > 0 that are independent

of the choice of the initial time x0 such that the solution x 	→ ū(x) of the initial value

problem (3.2) satisfies

|ū(x)− ū+| ≤ |ū(x0)− ū+| e−α(x−x0), |ūx| ≤ |f ′|L∞ |ū(x0)− ū+| e−α(x−x0)

for x ≥ x0 whenever |ū(x0)− ū+| ≤ δ.

Similarly, if we integrate (1.2) from −∞ to some x < 0, we get

ūx = f(ū)− f(ū−). (3.4)

Follow some similar arguments.

Lemma 3.3. Consider the initial value problem (3.4) with ū(x0) = ū0. If we assume that

f ′(ū−) > 0, then there are positive constants δ > 0 and α > 0 that are independent

of the choice of the initial time x0 such that the solution x 	→ ū(x) of the initial value

problem (3.4) satisfies

|ū(x)− ū−| ≤ |ū(x0)− ū−| eα(x−x0), |ūx| ≤ |f ′|L∞ |ū(x0)− ū−| eα(x−x0)

for x ≤ x0 whenever |ū(x0)− ū−| ≤ δ.

Combining Lemmas 3.2 and 3.3 we know that if we assume the Lax condition f ′(ū+) <

0 < f ′(ū−) then we have

Proposition 3.4. There are positive constants δ > 0 and α > 0 that are independent of

the choice of the initial time x0 such that the stationary wave solution x 	→ ū(x) satisfies

the asymptotic description

|ū(x)− ū±| ≤ |ū(x0)− ū±| e−α|x−x0|, |ūx| ≤ |f ′|L∞ |ū(x0)− ū±| e−α|x−x0|

for x ≷ x0 whenever |ū(x0)− ū±| ≤ δ.
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4. The Gap Lemma. The “Gap Lemma” of [ZH] consists of the idea of relating

the behavior near x = ±∞ of solutions of (2.2) to that of solutions of the asymptotic

systems (2.3) in a manner that is analytic in λ. In this section, we state the general Gap

Lemma for a general equation

W ′ = A(x;λ)W (4.1)

with the hypothesis |A− A±| = O(e−α|x|) as x → ±∞.

Proposition 4.1. In (4.1), let A be C0,α in x and analytic in λ, with |A(x;λ)− A−(λ)| =
O(e−α|x|) as x → −∞ for α > 0, and 0 < ᾱ < α. If V −(λ) is an eigenvector of A− with

eigenvalue μ(λ), both analytic in λ, then there exists a solution W (x;λ) of (4.1) of form

W (x;λ) = V (x;λ)eμ(λ)x where V (hence W ) is C1,α in x and locally analytic in λ, and

for each j = 0, 1, 2, . . . satisfies(
∂

∂λ

)j

V (x;λ) =

(
∂

∂λ

)j

V −(λ) +O

(
e−ᾱ|x|

∣∣∣∣∣
(

∂

∂λ

)j

V −(λ)

∣∣∣∣∣
)

=

(
∂

∂λ

)j

V −(λ)(1 +O(e−ᾱ|x|))

(4.2)

for x < 0. Moreover, if Reμ(λ) > Reμ̃(λ)− α for all eigenvalues μ̃(λ) of A−(λ), then W

is uniquely determined by (4.2), and (4.2) holds for ᾱ = α.

5. Construction of the resolvent kernel. We now construct an explicit represen-

tation for the resolvent kernel, that is, the Green function Gλ(x, y) associated with the

elliptic operator (L− λI), defined by

(L− λI)Gλ(x, y) = δy(x)I,

where δy denotes the Dirac delta distribution centered at y. Let Λ be as defined in

section 3. It is a standard fact that both the resolvent (L−λI)−1 and the Green function

Gλ(x, y) are meromorphic in λ on Λ, with isolated poles of finite order (see [He]). Using

our explicit representation, we will show that Gλ(x, y) in fact admits a meromorphic

extension to a sector Ωθ := {λ : Re(λ) ≥ −θ1 − θ2|Im(λ)|}; θ1, θ2 > 0.

We now start to find the Green function for the operator L−λI. On Λ, the subspaces

spanned by

φ+(x) = W+
1 (x;λ) = V +

1 (x;λ)eμ
+
1 x, for x > 0, and (5.1)

φ−(x) = W−
2 (x;λ) = V −

2 (x;λ)eμ
−
2 x, for x < 0 (5.2)

contain all solutions of (2.2) decaying at x = ±∞. We denote the complementary

subspaces of growing modes by the subspace spanned by

ψ+(x) = W+
2 (x;λ) = V +

2 (x;λ)eμ
+
2 x, for x > 0, and (5.3)

ψ−(x) = W−
1 (x;λ) = V −

1 (x;λ)eμ
−
1 x, for x < 0 (5.4)

where μ+
1 < 0 < μ+

2 and μ−
1 < 0 < μ−

2 .

Eigenfunctions, decaying at both ±∞, occur precisely when the subspaces Span{φ+}
and Span{φ−} intersect. This intersection can be detected by the vanishing of their
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mutual determinant, or equivalently of the Evans function, DL(λ) := det(φ+, φ−) |x=0=

(φ+ ∧ φ−) |x=0. We now turn to the representation of the Green function Gλ(x, y).

Lemma 5.1. Let Hλ(x, y) denote the Green function for the adjoint operator (L− λI)∗.

Then, Gλ(y, x) = Hλ(x, y)
∗. In particular, for x �= y, the matrix z = Gλ(x, ·) satisfies

z′′ = −z′f ′(ū) + λz. (5.5)

Proof. Notice that we have (L−λI)Gλ(x, y) = δy(x)I, and (L−λI)∗Hλ(x, y) = δy(x)I.

So

Gλ(x0, y0) = 〈δx0
(x)I,Gλ(x, y0)〉x

= 〈(L− λI)∗Hλ(x, x0), Gλ(x, y0)〉x
= 〈Hλ(x, x0), (L− λI)Gλ(x, y0)〉x
= 〈Hλ(x, x0), δy0

(x)〉x
= Hλ(y0, x0)

∗.

�
The equation (5.5) is an adjoint equation of (2.1); written as a first order system by

setting Z = (z, z′), it becomes

Z ′ = ZÃ(x;λ), (5.6)

where Ã(x;λ) :=

(
0 λ

1 −f ′(ū)

)
. The following lemma shows a duality relation between

solutions of (2.2) and solutions of (5.6).

Lemma 5.2. Z is a solution of (5.6) if and only if ZSW ≡ constant for any solution W

of (2.2), where S =

(
−f ′(ū) 1

−1 0

)
.

Proof.

(ZSW )′ = (−zf ′(ū)w − z′w + zw′)′

= −z′f ′(ū)w − z(f ′(ū)w)′ − z′′w − z′w′ + z′w′ + zw′′

= −z′f ′(ū)w − z(f ′(ū)w)′ − z′′w + zw′′

= z[w′′ − (f ′(ū)w)′]− [z′′ + z′f ′(ū)]w

= z[w′′ − (f ′(ū)w)′ − λw]− [z′′ + z′f ′(ū)− λz]w

= [z′′ + z′f ′(ū)− λz]w

since w is a solution of (2.1); thus z is a solution of (5.5) if and only if (ZSW )′ ≡ 0. �
Using Lemma 5.2, we can immediately define dual bases W̃±

1 and W̃±
2 of solutions to

(5.6) by the relation

W̃±
j SW±

k = δjk, (5.7)

where δjk =

{
1 if j = k

0 otherwise
denotes the Kronecker delta function. Note that we

have defined the W̃±
j as row vectors and W̃±

j has the form W̃±
j (x;λ) = Ṽ ±

j (x;λ)eμ̃
±
j x.
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According to (5.7), we have μ̃±
j = −μ±

j and Ṽ ±
j SV ±

k = δjk, for all λ. In accordance

with (5.1)-(5.3), we define the dual subspace spanned by

φ̃+(x) = W̃+
1 (x;λ) = Ṽ +

1 (x;λ)eμ̃
+
1 x = Ṽ +

1 (x;λ)e−μ+
1 x, for x > 0,

φ̃−(x) = W̃−
2 (x;λ) = Ṽ −

2 (x;λ)eμ̃
−
2 x = Ṽ −

2 (x;λ)e−μ−
2 x, for x < 0,

as the growing subspace and the dual subspace spanned by

ψ̃+(x) = W̃+
2 (x;λ) = Ṽ +

2 (x;λ)eμ̃
+
2 x = Ṽ +

2 (x;λ)e−μ+
2 x, for x > 0,

ψ̃−(x) = W̃−
1 (x;λ) = Ṽ −

1 (x;λ)eμ̃
−
1 x = Ṽ −

1 (x;λ)e−μ−
1 x, for x < 0,

as the decaying subspace. We may define dual exponentially decaying and growing solu-

tions φ̃± and ψ̃± via

φ̃±Sφ± = 1; φ̃±Sψ± = 0,

ψ̃±Sφ± = 0; ψ̃±Sψ± = 1
(5.8)

or written in matrix form

(
φ̃±

ψ̃±

)
S (φ±, ψ±) = I.

From (L − λI)Gλ(x, y) = δy(x)I, (L − λI)∗Hλ(x, y) = δy(x)I and Lemma 5.1 we

know that

(
Gλ(x, y)

Gλ,x(x, y)

)
viewed as a function of x satisfies (2.2) (differentiating with

respect to x), while (Gλ(x, y), Gλ,y(x, y)) viewed as a function of y satisfies (5.6) (dif-

ferentiating with respect to y). Furthermore, note that both Gλ(x, ·) and Gλ(·, y) decay
at ±∞ for λ on the resolvent set, since |(L − λI)−1| < ∞ and |(L − λI)∗−1| < ∞ im-

ply ‖Gλ(·, y)‖L1(x) < ∞ and ‖Gλ(x, ·)‖L1(y) < ∞ respectively. Combining, we have the

representation(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=

{
φ+(x;λ)m+(λ)ψ̃−(y;λ) for x > y;

−φ−(x;λ)m−(λ)ψ̃+(y;λ) for x < y,
(5.9)

where numbers m±(λ) are to be determined.

Lemma 5.3. [
Gλ Gλ,y

Gλ,x Gλ,xy

]
(y)

=

(
0 −1

1 −f ′(ū)

)
= S−1,

where [f(x)](y) denotes the jump in f(x) at x = y, and S is as in Lemma 5.2.

Proof. Expanding δy(x) = (L − λI)Gλ = Gλ,xx − (f ′(ū)Gλ)x − λGλ and comparing

orders of singularity, we find that (f ′(ū)Gλ)x + λGλ = 0 and Gλ,xx = δy(x), giving,

respectively, [Gλ](y) = 0 and [Gλ,x](y) = 1. Note further that we can expand [Gλ](y)
as

[Gλ](y) = [Gλ(·, y)](y) = Gx>y
λ (y, y)−Gx<y

λ (y, y), (5.10)

where Gx>y
λ and Gx<y

λ are the smooth functions denoting the value of Gλ on the regions

x > y and x < y, respectively, i.e.,

Gλ(x, y) =

{
Gx>y

λ (x, y) for x > y;

Gx<y
λ (x, y) for x < y.
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Differentiating (5.10) in y, we obtain

0 =
d

dy
[Gλ](y) = Gx>y

λ,x (y, y) +Gx>y
λ,y (y, y)−Gx<y

λ,x (y, y)−Gx<y
λ,y (y, y)

= [Gλ,x](y) + [Gλ,y](y),

hence [Gλ,y](y) = −1.

Differentiating 0 = [Gλ,x](y) + [Gλ,y](y) a second time, we then find that

0 = [Gλ,xx](y) + [Gλ,xy](y) + [Gλ,yx](y) + [Gλ,yy](y)

= [Gλ,xx](y) + [Gλ,yy](y) + 2[Gλ,xy](y).

Solve for [Gλ,xy](y) to find that

[Gλ,xy](y) = −1

2

(
[Gλ,xx](y) + [Gλ,yy](y)

)
. (5.11)

Finally, we can determine [Gλ,xx](y) and [Gλ,yy](y) by solving the ODE (2.1) and (5.5)

to express

Gλ,xx = f ′(ū)Gλ,x + (f ′(ū))xGλ;

Gλ,yy = −f ′(ū)Gλ,y + λGλ,

and then

[Gλ,xx](y) = f ′(ū(y)) [Gλ,x](y) + f ′′(ū(y))ū′(y) [Gλ](y) = f ′(ū(y));

[Gλ,yy](y) = −f ′(ū(y)) [Gλ,y](y) + λ [Gλ](y) = f ′(ū(y)),

so finally (5.11) gives [Gλ,xy](y) = −f ′(ū(y)).

Then [
Gλ Gλ,y

Gλ,x Gλ,xy

]
(y)

=

(
0 −1

1 −f ′(ū)

)
= S−1,

as claimed. �
Combining Lemma 5.3 with (5.9), we have

(
φ+(y), φ−(y)

)(m+(λ) 0

0 m−(λ)

)(
ψ̃−(y)

ψ̃+(y)

)
= S−1 or

(
m+(λ) 0

0 m−(λ)

)
=

(
φ+(y), φ−(y)

)−1 S−1

(
ψ̃−(y)

ψ̃+(y)

)−1

=

((
ψ̃−(y)

ψ̃+(y)

)
S
(
φ+(y), φ−(y)

))−1

=

(
ψ̃−Sφ+ ψ̃−Sφ−

ψ̃+Sφ+ ψ̃+Sφ−

)−1

(y)

=

(
ψ̃−Sφ+ 0

0 ψ̃+Sφ−

)−1

(y)

=

(
1

ψ̃−Sφ+
0

0 1
ψ̃+Sφ−

)
,
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so

m+(λ) =
1

ψ̃−Sφ+
=

1

Ṽ −
1 (x;λ)SV +

1 (x;λ)e(μ
+
1 −μ−

1 )x
,

m−(λ) =
1

ψ̃+Sφ−
=

1

Ṽ +
2 (x;λ)SV −

2 (x;λ)e(μ
−
2 −μ+

2 )x
.

We now introduce the notation

Φ :=
(
φ+, φ−) , Ψ :=

(
ψ−, ψ+

)
, Ψ̃ :=

(
ψ̃−

ψ̃+

)
, Φ̃ :=

(
φ̃+

φ̃−

)
.

Proposition 5.4. The resolvent kernel may be expressed as(
Gλ Gλ,y

Gλ,x Gλ,xy

)
=

{
φ+(x;λ)m+(λ)ψ̃−(y;λ) for x > y;

−φ−(x;λ)m−(λ)ψ̃+(y;λ) for x < y,

where M(λ) := diag(m+(λ),m−(λ)) = Φ−1(z;λ)S−1(z)Ψ̃−1(z;λ).

From Proposition 5.4, we obtain the following scattering decomposition.

Corollary 5.5. On Λ ∩ ρ(L),(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= m+(λ)φ+(x;λ)ψ̃−(y;λ) (5.12)

for y ≤ 0 ≤ x;(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= d+(λ)φ−(x;λ)ψ̃−(y;λ) + ψ−(x;λ)ψ̃−(y;λ) (5.13)

for y ≤ x ≤ 0, where

m+ = (1, 0)(φ+, φ−)−1ψ−, d+ = −(0, 1)(φ+, φ−)−1ψ−, (5.14)

(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= −m−(λ)φ−(x;λ)ψ̃+(y;λ) (5.15)

for x ≤ 0 ≤ y;(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= d−(λ)φ−(x;λ)ψ̃−(y;λ)− φ−(x;λ)φ̃−(y;λ) (5.16)

for x ≤ y ≤ 0, where

m− = φ̃−
(
ψ̃−

ψ̃+

)−1(
0

1

)
, d−(λ) = φ̃−

(
ψ̃−

ψ̃+

)−1(
1

0

)
.

Proof. We may express m+ using the duality relation (5.8) as

m+ = (1, 0)(φ+, φ−)−1S−1

(
ψ̃−

φ̃−

)−1(
1

0

)
= (1, 0)(φ+, φ−)−1

((
ψ̃−

φ̃−

)
S
)−1(

1

0

)

= (1, 0)(φ+, φ−)−1(ψ−, φ−)

(
1

0

)
= (1, 0)(φ+, φ−)−1ψ−.
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Next, expressing φ+(x;λ) as a linear combination of basis elements at −∞, φ+(x;λ) =

a+(λ)φ−(x;λ) + b+(λ)ψ−(x;λ) = (φ−, ψ−)

(
a+

b+

)
, we get

(
a+

b+

)
=(φ−, ψ−)−1φ+(x;λ)=(

φ̃−

ψ̃−

)
Sφ+. Then we can represent

(
Gλ Gλ,y

Gλ,x Gλ,xy

)
as

(
Gλ Gλ,y

Gλ,x Gλ,xy

)
= m+(λ)φ+(x;λ)ψ̃−(y;λ)

= m+(λ)[a+(λ)φ−(x;λ) + b+(λ)ψ−(x;λ)]ψ̃−(y;λ)

= a+(λ)m+(λ)φ−(x;λ)ψ̃−(y;λ) + b+(λ)m+(λ)ψ−(x;λ)ψ̃−(y;λ)

= d+(λ)φ−(x;λ)ψ̃−(y;λ) + e+(λ)ψ−(x;λ)ψ̃−(y;λ)

where d+ = a+m+ and e+ = b+m+, which can be computed as follows:(
d+

e+

)
=

(
a+

b+

)
m+ =

(
a+

b+

)
(1, 0)(φ+, φ−)−1ψ−

=

(
φ̃−

ψ̃−

)
Sφ+(1, 0)(φ+, φ−)−1ψ− =

(
φ̃−

ψ̃−

)
S(φ+, 0)(φ+, φ−)−1ψ−

= (φ−, ψ−)−1(φ+, 0)(φ+, φ−)−1ψ−

= (φ−, ψ−)−1
(
I2 − (0, φ−)(φ+, φ−)−1

)
ψ−

= (φ−, ψ−)−1ψ− − (φ−, ψ−)−1(0, φ−)(φ+, φ−)−1ψ−

= (φ−, ψ−)−1(φ−, ψ−)

(
0

1

)
− (φ−, ψ−)−1(φ−, ψ−)

(
0 1

0 0

)
(φ+, φ−)−1ψ−

=

(
0

1

)
−
(
0 1

0 0

)
(φ+, φ−)−1ψ−,

yielding (5.13) and (5.14). �

6. Low-frequency expansions.

Lemma 6.1. For λ ∈ Λ, the matrix A±(λ) in (2.3) has eigenvalues μ±
1 (λ) < 0 < μ±

2 (λ)

(with ordering referring to real parts) such that the eigenspaces S±(λ) and U±(λ) asso-

ciated to μ±
1 (λ) and μ±

2 (λ) respectively depend analytically on λ. Furthermore, for each

j = 1, 2, there is an analytic extension of μ±
j (λ) to some neighborhood N of λ = 0. For

λ ∈ N there also exists an analytic choice of an individual eigenvector V ±
j =

(
v±j

μ±
j v

±
j

)
corresponding to each eigenvalue μ±

j (λ), and they satisfy the following asymptotic de-

scriptions:

μ±
1 (λ) =

⎧⎪⎨
⎪⎩

− λ
f ′(ū±) +

λ2

(f ′(ū±))3 +O(λ3), if f ′(ū±) > 0,

f ′(ū±) +O(λ), if f ′(ū±) < 0,
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μ±
2 (λ) =

⎧⎪⎨
⎪⎩

− λ
f ′(ū±) +

λ2

(f ′(ū±))3 +O(λ3), if f ′(ū±) < 0,

f ′(ū±) +O(λ), if f ′(ū±) > 0,

V ±
1 (λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 +O(λ)

− λ
f ′(ū±) +O(λ2)

)
, if f ′(ū±) > 0,

(
1

f ′(ū±)

)
+O(λ), if f ′(ū±) < 0,

V ±
2 (λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 +O(λ)

− λ
f ′(ū±) +O(λ2)

)
, if f ′(ū±) < 0,

(
1

f ′(ū±)

)
+O(λ), if f ′(ū±) > 0.

The spectral projection operators PS±(λ) and PU±(λ) associated to the subspaces

S±(λ) and U±(λ) have analytic extensions to the neighborhood Ω = {λ : Reλ > 0} ∪N .

Since we have assumed the Lax condition, f ′(ū+) < 0 < f ′(ū−), so the results in the

above lemma simplify to read

μ+
1 (λ) = f ′(ū+) +O(λ), μ+

2 (λ) = − λ

f ′(ū+)
+

λ2

(f ′(ū+))3
+O(λ3),

μ−
1 (λ) = − λ

f ′(ū−)
+

λ2

(f ′(ū−))3
+O(λ3), μ−

2 (λ) = f ′(ū−) +O(λ),

V +
1 (λ) =

(
1

f ′(ū+)

)
+O(λ), V +

2 (λ) =

(
1 +O(λ)

− λ
f ′(ū+) +O(λ2)

)
,

V −
1 (λ) =

(
1 +O(λ)

− λ
f ′(ū−) +O(λ2)

)
, V −

2 (λ) =

(
1

f ′(ū−)

)
+O(λ).

Lemma 6.2. For λ ∈ Ω ∩ {λ : |λ| < δ} and δ sufficiently small, there exist solutions

W±
j (x;λ) of (2.2), (j = 1, 2), C1 in x and analytic in λ, satisfying

W±
j (x;λ) = V ±

j (x;λ)eμ
±
j (λ)x,(

∂

∂λ

)k

V ±
j (x;λ) =

(
∂

∂λ

)k

V ±
j (λ) +O

(
e−α̃|x|

∣∣∣∣∣
(

∂

∂λ

)k

V ±
j (λ)

∣∣∣∣∣
)

for any k ≥ 0 and 0 < α̃ < α, where α is the rate of decay given in Proposition 3.4,

μ±
j (λ) and V ±

j (λ) are as above, and O(·) depends only on k, α̃.

Proof. This is a direct consequence of the Gap Lemma (Proposition 4.1). �
Now we can classify our forward and dual modes in greater detail:
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The fast growing modes of the dual problem (5.6) are

φ̃+(x) = W̃+
1 (x;λ) = Ṽ +

1 (x;λ)e−μ+
1 (λ)x, φ̃−(x) = W̃−

2 (x;λ) = Ṽ −
2 (x;λ)e−μ−

2 (λ)x;

(6.1)

the slow decaying modes of the dual problem (5.6) are

ψ̃+(x) = W̃+
2 (x;λ) = Ṽ +

2 (x;λ)e−μ+
2 (λ)x, ψ̃−(x) = W̃−

1 (x;λ) = Ṽ −
1 (x;λ)e−μ−

1 (λ)x;

(6.2)

the fast decaying modes of the forward problem (2.2) are

φ+(x) = W+
1 (x;λ) = V +

1 (x;λ)eμ
+
1 (λ)x, φ−(x) = W−

2 (x;λ) = V −
2 (x;λ)eμ

−
2 (λ)x; (6.3)

and the slow growing modes of the forward problem (2.2) are

ψ+(x) = W+
2 (x;λ) = V +

2 (x;λ)eμ
+
2 (λ)x, ψ−(x) = W−

1 (x;λ) = V −
1 (x;λ)eμ

−
1 (λ)x. (6.4)

Specifically, due to the special, conservative structure of the underlying evolution

equations, the adjoint eigenvalue equation (dual problem (5.6)) at λ = 0 can be written

as W̃ ′ = W̃

(
0 0

1 −f ′(ū)

)
, so it admits a 1-dimensional subspace of constant solutions

W̃ ≡ (c, 0), where c is a constant. Thus, at λ = 0, we may choose, by appropriate

change of coordinates if necessary, to have slow decaying dual modes ψ̃±(x)((6.2)) iden-

tically constant, because when we let λ = 0 in (6.2), we have ψ̃+(x) = W̃+
2 (x; 0) =

Ṽ +
2 (x; 0)e−μ+

2 (0)x = Ṽ +
2 (x; 0) and ψ̃−(x) = W̃−

1 (x; 0) = Ṽ −
1 (x; 0)e−μ−

1 (0)x = Ṽ −
1 (x; 0).

Also, we can choose Ṽ +
2 (x; 0) ≡ constant and Ṽ −

1 (x; 0) ≡ constant according to the

above observation.

Lemma 6.3. With the above choice of bases at λ = 0, and for λ ∈ Ω ∩ {λ : |λ| < δ} and

δ sufficiently small, slow decaying dual modes W̃+
2 (y;λ) and W̃−

1 (y;λ) satisfy

W̃±
j (y;λ) = e−μ±

j (λ)yṼ ±
j (0) + λΘ̃±

j (y;λ), (6.5)

where ∣∣∣Θ̃±
j

∣∣∣ ≤ C
∣∣∣e−μ±

j (λ)y
∣∣∣ , ∣∣∣∣

(
∂

∂y

)
Θ̃±

j

∣∣∣∣ ≤ C
∣∣∣e−μ±

j (λ)y
∣∣∣ (|λ|+ e−α|y|

)
, (6.6)

α > 0 is the rate of decay given in Proposition 3.4, as y → ±∞, and Ṽ ±
j (y; 0) = Ṽ ±

j (0) ≡
constant. Similarly, fast decaying forward modes W+

1 (x;λ) and W−
2 (x;λ) satisfy

W±
j (x;λ) = W±

j (x; 0) + λΘ±
j (x;λ), (6.7)

where ∣∣Θ±
j

∣∣ ≤ Ce−α|x|,

∣∣∣∣
(

∂

∂x

)
Θ±

j

∣∣∣∣ ≤ Ce−α|x|, (6.8)

as x → ±∞.

Proof. First, let us consider the augmented variables

W̃
±
j (y;λ) :=

(
W̃±

j , W̃±′
j

)
(y;λ) = e−μ±

j (λ)y
Ṽ

±
j (y;λ)

= e−μ±
j (λ)y

(
Ṽ ±
j ,−μ±

j Ṽ
±
j + Ṽ ±′

j

)
(y;λ)



512 YINGWEI LI

and

W
±
j (x;λ) :=

(
W±

j

W±′
j

)
(x;λ) = eμ

±
j (λ)x

V
±
j (x;λ) = eμ

±
j (λ)x

(
V ±
j

μ±
j V

±
j + V ±′

j

)
(x;λ).

Note that since W±
j (x;λ) satisfies W ′ = A(x;λ)W , so W ′′ = A′W + AW ′ and so

W(x;λ) =

(
W

W ′

)
(x;λ) satisfies W′ =

(
A 0

A′ A

)
(x;λ)W. Letting x → ±∞ in the

coefficient matrix, we get the limiting equation W′ =

(
A± 0

0 A±

)
(λ)W. If W̄±

j (x;λ) =

V ±
j (λ)eμ

±
j (λ)x is a solution of W ′ = A±W , then

W̄
±
j (x;λ) =

(
W̄±

j (x;λ)

W̄±′
j (x;λ)

)
= eμ

±
j (λ)x

(
V ±
j (λ)

μ±
j (λ)V

±
j (λ)

)

is a solution of W′ =

(
A± 0

0 A±

)
(λ)W.

Now we apply the Gap Lemma to obtain bounds

W̃
±
j (y;λ) = Ṽ

±
j (y;λ)e

−μ±
j (λ)y, (6.9)(

∂

∂λ

)k

Ṽ
±
j (y;λ) =

(
∂

∂λ

)k

Ṽ
±
j (λ) +O

(
e−α̃|y|

∣∣∣Ṽ±
j (λ)

∣∣∣) , y ≷ 0, (6.10)

and

W
±
j (x;λ) = V

±
j (x;λ)e

μ±
j (λ)x, (6.11)(

∂

∂λ

)k

V
±
j (x;λ) =

(
∂

∂λ

)k

V
±
j (λ) +O

(
e−α̃|x| ∣∣V±

j (λ)
∣∣) , x ≷ 0, (6.12)

0 < α̃ < α, analogous to Lemma 6.2, valid for λ ∈ Ω ∩ {λ : |λ| < δ}, where Ṽ
±
j (λ) =(

Ṽ ±
j (λ),−μ±

j (λ)Ṽ
±
j (λ)

)
and V

±
j (λ) =

(
V ±
j (λ)

μ±
j (λ)V

±
j (λ)

)
.

By Taylor’s Theorem with differential remainder applied to Ṽ
±
j (y;λ) with respect to

λ, we have

W̃
±
j (y;λ) = e−μ±

j (λ)y

(
Ṽ

±
j (y; 0) + λ

(
∂

∂λ

)
Ṽ

±
j (y; 0) +

1

2
λ2

(
∂

∂λ

)2

Ṽ
±
j (y;λ∗)

)
(6.13)

for some λ∗ on the ray from 0 to λ, where, recall,
(

∂
∂λ

)
Ṽ

±
j (y; ·) and

(
∂
∂λ

)2
Ṽ

±
j (y; ·) are

uniformly bounded in L∞[0,±∞] for λ ∈ Ω ∩ {λ : |λ| < δ}. Together with the choice

Ṽ ±
j (y; 0) ≡ constant, this immediately gives the first bound in (6.6).

Now applying the bound (6.10) with k = 1, we may expand the second coordinate of

(6.13) as(
∂

∂y

)
W̃±

j (y;λ) = e−μ±
j (λ)y

(
−μ±

j (0)Ṽ
±
j (y; 0) + Ṽ ±′

j (y; 0)

−λ

((
∂

∂λ

)
(μ±

j Ṽ
±
j )(0) +O(e−α|y|)

)
+O(λ2)

)

= e−μ±
j (λ)y

(
−λ

((
∂

∂λ

)
μ±
j (0)Ṽ

±
j (0) +O(e−α|y|)

)
+O(λ2)

)
,
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and subtracting off the corresponding Taylor expansion(
∂

∂y

)(
e−μ±

j (λ)yṼ ±
j (y; 0)

)
= −μ±

j (λ)e
−μ±

j (λ)yṼ ±
j (y; 0)

= e−μ±
j (λ)y

(
−μ±

j (0)Ṽ
±
j (y; 0)− λ

(
∂

∂λ

)
μ±
j (0)Ṽ

±
j (y; 0) +O(λ2)

)

= e−μ±
j (λ)y

(
−λ

(
∂

∂λ

)
μ±
j (0)Ṽ

±
j (0) +O(λ2)

)
,

we obtain

λ

(
∂

∂y

)
Θ̃±

j (y;λ) = e−μ±
j (λ)y

(
λO(e−α|y|) +O(λ2)

)
,

so(
∂

∂y

)
Θ̃±

j (y;λ) = e−μ±
j (λ)y

(
O(e−α|y|) +O(λ)

)
≤ C

∣∣∣e−μ±
j (λ)y

∣∣∣ (|λ|+ e−α|y|
)
,

as claimed.

To obtain the estimates (6.8) we use Taylor’s theorem on W±
j (x;λ) = W±

j (x; 0) +

λ ∂
∂λW

±
j (x;λ∗), where λ∗ is some number on the ray from 0 to λ. The ∂

∂λW
±
j (x;λ∗) term

can be written as ∂
∂λW

±
j (x;λ∗)=

(
dμ±

j (λ∗)

dλ

)
xeμ

±
j (λ∗)xV ±

j (x;λ∗)+eμ
±
j (λ∗)x

[
∂
∂λV

±
j (x;λ∗)

]
and together with the observation that |xe−(α+ε)|x|| ≤ Ce−α|x| for some ε > 0 small, we

can derive (6.8). �
We now turn to the estimation of scattering coefficients m±, d± in Corollary 5.5.

Lemma 6.4. For |λ| sufficiently small, |m±|, |d±| ≤ Cλ−1. Moreover, Resλ=0m
± =

Resλ=0d
±.

Proof. Expanding m+ = (1, 0)(φ+, φ−)−1ψ−, using Cramer’s rule, and setting x =

y = 0 in φ± and ψ−, we obtain

m+ = (1, 0)(φ+, φ−)−1ψ− =
1

D
(1, 0)(φ+, φ−)adjψ− =

1

D
c+

=
det(ψ−, φ−)

det(φ+, φ−)
=

det(ψ−, φ−)

D
,

where D = det(φ+, φ−), c+ = (1, 0)(φ+, φ−)adjψ−, so

c+ = Dm+ = det(ψ−, φ−)

= det
(
V −
1 (x;λ)eμ

−
1 (λ)x, V −

2 (y;λ)eμ
−
2 (λ)y

)

= det

([
V −
1 (λ) +O(e−α̃|x|)

]
e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3
+O(λ3)

)
x
,

V −
2 (y, 0)ef

′(ū−)y + λO(e−α|y|)

)

= det(V −
1 (λ) +O(1), V −

2 (0) + λO(1))



514 YINGWEI LI

= det

(
1 +O(λ) +O(1) 1 +O(λ)

− λ
f ′(ū−) +O(λ2) +O(1) f ′(ū−) +O(λ)

)

= f ′(ū−) +
λ

f ′(ū−)
+O(1) +O(λ) +O(λ2) +O(λ3)

= f ′(ū−) +O(1),

and D = det(φ+, φ−) = det(V +
1 (0;λ), V −

2 (0;λ)) = O(λ). Putting these together we have

m+ = c+

D = f ′(ū−)+O(1)
O(λ) or equivalently |m+| ≤ C/λ. �

Proposition 6.5. For λ ∈ Ω∩{λ : |λ| < δ} and δ sufficiently small, the resolvent kernel

Gλ has a meromorphic extension onto {λ : |λ| < δ}, which may be decomposed as

Gλ = Eλ + Sλ +Rλ = Eλ + Sλ +RE
λ +RS

λ . (6.14)

For y ≤ 0 ≤ x,(
Eλ Eλ,y

Eλ,x Eλ,xy

)
:= C1λ

−1W+
1 (x; 0)Ṽ −

1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
, (6.15)

Sλ = 0 (6.16)

and(
Rλ Rλ,y

Rλ,x Rλ,xy

)
:= e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)
. (6.17)

For y ≤ x ≤ 0,(
Eλ Eλ,y

Eλ,x Eλ,xy

)
:= C2λ

−1W−
2 (x; 0)Ṽ −

1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
, (6.18)

(
Sλ Sλ,y

Sλ,x Sλ,xy

)
:= V −

1 (0)Ṽ −
1 (0)e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

, (6.19)

(
RE

λ RE
λ,y

RE
λ,x RE

λ,xy

)
:= e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)
, (6.20)

(
RS

λ RS
λ,y

RS
λ,x RS

λ,xy

)
:=e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)[

O
(
eO(λ3)(x−y) − 1

)
+O(λ)+O

(
e−α̃|x|

)]
.

(6.21)

In fact, the derivatives of Rλ can have better bounds.

For y ≤ 0 ≤ x,

Rλ,y = e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O
(
eO(λ3)y − 1

)
+O(λ)

)
. (6.22)

For y ≤ x ≤ 0,

RE
λ,y = e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O
(
eO(λ3)y − 1

)
+O(λ)

)
, (6.23)

RS
λ,y = e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y) [

λO
(
eO(λ3)(x−y) − 1

)
+O(λ) + λO

(
e−α̃|x|

)]
.

(6.24)
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For the case when x ≤ y, some similar estimates hold.

Proof. For y ≤ 0 ≤ x,

(
Gλ Gλ,y

Gλ,x Gλ,xy

)

= m+(λ)φ+(x;λ)ψ̃−(y;λ) = m+(λ)W+
1 (x;λ)W̃−

1 (y;λ)

= Cλ−1
(
W+

1 (x; 0) + λO
(
e−α|x|

))(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
Ṽ −
1 (0)

+λO

(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

))

= Cλ−1

(
W+

1 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

+λO

(
e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

)

+λW+
1 (x; 0)O

(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

))

= Cλ−1

(
W+

1 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+W+
1 (x; 0)Ṽ −

1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

−W+
1 (x; 0)Ṽ −

1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+λO

(
e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

))

= C1λ
−1W+

1 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)
=

(
Eλ Eλ,y

Eλ,x Eλ,xy

)
+

(
Rλ Rλ,y

Rλ,x Rλ,xy

)
.

Thus we have those representations as claimed.

For y ≤ x ≤ 0,

(
Gλ Gλ,y

Gλ,x Gλ,xy

)

= d+(λ)φ−(x;λ)ψ̃−(y;λ) + ψ−(x;λ)ψ̃−(y;λ)

= d+(λ)W−
2 (x;λ)W̃−

1 (y;λ) +W−
1 (x;λ)W̃−

1 (y;λ)



516 YINGWEI LI

= Cλ−1
(
W−

2 (x; 0) + λO
(
e−α|x|

))(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
Ṽ −
1 (0)

+λO

(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

))

+
(
V −
1 (λ) +O

(
e−α̃|x|

))
e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3
+O(λ3)

)
x

[
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
Ṽ −
1 (0) + λO

(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

)]

= C2λ
−1W−

2 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)

+
(
V −
1 (0) +O(λ) +O

(
e−α̃|x|

))
e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3
+O(λ3)

)
x

[
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
Ṽ −
1 (0) + λO

(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y

)]

= C2λ
−1W−

2 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)

+V −
1 (0)Ṽ −

1 (0)e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

+e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y) [

O
(
eO(λ3)(x−y) − 1

)
+O(λ) +O

(
e−α̃|x|

)]

= C2λ
−1W−

2 (x; 0)Ṽ −
1 (0)e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

+V −
1 (0)Ṽ −

1 (0)e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

+e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O(λ−1)
(
eO(λ3)y − 1

)
+O(1)

)

+e

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y) [

O
(
eO(λ3)(x−y) − 1

)
+O(λ) +O

(
e−α̃|x|

)]
=

(
Eλ Eλ,y

Eλ,x Eλ,xy

)
+

(
Sλ Sλ,y

Sλ,x Sλ,xy

)
+

(
Rλ Rλ,y

Rλ,x Rλ,xy

)

=

(
Eλ Eλ,y

Eλ,x Eλ,xy

)
+

(
Sλ Sλ,y

Sλ,x Sλ,xy

)
+

(
RE

λ RE
λ,y

RE
λ,x RE

λ,xy

)
+

(
RS

λ RS
λ,y

RS
λ,x RS

λ,xy

)
.

Then this gives (6.18)-(6.21).

Next we derive the derivative bounds (6.22)-(6.24). We utilize the estimates (6.6).
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For y ≤ 0 ≤ x,

Gλ,y(x, y)

=
(
1 0

)
m+(λ)φ+(x;λ)

(
∂

∂y

)
ψ̃−(y;λ)

(
0

1

)

=
(
1 0

)
m+(λ)W+

1 (x;λ)

(
∂

∂y

)
W̃−

1 (y;λ)

(
0

1

)

= Cλ−1
(
1 0

) (
W+

1 (x; 0) + λO
(
e−α|x|

))

×
(
e

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
Ṽ −
1 (0)

(
λ

f ′(ū−)
− λ2

(f ′(ū−))3
+O(λ3)

)

+Cλe

(
λ

f′(ū−)
− λ2

(f′(ū−))3
+O(λ3)

)
y
(|λ|+ e−α|y|)

)(
0

1

)
,

and the remainder term Rλ,y(x, y) should be

Rλ,y = e−α|x|e

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y (

O
(
eO(λ3)y − 1

)
+O(λ)

)
.

The Rλ,y(x, y) estimates for the case y ≤ x ≤ 0 are similarly derived. �

Remark 6.6. In Proposition 6.5, in fact we can takeW+
1 (x; 0)=W−

2 (x; 0)=

(
ū′(x)

ū′′(x)

)
.

Remark 6.7. The derivative bounds (6.22)-(6.24) are valid only for Lax and the

overcompressive case; they do not hold in the undercompressive case. See [MaZ].

7. High-frequency bounds. Now we derive the bounds for large |λ| on any sector

contained in the resolvent set.

Proposition 7.1. Assuming the Lax condition, it follows that for some C, β,R > 0, and

θ1, θ2 > 0 sufficiently small,

|Gλ(x, y)| ≤ C|λ|− 1
2 e−β− 1

2 |λ|
1
2 |x−y|,

|Gλ,x(x, y)| ≤ Ce−β− 1
2 |λ|

1
2 |x−y|, |Gλ,y(x, y)| ≤ Ce−β− 1

2 |λ|
1
2 |x−y|,

for all λ ∈ Ωθ \B(0, R).

(Here, we may choose any β− 1
2 < minλ∈Ωθ∩{λ:|λ|≥R} Re(

√
λ
|λ| ).)

Proof. Setting x̄ = |λ| 12 x, λ̄ = λ
|λ| , w̄(x̄) = w( x̄

|λ|
1
2
) = w(x), we obtain w̄′′ = λ̄w̄ +

O(|λ|− 1
2 )(w̄ + w̄′) or

W
′
= B̄W +O(|λ|− 1

2 )W, (7.1)

where W = (w̄, w̄′)T , and B̄ :=

(
0 1

λ̄ 0

)
, B̄′ = O(|λ|− 1

2 ), |λ̄| = 1. It is easily computed

that the eigenvalues of B̄ are μ̄ = ∓
√
λ̄. We know that there exists some β > 0 such that∣∣∣Re√λ̄

∣∣∣ > β− 1
2 (7.2)
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for all λ ∈ Ωθ; hence the stable and unstable subspaces of each B̄x̄ are both of dimension

n and are separated by a spectral gap of more than 2β− 1
2 . Since B̄(λ, x̄) varies within a

compact set, it follows that there are continuous eigenprojections P±(B̄) taking W onto

the stable and unstable subspaces, respectively, of B̄, with |P ′
±| = O(|λ|− 1

2 ).

Introducing new coordinates z± = P±w̄, we thus obtain a diagonal system(
z+
z−

)′

=

(
f ′(ū+) 0

0 f ′(ū−)

)(
z+
z−

)
+O

(
|λ|− 1

2

)(z+
z−

)
. (7.3)

We choose β large enough such that Ref ′(ū±) ≶ ∓β− 1
2 and hence

|w̄|
C

≤ |z| ≤ C|w̄|. (7.4)

From (7.3), we obtain the “energy estimates”

〈z±, z±〉′ = 〈z±, 2Ref ′(ū±)z±〉+O
(
|λ|− 1

2

)
(〈z+, z+〉+ 〈z−, z−〉)

≶ ∓β− 1
2 〈z±, z±〉+O

(
|λ|− 1

2

)
(〈z+, z+〉+ 〈z−, z−〉).

(7.5)

In consequence, the ratios r+ := 〈z−,z−〉
〈z+,z+〉 and r− := 〈z+,z+〉

〈z−,z−〉 satisfy

r′± ≷ ±4β− 1
2 r± ∓ C|λ|− 1

2 (1 + r± + r2±) (7.6)

for some C > 0. From (7.6) it follows easily that the cones K∓ := {0 < r∓ <
β− 1

2

C |λ| 12 } are invariant under forward and backward flow, respectively, of (7.3), pro-

vided that C|λ|− 1
2 β

1
2 < 4

3 . Since the stable/unstable subspaces of

(
f ′(ū+) 0

0 f ′(ū−)

)
at x = ±∞ are precisely {z± = 0}, we have that the stable/unstable subspaces of(
f ′(ū+) 0

0 f ′(ū−)

)
+ O

(
|λ|− 1

2

)
at x = ±∞ lie within the respective cones K±, pro-

vided |λ| is sufficiently large. It follows that the stable/unstable manifolds of solutions

of (7.3) lie within K± for all x. Plugging this information back into (7.5), we find

that (|z±|2)′ ≶ ∓2β̃− 1
2 |z±|2 for any solution (z+, z−)

T decaying at x = ±∞; hence
|z+(x)|
|z−(y)| ≤ e−β̃− 1

2 |x−y|, where 0 < β̃ < β, and thus |z(x)|
|z(y)| ≤ C1e

−β̃− 1
2 |x−y|, for any x ≶ y,

provided |λ| is sufficiently large. This gives

W (x)

W (y)
≤ C1C

2e−β̃− 1
2 |x−y|, (7.7)

where C is as in (7.4). Further, untangling intermediate coordinate changes, we find

Proposition 7.2. (K) The stable/unstable manifolds of solutions of (7.1) lie within

angle O
(
|λ|− 1

2

)
of the stable/unstable subspaces of B̄(x).

Now, recall the coordinate-free representation of the Green function as

(
Gλ

Gλ,x

)
=

Fy→xΠ+(y)

(
0

B−1(y)

)
. Translating the bound (7.7) back to the original system (2.1),
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we obtain

|Fy→x| ≤ C1C
2e−β̃|λ|

1
2 |x−y|. (7.8)

Likewise, the projection Π+ can be related to its counterparts Π̄+ for the rescaled sys-

tem by the factorization Π+ =

(
1 0

0 |λ| 12

)
Π̄+

(
1 0

0 |λ|− 1
2

)
, and similarly for Π̃−. Since

the stable/unstable manifolds stay separated by Proposition (K), and λ̄ varies within

a compact set, the projections Π̄+ and ˜̄Π− are uniformly bounded. Thus, we have

Π+(y)

(
0

B−1(y)

)
=

(
1 0

0 |λ| 12

)
O(1)

(
1 0

0 |λ|− 1
2

)(
0

B−1(y)

)
=

(
O
(
|λ|− 1

2

)
O(1)

)
. Combin-

ing with (7.8) and recalling that 0 < β̃ < β was arbitrary in (7.2), we obtain the claimed

bounds on |Gλ| and |Gλ,x|. The bound on |Gλ,y| follows by a symmetric argument ap-

plied to the adjoint operator L∗ or, equivalently, by using the symmetric representation(
Gλ Gλ,y

)
=
(
0 B−1(y)

)
Π̃−(x)F̃x→y, where F̃x→y denotes the flow of the adjoint

eigenvalue equation. �

8. Pointwise Green function bounds. In this section, let us recall the represen-

tation in [MaZ] and [ZH],

G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y)dλ =

1

2πi
lim

T→∞

∫ η+iT

η−iT

eλtGλ(x, y)dλ, (8.1)

which is valid for η sufficiently large. We will spend this entire section proving Theorem

1.1.

Proof of Theorem 1.1. Case I. |x−y|
t large. We first treat the trivial case that |x−y|

t ≥
S, S sufficiently large, the regime in which standard short-time parabolic theory applies.

Set

ᾱ :=
|x− y|
2βt

, R := βᾱ2, (8.2)

where β is as in Proposition 7.1, and consider again the representation of G: G(x, t; y) =
1

2πi

∫
Γ1∪Γ2

eλtGλ(x, y)dλ, where Γ1 := ∂B(0, R)∩ Ω̄θ and Γ2 := ∂Ωθ \B(0, R). Note that

the intersection of Γ with the real axis is λmin = R = βᾱ2. By the large |λ| estimates of

Proposition 7.1, we have for all λ ∈ Γ1 ∪ Γ2 that

|Gλ(x, y)| ≤ C|λ|−1/2e−β− 1
2 |λ|

1
2 |x−y|. (8.3)

Further, we have

Reλ ≤ R(1− ηω2), λ ∈ Γ1, (8.4)

Reλ ≤ Reλ0 − η(|Imλ| − |Imλ0|), λ ∈ Γ2, (8.5)

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗
0 are the two points

of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ.

Combining (8.3), (8.4) and (8.2), we obtain∣∣∣∣
∫
Γ1

eλtGλ(x, y)dλ

∣∣∣∣ ≤
∫
Γ1

C|λ|− 1
2 e(Reλ)t−β− 1

2 |λ
1
2 ||x−y|dλ
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≤ Ce−βᾱ2t

∫ +M

−M

R− 1
2 e−βRηω2tRdω ≤ Ct−

1
2 e−βᾱ2t.

Likewise,∣∣∣∣
∫
Γ2

eλtGλ(x, y)dλ

∣∣∣∣ ≤
∫
Γ2

C|λ|− 1
2Ce(Reλ)t−β− 1

2 |λ|
1
2 ||x−y|dλ

≤ Ce(Reλ0)t−β− 1
2 |λ0|

1
2 |x−y|

∫
Γ2

|λ|− 1
2 e(Reλ−Reλ0)t|dλ|

≤ Ce−βᾱ2t

∫
Γ2

|Imλ|− 1
2 e−η(|Imλ|−|Imλ0|)t|dImλ|

≤ Ct−
1
2 e−βᾱ2t.

Combining these last two estimates and recalling (8.2), we have

|G(x, t; y)| ≤ Ct−
1
2 e−

βᾱ2t
2 e−

(x−y)2

8βt ≤ Ct−
1
2 e−ηte−

(x−y)2

8βt ,

for η > 0 independent of ᾱ. Observing that |x−y−at|
2t ≤ |x−y|

t ≤ 2|x−y−at|
t for any bounded

a, for |x − y|/t sufficiently large, we find that |G| can be absorbed in the residual term

O
(
e−ηte−

|x−y|2
Mt

)
for t ≥ ε, any ε > 0, and in the residual term

O

(
(t+ 1)−

1
2 e−ηx+

t−
1
2 e−

(x−y−f′(ū−)t)2

Mt

)
for t small.

Case II. |x−y|
t bounded. We now turn to the critical case where |x−y|

t ≤ S for some

fixed S. In this regime, note that any contribution of order eθt, θ > 0, may be absorbed

in the residual term R; we shall use this observation repeatedly. We begin by converting

contour integral (8.1) into a more convenient form decomposing high, intermediate, and

low-frequency contributions.

Lemma 8.1. If the Lax condition holds, we can use the following decomposition:

G(x, t; y) = I+ II =
1

2πi

∫
Γ2

eλtGλ(x, y)dλ+
1

2πi

∫
Γ′
eλtGλ(x, y)dλ,

where Γ′ := [−η1−iR, η−iR]∪[η−iR, η+iR]∪[η+iR,−η1+iR], and Γ2 := ∂Ωθ\Ω with Ωθ

as defined in section 5, for any η > 0 such that (8.1) holds, R sufficiently large, and η1 > 0

sufficiently small such that Ω \ B(0, r) is compactly contained in the set of consistent

splitting Λ for some small r > 0 to be chosen later, where Ω := {λ : −η1 ≤ Reλ}.

Lemma 8.2. The term II in Lemma 8.1 may be further decomposed as

II = ĨI+ III =
1

2πi

(∫ −η1−i r2

−η1−iR

+

∫ −η1+iR

−η1+i r
2

)
eλtGλ(x, y)dλ+

1

2πi

∫
Γ̃

eλtGλ(x, y)dλ

and Γ̃ := [−η1 − i r2 , η− i r2 ]∪ [η− i r2 , η+ i r2 ]∪ [η+ i r2 ,−η1 + i r2 ], for any η, r > 0, and η1
sufficiently small with respect to r.

The proofs of these two lemmas are trivial. We are going to estimate terms I, ĨI and

III respectively.
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The term I may be estimated exactly as was term
∫
Γ2

eλtGλ(x, y)dλ in the large |x−y|
t

case (Case I) to obtain contribution O
(
t−

1
2 e−η1t

)
absorbable again in the residual term

O
(
e−ηte−

|x−y|2
Mt

)
for t ≥ ε, any ε > 0, and in the residual term

O

(
(t+ 1)−

1
2 e−ηx+

t−
1
2 e−

(x−y−f′(ū−)t)2

Mt

)

for t small. To estimate the term ĨI, we use the fact that |Gλ(x, y)| ≤ Ce−η|x−y| for λ

on any compact subset K of ρ(L) ∩ Λ, where C > 0 and η > 0 depend only on K,L:

∣∣∣ĨI∣∣∣ ≤ 1

2π

(∣∣∣∣∣
∫ − r

2

−R

e(−η1+iξ)te−η|x−y|dξ +

∫ R

r
2

e(−η1+iξ)te−η|x−y|dξ

∣∣∣∣∣
)

=
1

2π
e−η1te−η|x−y|

∣∣∣∣∣
∫ − r

2

−R

eiξtdξ +

∫ R

r
2

eiξtdξ

∣∣∣∣∣
=

1

2π
e−η1te−η|x−y|t−1

∣∣∣e−i rt2 − e−iRt + eiRt − ei
rt
2

∣∣∣
≤ 2

π
t−1e−η1te−η|x−y|.

Thus ĨI can be absorbed in the residual term R.

It remains to estimate the low-frequency term III = 1
2πi

∫
Γ̃
eλtGλ(x, y)dλ.

Case. t ≤ 1. First observe that estimates in the short-time regime t ≤ 1 are

trivial, since then |eλtGλ(x, y)| is uniformly bounded on the compact set Γ̃, and we have

|G(x, t; y)| ≤ C ≤ e−θt for θ > 0 sufficiently small. But, likewise, E and S are uniformly

bounded in this regime, hence time-exponentially decaying. As observed previously, all

such terms are negligible, being absorbable in the error term R. Thus, we may add E+S

and subtract G to obtain the result.

Case. t ≥ 1. Next, consider the critical (long-time) regime t ≥ 1. For definiteness,

take y ≤ x ≤ 0; the other two cases are similar. Decomposing,

1

2πi

∫
Γ̃

eλtGλ(x, y)dλ=
1

2πi

∫
Γ̃

eλtEλ(x, y)dλ+
1

2πi

∫
Γ̃

eλtSλ(x, y)dλ+
1

2πi

∫
Γ̃

eλtRλ(x, y)dλ

with Eλ, Sλ and Rλ as defined in Proposition 6.5, we consider in turn each of the three

terms on the right-hand side.

The Eλ term. Let us first consider the dominant term 1
2πi

∫
Γ̃
eλtEλ(x, y)dλ, which by

(6.15) is given by C1ū
′(x)Ξ(x, t; y),where Ξ(x, t; y) := 1

2πi

∫
Γ̃
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ.

Using Cauchy’s theorem,

1

2πi

(∫
Γ̃

+

∫ −η1−i r2

−η1+i r
2

)
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ=Resλ=0λ

−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
;

thus we may move the contour Γ̃ to obtain
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Ξ(x, t; y) =
1

2πi

∫
Γ̃

λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ

= − 1

2πi

∫ −η1−i r
2

−η1+i r
2

λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ+Resλ=0λ

−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

=
1

2πi

(∫ −i r
2

−η1−i r
2

+

∫ −η1+i r
2

i r
2

)
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ

+
1

2πi

(∫ −iδ

−i r
2

+

∫ i r
2

iδ

)
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ

+
1

2πi

∫
γ

λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ+Resλ=0λ

−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

where γ is the left half circle γ := {δeiθ : π
2 ≤ θ ≤ 3π

2 }, for some δ > 0. Notice that

Resλ=0λ
−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
= lim

λ→0
eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
= 1

and limδ→0
1

2πi

∫
γ
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ = − 1

2 . Thus sending δ → 0 in the above

calculations gives us

Ξ(x, t; y) =
1

2π
P.V.

∫ r
2

− r
2

(iξ)−1eiξte

(
iξ

f′(ū−)
+ ξ2

(f′(ū−))3

)
y
dξ

+
1

2πi

(∫ −i r2

−η1−i r2

+

∫ −η1+i r
2

i r
2

)
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ

+
1

2
Resλ=0λ

−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y

=

(
1

2π
P.V.

∫ +∞

−∞
(iξ)−1e

iξ

(
t+ y

f′(ū−)

)
e
ξ2 y

(f′(ū−))3 dξ +
1

2

)

− 1

2π

(∫ − r
2

−∞
+

∫ +∞

r
2

)
(iξ)−1e

iξ

(
t+ y

f′(ū−)

)
e
ξ2 y

(f′(ū−))3 dξ

+
1

2πi

(∫ −i r2

−η1−i r2

+

∫ −η1+i r
2

i r
2

)
λ−1eλte

(
λ

f′(ū−)
− λ2

(f′(ū−))3

)
y
dλ.

The first term in the above equality may be explicitly evaluated to give

errfn

⎛
⎜⎜⎝y + f ′(ū−)t√

4
∣∣∣ y
f ′(ū−)

∣∣∣

⎞
⎟⎟⎠ , (8.6)

where errfn(z) := 1√
π

∫ z

−∞ e−y2

dy, whereas the second and third terms are clearly time-

exponentially small for t ≤ C|y| and η1 sufficiently small relative to r. In the trivial case
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t ≥ C|y|, C > 0 sufficiently large, we can simply move the contour to [−η1−i r2 ,−η1+i r2 ] to

obtain a complete residue of 1 plus a time-exponentially small error corresponding to the

shifted contour integral, which result again agrees with (8.6) up to a time-exponentially

small error.

Expression (8.6) may be rewritten as

errfn

(
y + f ′(ū−)t√

4t

)
, (8.7)

plus error

errfn

⎛
⎜⎜⎝y + f ′(ū−)t√

4
∣∣∣ y
f ′(ū−)

∣∣∣

⎞
⎟⎟⎠− errfn

(
y + f ′(ū−)t√

4t

)

= errfn′
(
y + f ′(ū−)t√

4t

)(
−2(y + f ′(ū−)t)

2(4t)−
3
2

)
= O(t−1e

(y+f′(ū−)t)2

Mt ),

(8.8)

for M > 0 sufficiently large, and similarly for x- and y-derivatives. Multiplying by

C1ū
′(x) = O

(
e−α|x|) we find that term (8.7) gives the contribution

C1ū
′(x)errfn

(
y + f ′(ū−)t√

4t

)
, (8.9)

whereas term (8.8) gives a contribution absorbable in R.

Finally, observing that

C1ū
′(x)errfn

(
y − f ′(ū−)t√

4t

)
(8.10)

is time-exponentially small for t ≥ 1, since f ′(ū−) > 0, y < 0, and |ū′(x)| ≤ Ce−α|x|, we

may subtract and add this term to (8.9) to obtain a total of

E(x, t; y) = Cū′(x)

(
errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

))
,

plus terms absorbable in R.

The Sλ term. Next, we consider the second-order term 1
2πi

∫
Γ̃
eλtSλ(x, y)dλ, which

by (6.19) is given by C2Ξ
′(x, t; y) where Ξ′ := 1

2πi

∫
Γ̃
eλte

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ.

Similarly as in the treatment of the Eλ term just above, by deforming the contour Γ̃ to

Γ′′ := [−η1−i r2 ,−i r2 ]∪ [−i r2 ,+i r2 ]∪ [+i r2 ,−η1+i r2 ], these may be transformed, neglecting

time-exponentially decaying terms, to the elementary Fourier integrals

1

2π
P.V.

∫ +∞

−∞
e
iξ

(
t− x−y

f′(ū−)

)
e
ξ2

(
− 1

(f′(ū−))3

)
(x−y)

dξ = (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t .

Noting that for t ≥ 1, y ≤ x ≤ 0, there is∣∣∣∣(4πt)− 1
2 e−

(x−y−f′(ū−)t)2

4t

(
1− e−x

ex + e−x

)∣∣∣∣ ≤ (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t e−α|x|
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for some α > 0, so is absorbable in error term R, we find that the total contribution of

this term, neglecting terms absorbable in R, is

S(x, t; y) = χ{t≥1}(4πt)
− 1

2 e−
(x−y−f′(ū−)t)2

4t

(
e−x

ex + e−x

)
.

The Rλ term. Finally, we briefly discuss the estimation of error term
1

2πi

∫
Γ̃
eλtRλ(x, y)dλ. We can decompose the above integral into a sum of integrals in-

volving various terms of RE
λ and RS

λ given in (6.20) and (6.21). By expanding the term

O
(
eO(λ3)(x−y) − 1

)
, we get contour integrals of the form

1

2πi

∫
Γ̃

eλtλqe

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ. (8.11)

It may be deformed to contour Γ′′′ := [−η1 − i r2 , η∗ − i r2 ] ∪ [η∗ − i r2 , η∗ + i r2 ]∪
[η∗ + i r2 ,−η1 + i r2 ], where the saddle-point η∗ is defined as

η∗(x, y, t) :=

⎧⎪⎨
⎪⎩

ᾱ
p , if

∣∣∣ ᾱp ∣∣∣ ≤ ε,

±ε, if ᾱ
p ≷ ±ε,

with ᾱ := x−y−f ′(ū−)t
2t , p := x−y

(f ′(ū−))2t > 0, so the integral (8.11) may be rewritten as

1

2πi

(∫ η∗−i r
2

−η1−i r2

+

∫ η∗+i r2

η∗−i r
2

+

∫ −η1+i r
2

η∗+i r
2

)
eλtλqe

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ.

With a bit of computation we can show that the main contribution lies along the central

vertical portion [η∗ − i r2 , η∗ + i r2 ] of the contour Γ′′′:

1

2πi

∫ η∗+i r2

η∗−i r
2

eλtλqe

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ. (8.12)

Now we estimate (8.12) and set λ = η∗ + iξ where − r
2 ≤ ξ ≤ r

2 . Because

Re

(
λt+

(
− λ

f ′(ū−)
+

λ2

(f ′(ū−))3

)
(x− y)

)

= Re

(
−λ

2t

f ′(ū−)

(
x− y − f ′(ū−)t

2t

)
+

λ2t

f ′(ū−)

(x− y)

(f ′(ū−))2t

)

= Re

(
− 2λt

f ′(ū−)
ᾱ+

λ2t

f ′(ū−)
p

)
= Re

(
− t

f ′(ū−)

(
2ᾱλ− pλ2

))

= − t

f ′(ū−)

(
2ᾱRe(λ)− pRe(λ2)

)
= − t

f ′(ū−)

(
2ᾱRe(η∗ + iξ)− pRe(η∗ + iξ)2

)
= − t

f ′(ū−)

(
2ᾱη∗ − pη2∗ + pξ2

)
= − t

f ′(ū−)

ᾱ2

p
− tp

f ′(ū−)
ξ2

and |λ|q = |η∗ + iξ|q ≤ O(|η∗|q + |ξ|q), we have∣∣∣∣∣ 1

2πi

∫ η∗+i r
2

η∗−i r
2

eλtλqe

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ

∣∣∣∣∣
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≤ e
− t

f′(ū−)
ᾱ2

p

∫ r
2

− r
2

O(|η∗|q + |ξ|q)e−
tp

f′(ū−)
ξ2

dξ

≤ e−
(f′(ū−))2

x−y

(x−y−f′(ū−)t)2

4t

∫ ∞

−∞
O(|η∗|q + |ξ|q)e−

p

f′(ū−)
ξ2t

dξ

≤ O

(
t−

q+1
2 e−

(x−y−f′(ū−)t)2

Mt

)

if
∣∣∣ ᾱp ∣∣∣ ≤ ε, and ∣∣∣∣∣ 1

2πi

∫ η∗+i r2

η∗−i r2

eλtλqe

(
− λ

f′(ū−)
+ λ2

(f′(ū−))3

)
(x−y)

dλ

∣∣∣∣∣
≤ e−

εt
M

∫ ∞

−∞
O(|η∗|q + |ξ|q)e−

p

f′(ū−)
ξ2t

dξ

≤ O
(
t−

q+1
2 e−ηt

)
if
∣∣∣ ᾱp ∣∣∣ ≥ ε. Combining these estimates, we get the bound in (1.6). �
Remark 8.3. The derivation of (8.6).

To evaluate the integral 1
2πP.V.

∫ +∞
−∞ (iξ)−1e

iξ

(
t+ y

f′(ū−)

)
e
ξ2 y

(f′(ū−))3 dξ, we make a

change of variable ζ =
√

−y
(f ′(ū−))3 ξ. Then y

(f ′(ū−))3 ξ
2 = −ζ2 and dξ = 1√

−y

(f′(ū−))3

dζ.

The integral becomes

1

2π

∫ +∞

−∞

√
−y

(f ′(ū−))3

iζ
e

i

(
t+ y

f′(ū−)

)
1√
−y

(f′(ū−))3

ζ

e−ζ2 1√
−y

(f ′(ū−))3

dζ

=
1

2π

∫ +∞

−∞

1

iζ
e
i

⎛
⎝ y+f′(ū−)t√

− y
f′(ū−)

⎞
⎠ζ

e−ζ2

dζ =
1√
2π

1√
2π

∫ +∞

−∞

e−ζ2

iζ
e
i

⎛
⎝ y+f′(ū−)t√

− y
f′(ū−)

⎞
⎠ζ

dζ

=
1√
2π

(
F−1

ζ f(ζ)
)⎛⎝y + f ′(ū−)t√

− y
f ′(ū−)

⎞
⎠ =

1√
2π

(
F−1

ζ f(ζ)
)
(τ ) :=

1√
2π

g(τ ),

where f(ζ) = e−ζ2

iζ , τ = y+f ′(ū−)t√
− y

f′(ū−)

and g(τ ) =
(
F−1

ζ f(ζ)
)
(τ ). By the inverse Fourier

transform formulae, we have f(ζ) = (Fτg(τ )) (ζ) and iζf(ζ) = (Fτg
′(τ )) (ζ) = e−ζ2

so

g′(τ ) =
(
F−1

ζ e−ζ2
)
(τ ) =

1√
2π

∫ +∞

−∞
e−ζ2

eiτζdζ =
1√
2
e−

τ2

4 =

√
2π

2
errfn′

(τ
2

)
.

Then 1√
2π

g′(τ ) = 1
2errfn

′ ( τ
2

)
, and integrate this equation to get 1√

2π
g(τ ) = errfn

(
τ
2

)
− 1

2

because g(0) = 0 and errfn(0) = 1
2 . This completes the proof of (8.6).

Remark 8.4. The reason that we made the excited term E(x, t; y) look like (1.4) is

that we would like to have the Green function decomposition look similar to the scalar

Burgers.
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Remark 8.5. The e−x

ex+e−x term in the scattering term serves as a smooth cutoff

function, which smoothly interpolates between different cases of solutions. For x > 0

and |x| large, e−x

ex+e−x decays to 0; for x < 0 and |x| large, e−x

ex+e−x is almost 1.

Now it is time to give some Lp estimates on Green’s function convolved with some

function f in Lp(R) (1 ≤ p ≤ ∞).

Proposition 8.6. The Green function G decomposes as G = E+S+R = E+ G̃, where

G̃ = S +R, E(x, t; y) = Cū′(x)e(y, t) and

e(y, t) := errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

)
.

Then for some C > 0 and all t > 0,∣∣∣∣
∫ +∞

−∞
G̃(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )|h|L1 , (8.13)

∣∣∣∣
∫ +∞

−∞
G̃y(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )−

1
2 |h|L1 , (8.14)

∣∣∣∣
∫ +∞

−∞
G̃(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ C|h|Lp , (8.15)

∣∣∣∣
∫ +∞

−∞
G̃y(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 |h|Lp ; (8.16)

and ∣∣∣∣
∫ +∞

−∞
e(y, t)h(y)dy

∣∣∣∣ ≤ C|h|L1 ,

∣∣∣∣
∫ +∞

−∞
ey(y, t)h(y)dy

∣∣∣∣ ≤ Ct−
1
2 |h|L1 , (8.17)

∣∣∣∣
∫ +∞

−∞
et(y, t)h(y)dy

∣∣∣∣ ≤ Ct−
1
2 |h|L1 ,

∣∣∣∣
∫ +∞

−∞
ety(y, t)h(y)dy

∣∣∣∣ ≤ Ct−1|h|L1 , (8.18)

∣∣∣∣
∫ +∞

−∞
et(y, t)h(y)dy

∣∣∣∣ ≤ C|h|L∞ ,

∣∣∣∣
∫ +∞

−∞
eyt(y, t)h(y)dy

∣∣∣∣ ≤ Ct−
1
2 |h|L∞ . (8.19)

Proof. We prove (8.13) first. Write G̃ as G̃(x, t; y) = S(x, t; y) + R(x, t; y) and recall

from Theorem 1.1 that S(x, t; y) = χ{t≥1}(4πt)
− 1

2 e−
(x−y−f′(ū−)t)2

4t

(
e−x

ex+e−x

)
so

|S(x, t; y)| ≤ (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t , (8.20)

and R(x, t; y) = O
(
e−ηte−

|x−y|2
Mt

)
+O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−

1
2 e−

(x−y−f′(ū−)t)2

Mt so

|R(x, t; y)| ≤ Ce−η|x|t−
1
2 e−

(x−y−f′(ū−)t)2

Mt + Ce−η′(|x−y|+t) (8.21)

for some 0 < η′ < η. By Minkowski’s inequality,∣∣∣G̃(x, t; y)
∣∣∣
Lp(x)

≤ |S(x, t; y)|Lp(x) + |R(x, t; y)|Lp(x) .
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We estimate |S(x, t; y)|Lp(x) first:

|S(x, t; y)|Lp(x) ≤
(∫ +∞

−∞

[
(4πt)−

1
2 e−

(x−y−f′(ū−)t)2

4t

]p
dx

) 1
p

≤ (4πt)−
1
2

(∫ +∞

−∞
e−

p
4t(x−y−f ′(ū−)t)2dx

) 1
p

= (4πt)−
1
2

(√
4t

p

∫ +∞

−∞
e−z2

dz

) 1
p

= (4πt)−
1
2

(√
4t

p

√
π

) 1
p

= C1t
− 1

2 (1−
1
p ).

Then we estimate |R(x, t; y)|Lp(x):

|R(x, t; y)|Lp(x) ≤
∣∣∣∣Ce−η|x|t−

1
2 e−

(x−y−f′(ū−)t)2

Mt

∣∣∣∣
Lp(x)

+
∣∣∣Ce−η′(|x−y|+t)

∣∣∣
Lp(x)

:= RA +RB.

In fact RA is similar to |S(x, t; y)|Lp(x), so we have RA ≤ C2t
− 1

2 (1−
1
p ). Estimate RB as

Rp
B = Cp

∫ +∞

−∞

(
e−η′(|x−y|+t)

)p
dx = Cp

∫ +∞

−∞
e−pη′(|x−y|+t)dx

= Cp

∫ y

−∞
e−pη′(y−x+t)dx+ Cp

∫ +∞

y

e−pη′(x−y+t)dx

= Cpe−pη′t

(∫ y

−∞
e−pη′(y−x)dx+

∫ +∞

y

e−pη′(x−y)dx

)

= 2Cpe−pη′t

∫ +∞

0

e−pη′xdx =
2Cpe−pη′t

pη′

so RB = C
(

2
pη′

) 1
p

e−η′t.

Finally, we use the above estimates to derive∣∣∣∣
∫ +∞

−∞
G̃(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤
∫ +∞

−∞

∣∣∣G̃(x, t; y)
∣∣∣
Lp(x)

|h(y)| dy

≤
∫ +∞

−∞

(
|S(x, t; y)|Lp(x) + |R(x, t; y)|Lp(x)

)
|h(y)| dy

≤
∫ +∞

−∞

(
C1t

− 1
2 (1−

1
p ) + C2t

− 1
2 (1−

1
p ) + C

(
2

pη′

) 1
p

e−η′t

)
|h(y)| dy

≤
∫ +∞

−∞
(C1 + C2 + C3)t

− 1
2 (1−

1
p ) |h(y)| dy = Ct−

1
2 (1−

1
p )|h|L1 .

For y-derivative bounds of G̃, G̃y(x, t; y), we just need to notice that we have the estimates

|Sy(x, t; y)| ≤ Ct−1e−
(x−y−f′(ū−)t)2

4t (8.22)
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and Ry(x, t; y) = O
(
e−ηte−

|x−y|2
Mt

)
+ O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−1e−

(x−y−f′(ū−)t)2

Mt ,

so

|Ry(x, t; y)| ≤ Ce−η|x|t−1e−
(x−y−f′(ū−)t)2

Mt + Ce−η′(|x−y|+t) (8.23)

for some 0 < η′ < η. With some similar computation as for G̃(x, t; y) we get∣∣∣∣
∫ +∞

−∞
G̃y(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )−

1
2 |h|L1 .

To prove (8.15) and (8.16), notice that (8.20) implies that

|S(x, t; y)|L1(x) ≤
∣∣∣∣(4πt)− 1

2 e−
(x−y−f′(ū−)t)2

4t

∣∣∣∣
L1(x)

≤ C, (8.24)

(8.21) implies that

|R(x, t; y)|L1(x) ≤ C

∣∣∣∣e−η|x|t−
1
2 e−

(x−y−f′(ū−)t)2

Mt

∣∣∣∣
L1(x)

+C
∣∣∣e−η′(|x−y|+t)

∣∣∣
L1(x)

≤ C, (8.25)

(8.22) implies that

|Sy(x, t; y)|L1(x) ≤ C

∣∣∣∣t−1e−
(x−y−f′(ū−)t)2

4t

∣∣∣∣
L1(x)

≤ Ct−
1
2 , (8.26)

and (8.23) implies that

|Ry(x, t; y)|L1(x) ≤ C

∣∣∣∣e−η|x|t−1e−
(x−y−f′(ū−)t)2

Mt

∣∣∣∣
L1(x)

+ C
∣∣∣e−η′(|x−y|+t)

∣∣∣
L1(x)

≤ Ct−
1
2 .

(8.27)

Using estimates (8.24)-(8.27) and the inequality |f ∗ g|Lp ≤ |f |L1 |g|Lp we can derive

the estimates (8.15) and (8.16). To prove bounds (8.17)-(8.19) we need the following

lemma. �

Lemma 8.7. For some C > 0 and all t > 0,

|e(·, t)|L∞ ≤ C, (8.28)

|ey(·, t)|Lp ≤ Ct−
1
2 (1−

1
p ), (8.29)

|et(·, t)|Lp ≤ Ct−
1
2 (1−

1
p ), (8.30)

|ety(·, t)|Lp ≤ Ct−
1
2 (1−

1
p )−

1
2 , (8.31)

|ey(y, t)| ≤ Ct−
1
2

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (8.32)

|et(y, t)| ≤ Ct−
1
2

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (8.33)

|ety(y, t)| ≤ Ct−1

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
. (8.34)

Proof. Estimates (8.28) follow directly from the definition of e(y, t):

e(y, t) := errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

)
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=
1√
π

∫ y+f′(ū−)t
√

4t

−∞
e−z2

dz − 1√
π

∫ y−f′(ū−)t
√

4t

−∞
e−z2

dz =
1√
π

∫ y+f′(ū−)t
√

4t

y−f′(ū−)t
√

4t

e−z2

dz.

Differentiating the above equation with respect to y we get

ey(y, t) =
1√
π

⎛
⎝e−

(y+f′(ū−)t)2

4t

√
4t

− e−
(y−f′(ū−)t)2

4t

√
4t

⎞
⎠ ,

yielding (8.32).

Differentiating with respect to t we get

et(y, t) = f ′(ū−)

⎛
⎝e−

(y+f′(ū−)t)2

4t

√
4πt

+
e−

(y−f′(ū−)t)2

4t

√
4πt

⎞
⎠

+
1

2
√
t

⎛
⎝ (y − f ′(ū−)t)√

t

e−
(y−f′(ū−)t)2

4t

√
4πt

− (y + f ′(ū−)t)√
t

e−
(y+f′(ū−)t)2

4t

√
4πt

⎞
⎠ ;

then we get (8.33) immediately if t ≥ 1. For the case when 0 < t < 1, we use the mean

value theorem,∣∣∣∣∣∣
(y − f ′(ū−)t)√

t

e−
(y−f′(ū−)t)2

4t

√
4πt

− (y + f ′(ū−)t)√
t

e−
(y+f′(ū−)t)2

4t

√
4πt

∣∣∣∣∣∣
= t

∣∣∣∣∣
∫ f ′(ū−)

−f ′(ū−)

∂

∂z

(
z√
t

e−
z2

4t

√
4πt

)
|z=−y+θtdθ

∣∣∣∣∣ ≤ 2C0t

∣∣∣∣∣ ∂∂z
(

z√
t

e−
z2

4t

√
4πt

)
|z=−y

∣∣∣∣∣
= 2C0t

e−
y2

4t |2t− y2|
4
√
πt2

≤ C

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
,

and we get (8.33) again. Estimate (8.34) can be derived similarly.

Now the estimates (8.29)-(8.31) follow as in the heat kernel estimates. �
Once we have the above lemma, (8.17)-(8.19) can be derived similarly as previous

estimates on G̃.

9. Nonlinear stability. In this section we will establish the stability results of the

viscous shock solutions of (1.1), proving Theorem 1.2. Let ũ be a second solution of (1.1)

and define the perturbation

u(x, t) := ũ(x+ α(t), t)− ū(x) (9.1)

as the difference between a translate of ũ and the background wave ū, where the transla-

tion α(t) is to be determined later. After a bit of computation, we derive the perturbation

equation

ut − Lu = N(u)x + α̇(t)(ux + ūx), (9.2)

where Lu = uxx− (f ′(ū)u)x is the linearized differential operator as before, and N(u) :=

f(ū) + f ′(ū)u− f(u+ ū).
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Remark 9.1. From direct calculationN(u) ought to be N(u) := f ′(ū)u−f(u+ū)+ūx,

but notice that ūxx = f(ū)x. Thus in (9.2) if we substitute N(u) with the one defined

above it will make no difference.

Starting from the perturbation equation, we apply Duhamel’s principle to (9.2):

u(x, t) = eLtu0 +

∫ t

0

eL(t−s) (N(u)x + α̇(s)(ūx + ux)) ds

=

∫ +∞

−∞
G(x, t; y)u0(y)dy

+

∫ t

0

∫ +∞

−∞
G(x, t− s; y) [(N(u))x(y, s) + α̇(s)ux(y, s)] dyds

+

∫ t

0

∫ +∞

−∞
G(x, t− s; y)α̇(s)ūx(y)dyds

=

∫ +∞

−∞
G(x, t; y)u0(y)dy

−
∫ t

0

∫ +∞

−∞
Gy(x, t− s; y) [(N(u))(y, s) + α̇(s)u(y, s)] dyds

+

∫ t

0

G(x, t− s; y) [(N(u))(y, s) + α̇(s)u(y, s)]+∞
−∞ ds

+

(∫ t

0

α̇(s)ds

)(∫ +∞

−∞
G(x, t− s; y)ūx(y)dy

)

=

∫ +∞

−∞
G(x, t; y)u0(y)dy

−
∫ t

0

∫ +∞

−∞
Gy(x, t− s; y) [(N(u))(y, s) + α̇(s)u(y, s)] dyds+ α(t)ūx(x).

To determine α, recall the decomposition G = Cūxe(y, t) + G̃ from Proposition 8.6,

and substitute this decomposition into formulae of u(x, t) derived above:

u(x, t) =

∫ +∞

−∞
G̃(x, t; y)u0(y)dy −

∫ t

0

∫ +∞

−∞
G̃y(x, t− s; y) [N(u) + α̇u] dyds

+Cūx(x)

{
α(t) +

∫ +∞

−∞
e(y, t)u0(y)dy −

∫ t

0

∫ +∞

−∞
ey(y, t− s)[N(u) + α̇u]dyds

}
.

So to make the term ūx disappear, we have to define α as

α(t) = −
∫ +∞

−∞
e(y, t)u0(y)dy +

∫ t

0

∫ +∞

−∞
ey(y, t− s)(N(u)(y, s) + α̇(s)u(y, s))dyds.

We obtain the integral representation

u(x, t)=

∫ +∞

−∞
G̃(x, t; y)u0(y)dy −

∫ t

0

∫ +∞

−∞
G̃y(x, t− s; y) (N(u)(y, s)+α̇(s)u(y, s)) dyds,

and differentiating α(t) with respect to t,

α̇(t) = −
∫ +∞

−∞
et(y, t)u0(y)dy +

∫ t

0

∫ +∞

−∞
eyt(y, t− s)(N(u)(y, s) + α̇(s)u(y, s))dyds.
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Lemma 9.2. Define

ζ(t) := sup
0≤s≤t,1≤p≤∞

(
|u|Lp(s)(1 + s)

1
2 (1−

1
p ) + |α̇(s)|(1 + s)

1
2

)
. (9.3)

Then for all t ≥ 0 for which ζ(t) is finite, some C > 0, and E0 := |u0|L1∩L∞ ,

ζ(t) ≤ C(E0 + ζ(t)2). (9.4)

Proof. Use Taylor expansion of f(u+ ū) in N(u) := f(ū)+f ′(ū)u−f(u+ ū) to derive

N(u) = − 1
2f

′′(ū)u2 +O(u3) = O(u2).

We then have the following estimates for |N(u) + α̇u|L1(s) and |N(u) + α̇u|Lp(s):

|N(u) + α̇u|L1(s)

≤ C|u|L1(s)(|u|L∞(s) + |α̇(s)|)

≤ C
(
|u|L1(s) + |α̇(s)|(1 + s)

1
2

)
(1 + s)−

1
2

(
|u|L∞(s)(1 + s)

1
2 + |α̇(s)|(1 + s)

1
2

)
≤ Cζ(s)2(1 + s)−

1
2

and

|N(u) + α̇u|Lp(s) ≤ C|u|Lp(s)(|u|L∞(s) + |α̇(s)|)

≤ C(1 + s)−
1
2 (1−

1
p )
(
|u|Lp(s)(1 + s)

1
2 (1−

1
p ) + |α̇(s)|(1 + s)

1
2

)
× (1 + s)−

1
2

(
|u|L∞(s)(1 + s)

1
2 + |α̇(s)|(1 + s)

1
2

)
≤ Cζ(s)2(1 + s)−

1
2 (1−

1
p )−

1
2 .

Since we already have the bounds of G̃ and e, we can now estimate |u(·, t)|Lp(x). Utilize

the representation of u(x, t),

|u(·, t)|Lp(x) ≤ C(1 + t)−
1
2 (1−

1
p )E0 + C

∫ t
2

0

(t− s)−
1
2 (1−

1
p )−

1
2 |N(u) + α̇u|L1(s)ds

+ C

∫ t

t
2

(t− s)−
1
2 |N(u) + α̇u|Lp(s)ds

≤ C(1 + t)−
1
2 (1−

1
p )E0 + C

∫ t
2

0

(t− s)−
1
2 (1−

1
p )−

1
2 ζ(s)2(1 + s)−

1
2 ds

+ C

∫ t

t
2

(t− s)−
1
2 ζ(s)2(1 + s)−

1
2 (1−

1
p )−

1
2 ds

≤ C(E0 + ζ(t)2)(1 + t)−
1
2 (1−

1
p ).

Similarly, for |α̇(t)|, we have

|α̇(t)| ≤ C(1 + t)−
1
2E0 + C

∫ t
2

0

(t− s)−1|N(u) + α̇u|L1(s)ds

+ C

∫ t

t
2

(t− s)−
1
2 |N(u) + α̇u|L∞(s)ds

≤ C(1 + t)−
1
2E0 + C

∫ t
2

0

(t− s)−1ζ(s)2(1 + s)−
1
2 ds



532 YINGWEI LI

+ C

∫ t

t
2

(t− s)−
1
2 ζ(s)2(1 + s)−1ds

≤ C(E0 + ζ(t)2)(1 + t)−
1
2 .

Rearranging the above two estimates we obtain (9.4). �
Now we can prove our main result, Theorem 1.2.

Proof of Theorem 1.2. The first two bounds are proved by continuous induction. The

third follows using (8.17) and (8.18). To show the last inequality, notice that

ũ(x, t)− ū(x) = u(x− α(t), t)− (ū(x)− ū(x− α(t))),

so that |ũ(·, t)− ū| is controlled by the sum of |u| and ū− ū(x−α(t)) = α(t)|ū′(x)|, hence
remains ≤ CE0 for all t ≥ 0, for E0 sufficiently small. �

This completes the proof of Theorem 1.2, giving the nonlinear stability.

10. Small-amplitude Green function bounds. In this section we consider the

small-amplitude stationary profiles ūε(x) of the one-dimensional strictly parabolic viscous

conservation law (10.1) in a neighborhood of a particular state u0,

ut + f(u)x = uxx, (10.1)

where u ∈ C2(R2 → R), f ∈ C2(R → R), u = u(x, t), u = ūε(x − st), limz→±∞ ūε(z) =

uε
±. After linearizing (10.1) about ūε, we have

vt = Lv := vxx − (av)x = vxx − axv − avx, (10.2)

where a = a(x) = f ′(ūε(x)). Here, ε > 0 denotes the shock strength ε := |uε
+ − uε

−|,
and profiles ūε(·) are assumed to converge as ε → 0 to u0. Under these assumptions, the

center-manifold argument of Majda and Pego yields convergence after rescaling of ūε to

the standard Burgers profile (10.4) below, which we shall describe here.

We compare (10.1) with the Burgers equation,

ut +

(
u2

2

)
x

= uxx, (10.3)

which approximately describes small-amplitude viscous behavior in the principal charac-

teristic mode to our general scalar conservation law (10.1). In particular, the family of

exact solutions,

˜̄uε(x) := −ε tanh
(εx
2

)
, (10.4)

gives an asymptotic description of the structure of weak viscous shock profiles in the

principal direction, in the limit as amplitude ε goes to zero.

The rescaled profile equations. Let η̃ := ūε − u++u−
2 , ε := |u+ − u−|. We have the

reduced flow η̃ satisfying

βη̃x̃ =
Λ

2
(η̃2 − ε2) +O(|η̃, ε|3) (10.5)

where β and Λ are positive constants. After rescaling η̃ → η = η̃/ε, x̃ → x = Λεx̃/β we

get

η′ =
1

2
(η2 − 1) + εQ(η, ε) (10.6)
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where Q(η, ε) ∈ C1(R2) and ′ denotes d
dx . Compare this to the exact profile equation of

Burgers:

η̄′ =
1

2
(η̄2 − 1). (10.7)

The Standard Implicit Function Theorem and stable/unstable manifold estimates give

us

Proposition 10.1. There holds

|η± − η̄±| ≤ Cε, (10.8)

|(η − η±)− (η̄ − η̄±)| ≤ Cεe−θ|x| (10.9)

for x ≷ 0 and for any fixed 0 < θ < 1, and for some C = C(θ) > 0, where η± and

η̄± = ∓1 denote the rest points of (10.6) and (10.7), respectively.

This suggests that we can expect similar stability results of profiles ūε(x) as those of
˜̄uε(x).

Using our former results on Green function bounds of the general scalar conservation

law, we can derive the Green bounds under the rescaled coordinates. First, let’s recall

Theorem 1.1 and rescale it using x̃ = Λεx, t̃ = Λ2ε2t, ũ = u
Λε , ã = 1

Λεa. Note that from

now on the coordinate system (x, t; y)-u denotes the coordinate system of the small-

amplitude problem (ε-dependent case), and the coordinate system (x̃, t̃; ỹ)-ũ denotes the

rescaled small-amplitude problem (back to normal amplitude case or ε-independent case).

We define ũ(x̃, t̃) and the flux function f̃ as ũ(x̃, t̃) = 1
Λεu(x, t), f̃(·) = 1

Λ2ε2 f(Λε(·)). If
we replace u by v, aε, we get ṽ(x̃, t̃) = 1

Λεv(x, t), ã(x̃) = 1
Λεa

ε(x). Now we can compute

the derivatives

ũx̃(x̃, t̃) =
∂

∂x̃

[
ũ(x̃, t̃)

]
=

1

Λε

∂

∂x

[
1

Λε
u(x, t)

]
=

1

Λ2ε2
ux(x, t),

ũx̃x̃(x̃, t̃) =
∂

∂x̃

[
1

Λ2ε2
ux(x, t)

]
=

1

Λε

∂

∂x

[
1

Λ2ε2
ux(x, t)

]
=

1

Λ3ε3
uxx(x, t),

ũt̃(x̃, t̃) =
∂

∂t̃

[
ũ(x̃, t̃)

]
=

1

Λ2ε2
∂

∂t

[
1

Λε
u(x, t)

]
=

1

Λ3ε3
ut(x, t).

Thus ũt̃(x̃, t̃)+ ũ(x̃, t̃)ũx̃(x̃, t̃)− ũx̃x̃(x̃, t̃) =
1

Λ3ε3 [ut(x, t) + u(x, t)ux(x, t)− uxx(x, t)] = 0,

and notice that

ṽt̃(x̃, t̃) =
1

Λ3ε3 vt(x, t), ṽx̃(x̃, t̃) =
1

Λ2ε2 vx(x, t), ṽx̃x̃(x̃, t̃) =
1

Λ3ε3 vxx(x, t),[
ã(x̃)ṽ(x̃, t̃)

]
x̃
= 1

Λε

[
1
Λεa

ε(x) 1
Λεv(x, t)

]
x
= 1

Λ3ε3 [a
ε(x)v(x, t)]x ,

so ṽ(x̃, t̃) satisfies

ṽt̃(x̃, t̃) +
[
ã(x̃)ṽ(x̃, t̃)

]
x̃
− ṽx̃x̃(x̃, t̃) =

1

Λ3ε3
{vt(x, t) + [aε(x)v(x, t)]x − vxx(x, t)} = 0.

The flux function f̃(ũ) = 1
Λ2ε2 f(u) =

1
Λ2ε2 f(Λεũ), so f̃ ′(ũ) = 1

Λεf
′(Λεũ) = 1

Λεf
′(u).

By the ε-independent case (3.5) in section 3 of [Z1],

ṽ(x̃, t̃) =

∫ +∞

−∞
G(x̃, t̃; ỹ)h̃(ỹ)dỹ (10.10)
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where h̃(x̃) = ṽ(x̃, 0) = 1
Λεv(x, 0) =

1
Λεh(x), and ỹ = Λεy. From (10.10) we have

1

Λε
v(x, t) = ṽ(x̃, t̃) =

∫ +∞

−∞
G(x̃, t̃; ỹ)

1

Λε
h(y)Λεdy,

so

v(x, t) = Λε

∫ +∞

−∞
G(x̃, t̃; ỹ)h(y)dy =

∫ +∞

−∞
ΛεG(x̃, t̃; ỹ)h(y)dy =

∫ +∞

−∞
Gε(x, t; y)h(y)dy,

where Gε(x, t; y) = ΛεG(x̃, t̃; ỹ) = ΛεG(Λεx,Λ2ε2t; Λεy), and Eε and Sε can be carried

out explicitly as

Eε(x, t; y) = ΛεE(x̃, t̃; ỹ) = ΛεE(Λεx,Λ2ε2t; Λεy)

= CΛε˜̄ux̃(x̃)

(
errfn

(
ỹ + f̃ ′(˜̄u−)t̃√

4t̃

)
− errfn

(
ỹ − f̃ ′(˜̄u−)t̃√

4t̃

))

= CΛε
1

Λ2ε2
ūε
x(x)

(
errfn

(
Λεy + 1

Λεf
′(ū−)Λ

2ε2t√
4Λ2ε2t

)

−errfn

(
Λεy − 1

Λεf
′(ū−)Λ

2ε2t√
4Λ2ε2t

))

= C
1

Λε
ūε
x(x)

(
errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

))

and

Sε(x, t; y) = ΛεS(x̃, t̃; ỹ) = ΛεS(Λεx,Λ2ε2t; Λεy)

= Λε

[
(4πt̃)−

1
2 e−

(x̃−ỹ−f̃′(˜̄u−)t̃)2

4t

(
e−x̃

ex̃ + e−x̃

)

+(4πt̃)−
1
2 e−

(x̃−ỹ+f̃′(˜̄u−)t̃)2

4t

(
ex̃

ex̃ + e−x̃

)]

= Λε

[
(4πΛ2ε2t)−

1
2 e−

(Λεx−Λεy− 1
Λε

f′(ū−)Λ2ε2t)2

4Λ2ε2t

(
e−Λεx

eΛεx + e−Λεx

)

+(4πΛ2ε2t)−
1
2 e−

(Λεx−Λεy+ 1
Λε

f′(ū−)Λ2ε2t)
2

4Λ2ε2t

(
eΛεx

eΛεx + e−Λεx

)]

= (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t

(
e−Λεx

eΛεx + e−Λεx

)

+(4πt)−
1
2 e−

(x−y+f′(ū−)t)2

4t

(
eΛεx

eΛεx + e−Λεx

)
.

Finally, Rε and Rε
y can be similarly derived.

Now we have the following estimates by rescaling Theorem 1.1.

Proposition 10.2. The Green functionG(x, t; y) associated with the linearized evolution

equation (10.2) may be decomposed as

Gε(x, t; y) = Eε(x, t; y) + Sε(x, t; y) +Rε(x, t; y) (10.11)
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where for y ≤ 0:

Eε(x, t; y) = Cūε
x(x)

1

Λε

(
errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

))
(10.12)

and

Sε(x, t; y) = (4πt)−
1
2 e−

(x−y−f′(ū−)t)2

4t

(
e−Λεx

eΛεx + e−Λεx

)

+ (4πt)−
1
2 e−

(x−y+f′(ū−)t)2

4t

(
eΛεx

eΛεx + e−Λεx

)
,

(10.13)

Rε(x, t; y) = O
(
Λεe−ηΛεt−θ|x−y|

)
+O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−

1
2 e−

(x−y−f′(ū−)t)2

Mt ,
(10.14)

Rε
y(x, t; y) = O

(
Λεe−ηΛεt−θ|x−y|

)
+O

(
(t+ 1)−

1
2 e−ηx+

+ e−η|x|
)
t−1e−

(x−y−f′(ū−)t)2

Mt .
(10.15)

Again by rescaling, we can recover all the estimates in the ε-independent case for the

small-amplitude case. Here we give an example of how the rescaling argument works to

recover the bounds in Proposition 8.6. Recall that we have the following estimate in the

ε-independent case: ∣∣∣∣
∫ +∞

−∞
G̃(x̃, t̃; ỹ)h̃(ỹ)dỹ

∣∣∣∣
Lp(x̃)

≤ Ct̃−
1
2 (1−

1
p )|h̃|L1 .

Now we substitute 1
Λε G̃

ε(x, t; y) for G̃(x̃, t̃; ỹ), 1
Λεh(y) for h̃(ỹ), Λεy for ỹ, Λ2ε2t for t̃, and

we get ∣∣∣∣
∫ +∞

−∞

1

Λε
G̃ε(x, t; y)

1

Λε
h(y)Λεdy

∣∣∣∣
Lp(x̃)

≤ C(Λ2ε2t)−
1
2 (1−

1
p )

∫ +∞

−∞
|h̃(ỹ)|dỹ,

(∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞

1

Λε
G̃ε(x, t; y)

1

Λε
h(y)Λεdy

∣∣∣∣
p

Λεdx

)1
p

≤ C(Λ2ε2t)−
1
2 (1−

1
p )

∫ +∞

−∞

∣∣∣∣ 1Λεh(y)
∣∣∣∣Λεdy,

(Λε)
1
p−1

(∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)h(y)dy

∣∣∣∣
p

dx

)1
p

≤ C(Λε)−(1− 1
p )t−

1
2 (1−

1
p )

∫ +∞

−∞
|h(y)| dy.

When we cancel (Λε)
1
p−1 on both sides, we get(∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)h(y)dy

∣∣∣∣
p

dx

) 1
p

≤ Ct−
1
2 (1−

1
p )

∫ +∞

−∞
|h(y)| dy

or equivalently ∣∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )|h|L1 .

Similarly, we can recover all other estimates with the G̃ε term.
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For the estimates with term eε(y, t), we note that ẽ(ỹ, t̃) = Λεeε(y, t) = Λεeε( ỹ
Λε ,

t̃
Λ2ε2 );

thus

ẽỹ(ỹ, t̃) = eεy(y, t), ẽt̃(ỹ, t̃) =
1

Λε
eεt(y, t), ẽt̃ỹ(ỹ, t̃) =

1

Λ2ε2
eεty(y, t).

Using these to substitute, for example, the following estimate:∣∣∣∣
∫ +∞

−∞
ẽỹ(ỹ, t̃)h̃(ỹ)dỹ

∣∣∣∣ ≤ Ct̃−
1
2 |h̃|L1 ,

we get ∣∣∣∣
∫ +∞

−∞
eεy(y, t)

1

Λε
h(y)Λεdy

∣∣∣∣ ≤ C(Λ2ε2t)−
1
2 |h|L1 ,

and this further simplifies to∣∣∣∣
∫ +∞

−∞
eεy(y, t)h(y)dy

∣∣∣∣ ≤ C(Λε)−1t−
1
2 |h|L1 .

Other estimates can be derived similarly.

Now we record these results in the following proposition and lemma, which are corre-

sponding versions of Proposition 8.6 and Lemma 8.7.

Proposition 10.3. The Green function Gε decomposes as Gε = Eε+Sε+Rε = Eε+G̃ε,

where G̃ε = Sε +Rε, Eε(x, t; y) = Cūε
x(x)e

ε(y, t) and

eε(y, t) :=
1

Λε

(
errfn

(
y + f ′(ū−)t√

4t

)
− errfn

(
y − f ′(ū−)t√

4t

))
.

Then for some C > 0 independent of ε and all t > 0,∣∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )|h|L1 , (10.16)

∣∣∣∣
∫ +∞

−∞
G̃ε

y(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 (1−

1
p )−

1
2 |h|L1 , (10.17)

∣∣∣∣
∫ +∞

−∞
G̃ε(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ C|h|Lp , (10.18)

∣∣∣∣
∫ +∞

−∞
G̃ε

y(x, t; y)h(y)dy

∣∣∣∣
Lp(x)

≤ Ct−
1
2 |h|Lp ; (10.19)

and∣∣∣∣
∫ +∞

−∞
eε(y, t)h(y)dy

∣∣∣∣ ≤ Cε−1|h|L1 ,

∣∣∣∣
∫ +∞

−∞
eεy(y, t)h(y)dy

∣∣∣∣ ≤ Cε−1t−
1
2 |h|L1 , (10.20)

∣∣∣∣
∫ +∞

−∞
eεt(y, t)h(y)dy

∣∣∣∣ ≤ Ct−
1
2 |h|L1 ,

∣∣∣∣
∫ +∞

−∞
eεty(y, t)h(y)dy

∣∣∣∣ ≤ Ct−1|h|L1 , (10.21)

∣∣∣∣
∫ +∞

−∞
eεt(y, t)h(y)dy

∣∣∣∣ ≤ C|h|L∞ ,

∣∣∣∣
∫ +∞

−∞
eεyt(y, t)h(y)dy

∣∣∣∣ ≤ Ct−
1
2 |h|L∞ . (10.22)
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Lemma 10.4. For some C > 0 and all 0 < ε ≤ 1, and all t > 0,

|eε(·, t)|L∞ ≤ C

ε
, (10.23)

|eεy(·, t)|Lp ≤ C

ε
t−

1
2 (1−

1
p ), (10.24)

|eεt(·, t)|Lp ≤ Ct−
1
2 (1−

1
p ), (10.25)

|eεty(·, t)|Lp ≤ Ct−
1
2 (1−

1
p )−

1
2 , (10.26)

|eεy(y, t)| ≤ C

ε
t−

1
2

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (10.27)

|eεt(y, t)| ≤ Ct−
1
2

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
, (10.28)

|eεty(y, t)| ≤ Ct−1

(
e−

(−y−t)2

Ct + e−
(−y+t)2

Ct

)
. (10.29)

11. Nonlinear stability in the small-amplitude case. Having the estimates in

Proposition 10.3 and Lemma 10.4, we are now ready to derive the nonlinear stability

results of the small-amplitude case. Similarly, define the perturbation as u(x, t) := ũ(x+

α(t), t)− ūε(x). Following some similar computation as the ε-independent case, we have

the following representations:

u(x, t)=

∫ +∞

−∞
G̃ε(x, t; y)u0(y)dy−

∫ t

0

∫ +∞

−∞
G̃ε

y(x, t− s; y) (N(u)(y, s)+α̇(s)u(y, s)) dyds,

α(t) = −
∫ +∞

−∞
eε(y, t)u0(y)dy +

∫ t

0

∫ +∞

−∞
eεy(y, t− s)(N(u)(y, s) + α̇(s)u(y, s))dyds,

α̇(t) = −
∫ +∞

−∞
eεt(y, t)u0(y)dy +

∫ t

0

∫ +∞

−∞
eεyt(y, t− s)(N(u)(y, s) + α̇(s)u(y, s))dyds.

We are ready to prove Theorem 1.3 now.

Proof of Theorem 1.3. The proof of the first two bounds follows exactly as the proof

of the fixed-amplitude (ε-independent) case. Since the bounds on G̃ε, G̃ε
y, e

ε
t and eεyt in

Proposition 10.3 are exactly the same as the bounds on G̃, G̃y, et and eyt in Proposition

8.6 in the fixed-amplitude case, using the bounds on eε and eεy we obtain the third bound.

It is ε−1 times the corresponding bound for |α(t)| because the bounds on eε and eεy are

all ε−1 times the corresponding bounds on e and ey in the fixed-amplitude case.

To derive the fourth bound, we note that ũ(x, t) − ūε(x) = u(x − α(t), t) − (ūε(x) −
ūε(x−α(t))), so that ũ(·, t)− ūε is controlled by the sum of |u| and |ūε(x)− ūε(x−α(t))|.
By monotonicity of scalar shock profiles of the first-order scalar profile ODE, ūε(x) −
ūε(x− α(t)) has one sign, hence

|ūε(x)− ūε(x− α(t))|L1 =

∣∣∣∣
∫ +∞

−∞
(ūε(x)− ūε(x− α(t)))dx

∣∣∣∣ = |α(t)||ūε
+ − ūε

−|,

and thus by bounds on |α(t)|,

|ūε(x)− ūε(x− α(t))|L1 = 2ε|α(t)| ≤ 2CE0,
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where E0 = |ũ− ūε|L1∩L∞ |t=0. Similarly, by the Mean Value Theorem,

|ūε(x)− ūε(x− α(t))| ≤ |α(t)||(ūε)′|L∞ ≤ (
CE0

ε
)(ε2) = CE0ε;

here we used the asymptotic (ūε)′ ∼ ε2e−θε|x|. Thus, |ūε(x)− ūε(x−α(t))|L1∩L∞ ≤ CE0,

and so |ũ(x, t)− ūε(x)|L1∪L∞ ≤ CE0 for all t ≥ 0, for E0 sufficiently small. This verifies

the fourth inequality, yielding nonlinear stability. �
This completes the proof, verifying nonlinear stability.
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