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Abstract. A weak maximum principle is established for a fractional diffusion equation

involving the Riemann-Liouville fractional derivative. As applications, it is used to prove

the uniqueness and the continuous dependence of a solution on the initial data.

1. Introduction. In recent years, problems involving partial differential equations

of fractional orders have been used for modeling in engineering, science, economics and

other fields (cf. Chechkin, Gorenflo and Sokolov [2], Gorenflo and Mainmardi [3], and

Podlubny [8]). In particular, problems of thermal diffusion with subdiffusive and super-

diffusive properties are formulated in terms of fractional diffusion equations (cf. Kirk

and Olmstead [4], and Olmstead and Roberts [7]). To investigate this type of problems,

techniques (such as fixed point theorems, and the method of lower and upper solutions)

analogous to the classical diffusion equation are used.

Recently, Ahmad, Alsaedi, Kirane and Mostefaoui [1] studied three types of fractional

diffusion equations. For each type, they obtained an upper bound of the sup norm in

terms of the integral of the solution. Here, we study a different type of fractional diffusion

equation. Similar to the weak maximum principle for the classical diffusion equation, we

establish a maximum principle for the solution.

Let a, α, and T be positive real numbers with 0 < α < 1, and N be the set of natural

numbers. Let us consider the following fractional diffusion equation:

∂

∂t
u(x, t) =

∂2

∂x2
D1−α

t u(x, t) + F (x, t) in (0, a)× (0, T ], (1.1)
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subject to the initial and boundary conditions

u(x, 0) = φ(x) on [0, a],

u(0, t) = ψ1(t), u(a, t) = ψ2(t) for 0 < t ≤ T,

}
(1.2)

where the functions F , φ, ψ1 and ψ2 are continuous such that φ (0) = ψ1 (0) and φ (a) =

ψ2 (0), and D1−α
t u(x, t) is the Riemann-Liouville fractional derivative defined as follows:

Let g ∈ C[0, T ].

(a) Dp
t g(t) =

1

Γ(1− p)

d

dt

∫ t

0

(t− s)−pg(s)ds for 0 < p < 1;

(b) Dp
t g(t) =

1

Γ(m+ 1− p)

dm+1

dtm+1

∫ t

0

(t− s)m−pg(s)ds for m ≤ p < m+ 1,m ∈ N;

(c) D−p
t g(t) =

1

Γ(p)

∫ t

0

(t− s)p−1g(s)ds for any p > 0.

It follows from a direct computation that for any positive integer k, if g is a non-

constant function with g ∈ Ck, then the Riemann-Liouville fractional derivatives of order

k ≥ 1 coincide with the conventional derivatives of order k (cf. Podlubny [8, p. 69]). But

for non-zero constant K and non-integer p, the derivative of K becomes

Dp
tK =

1

Γ(1− p)
Kt−p,

which is different from the classical derivative. For ease of reference, we state the follow-

ing theorem, which summarizes some results about fractional differential equations (cf.

Podlubny [8, pp. 72-75]).

Theorem 1.1. (a) For any real p and m ∈ N such that m− 1 ≤ p < m, β > m− 1,

Dp
t t

β =
Γ(β + 1)

Γ(−p+ β + 1)
tβ−p.

(b) For m,n ∈ N and any real p and q such that m− 1 ≤ p < m, n− 1 ≤ q < n,

Dp
t (D

q
t g(t)) = Dq+p

t g(t)−
n∑

j=1

(Dq−j
t g(t))

∣∣∣∣∣∣
t=0

t−p−j

Γ(1− p− j)
;

Dq
t (D

p
t g(t)) = Dp+q

t g(t)−
m∑
j=1

(Dp−j
t g(t))

∣∣∣∣∣∣
t=0

t−q−j

Γ(1− q − j)
.

Hence Dp
t (D

q
t g(t)) = Dq

t (D
p
t g(t)) only if Dp−j

t g(0) = 0 and Dq−j
t g(0) = 0 for

j = 1, 2, . . . , r where r = max{m,n}.
(c) For any non-negative real numbers p and q, Dp

t (D
−q
t g(t)) = Dp−q

t g(t), and

D−p(Dq
t g(t)) = Dq−p

t g(t)−
n∑

j=1

(Dq−j
t g(t))

∣∣∣∣∣∣
t=0

tp−j

Γ(1 + p− j)
,

where 0 ≤ n− 1 ≤ q < n.
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The fractional diffusion differential operator given by (1.1) was studied by Olmstead

and Roberts [6]. Its Green’s function was given explicitly there. To illustrate that a

problem of the type (1.1) and (1.2) has a classical solution, let us consider the problem

∂

∂t
u (x, t)− ∂2

∂x2
D

1− 1
2

t u (x, t) =
(
2t1/2 +

√
πt
)
sin x in (0, π)× (0, T ] ,

u (x, 0) = 0 for 0 ≤ x ≤ π; u (0, t) = 0 = u (π, t) for 0 < t ≤ T.

To verify that it has a classical solution

u (x, t) =
4

3
t3/2 sinx,

we note that it satisfies the initial and boundary conditions

∂

∂t
u (x, t) = 2t1/2 sinx

and

D
1− 1

2
t t3/2 =

Γ
(
3
2 + 1

)
Γ
(
− 1

2 + 3
2 + 1

) t3/2−1/2 = Γ

(
5

2

)
t =

3
√
π

4
t,

which gives
∂2

∂x2
D

1− 1
2

t u (x, t) = −
√
πt sinx.

In the above example,
(
2t1/2 +

√
πt
)
sinx > 0 in (0, π) × (0, T ], and u attains its

minimum on the parabolic boundary. Thus, this example also illustrates the maximum

principle established in Section 2.

The problem (1.1) and (1.2) having a solution implies ut (x, t) exists. Thus for any

0 < α < 1, D1−α
t u (x, t) exists for t > 0. Hence, a solution u (x, t) of the problem

(1.1) and (1.2) in the region [0, a] × [0, T ] is a (classical) solution in C ([0, a]× [0, T ]) ∩
C2,1 ((0, a)× (0, T ]).

Maximum principles were given by Al-Refai and Luchko [9, 10] for the types of frac-

tional diffusion equations different from (1.1). For the maximum principles given in [9]

to hold, existence of a classical solution (with existence of a continuous ut on the closed

time interval [0, T ]) is assumed. In [10], the assumption of a solution with existence of a

continuous ut in (0, T ] such that ut ∈ L1 [0, T ] is made.

2. Main results. Luchko [5] showed that the Riemann-Liouville derivative of a func-

tion at its local extreme value may not be zero. The following results give the bound of

the derivative of the function at its extreme values.

Lemma 2.1. Let g(t) ∈ C[0, T ]. Assume that g′(t) exists and is continuous for t ∈ (0, T ].

(a) If g(t) attains its maximum value over [0, T ] at t0 ∈ (0, T ], then for 0 < α < 1,

D1−α
t g(t0) ≥

tα−1
0

Γ(α)
g(t0).

(b) If g(t) attains its minimum value over [0, T ] at t0 ∈ (0, T ], then for 0 < α < 1,

D1−α
t g(t0) ≤

tα−1
0

Γ(α)
g(t0).
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The proof of Lemma 2.1 (a) can be found in that of Theorem 2.1 of Al-Refai and

Luchko [9]. By applying a similar argument to −g(t), we obtain Lemma 2.1 (b).

Next, we give the result on the positivity of the solution.

Theorem 2.2. If u(x, t) satisfies (1.1), u(x, 0) = φ(x) ≥ 0, u(0, t) = 0 = u(a, t), and

F (x, t) ≥ 0 for (x, t) ∈ (0, a)× (0, T ], then u(x, t) ≥ 0 for (x, t) ∈ [0, a]× [0, T ].

Proof. For any ε > 0 and a fixed positive number β < 1−α, let v(x, t) = u(x, t)+ εtβ.

Then vt = ut + εβtβ−1, v(0, t) = v(a, t) = εtβ > 0 for t > 0, and v(x, 0) = φ(x) for

x ∈ [0, a]. Since

D1−α
t v(x, t) = D1−α

t u(x, t) +D1−α
t εtβ = D1−α

t u(x, t) +
εΓ(1 + β)tα+β−1

Γ(β + α)
,

we get
∂2

∂x2
D1−α

t v(x, t) =
∂2

∂x2
D1−α

t u(x, t).

Hence, v(x, t) satisfies the equation

∂

∂t
v(x, t) =

∂2

∂x2
D1−α

t v(x, t) + F (x, t) + εβtβ−1 in (0, a)× (0, T ].

Suppose that there exists some (x, t) ∈ [0, a]×[0, T ] such that v(x, t) < 0. Since v(x, t) ≥ 0

for (x, t) ∈ {0, a}× [0, T ]∪ [0, a]×{0}, there is (x0, t0) ∈ (0, a)× (0, T ] such that v(x0, t0)

is the negative minimum of v over [0, a]× [0, T ]. It follows from Lemma 2.1 (b) that

D1−α
t v(x0, t0) ≤

tα−1
0

Γ(α)
v(x0, t0) < 0. (2.1)

Let w(x, t) = D1−α
t v(x, t). It follows from Theorem 1.1 (b) that Dα

t w(x, t) =

Dα+1−α
t v(x, t)= vt(x, t). Since v(x, t) is bounded in [0, a]× [0, T ], we have

D−α
t v(x, t) =

1

Γ(α)

∫ t

0

(t− s)α−1v(x, s)ds → 0 as t → 0.

It follows from Theorem 1.1 (c) that for (x, t) ∈ (0, a)× (0, T ),

Dα−1
t w(x, t) = Dα−1

t

(
D1−α

t v(x, t)
)

= Dα−1+1−α
t v(x, t)− D−α

t v(x, t)
∣∣
t=0

t−α

Γ(1− α)
= v(x, t).

From Theorem 1.1 (c),

∂

∂t
v(x, t) = D1

t v = D1
t

(
Dα−1

t w(x, t)
)
= D1+α−1

t w(x, t) = Dα
t w(x, t).

From Theorem 1.1 (a), we get for any t > 0,

D1−α
t v(x, t) = D1−α

t u(x, t) +D1−α
t εtβ = D1−α

t u(x, t) +
εΓ(1 + β)tα+β−1

Γ(β + α)
.

It follows from a direct computation that

D1−α
t u(x, t) =

1

Γ(α)

[
tα−1φ(x) +

∫ t

0

(t− s)α−1us(x, s)ds

]
for t > 0. (2.2)
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Since the left-hand side of (2.2) and the first term of the right-hand side of (2.2) exist, it

follows that the second term on the right-hand side exists and tends to 0 as t → 0+. As

t → 0+, tα−1φ(x) ≥ 0. Therefore, D1−α
t u(x, t) > 0. Hence, we obtain

w(x, t) = D1−α
t v(x, t) = D1−α

t u(x, t) +
εΓ(1 + β)tα+β−1

Γ(β + α)
> 0 as t → 0+.

Furthermore, it follows from the boundary condition of v(x, t) that

D1−α
t v(0, t) = D1−α

t v(a, t) = D1−α
t εtβ =

εΓ(1 + β)tα+β−1

Γ(β + α)
> 0 for t > 0.

Therefore, w(x, t) satisfies the problem

Dα
t w(x, t) =

∂2

∂x2
w(x, t) + F (x, t) + εβtβ−1 in (0, a)× (0, T ],

w(x, 0) > 0 on [0, a],

w(0, t) > 0, w(a, t) > 0 for 0 < t ≤ T.

From (2.1), we have w(x0, t0) < 0. Since w(x, t) > 0 on the boundary, there exists

(x1, t1) ∈ (0, a)× (0, T ] such that w(x1, t1) is the negative minimum of w(x, t) in [0, a]×
[0, T ]. It follows from Lemma 2.1 (b) that

Dα
t w(x1, t1) ≤

tα1
Γ(1− α)

w(x1, t1) < 0.

Since w(x1, t1) is a local minimum, we obtain ∂2/∂x2w(x1, t1) ≥ 0. Therefore at (x1, t1),

0 > Dα
t w(x1, t1) =

∂2

∂x2
w(x1, t1) + F (x1, t1) + εβtβ−1

1 > 0.

This contradiction shows that v(x, t) ≥ 0 on [0, a]× [0, T ], and this implies that u(x, t) ≥
−εtβ on [0, a] × [0, T ] for any ε > 0. Since ε is arbitrary, we have u(x, t) ≥ 0 on

[0, a]× [0, T ]. �
A similar result can be obtained for the negativity of the solution u(x, t) by consider-

ing −u(x, t) when φ(x) ≤ 0 and F (x, t) ≤ 0.

Theorem 2.3. If u(x, t) satisfies (1.1), u(x, 0) = φ(x) ≤ 0, u(0, t) = 0 = u(a, t), and

F (x, t) ≤ 0 for (x, t) ∈ [0, a]× (0, T ], then u(x, t) ≤ 0 for (x, t) ∈ [0, a]× [0, T ].

The results in Theorems 2.2 and 2.3 can be extended to obtain the next two theorems.

Theorem 2.4. Suppose u(x, t) satisfies (1.1), u(x, 0) = φ(x) on [0, a], u(0, t) = g1,

and u(a, t) = g2, where g1 and g2 are given real numbers. If F (x, t) ≥ 0 for (x, t) ∈
[0, a]× [0, T ], then u(x, t) ≥ min[0,a]{g1, g2, φ(x)} for (x, t) ∈ [0, a]× [0, T ].

Proof. Let M = min[0,a]{g1, g2, φ(x)} and ū(x, t) = u(x, t) − M . Then, ū(0, t) =

g1−M ≥ 0, ū(a, t) = g2−M ≥ 0 for t ∈ [0, T ], and ū(x, 0) = φ(x)−M ≥ 0 for x ∈ [0, a].

Since
∂

∂t
ū =

∂

∂t
u,

∂2

∂x2
D1−α

t ū(x, t) =
∂2

∂x2
D1−α

t u(x, t),
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it follows that ū(x, t) satisfies (1.1). Thus, it follows from an argument similar to the

proof of Theorem 2.2 that ū(x, t) ≥ 0 on [0, a]× [0, T ]. That is,

u(x, t) ≥ min
[0,a]

{g1, g2, φ(x)} for (x, t) ∈ [0, a]× [0, T ].

�
By using ũ(x, t) = −u(x, t), a proof similar to that of Theorem 2.4 gives the following

result.

Theorem 2.5. Suppose u(x, t) satisfies (1.1), u(x, 0) = φ(x) on [0, a], u(0, t) = g1,

and u(a, t) = g2, where g1 and g2 are given real numbers. If F (x, t) ≤ 0 for (x, t) ∈
[0, a]× [0, T ], then u(x, t) ≤ max[0,a]{g1, g2, φ(x)} for (x, t) ∈ [0, a]× [0, T ].

Theorems 2.4 and 2.5 are similar to the weak maximum principle for the heat equation.

Similar to the classical case, the fractional version of the weak maximum principle can

be used to prove the uniqueness of a solution.

Theorem 2.6. The problem (1.1)-(1.2) has at most one solution.

Proof. Let u1(x, t) and u2(x, t) be two solutions of the problem (1.1)-(1.2). Then,

∂

∂t
(u1(x, t)− u2(x, t)) =

∂2

∂x2
D1−α

t (u1(x, t)− u2(x, t)),

with zero initial condition and zero boundary conditions for u1(x, t)−u2(x, t). It follows

from Theorems 2.4 and 2.5 that u1(x, t) − u2(x, t) = 0 on [0, a] × [0, T ]. We have a

contradiction. The result then follows. �
Theorems 2.4 and 2.5 can be used to show that a solution u(x, t) of the problem

(1.1)-(1.2) depends continuously on the initial data φ(x).

Theorem 2.7. Suppose u(x, t) and ũ(x, t) are the solutions of the problem (1.1)-(1.2)

corresponding to the initial data φ(x) and φ̃(x) respectively. If max[0,a]{|φ(x) − φ̃(x)|}
≤ ε, then |u(x, t)− ũ(x, t)| ≤ ε.

Proof. The function v(x, t) = u(x, t)− ũ(x, t) satisfies the problem

∂

∂t
v(x, t) =

∂2

∂x2
D1−α

t v(x, t),

with initial condition v(x, 0) = φ(x) − φ̃(x) and zero boundary conditions. It follows

from Theorems 2.4 and 2.5 that |v(x, t)| ≤ max[0,a]{|φ(x) − φ̃(x)|}. The result then

follows. �
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