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Abstract. We study wave function synchronization of the Schrödinger–Lohe model,

which describes the dynamics of the ensemble of coupled quantum Lohe oscillators with

infinite states. To do this, we first derive a coupled system of ordinary differential

equations for the L2
x inner products between distinct wave functions. For the same

one-body potentials, we show that the inner products of two wave functions converge to

unity for some restricted class of initial data, so complete wave function synchronization

emerges asymptotically when the dynamical system approach is used. Moreover, for

the family of one-body potentials consisting of real-value translations of the same base

potential, we show that the inner products for a two-oscillator system follow the motion

of harmonic oscillators in a small coupling regime, and then as the coupling strength

increases, the inner products converge to constant values; this behavior yields convergence

toward constant values for the L2
x differences between distinct wave functions.

1. Introduction. The collective synchronous behaviors of classical complex systems

are ubiquitous in nature, e.g., the flashing of fireflies, clapping of hands in a concert hall,

and heartbeat regulation by pacemaker cells [1–3,24,25]. However, rigorous mathematical

studies of these collective phenomena were performed only several decades ago by Winfree
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[28] and Kuramoto [16, 17]. They provided continuous dynamical systems based on

heuristic and intuitive arguments. In this paper, we are interested in the collective

behaviors of quantum Lohe oscillators with all-to-all couplings under one-body external

force fields. To establish the idea, we consider a complete network consisting of N nodes,

where each pair of nodes is connected with equal capacity. We also assume that quantum

Lohe oscillators with the same unit mass are positioned on the nodes of the complete

network. Let ψi = ψi(x, t) be the wave function of the i-th Lohe oscillator on a periodic

spatial domain Td := (R/Z)d. Then, the dynamics of Lohe oscillators with unit mass is

governed by the Schrödinger–Lohe (S–L) model: for (x, t) ∈ Td × R+,

i∂tψi +Δψi = Vi(x)ψi +
iK

N

N∑
k=1

(‖ψi‖ψk

‖ψk‖
− 〈ψi, ψk〉ψi

‖ψi‖‖ψk‖
)
, 1 ≤ i ≤ N, (1.1)

where ‖ · ‖ = || · ||L2 and 〈·, ·〉 are the standard L2 norm and inner product on T
d, and

Vi = Vi(x) andK correspond to the real-valued one-body potential and coupling strength,

respectively. The S–L model (1.1) was first introduced by Australian physicist Max Lohe

[19] several years ago as an infinite state generalization of the Lohe matrix model [20].

As discussed in [19, 20], quantum synchronization has received much attention from the

physics community [12, 18, 21, 27, 29] because of its possible applications in quantum

computing and quantum information [7, 13–15, 22, 23, 26, 30, 31]. From the modeling

perspective, the first question that one can ask is

“Under what conditions, if any, will the S–L model (1.1) exhibit desired

synchronous behaviors ?”

This question was partially treated in [4, 5] for some restricted class of initial data and

a large coupling strength regime. However, it seems that the answer to this question is

still far from complete. We first recall the definition of wave function synchronization as

follows.

Definition 1.1 ([4, 5]). Let Ψ = (ψ1, . . . , ψN ) be a solution to the S–L model (1.1).

(1) The model (1.1) exhibits complete wave function synchronization if and only if

the following estimate holds:

lim
t→∞

||ψi(t)− ψj(t)|| = dij , 1 ≤ i, j ≤ N,

where dij is a nonnegative constant.

(2) The model (1.1) exhibits practical wave function synchronization if and only if

the following estimate holds:

lim
K→∞

lim sup
t→∞

||ψi(t)− ψj(t)|| = 0, 1 ≤ i, j ≤ N.

In the previous study performed in [4,5], global analysis based on the diameter of the

wave functions was conducted, so we need full infinite-dimensional results on the wave

functions themselves. Note that for some classical oscillator systems, say for Landau–

Stuart oscillators, the asymptotic dynamics can be effectively described by the Kuramoto

model governing the phase evolutions of limit cycle oscillators [1]. Thus, we can naturally
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ask whether a similar asymptotic picture can hold, i.e., whether some partial information

on the wave functions can be employed in the relaxation process. Note that for two wave

functions ψi and ψj with unit L2 norms,

lim
t→∞

||ψi(t)− ψj(t)|| = dij ⇐⇒ lim
t→∞

Re〈ψi(t), ψj(t)〉 = 1−
d2ij
2
, (1.2)

where 〈ψi, ψj〉 :=
∫
Td ψi(x)ψj(x)dx. Thus, it suffices to study the evolution of Re〈ψi, ψj〉.

The main result of this paper is as follows. We provide a finite-dimensional dynam-

ical system approach based on the explicit dynamics of the inner products of two wave

functions. More precisely, we set hij(t) := 〈ψi(t), ψj(t)〉. Then, for the special case where

Vi(x) = V (x) + ωi, ωi ∈ R,

hij satisfies a coupled system of ordinary differential equations (ODEs) (see Lemma 3.3):

dhij

dt
= −iωijhij +

K

N

⎡
⎣2 + N∑

k �=i

hik +
N∑

k �=j

hkj

⎤
⎦ (1− hij), 1 ≤ i < j ≤ N, (1.3)

where ωij = ωi − ωj . Several advantages of using this finite-dimensional system instead

of the S–L system (1.1) are obvious. First, we do not need to solve the coupled partial

differential equation system for synchronization; instead, we solve only the ODE system

(1.3), which reduces the computation cost for practical purposes. Second, we might be

able to improve our weak synchronization results in [4] for distinct potentials. For the

same one-body potential with ωi = ωj , 1 ≤ i < j ≤ N in (1.3), we provide an admissible

class of initial data leading to the exponential convergence of hij to 1 for any positive

coupling strength. In contrast, for the distributed case where ωi 	= ωj for some i and j,

the linear term −iωijhij on the R.H.S. of (1.3) generates rotational motion, whereas the

coupling component induces convergence toward the equilibrium points. Hence, naturally

the system (1.3) has two competing mechanisms, rotation versus synchronization. For

a small coupling strength K 
 1, the solution to (1.3) can be periodic (see Section

4.2), whereas for a large coupling strength K � 1, system (1.3) exhibits synchronous

behaviors. Hence, our new results improve the earlier results available in [4, 5].

The rest of this paper is organized as follows. In Section 2, we briefly review the

basic properties of the S–L model and previous results. We also discuss the relationship

between the S–L model (1.1) and the Kuramoto model of synchronization. In Section

3, we derive our governing finite-dimensional model (1.3) and study its dynamics for the

identical potential case. In Section 4, we study the dynamic bifurcation-like phenomena

of (1.3) from a small coupling strength to a large coupling strength. Finally, Section 5

summarizes our main results. In Appendix A, we briefly discuss the global existence of

smooth solutions using a standard energy method.

2. Preliminaries. In this section, we study a priori L2 conservation of the S–L model

and its relationship with the Kuramoto model. We also briefly review earlier results on

the synchronization problem.
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2.1. The S–L model. In [19], Lohe proposed a coupled Schrödinger-type model with an

infinite state space, namely, the Schrödinger–Lohe model (1.1) in [19]: for (x, t) ∈ Td×R+

and 1 ≤ i ≤ N,

∂tψi = iΔψi − iViψi +
K

N

N∑
k=1

(‖ψi‖ψk

‖ψk‖
− 〈ψi, ψk〉ψi

‖ψi‖‖ψk‖
)
. (2.1)

Lemma 2.1. For a given T ∈ (0,∞], let Ψ = (ψ1, · · · , ψN ) be a smooth solution to (2.1)

with initial data Ψ0 = (ψ0
1 , · · · , ψ0

N ) in the time interval [0, T ). Then, the L2 norm of ψi

is constant along the flow (2.1):

‖ψi(t)‖ = ‖ψ0
i ‖ for t ∈ [0, T ), 1 ≤ i ≤ N.

Proof. From system (2.1), we obtain

〈ψi, ∂tψi〉 = −i〈ψi,Δψi〉+ i〈ψi, Viψi〉+
K

N

N∑
k=1

(‖ψi‖〈ψi, ψk〉
‖ψk‖

− 〈ψi, ψk〉‖ψi‖
‖ψk‖

)
. (2.2)

We take the complex conjugate of (2.2) and use 〈f, g〉 = 〈g, f〉 to get

〈∂tψi, ψi〉 = i〈Δψi, ψi〉 − i〈Viψi, ψi〉+
K

N

N∑
k=1

(‖ψi‖〈ψk, ψi〉
‖ψk‖

− 〈ψk, ψi〉‖ψi‖
‖ψk‖

)
. (2.3)

We add (2.2) and (2.3), use integration by parts twice using the periodic boundary

conditions to obtain

〈ψi,Δψi〉 = 〈Δψi, ψi〉, 〈ψi, Viψi〉 = 〈Viψi, ψi〉,

to find
d

dt
‖ψi‖2 = 0.

This leads to the desired result. �
Remark 2.2. We refer to Appendix A for the global existence of smooth solutions to

(2.1).

We next discuss how the S–L model can be reduced to the Kuramoto model for classical

synchronization following [5]. Suppose that the quantum system at each i-th node is a

one-body system and assume spatial homogeneity of the system:

Vi(x) = ωi : constant, ψi(t, x) = ψi(t), (x, t) ∈ T
d × R+.

In this setting, the S–L system becomes

i
dψi

dt
= ωiψi +

iK

N

N∑
k=1

( |ψi|ψk

|ψk|
− 〈ψi, ψk〉ψi

|ψi||ψk|
)
. (2.4)

To derive the Kuramoto model from (2.4), we simply take the following ansatz for ψi:

ψi := e−iθi , 1 ≤ i ≤ N, (2.5)

and substitute this ansatz into (2.4) to obtain

θ̇iψi = ωiψi +
iK

N

N∑
k=1

(
ψk − e−i(θi−θk)ψi

)
.
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Then, we take the inner product of the above relation with ψi and compare the real

part of the resulting relation to get the Kuramoto model for classical synchronization

[1, 2, 6, 9–11]:

θ̇i = ωi +
2K

N

N∑
k=1

sin(θk − θi).

2.2. Previous results. In this subsection, we briefly review the previous results [4,5] on

wave function synchronization for the S–L model. As mentioned in the Introduction, the

S–L model was first considered in Lohe’s work [19] for the non-Abelian generalization

of the Kuramoto model. However, the first rigorous mathematical studies of the S–L

model were treated by the second author and his collaborators in [4,5]. Below, we briefly

summarize the main results from these works. We first set

D(Ψ) := max
i,j

||ψi − ψj ||, D(V) := max
i,j

||Vi − Vj ||L∞ .

In [5], they derived a differential inequality for the diameter D(Ψ):

d

dt
D(Ψ)2 ≤ K

[
(D(Ψ))2(2D(Ψ)− 1) +

2D(V)
K

]
, t > 0. (2.6)

2.2.1. Same potentials. For the same potentials

Vi = V, 1 ≤ i ≤ N, i.e., D(V) = 0,

equation (2.6) becomes

d

dt
D(Ψ) ≤ K(D(Ψ))(D(Ψ)− 1

2
), t > 0.

Then, the ODE comparison principle and the explicit solution to the Riccati equation

yield exponential synchronization of the ensemble of wave functions for system (1.1) with

D(V) = 0.

Theorem 2.3 ([5]). Suppose that the coupling strength and initial data satisfy

K > 0, Vi = V, ‖ψ0
i ‖2 = 1, 1 ≤ i ≤ N, D(Ψ0) <

1

2
.

Then, for any solution Ψ = (ψ1, . . . , ψN ) to (1.1), the diameter D(Ψ) satisfies

D(Ψ(t)) ≤ D(Ψ0)

D(Ψ0) + (1− 2D(Ψ0))eKt
, t ≥ 0.

2.2.2. Distinct potentials. For distinct potentials with D(V) > 0, we have practical

synchronization. Consider the cubic equation

f(x) := 2x3 − x2 +
2D(V)
K

= 0, x ∈ [0,∞), K > 54D(V). (2.7)

Then, equation (2.7) has a positive local maximum 2D(V)
K and a negative local minimum

2D(V)
K − 1

27 at x = 0 and 1
3 , respectively. Moreover, (2.7) has two positive real roots,

α1 < α2:

0 < α1 <
1

3
< α2 <

1

2
.
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Clearly, the roots depend continuously on K and D(V ), and

lim
K→∞

α1 = 0, lim
K→∞

α2 =
1

2
.

Then, we have practical synchronization for D(Ψ).

Theorem 2.4 ([4]). Suppose that the following assumptions hold.

(1) The coupling strength is sufficiently large in the sense that

K > 54D(V).

(2) The initial data Ψ0 satisfy the smallness assumption:

‖ψi0‖ = 1, j = 1, · · · , N, D(Ψ0) < α2.

Then, we can achieve practical synchronization:

lim
K→∞

lim sup
t→∞

D(Ψ(t)) = 0.

3. A dynamical system for synchronization matrices. In this section, we derive

a finite-dimensional dynamical system associated with the synchronization problem for

(1.1) for one-body potentials of the form

Vi(x) = V (x) + ωi, ωi ∈ R, x ∈ T
d, 1 ≤ i ≤ N. (3.1)

3.1. Derivation of a dynamical system. Note that under the condition (3.1), ψi satis-

fies

i∂tψi = −Δψi + (V (x) + ωi)ψi +
iK

N

N∑
k=1

(‖ψi‖ψk

‖ψk‖
− 〈ψi, ψk〉ψi

‖ψi‖‖ψk‖
)
. (3.2)

Without loss of generality, we may assume that

‖ψi(t)‖ = 1, t ≥ 0, 1 ≤ i ≤ N.

Then, system (3.2) becomes

i∂tψi = −�ψi + (V + ωi)ψi +
iK

N

N∑
k=1

(ψk − 〈ψi, ψk〉ψi) . (3.3)

Note that it follows from the relation

‖ψi − ψj‖2 = 2−
∫
Td

(ψiψ̄j + ψjψ̄i)dx

that we have

lim
t→∞

||ψi(t)− ψj(t)|| = d∞ij ⇐⇒ lim
t→∞

Re(〈ψi(t), ψj(t)〉) = 1−
(d∞ij )

2

2
.

For notational simplicity, we set

hij(t) :=

∫
Td

ψiψ̄j dx ∈ C, 1 ≤ i, j ≤ N.
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Henceforth, we consider a potential V that guarantees the global existence of a solution

to (3.3). For V = 0, the global well-posedness of (3.3) can be studied using the standard

argument. Then we have, for 1 ≤ i, j ≤ N ,

hij = h̄ji, hii = ‖ψi‖2 = 1, |hij | =
∣∣∣ ∫

Td

ψiψ̄jdx
∣∣∣ ≤ ‖ψi‖L2‖ψj‖L2 = 1. (3.4)

Proposition 3.1. Let ψi be a solution to (3.3). Then hij satisfies the coupled system

of ODEs:

dhij

dt
= −iωijhij +

K

N

[
N∑

k=1

hik +

N∑
k=1

hkj

]
(1− hij)

= −iωijhij +
K

N

⎡
⎣2 + N∑

k �=i

hik +

N∑
k �=j

hkj

⎤
⎦ (1− hij), 1 ≤ i, j ≤ N, t > 0,

(3.5)

where ωij := ωi − ωj , and we used the fact that hii = 1.

Proof. It follows from (3.3) that we have

(i∂tψi +Δψi)ψ̄j = (V + ωi)ψiψ̄j +
iK

N

N∑
k=1

(
ψkψ̄j − 〈ψi, ψk〉ψiψ̄j

)
, (3.6)

(i∂tψj +Δψj)ψ̄i = (V + ωj)ψjψ̄i +
iK

N

N∑
k=1

(
ψkψ̄i − 〈ψj , ψk〉ψjψ̄i

)
. (3.7)

The integral

∫
Td

(
(3.6)− (3.7)

)
dx leads to

i

∫
Td

∂t(ψiψ̄j)dx

=

∫
Td

(
�ψ̄jψi −�ψiψ̄j

)
dx+

∫
Td

(ωi − ωj)ψiψ̄jdx

+
iK

N

∫
Td

N∑
k=1

(
ψkψ̄j − 〈ψi, ψk〉ψiψ̄j

)
dx+

iK

N

∫
Td

N∑
k=1

(
ψiψ̄k − 〈ψj , ψk〉ψiψ̄j

)
dx

=: I11 + I12 + I13 + I14,

where we used the fact that Vi = Vi(x) is a real-valued function. Integrating by parts,

we have

I11 =

∫
Td

(
(Δψ̄j)ψi − (Δψi)ψ̄j

)
dx =

∫
Td

(
∇ψi∇ψ̄j −∇ψ̄j∇ψi

)
dx = 0,

I12 = ωijhij .

By direct calculation, we have

I13 =
iK

N

N∑
k=1

(hkj − hikhij), I14 =
iK

N

N∑
k=1

(hik − hkjhij).

Then, considering hii = 1, we obtain the desired system, (3.5). �
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Remark 3.2. In the context of the Kuramoto model, the relation (2.5) yields

hij = e−i(θi−θj);

hence, the temporal evolution of hij is equivalent to the temporal evolution of the phase

difference θi − θj , which was studied in [6] for the Kuramoto model.

We now set the real and imaginary parts of hij :

Rij := Re hij , Iij := Im hij , hij = Rij + iIij , 1 ≤ i, j ≤ N,

and we set the synchronization matrices to be

R := (Rij) ∈ MN (R), I := (Iij) ∈ MN (R).

Thus, it follows from Definition 1.1 and (1.2) that it is enough to show the convergence

of the matrices R and I as t → ∞. System (3.5) can be rewritten in terms of (Rij , Iij):

dRij

dt
= ωijIij +

K

N

[(
2 + 2Rij +

N∑
k �=i,j

(Rik +Rkj)
)
(1−Rij)

+
(
2Iij +

N∑
k �=i,j

(Iik + Ikj)
)
Iij

]
,

dIij
dt

= −ωijRij +
K

N

[(
2Iij +

N∑
k �=i,j

(Iik + Ikj)
)
(1−Rij)

− Iij

(
2 + 2Rij +

N∑
k �=i,j

(Rik +Rkj)
)]

.

(3.8)

Note that the right hand sides of (3.8) are polynomials of Iij ’s and Rij ’s, thus as long as

the solution exists, it should be real analytic.

3.2. Basic properties of the dynamical system. In this subsection, we study basic a

priori estimates of (3.8). We first show that the synchronization matrices R and I are

symmetric and skew-symmetric matrices, respectively.

Lemma 3.3. Let (Rij), (Iij) be a global solution to (3.8) with initial data (R0
ij), (I

0
ij). If

the initial data satisfy the conditions

R0
ij = R0

ji, I0ij = −I0ji, ∀ i, j ∈ {1, · · · , N}, (3.9)

then we have

Rij(t) = Rji(t), Iij(t) = −Iji(t), ∀ i, j ∈ {1, · · · , N}, t > 0.
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Proof. Note that (Rji, Iji) satisfies

dRji

dt
= −ωijIji +

K

N

[(
2 + 2Rji +

N∑
k �=i,j

(Rjk + Rki)
)
(1− Rji)

+
(
2Iji +

N∑
k �=i,j

(Ijk + Iki)
)
Iji

]
,

dIji
dt

= ωijRji +
K

N

[(
2Iji +

N∑
k �=i,j

(Ijk + Iki)
)
(1−Rji)

− Iji

(
2 + 2Rji +

N∑
k �=i,j

(Rjk +Rki)
)]

,

(3.10)

where we used ωij = −ωji. Then, it follows from (3.8) and (3.10) that we have

d

dt
(Rij −Rji)

= ωij(Iij + Iji) +
2K

N
(Rji +Rij)(Rji −Rij)

+
K

N

[
(1−Rij)

N∑
k �=i,j

(
(Rik − Rki) + (Rkj −Rjk)

)

+ (Rji −Rij)
∑
k �=i,j

(Rjk +Rki)

+ 2(Iij + Iji)(Iij − Iji) + Iij
∑
k �=i,j

(
(Iik + Iki) + (Ikj + Ijk)

)

− (Iij + Iji)
∑
k �=i,j

(Ijk + Iki)
]

(3.11)

and

d

dt
(Iij + Iji)

= ωij(Rji −Rij) +
2K

N

[
(Iij + Iji)(1−Rij)− Iji(Rji −Rij)

]
+

K

N

[
(1−Rij)

∑
k �=i,j

(
(Iik + Iki) + (Ikj + Ijk)

)

−
∑
k �=i,j

(Ijk + Iki)(Rij −Rji)

− 2(Iij + Iji)(1 +Rij) + 2Iji(Rij −Rji)

− Iij
∑
k �=i,j

(
(Rik −Rki) + (Rkj −Rjk)

)
− (Iij + Iji)

∑
k �=i,j

(Rjk +Rki)
]
.

(3.12)

Note that all the terms on the R.H.S. of (3.11) and (3.12) contain the factors Rkl −Rlk

or Ikl + Ilk. Considering that all terms appearing in the R.H.S. of (3.11), (3.12) are
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Lipschitz continuous with respect to Rij − Rji, Iij + Iji and the assumption (3.9), we

conclude that

(Rij −Rji)(t) = 0 and (Iij + Iji)(t) = 0, 1 ≤ i, j ≤ N,

are the unique solutions to (3.11) and (3.12). As a corollary, we have Iii = 0. �
Remark 3.4. For ωij = 0, it follows from the uniqueness of the ODE system that

I0ij = 0, 1 ≤ i, j ≤ N =⇒ Iij(t) = 0, 1 ≤ i, j ≤ N.

Thus, the set {Iij = 0, 1 ≤ i, j ≤ N} is a positively invariant set for the dynamics (3.8).

In the following two sections, we consider the two cases

D(Ω) = 0, D(Ω) > 0,

where D(Ω) := max
1≤i,j≤N

|ωi − ωj |.

4. Emergent dynamics: Identical potentials. In this section, we present a suffi-

cient condition for the flow (3.3) to approach the stable equilibrium point for D(Ω) = 0:

ωi = ωj , i.e., Vi = Vj , 1 ≤ i, j ≤ N.

Then, hij satisfies

dhij

dt
=

2K

N
(1− h2

ij) +
K

N

⎛
⎝ N∑

k �=i,j

hik +

N∑
k �=i,j

hkj

⎞
⎠ (1− hij), t > 0, (4.1)

with initial data hij(0) = h0
ij . Taking (3.4) into account, the initial data should be

restricted. Let us define the admissible set

AN = {(hij)1≤i<j≤N | hij =

∫
Td

ψiψ̄jdx with ‖ψi‖L2 = 1 = ‖ψj‖L2}.

We can check that (1, 1, 1) ∈ A3 and (−1, −1, −1) /∈ A3. We rewrite (4.1) in terms of

its real and imaginary parts (Rij , Iij):

dRij

dt
=

K

N

[(
2 + 2Rij +

N∑
k �=i,j

(Rik +Rkj)
)
(1−Rij) +

(
2Iij +

N∑
k �=i,j

(Iik + Ikj)
)
Iij

]
,

dIij
dt

=
K

N

[
(1−Rij)

N∑
k �=i,j

(Iik + Ikj)− Iij

(
4Rij +

N∑
k �=i,j

(Rik +Rkj)
)]

.

(4.2)

Note that (Rij , Iij) = (1, 0) is a hyperbolic equilibrium for (4.2), and the linearized

system near (Rij , Iij) = (1, 0) is given by the following decoupled system:

dRij

dt
= 2K(1−Rij),

dIij
dt

= −2KIij . (4.3)

The explicit solution to (4.3) is given by

Rij(t) = 1 + (R0
ij − 1)e−2Kt, Iij(t) = I0ije

−2Kt.
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4.1. Basin of attraction. In this subsection, we study a basin of attraction B for the

equilibrium (Req, Ieq):

Req := {(Rij) ∈ R
N(N−1)

2 : Rij = 1, ∀ 1 ≤ i < j ≤ N},

Ieq := {(Iij) ∈ R
N(N−1)

2 : Iij = 0, ∀ 1 ≤ i < j ≤ N},

B := {(R0, I0) ∈ R
N(N−1)

2 × R
N(N−1)

2 : lim
t→∞

(R(t), I(t)) = (Req, Ieq)}.

The exact characterization of this basin B will be very important from the dynamical

system viewpoint. However, it is very difficult to obtain it for a nonlinear system in

general. Below, we present a proper subset for B.
Using the invariance property of Iij (Remark 3.2) and assuming Iij = 0, we arrive at

the following system, which is a reduced system of (4.2):

dRij

dt
=

K

N

[
2 +

N∑
k �=i

Rik +
N∑

k �=j

Rkj

]
(1−Rij), 1 ≤ i < j ≤ N, (4.4)

with initial data R0
ij . We consider a set

S(N) :=
{
(Rij) ∈ R

N(N−1)
2 : 2+

N∑
k �=i

Rik+

N∑
k �=j

Rkj > 0, −1 ≤ Rij ≤ 1, ∀ 1 ≤ i < j ≤ N
}
.

(4.5)

We can check that{
(Rij) ∈ R

N(N−1)
2 : − 1

N − 1
< Rkj ≤ 1, ∀ 1 ≤ i < j ≤ N

}
⊂ S(N).

Lemma 4.1 (Existence of positively invariant sets). For N ≥ 2, the set S(N) is positively

invariant along the flow (4.4).

Proof. If Rij ∈ S(N), then we have

(
2 +

N∑
k �=i

Rik +
N∑

k �=j

Rkj

)
(1−Rij) ≥ 0.

Hence, we have

dRij

dt
≥ 0, on S(N) and

dRij

dt
= 0, at Rij = 1.

These relations yield the result that the set S(N) is positively invariant. �

Theorem 4.2. Let (Rij) be a solution to (4.4) satisfying the initial data:

(R0
ij) ∈ S(N).

Then, there exists a positive time t∗ ≥ 0 such that, for 1 ≤ i < j ≤ N and t ≥ t∗,

(i) Rij(t∗) > 0.

(ii) (1−Rij(t∗))e
−2K(t−t∗) ≤ 1−Rij(t) ≤ (1−Rij(t∗))e

−2K(mink,l Rkl(t∗))(t−t∗).
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Proof. The proof has two steps.

(i) (Finite-time entrance into the positive real axis): First, if R0
ij = 1 for some 1 ≤ i <

j ≤ N , then we have Rij = 1 trivially. Therefore, we consider the case R0
ij < 1. On this

set, we have

dRij

dt
=

K

N

(
2 +

N∑
k �=i

Rik +

N∑
k �=j

Rkj

)
(1−Rij) > 0, t > 0.

The only equilibrium point in S(N) is (1, 1, · · · , 1). This clearly implies that the flow

enters a positive real axis after some positive time t∗ ≥ 0.

(ii) (Decay estimates): Because the flow Rij keeps increasing after t∗ ≥ 0, we have

0 < Rij(t∗) ≤ min
i,j

Rij(t) ≤ 1, t ≥ t∗.

• (Upper bound estimate): It follows from (4.4) that we have

dRij

dt
≤ 2K(1−Rij), t ≥ t∗.

This yields

Rij(t) ≤ 1− (1−Rij(t∗))e
−2K(t−t∗), t ≥ t∗. (4.6)

• (Lower bound estimate): Again it follows from (4.4) that we have

dRij

dt
≥ 2K(min

k,l
Rkl(t∗))(1−Rij), t > t∗.

This implies that

Rij(t) ≥ 1− (1−Rij(t∗))e
−2K(mink,l Rkl(t∗))(t−t∗), t ≥ t∗. (4.7)

We combine (4.6) and (4.7) to obtain the desired estimates. �
Remark 4.3. (1) Theorem 4.2 also yields the result that the equilibrium point

( −1
N−1 , · · · ,

−1
N−1 ) is unstable.

(2) For the region

U(N) :=
{
(Rij) ∈ R

N(N−1)
2 : 2+

N∑
k �=i

Rik+
N∑

k �=j

Rkj < 0, −1 ≤ Rij ≤ 1, ∀ 1 ≤ i < j ≤ N
}
,

we have
dRij

dt < 0. Thus, the trajectory will exit the region −1 ≤ Rij ≤ 1. Then we

conclude that U(N) does not belong to the admissible set AN .

4.2. Special cases. In this subsection, we consider the dynamics of (4.1) for N =

2, 3, 4. In these special cases, we can provide more detailed dynamics.

4.2.1. A two-oscillator system. Here we consider a two-oscillator system. In this case,

system (4.1) can be reduced to a single equation for h := h12:

dh

dt
= K(1− h2), t > 0,

with the initial data h(0) = h0. Then, by direct calculation, we have

h(t) =
(1 + h0)e2Kt − (1− h0)

(1− h0) + (1 + h0)e2Kt
.
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From this explicit formula for h, we can see that

lim
t→∞

h(t) =

{
−1, h0 = −1,

1, h0 	= −1.

Hence, all solutions with initial data h0 	= −1 will converge to 1 exponentially fast.

4.2.2. A three-oscillator system. Here we consider a three-oscillator system. Because

hij = hji, system (4.1) becomes the following 3× 3 system:

dh12

dt
=

K

3

(
2 + 2h12 + h23 + h31

)
(1− h12),

dh23

dt
=

K

3

(
2 + 2h23 + h31 + h12

)
(1− h23),

dh31

dt
=

K

3

(
2 + 2h31 + h12 + h23

)
(1− h31).

(4.8)

By direct calculation, it is easy to see that the set of all equilibria for (4.8) inside a unit

circle in the complex plane is given by

EN=3 := {(h12, h23, h31) ∈ C
3 : (1, 1, 1), (1, −1, −1), (−1, 1, −1),

(−1, −1, 1), (−1/2, −1/2, −1/2)},

where some equilibria are excluded by the constraint |hij | ≤ 1. Because the phase space

for system (4.8) is six-dimensional, we consider the following two-dimensional reductions.

• (Two-dimensional reductions): Here we consider two-dimensional reductions of (4.8):

h31 = 1 or h12 = h23 = h31 or h23 ∈ R, h31 = h12 ∈ R.

� Case A (h31 = 1): In this case, we have

ψ1 = ψ3, i.e., h12 = h32 = h.

Thus, system (4.8), with the notation {(h12, h23, h31) = (h, h̄, 1)}, reduces to a single

equation for h:
dh

dt
= K(1− h2),

which is exactly the same as in the two-oscillator system in Section 4.2.1.

� Case B (h12 = h23 = h31): System (4.8) reduces to a single equation:

dh12

dt
=

K

3

(
2 + 2h12 + 2h12

)
(1− h12). (4.9)

With the notation h12 = R + iI, (4.9) is equivalent to the following two-dimensional

system:
dR

dt
=

2K

3
(1 + 2R)(1−R),

dI

dt
= −2K

3
(1 + 2R)I. (4.10)

The first equation in (4.10) has two equilibria, R = − 1
2 and R = 1 (see Figure 1). By

direct calculation, we have the following three cases:

� Case B.1 (R0 > − 1
2 ): In this case, it is easy to see that R(t) > − 1

2 and

R(t) =
(1 + 2R0)e2Kt +R0 − 1

(1 + 2R0)e2Kt − 2(R0 − 1)
, I0e−2Kt ≤ I(t) ≤ I0e−

2K
3 (1+2R0)t, t ≥ 0.

(4.11)
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Fig. 1. Phase portrait of (4.10).

Thus, we have

lim
t→∞

(R(t), I(t)) = (1, 0).

� Case B.2 (R0 = − 1
2 ): In this case, we have

R(t) = −1

2
, I(t) = I0, t ≥ 0.

� Case B.3 (R0 < − 1
2 ): In this case, we can use the same formula, (4.11), to see that

there is a finite-time blow-up in R:

lim
t→t∗−

R(t) = −∞, t∗ :=
1

2K
ln
(2(R0 − 1)

2R0 + 1

)
> 0.

Note that the initial data in case B.3 do not belong to A3.

� Case C: For h31 = h12, we have

dh12

dt
=

K

3

(
2 + 2h12 + h12 + h23

)
(1− h12),

dh23

dt
=

K

3

(
2 + 2h23 + 2h12

)
(1− h23).

Moreover, if we assume h23 := x ∈ R and h12 := y ∈ R, then we obtain

dx

dt
=

2K

3
(1 + x+ y) (1− x),

dy

dt
=

K

3
(2 + 3y + x) (1− y). (4.12)

Thus, the equilibria with the restriction |x|, |y| ≤ 1 are

(x, y) = (1, 1), (1, −1), (−1/2, −1/2),
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and the x-nullclines and y-nullclines are as follows:

x+ y + 1 = 0, x = 1, x+ 3y + 2 = 0, y = 1.

Note that these nullclines divide the square {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1} into four

subregions Ωi,

Ω1 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + x+ y > 0, 2 + x+ 3y > 0},

Ω2 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + x+ y < 0, 2 + 3y + x > 0},

Ω3 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + x+ y > 0, 2 + 3y + x < 0},

Ω4 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + x+ y < 0, 2 + 3y + x < 0}.

To see the dynamics of the flow, we check the sign of ẋ and ẏ on the nullclines and use

the Poincaré–Bendixson theorem (see Figure 2).

• On Ω1: We can apply Theorem 4.2 to conclude limt→∞(x(t), y(t)) = (1, 1).

• On Ω4: Considering Remark 4.3, the flow starting from an initial point in Ω4 will leave

the region Ω4 in a finite-time.

• On Ω2: Note that ẋ < 0 and ẏ > 0. If the flow (x(t), y(t)) crosses x = −1 or

2 + 3y + x = 0 (enters Ω4), then it violates the restriction |x|, |y| ≤ 1 for the admissible

set. The only other possibility is that the flow (x(t), y(t)) crosses 1 + x + y = 0, enters

Ω1, and converges to (1, 1). In fact, we can construct admissible initial data in Ω2. Using

the isomorphism L2 = l2, we choose the initial data for ψj as follows:

ψ1(x, 0) = (1, 0, 0, · · · ),

ψ2(x, 0) = (−1

2
+ a,

√
3

2
+ b, 0, · · · ), ψ3(x, 0) = (−1

2
+ a, −

√
3

2
− b, 0, · · · ),

-1.5 -1 -0.5 0 0.5 1 1.5
x

-1.5

-1

-0.5
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0.5
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1
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Fig. 2. Phase portrait of (4.12).



570 HYUNGJIN HUH AND SEUNG-YEAL HA

where (a− 1
2 )

2 + (
√
3
2 + b)2 = 1. Then we can check that

h23(0) = x0 = 2(a− 1

2
)2 − 1 and h31(0) = h12(0) = y0 = a− 1

2
.

For 0 < a < 1
2 , we can check that (x0, y0) belongs to the region Ω2. For initial data

belonging to the boundary of Ω2, we can apply the above argument case by case. For

example, if 1 + x0 + y0 = 0 and −1 ≤ x0 < − 1
2 , then we have ẋ(0) = 0 and ẏ(0) > 0.

Therefore, the flow (x(t), y(t)) converges to (1, 1).

•On Ω3: Note that ẋ > 0 and ẏ < 0. For admissible initial data, we have two possibilities.

(A) (x(t), y(t)) crosses 2 + 3y + x = 0, enters the region Ω1, and converges to (1, 1).

(B) (x(t), y(t)) stays in Ω3 and converges to (1, −1).

We can construct possibility (A) by choosing proper (x0, y0). Actually, for (x0, y0) =

(0,− 2
3 − ε), we have

x′(0) =
2

3
K(

1

3
− ε) and y′(0) = −K

3
ε(5 + 3ε).

Then, we have

x(t) ≈ 2

3
K(

1

3
− ε)t and y(t) ≈ −K

3
ε(5 + 3ε)t− 2

3
− ε for small t.

Thus, we have

y + ε
3

2

5 + 3ε

1− 3ε
x+

2

3
+ ε ≈ 0.

Therefore (x(t), y(t)) should cross 2 + 3y + x = 0 for sufficiently small ε > 0.

We do not know whether possibility (B) occurs. However, for a four-oscillator system,

we find a flow (x(t), y(t)) converging to (1, −1).

4.2.3. A four-oscillator system. System (4.1) reads as

d

dt
h12 =

K

4
(2 + 2h12 + h13 + h14 + h32 + h42) (1− h12),

d

dt
h23 =

K

4
(2 + 2h23 + h21 + h24 + h13 + h43) (1− h23),

d

dt
h31 =

K

4
(2 + 2h31 + h32 + h34 + h21 + h41) (1− h31),

d

dt
h14 =

K

4
(2 + 2h14 + h12 + h13 + h24 + h34) (1− h14),

d

dt
h24 =

K

4
(2 + 2h24 + h21 + h23 + h14 + h34) (1− h24),

d

dt
h34 =

K

4
(2 + 2h34 + h31 + h32 + h14 + h24) (1− h34).

(4.13)

Let h12 = h23 = h31 and h14 = h24 = h34. Then, with the notation h12 = z and h14 = ν,

(4.13) reduces to

dz

dt
=

K

2

(
1 + 2Re(z) + Re(ν)

)
(1− z),

dν

dt
=

K

2

(
1 + 2ν +Re(z)

)
(1− ν),
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which is, with the notation z = x+ iu and ν = y + iv, equivalent to

x′ =
K

2
(1 + 2x+ y)(1− x),

u′ = −K

2
(1 + 2x+ y)u,

y′ =
K

2
(1 + 2y + x)(1− y) +Kv2,

v′ = −K

2
(1 + 2y + x)v +K(1− y)v.

(4.14)

Let v = 0. Then we have a reduced system of (4.14):

x′ =
K

2
(1 + 2x+ y)(1− x),

y′ =
K

2
(1 + 2y + x)(1− y),

(4.15)

where u satisfies u′ = −K
2 (1 + 2x + y)u. Note that system (4.15) consists of x and y

only. The equilibria of (4.15) are

(x, y) = (1, 1), (1, −1), (−1, 1), (−1/3, −1/3).

Consider four subregions Ri,

R1 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + 2x+ y > 0, 1 + 2y + x > 0},

R2 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + 2x+ y < 0, 1 + 2y + x > 0},

R3 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + 2x+ y > 0, 1 + 2y + x < 0},

R4 := {(x, y) ∈ R
2 : |x| ≤ 1, |y| ≤ 1, 1 + 2x+ y < 0, 1 + 2y + x < 0}.

For subregions R1 and R4, we can follow a similar argument to (4.12). System (4.15) is

symmetric with respect to x and y. We consider only the subregion R3 (see Figure 3).

• On R3: Note that ẋ > 0 and ẏ < 0. For admissible initial data, we have two possibili-

ties.

(A) (x(t), y(t)) crosses 1 + 2y + x = 0, enters the region R1, and converges to (1, 1).

(B) (x(t), y(t)) stays in R3 and converges to (1, −1). We can construct possibility (A)

by choosing a proper (x0, y0). Actually, for (x0, y0) = (0,− 1
2 − ε), we have

x′(0) =
K

2
(
1

2
− ε) and y′(0) = −εK(

3

2
+ ε).

Then, we obtain, for small t,

x(t) ≈ K

2

1− 2ε

2
t and y(t) ≈ −εK(

3

2
+ ε)t− 1

2
− ε,

y(t) + 2ε
3 + 2ε

1− 2ε
x(t) +

1

2
+ ε ≈ 0.

Therefore, (x(t), y(t)) should cross 1+ 2y+ x = 0 for sufficiently small ε > 0. Below, we

can also construct possibility (B). Actually, we choose the initial data as follows:

ψ1(x, 0) = (ε, 0, −
√
1− ε2, 0, · · · ), ψ2(x, 0) = (−1

2
ε,

√
3

2
ε, −

√
1− ε2, 0, · · · ),

ψ3(x, 0) = (−1

2
ε, −

√
3

2
ε, −

√
1− ε2, 0, · · · ), ψ4(x, 0) = (0, 0, 1, 0, · · · ).
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Fig. 3. Phase portrait of (4.15).

Then we can check that

h12(0) = h23(0) = h31(0) = 1− 3

2
ε2 and h14(0) = h24(0) = h34(0) = −

√
1− ε2.

For ε < 4/5, we can check that (x0, y0) belongs to region R3 and y0 < −3/5. If the flow

(x(t), y(t)) starting by (x0, y0) crosses the line 1 + 2y + x = 0 at t = t0, then we should

have y′′(t0) ≥ 0. However, we can calculate

y′′(t0) = (1 + 2y + x)(−y′) + (2y′ + a′)(1− y)

= (1− y)(2− x+ y − 7xy − 6x2 − 5y2)

= −(1− y)(1 + 3y)(3 + 5y),

where 1+2y(t0)+x(t0) = 0 is used in the second line. Therefore, we have y′′(t0) < 0 for

y(t0) < − 3
5 , which is a contradiction. Therefore, the flow (x(t), y(t)) starting by (x0, y0)

should stay in R3 and converge to (1, −1).

5. Emergent dynamics: Different external potentials. In this section, we con-

sider the dynamics of (3.5) with D(Ω) > 0:

∃ i, j such that ωi 	= ωj .

Then, hij satisfies

dhij

dt
= −iωijhij +

2K

N
(1− h2

ij) +
K

N

⎛
⎝ N∑

k �=i,j

hik +

N∑
k �=i,j

hkj

⎞
⎠ (1− hij), (5.1)



SYNCHRONIZATION OF THE SCHRÖDINGER–LOHE MODEL 573

and its real and imaginary parts (Rij , Iij) satisfy

dRij

dt
= ωijIij +

K

N

[(
2 + 2Rij +

N∑
k �=i,j

(Rik +Rkj)
)
(1−Rij)

+
(
2Iij +

N∑
k �=i,j

(Iik + Ikj)
)
Iij

]
,

dIij
dt

= −ωijRij +
K

N

[
(1−Rij)

N∑
k �=i,j

(Iik + Ikj)− Iij

(
4Rij +

N∑
k �=i,j

(Rik +Rkj)
)]

.

(5.2)

Note that for the zero-coupling case K = 0, system (5.1) becomes

dhij

dt
= −iωijhij .

This equation yields a closed orbit solution:

hij(t) = h0
ije

−iωijt.

We next consider a situation where the coupling strength K is sufficiently large com-

pared with ωij that our situation is close to the situation in Section 4:

Rij ≈ 1, Iij ≈ 0.

In this regime, system (5.2) can be approximated by a linearized system:

dR̃ij

dt
= ωij Ĩij + 2K(1− R̃ij), t > 0,

dĨij
dt

= −ωijR̃ij − 2KĨij .

(5.3)

System (5.3) has a unique equilibrium

(R̃e
ij , Ĩ

e
ij) =

( 4K2

ω2
ij + 4K2

, − 2Kωij

ω2
ij + 4K2

)
,

and we have

R̃ij(t) = e−2Kt
(
C1 sinωijt+ C2 cosωijt

)
+

4K2

ω2
ij + 4K2

,

Ĩij(t) = −ωije
−2Kt

2K

(
C1 sinωijt+ C2 cosωijt

)
− 2ωijK

ω2
ij + 4K2

,

where C1 and C2 are constants. Although we do not have a rigorous analysis of the

dynamic qualitative behavior of (5.2), we can see that, as K increases, (5.2) might

exhibit a bifurcation phenomenon at some critical coupling strength. This bifurcation

phenomenon can be seen from the explicit example of a two-oscillator system.

For a two-oscillator system, h := h12 and ω := ω12 satisfy

dh

dt
= −iωh+K(1− h2) = −K

[(
h+ i

ω

2K

)2
+

ω2

4K2
− 1

]
, t > 0,

h(0) = h0.

(5.4)
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Depending on the relative sizes of K and ω, we consider the following three cases:

K >
ω

2
, K =

ω

2
, K <

ω

2
.

• Case A (K > ω
2 ): In this case, equation (5.4) has two equilibria, h∞,− and h∞,+:

h∞,− := −1

2

√
4−
( ω

K

)2
− i

ω

2K
and h∞,+ :=

1

2

√
4−
( ω

K

)2
− i

ω

2K
.

By direct calculation, the solution of (5.4) is given by the following explicit formula:

h(t) =
h∞,+(h

0 − h∞,−) + h∞,−(h
0 − h∞,+)e

−
√
4K2−ω2t

h0 − h∞,− − (h0 − h∞,+)e−
√
4K2−ω2t

.

Thus, it is easy to see that for any initial data h0 	= h∞,−, we have

h(t) → h∞,+ as t → ∞.

• Case B (K = ω
2 ): In this case, the unique equilibrium is

h∞ := −i,

and the solution to (5.4) is given by the following formula:

h(t) =
h0 − i(h0 + i)Kt

1 + (h0 + i)Kt
.

Thus, we have

h(t) → h∞ as t → ±∞.

• Case C (K < ω
2 ): In this case, the equilibria of system (5.4) are as follows:

h∞,− = i
(
− ω

2K
− 1

2

√( ω

K

)2
− 4
)
, h∞,+ = i

(
− ω

2K
+

1

2

√( ω

K

)2
− 4
)
.

Because |h∞,−| > 1, only h∞,+ is admissible. By direct calculation, the solution of (5.4)

is given as follows:

h(t) =
h0 cos

(
t
√
ω2−4K2

2

)
− K√

ω2−4K2

(
iωh0

K − 2
)
sin
(

t
√
ω2−4K2

2

)
cos
(

t
√
ω2−4K2

2

)
+ K√

ω2−4K2

(
2h0 + iω

K

)
sin
(

t
√
ω2−4K2

2

) . (5.5)

Note that (5.5) implies that h is a periodic orbit with period 4π√
ω2−4K2

. Thus, we can

see that a two-oscillator system has a bifurcation at K = ω
2 .

6. Conclusion. In this paper, we studied complete wave synchronization of coupled

quantum Lohe oscillators under potential forces with translated mother potentials. To

do this, we derived an explicit coupled system of ODEs for hij = 〈ψi, ψj〉. Using phase

portrait analysis of this derived ODE model, we provided an admissible class of initial

configurations and conditions on the coupling strength leading to complete wave function

synchronization. In previous studies, the second author and his collaborators introduced

an L2 diameter for the set of wave functions, which is a global quantity, and then derived

a nonlinear Gronwall-type differential inequality. These lead to the restriction on the

admissible class of initial data. On the other hand, for distinct potential functions, it

seems to be very difficult to verify the emergence of complete synchronization using
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this global approach. In [4], a weak concept of synchronization was introduced, namely,

practical synchronization, and they could show that for some class of initial data and

coupling strength, practical synchronization can be established. However, it might be

very difficult to establish complete wave function synchronization in this way. In contrast,

our new approach based on the explicit dynamics of hij can tell us rather explicitly the

correlation between any pair of wave functions.

Appendix A. A global existence of smooth solutions to the S-L model. In

this appendix, we present a global existence of smooth solutions to the simplified S-L

model (1.1) with a constraint ||ψi||2 = 1:⎧⎪⎪⎨
⎪⎪⎩
i∂tψi +Δψi = Vi(x)ψi +

iK

N

N∑
k=1

(ψk − 〈ψi, ψk〉ψi) , (x, t) ∈ T
d × R+,

ψi(x, 0) = ψ0
i , x ∈ T

d, ||ψ0
i ||2 = 1.

(A.1)

Here Vi = Vi(x) is a given smooth real-valued potential function satisfying

m∑
k=0

‖∇kVi‖L∞ ≤ Cm < ∞, for a positive integer m. (A.2)

For T ∈ (0,∞), let ψi and ψ̄i be H
m solutions to (A.1) in Td× [0, T ]. Then, for m ∈ Z+,

we set

J (T ) := max
1≤j≤N

sup
0≤t≤T

‖ψj(t)‖Hm ,

Δ(T ) := max
1≤j≤N

sup
0≤t≤T

‖ψj(t)− ψ̄j(t)‖Hm .
(A.3)

The functionals J (T ) and Δ(T ) will be used in the existence and uniqueness of the local

solutions, and will be estimated in the following two lemmas.

Lemma A.1. There exists a small positive constant T ∗
1 depending only on J (0) such

that for a solution (ψi) ∈ C([0, T ∗
1 );H

m(Ω)) to (A.1) and T < T ∗
1 ,

J (T ) ≤ 2J (0). (A.4)

Proof. To derive an estimate for J in (A.3), we study the H1-estimate and higher-

order estimates separately. Let (ψi) ∈ C([0, T ∗
1 );H

m(Ω)) be a solution to the Cauchy

problem (A.1). In the sequel, we will choose T ∗ sufficiently small to satisfy the estimate

(A.4). Let T < T ∗
1 .

• Case A (m = 1): We apply the energy estimates to (A.1) to obtain the following

estimate: for t ∈ [0, T ],

‖ψi(t)‖H1 ≤ ‖ψ0
i ‖H1

+ C

∫ T

0

(
‖(Viψi)(s)‖H1 +

N∑
k=1

(‖ψk(s)‖H1 + ‖〈ψi, ψk〉(s)ψi(s)‖H1)
)
ds.

(A.5)
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On the other hand, note that

‖Viψi‖H1 ≤ C(‖Vi‖L∞‖ψi‖L2 + ‖∇Vi‖L∞‖ψi‖L2 + ‖Vi‖L∞‖∇ψi‖L2)

≤ C(‖Vi‖L∞ + ‖∇Vi‖L∞)‖ψi‖H1 ,
(A.6)

and we use the fact that 〈ψi, ψk〉 is a function of t to see

‖〈ψi, ψk〉ψi‖H1 ≤ C
(
‖〈ψi, ψk〉‖L∞‖ψi‖L2 + ‖〈ψi, ψk〉‖L∞‖∇ψi‖L2

)
(A.7)

≤ C‖ψi‖L2‖ψk‖L2‖ψi‖H1 .

We combine (A.5)–(A.7) to obtain

‖ψi(t)‖H1 ≤ ‖ψ0
i ‖H1 + CT

[
J (T )(‖Vi‖L∞ + ‖∇Vi‖L∞) + J (T )3

]
. (A.8)

• Case B (2 ≤ |α| ≤ m): It follows from (A.1) that we have

i∂t∂
α
xψi +Δ∂α

xψi = ∂α
x (Vi(x)ψi) +

iK

N

N∑
k=1

(∂α
xψk − 〈ψi, ψk〉∂α

xψi) . (A.9)

Then, we use the same energy estimate for (A.9) as in Case A to obtain

‖∂α
xψi(t)‖L2 ≤ ‖∂α

xψ
0
i ‖L2 + CT

[
J (T )

m∑
k=0

‖∇kVi‖L∞ + J (T )3
]
. (A.10)

Finally, we use (A.8) and (A.10) to obtain

‖ψi(t)‖Hm ≤ ‖ψ0
i ‖Hm + CT

[
J (T )

m∑
k=0

‖∇kVi‖L∞ + J (T )3
]
. (A.11)

This yields

J (T ) ≤ J (0) + CTJ (T )
[ m∑
k=0

‖∇kVi‖L∞ + J (T )2
]
. (A.12)

In (A.12), we can choose T 
 1 to obtain the desired estimate:

J (T ) ≤ 2J (0).

�

Lemma A.2. There exists a small positive constant T ∗
2 depending only on J (0) and J̄ (0)

such that for solutions (ψi) and (ψ̄i) in C([0, T ∗
2 );H

m(Ω)) to (A.1) with initial data (ψ0
i )

and (ψ̄0
i ), respectively and T < T ∗

2 ,

Δ(T ) ≤ 2Δ(0).

Proof. Note that ψi − ψ̄i satisfies

i∂t(ψi − ψ̄i) + Δ(ψi − ψ̄i) = Vi(x)(ψi − ψ̄i)

+
iK

N

N∑
k=1

[
(ψk − ψ̄k)−

(
〈ψi − ψ̄i, ψk〉+ 〈ψ̄i, ψk − ψ̄k〉

)
ψi − 〈ψ̄i, ψ̄k〉(ψi − ψ̄i)

]
.

We use the same arguments in Lemma A.1 to derive the desired estimate. We omit the

details. �
Based on Lemma A.1 and Lemma A.2, we are ready to present a local existence of

the Hm-solution in the following theorem.
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Theorem A.3 (Local existence). For a positive integer m ∈ Z+, suppose that initial

data ψ0
i (x) ∈ Hm(Td). Then, there exists a positive constant T ∈ (0,∞) such that the

initial value problem (A.1) has a unique local solution ψi ∈ C([0, T );Hm(Td)).

Proof. The proof can be done using the standard successive approximation, Lemma

A.1 and Lemma A.2 to derive a unique solvability of the local Hm-solutions to (A.1).

Related with the constraint ‖ψi‖L2 = 1, we can check the L2-conservation of ψi.

Consider initial data ψ0
i ∈ Hm satisfying ‖ψ0

i ‖L2 = 1. Then the L2 norm of ψi is

constant along the evolution:

‖ψi(t)‖L2 = ‖ψ0
i ‖L2 = 1.

This can be seen as follows. We multiply (A.1) by ψ̄i and take the imaginary part and

integrating by parts to obtain

d

dt
(‖ψi‖2L2 − 1) +

K

N

(
N∑

k=1

2Re〈ψi, ψk〉
)(

‖ψi‖2L2 − 1
)
= 0,

which is an ordinary differential equation for ‖ψi‖2L2 − 1. Since we have ‖ψ0
i ‖2L2 − 1 = 0,

we can conclude that ‖ψi(t)‖2L2 = 1 for local existence time 0 ≤ t ≤ T . �
Remark A.4. By Sobolev embedding theorem [8], it is easy to see that for m > 2+ d

2 ,

the Hm solution is a classical solution.

Finally, we are ready to prove a global existence of a classical solution.

Theorem A.5 (Global existence). Suppose that the initial data ψ0
i ∈ Hm(Td). Then,

for any T ∈ (0,∞), the Cauchy problem for (A.1) has a unique global solution (ψi) such

that

ψi ∈ C([0,∞), Hm(Td)) ∩ C1([0,∞), Hm−2(Td)).

Proof. To extend our local solution to the global solution, it suffices to derive the

uniform Hm-bound in any finite interval. We take the spatial derivation ∇ to (A.1),

multiply ∇ψ̄i and choose the imaginary part to obtain

∂t|∇ψi|2 + i(∇ψiΔ∇ψ̄i −∇ψ̄iΔ∇ψi)

= 2Im(∇Viψi∇ψi) +
2K

N
Re(∇ψk∇ψ̄i)−

2K

N
|∇ψi|2Re(〈ψi, ψk〉).

We use integration by parts and use

‖∇Vi‖L∞ < C1, |〈ψi, ψk〉| ≤ ‖ψi‖L2‖ψk‖L2 ≤ 1,

to obtain a Gronwall inequality:

d

dt
‖∇ψi‖2L2 ≤ C(‖∇ψi‖L2 + ‖∇ψi‖L2‖∇ψk‖L2 + ‖∇ψi‖2L2), i = 1, · · · , N.

Then, Gronwall’s lemma implies

‖∇ψi‖2L2 ≤ CeCt.

By the same argument, we obtain

‖∂αψi‖2L2 ≤ CeCt.



578 HYUNGJIN HUH AND SEUNG-YEAL HA

Thus, the Hm-norm of ψi does not blow up in any finite time interval. This yields the

global existence of the Hm-solution. �
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