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Abstract. We consider fiber reinforced ideally plastic composites. We analyze a

mathematical model valid for microstructures and applied stresses that lead to both

microscopic and macroscopic anti-plane shear deformations. We obtain a bound on the

yield set of the reinforced material in terms of the shapes of the cross section of the

fibers, their volume fraction, and the yield stresses of the matrix. We construct examples

showing that our bound is sharp.

1. Introduction. The stresses that an ideally plastic material can withstand form

a bounded closed set Ȳ in the space of symmetric 3 × 3 real matrices. The set Ȳ ,

which is a material property, is called the yield set or strength domain. Unlike brittle

materials, ideally plastic materials do not break. When subjected to a stress that is in

the boundary of Ȳ, the material experiences a permanent deformation, usually called

plastic deformation.

Fiber-reinforced composites are materials made of strong fibers embedded in a weaker

material referred to as the matrix. In this article, we will consider fiber-reinforced com-

posites where both the matrix and fibers are ideally plastic materials.

We denote by Ȳf the yield set of the material the fibers are made of, and by Ȳm the

yield set of the matrix. Thus, the stresses within the fibers are restricted to the set Ȳf

but within the matrix the stresses are restricted to the set Ȳm. In mathematical terms,

if we denote by Ω the region in space occupied by the composite, and for each x ∈ Ω we

define

Ȳx =

{
Ȳf if x is in a fiber,

Ȳm if x is in the matrix,
(1)
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then, if the composite is subject to a stress σ̄ that may vary within the material σ̄ = σ̄(x),

we have

σ̄(x) ∈ Ȳx, (2)

for all x ∈ Ω.

We will only consider time independent stresses σ̄ and thus, σ̄ also satisfies the equi-

librium equations

∇ · σ̄ = 0, (3)

where ∇ · σ̄ is the divergence of σ̄.

Loosely speaking, the microstructure or microgeometry of the composite refers to the

description of the regions in space occupied by the fibers and the matrix. Mathematically

speaking, the microstructure is determined by the function x �→ Ȳx.

Assume the microstructure Ȳx is periodic with period cell Q̄, where Q̄ is a paral-

lelepiped. A stress field σ̄ is said to be admissible if it is Q̄-periodic and satisfies the

restrictions (2) and the equilibrium equations (3).

In the limit in which the size of the period cell Q̄ is much smaller than the size of

the material, the fiber reinforced composite behaves macroscopically as a homogeneous

material that can withstand only the stresses that belong to the set Ȳhom defined by

Ȳhom = {τ̄ : τ̄ = 〈σ̄〉, for some σ̄ admissible} , (4)

where 〈σ̄〉 is the average of σ̄, i.e., 〈σ̄〉 = |Q̄|−1
∫
Q̄
σ̄(x) dx with |Q̄| being the volume of

Q̄. In colloquial words, Ȳhom is the set of macroscopic stresses that the composite can

withstand. We will refer to Ȳhom as the yield set of the composite. The justification

of equation (4) is a well understood fact of the theory of mathematical homogenization.

We refer the reader to [3, 10, 23, 29] for details.

In practice, all the details of the microstructure Ȳx are not known or cannot be

controlled. Instead, only some partial information, such as the volume fraction of the

fibers, is available. Accordingly, the general objective in the mathematical study of these

type of materials has been to obtain bounds or estimates on Ȳhom, the set of stresses

the composite can withstand, in terms of the yield sets of the matrix and the fibers, and

information that may be available about the microstructure. This is also our goal in this

article.

Fiber-reinforced composites, where both the fibers and the matrix are (to a good

approximation) ideally plastic, are very important and widely used in applications. Thus,

their study, both theoretical and experimental, is a very active field of research.

From the mathematical point of view, fiber-reinforced composites belong to the wider

class of materials known as heterogeneous solids, which include composites and polycrys-

tals. The same mathematical tools are sometimes used to study different heterogeneous

solids. Ideally plastic materials are highly non-linear. Nevertheless, heterogeneous ma-

terials made of ideally plastic pure phases (the fibers and the matrix in our case) have

proved to be amenable to detailed mathematical analysis. Thus, their study is very

appealing since it can serve to test the existing mathematical methods, to develop new

ones, and to gain intuition on the behavior of real materials. For the reasons mentioned
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in this and the previous paragraphs, the literature on the mathematical study of hetero-

geneous materials made of ideally plastic pure phases is very extensive. Some examples

include [2, 4, 5, 7, 13–15, 19, 21, 28, 30]. Examples of related non-linear homogenization

problems include [1, 25, 31].

In our work, we will study the effect of the fiber shape on the yield set of the com-

posite in the scalar two-dimensional problem that results from restricting our attention

to applied stresses and microstructures that lead to both microscopic and macroscopic

anti-plane shear. We first derive a bound on the yield set of the composite, and then

construct examples of composites showing that our bound is essentially optimal.

We mention that, while our results are new, the yield set of fiber- or particle-reinforced

composites has been a subject extensively studied [6, 8, 9, 11, 16, 20, 22, 24].

Our bound can be considered to be an application of a mathematical technique known

as the translation method [18,26,27]. Other examples where the translation method was

used to study non-linear composites or polycrystals include [12,15,17]. Particularly, the

work in [15] has motivated a lot of work in this area of research.

This article is organized as follows: In Section 2 we reduce the original three-dimen-

sional vectorial problem to a two-dimensional scalar problem by considering applied

stresses and microstructures that lead to both microscopic and macroscopic anti-plane

shear deformations. In Section 3 we derive our bound on the strength of the weakest

direction of the composites we consider. In Section 4 we analyze the case when the cross

section of the fibers are circular. In Section 5 we study composites with fibers with

slender cross sections. In Section 6 we show that our bound (in a sense specified in that

section) is sharp. We conclude with some discussions in Section 7.

2. The microstructures and anti-plane shear.

2.1. The microstructures and the yield sets of the pure phases. As usual, we denote by

x1, x2 and x3 the components of the position vector x, i.e., x = (x1, x2, x3). We assume

that the fibers are parallel to the x3-axis and the cross sections of the fibers (intersection

of a fiber with a plane of the form x3 = constant) are independent of x3. In other words,

the function x �→ Ȳx is independent of x3. Note that, as a consequence, the period cell

Q̄ is of the form Q̄ = Q × [a, b], where Q is a parallelogram in R
2 and a and b are any

numbers that satisfy a < b.

We also assume that the yield sets Ȳf and Ȳm are convex sets with the following

symmetric property: For both Ȳ = Ȳf and Ȳ = Ȳm,

if

⎡
⎣ σ̄11 σ̄12 σ̄13

σ̄21 σ̄22 σ̄23

σ̄31 σ̄32 σ̄33

⎤
⎦ belongs to Ȳ , so does

⎡
⎣ −σ̄11 −σ̄12 σ̄13

−σ̄21 −σ̄22 σ̄23

σ̄31 σ̄32 −σ̄33

⎤
⎦ . (5)

This assumption is not restrictive at all. We refer the reader to [15] and references therein

for a discussion of this symmetry condition.

2.2. Anti-plane shear. Due to our assumptions, the two-dimensional scalar problem

that corresponds to anti-plane shear is well defined. More precisely, for i = f, i = m and
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i = hom, we define the sets

Yi =

⎧⎨
⎩σ = (σ1, σ2) ∈ R

2 :

⎡
⎣ 0 0 σ1

0 0 σ2

σ1 σ2 0

⎤
⎦ ∈ Ȳi

⎫⎬
⎭ . (6)

For each x = (x1, x2) ∈ R
2, we also define

Yx =

{
Yf if {x} × R is included in a fiber,

Ym if {x} × R is included in the matrix.
(7)

We say that a two-dimensional vector field σ = σ(x) = (σ1(x1, x2), σ2(x1, x2)) is admis-

sible if it is Q-periodic, it satisfies the restrictions

σ(x) ∈ Yx for all x ∈ R
2 (8)

and the equilibrium equations

∇ · σ = 0, (9)

where ∇ · σ is the divergence of σ in two dimensions.

It can be easily shown that, given the conditions stated in this section,

Yhom = {τ : τ = 〈σ〉, for some 2D admissible vector field σ} , (10)

where 〈σ〉 is now the two-dimensional average of σ, i.e., 〈σ〉 = |Q|−1
∫
Q
σ(x) dx with |Q|

being the area of Q.

All the vector fields we will consider in the rest of this paper are two-dimensional.

The two-dimensional sets Yf , Ym and Yhom will also be referred to as the yield sets of

the fibers, the matrix and the composite, respectively.

2.3. The yield sets of the pure phases. We will assume that the sets Yf and Ym are

circles centered at the origin with radius Yf and Ym, respectively. Thus, defining

Yx =

{
Yf if {x} × R is included in a fiber,

Ym if {x} × R is included in the matrix,
(11)

we have that a vector field σ is admissible if and only if σ is Q-periodic, ‖σ(x)‖ ≤ Yx for

all x ∈ R
2 and∇·σ = 0, where ‖.‖ denotes the euclidean norm, i.e., ‖(z1, z2)‖ =

√
z21 + z22

for all z = (z1, z2) ∈ R
2. Note that divergence-free vector fields can be regarded as the

velocity field of an incompressible fluid. Thus, in the rest of this paper, we will sometimes

refer to two-dimensional divergence free vector fields as stresses and sometimes as fluid

velocity fields.

3. Bound on the yield set of the composites. Given any vector z = (z1, z2) we

denote by z⊥ the vector perpendicular to z that results from rotating z to an angle of

π/2 in the counterclockwise direction z⊥ = (−z2, z1). Also, · denotes the dot product,

i.e., u ·w = u1w1 + u2w2 for all two-dimensional vectors u = (u1, u2) and w = (w1, w2).

Observation 3.1. Let σ and α be two Q-periodic divergence-free vector fields. Then,

〈σ · α⊥〉 = 〈σ〉 · 〈α〉⊥. (12)
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This is a known fact that we do not prove here (see [15] for details).

We will refer to the cross sections of the fibers as the inclusions. In other words, the

inclusions are the connected components of the set {x ∈ R
2 : Yx = Yf}.

Assumption 3.2. For any inclusion I, we will assume in the rest of this paper that the

number of points that belong to the boundary of I and also to the boundary of an other

inclusion is finite.

Observation 3.3. Let I be an inclusion and PI its perimeter, i.e., PI is the length of

the boundary of I. If σ and α are two admissible vector fields, then∣∣∣∣
∫
I

σ(x) · α⊥(x) dx

∣∣∣∣ ≤ 1

2
(YmPI)

2 . (13)

Proof. We first note that, since σ and α are divergence-free, there exist ψ = ψ(x) and

φ = φ(x), two scalar functions defined in R
2, such that

σ = (∇ψ)
⊥

and α = (∇φ)
⊥
, (14)

where ∇ψ and ∇φ are the gradients of ψ and φ, respectively. Using this last equation,

the divergence theorem, the fact that the dot product of two vectors does not change if

we rotate the two vectors by the same angle, and the fact that (z⊥)⊥ = −z for all vectors

z, we obtain∫
I

σ · α⊥ dA = −
∫
I

(∇ψ)
⊥ · ∇φ dA = −

∫
∂I

φ (∇ψ)
⊥ · n̂ d�

=

∫
∂I

φ∇ψ · n̂⊥ d�, (15)

where ∂I is the boundary of I and n̂ = n̂(x) is the vector of norm one perpendicular to

∂I at x that points outward I. In the above integrals, we have used the notation dA for

area integrals and d� for line integrals.

Let x = x(s) be a parametrization of ∂I in the counterclockwise direction. Let x′(s)

be the derivative of x(s) with respect to s. We assume that ∂I is regular enough so that

the parametrization x(s) can be chosen to satisfy ‖x′(s)‖ = 1 for all 0 ≤ s ≤ PI except

probably in a finite number of points s where x′(s) is not defined. Thus, it is easy to

verify that the following is true:

n̂⊥(x(s)) = x′(s) (16)

and

φ(x(s)) = φ(x(0)) +

∫ s

0

∇φ(x(t)) · x′(t) dt. (17)

Using the last three equations, we obtain
∫
I

σ · α⊥ dA =

∫ PI

0

(
φ(x(0)) +

∫ s

0

∇φ(x(t)) · x′(t)dt

)
∇ψ(x(s)) · x′(s) ds

=

∫ PI

0

∇ψ(x(s)) · x′(s)

(∫ s

0

∇φ(x(t)) · x′(t) dt

)
ds. (18)
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Note that Assumption 3.2 implies that, for all s ∈ [0, PI ] except probably a finite set,

x(s) is in the boundary of the interior of the matrix. Using this fact, equations (14)

and (16), the fact that σ is admissible, and the fact that the value of σ · n̂ at the inclusion

boundary is the same in the inclusion side as in the matrix side, we get

|∇ψ(x(s)) · x′(s)| = |σ(x(s)) · n̂(x(s))| ≤ ‖σ(x(s))‖ ≤ Ym. (19)

Similarly, |∇φ(x(t)) · x′(t)| ≤ Ym. Thus, going back to equation (18), we obtain∣∣∣∣
∫
I

σ · α⊥ dA

∣∣∣∣ ≤
∫ PI

0

|∇ψ(x(s)) · x′(s)|
(∫ s

0

|∇φ(x(t)) · x′(t)|dt
)
ds

≤ (Ym)
2
∫ PI

0

(∫ s

0

dt

)
ds =

1

2
(YmPI)

2 , (20)

which proves the validity of equation (13). �
The period cell Q is a parallelogram and thus, there are two vectors u,w ∈ R

2 such

that

Q =
{
x ∈ R

2 : x = su+ tw for some 0 ≤ s < 1 and 0 ≤ t < 1
}
. (21)

We say that two inclusions I1 and I2 are equivalent if there exists integers k and � such

that I2 = I1 + ku + �w. We denote by I a set of inclusions that contains exactly one

inclusion per equivalent class. We will need the set I when we take averages. For example,

one choice of I is the set of inclusions whose center of mass is in Q.

Observation 3.4. Let ν be the volume fraction of the inclusions, i.e.,

ν =
|{x ∈ Q and x ∈ an inclusion}|

|Q| , (22)

where we are denoting the area of any two-dimensional set A by |A|.
We define the parameter

η = max
I inclusion

P 2
I

|I| , (23)

where as before, PI is the length of the boundary of the inclusion I. If σ and α are two

admissible vector fields, then

∣∣〈σ〉 · 〈α〉⊥∣∣ ≤ (1− ν)Y 2
m +

1

2
νηY 2

m. (24)

Proof. From Observations 3.1 and 3.3 it can be easily shown that

∣∣〈σ〉 · 〈α〉⊥∣∣ ≤ (1− ν)Y 2
m +

Y 2
m

2|Q|
∑
I∈I

P 2
I . (25)

In the above inequality the first term is a bound of
∣∣∣∫Q∩matrix

σ · α⊥ dA
∣∣∣ /|Q| and the

second term is a bound of
∣∣∑

I∈I

∫
I
σ · α⊥ dA

∣∣ /|Q|.
We use this last equation and the fact that, for all inclusions I, P 2

I ≤ η|I|, to get

∣∣〈σ〉 · 〈α〉⊥∣∣ ≤ (1− ν)Y 2
m +

Y 2
m

2|Q|η
∑
I∈I

|I|. (26)

Equation (24) follows once we note that ν = |Q|−1
∑

I∈I
|I|. �
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Observation 3.5. Let τ be a vector such that both τ and τ⊥ belong to Yhom. Then,

‖τ‖ ≤ Ym

√
(1− ν) +

1

2
νη, (27)

where ν is the volume fraction of the inclusions and η is as defined in equation (23).

Proof. Since both τ and τ⊥ belong to Yhom, there exist σ and α admissible vector

fields such that τ = 〈σ〉 and τ⊥ = 〈α〉. Applying equation (24) and taking the square

root completes the proof of this observation. �
When reinforcing a material, it is usually desirable that the material is strong in all

directions. Thus, it is of interest to evaluate strength of the weakest direction of the

composite. This motivates the following definition.

Definition 3.6. Let e ∈ R
2 be a vector of length 1. We say that the strength of the

composite in the direction e is Se if t e ∈ Yhom for all t < Se and t e /∈ Yhom for all

t > Se.

Note that such Se is well defined because Yhom is convex and the vector 0 belongs to

Yhom.

Our bound will, in fact, be a bound on the strength of the weakest direction of the

composite, which we define next.

Definition 3.7. The strength of the weakest direction of the composite is

Y weak
hom = inf

{e∈R2:‖e‖=1}
Se. (28)

A little thought will convince the reader that Y weak
hom is the strength of the weakest

direction of the composite. The composite can withstand stresses of norm less than

Y weak
hom in all directions. On the other hand, if t > Y weak

hom , there are stresses of norm t that

the composite cannot withstand.

A main result of this paper, which is a direct consequence of Observation 3.5, is now

stated in the following theorem.

Theorem 3.8. The strength of the weakest direction of the composite, Y weak
hom , satisfies

the bound

Y weak
hom ≤ Ym

√
(1− ν) +

1

2
νη, (29)

where ν is the volume fraction of the inclusions and η is as defined in equation (23).

4. Composites with circular inclusions. The square of the perimeter of a circle

divided by its area is equal to 4π. Thus,

η = 4π if all the inclusions are circular, (30)

where η is the parameter defined in equation (23). As a consequence, our bound (equa-

tion (29)) becomes

Y weak
hom ≤ Ym

√
(1− ν) + 2νπ if all the inclusions are circular, (31)
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where, as before, ν is the volume fraction of the inclusions. In particular, since 0 < ν < 1,

we have that

Y weak
hom < Ym

√
2π if all the inclusions are circular. (32)

Note that, no matter the strength of the inclusions, if they are circular, the strength

of the composite is never more than
√
2π times the strength of the matrix (again the

word “strength” is used informally but its meaning in this context should be clear). We

remark that the fact that the yield set of a composite with circular inclusions is bounded

independently of the yield set of the inclusions is not our discovery, it is a known fact

(see [6, 24] for example).

5. Composites with slender rectangular inclusions. Our bound suggests that,

to obtain strong composites, we should use inclusions that lead to a large parameter η.

As illustrated in the next example, η becomes large when the inclusions are slender.

A natural choice would be to consider elliptical inclusions. However, to make the

calculations easier to follow, we will assume the inclusions to be rectangular. For each

inclusion I, let γI be the length of one of the longest sides of I divided by the length

of one of the shortest sides of I. Assume that γI is the same value for all inclusions I.

Denote this value by γ, i.e., γ = γI for any inclusion I,

γ =
length of longest side of an inclusion

length of shortest side of the same inclusion
. (33)

Note that, the square of the perimeter of one of these rectangular inclusions divided by

its area is equal to 4(γ + 1)2/γ,

η =
4(γ + 1)2

γ
, (34)

where η is the parameter defined in equation (23).

To be under the assumptions of our analysis (Section 3), we assume that the boundary

of two different inclusions intersects at most in one point. We are particularly interested

in the limit γ � 1. Note that η ≈ 4γ for γ � 1. As a consequence, our bound

(equation (29)) becomes

Y weak
hom ≤ Ym

√
2νγ for γ � 1 and ν > 0, (35)

where, as before, ν is the volume fraction of the inclusions.

The natural question that our analysis raises is whether the bound of equation (35)

is sharp or not. To show that the answer to this question is yes, we next construct a

composite with rectangular inclusions whose weakest direction is of the order of Ym
√
νγ.

6. Composite with slender rectangular inclusions that is strong in all di-

rections. We start by considering the composite of Figure 1. The inclusions are in dark

and the matrix in white. Each inclusion is a rectangle of width w and length �, with

w 
 �. The inclusions are embedded in the matrix forming the regular pattern shown in

Figure 1. We denote by ε the distance between neighboring inclusions. We assume that

ε 
 w.
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Fig. 1. Composite with rectangular inclusions and an admissible
field σ described in the text.

We now construct an admissible field σ that satisfies 〈σ〉 ≈ (Ym�/(2w), 0). Note that,

as mentioned before, σ can be regarded as the velocity field of an incompressible fluid.

In this context, the fact that Ym 
 Yf means that fluid can flow much faster within

the inclusions than in the matrix. In the left side of Figure 1, the dashed lines with

arrows denote the direction of σ. Roughly speaking, fluid flows fast in the horizontal

direction within the inclusions, and fluid flows slow in the vertical direction as fluid

needs to go through the matrix as it flows from one inclusion to a neighboring inclusion.

The details of the flow is shown in the right side of Figure 1, where we only show one

full inclusion and a quarter of each of its neighboring inclusions. In the regions where

fluid flows horizontally, σ = (Ym(�− ε)/w, 0). In the regions where fluid flows vertically,

σ = (0,±Ym). Note that σ = 0 inside the vertical rectangles of the left side of Figure 1

that are included in the matrix. It can be calculated that 〈σ〉 = (Ym(�− ε)/(2w+2ε), 0)

and thus, neglecting ε we get that,

average velocity of the flow in Figure 1 ≈ Ym
γ

2
(1, 0), (36)

where, as defined in equation (33), γ = �/w. Note that we have implicitly assumed that

Yf ≥ Ymγ.

In Figure 2 we show a rectangular stripe of length L and width W made of the

composite of Figure 1, where the dimensions of the stripe are much bigger than the

dimensions of the inclusions � 
 L and w 
 W , and the longest sides of the inclusions

are parallel to the longest sides of the stripe. More precisely, W = (2n+1/2)(w+ ε) and

L = (n+ 1/2)(�+ ε), where we assume n � 1. Thus,

L

W
≈ γ

2
, (37)

where, as defined in equation (33), γ = �/w. In the example of Figure 2, n = 3. Following

similar arguments as in the construction of the flow in Figure 1, we construct, in Figure 2,

a new fluid velocity field, that we also call σ, that satisfies the constraints (8) and (9)

such that: fluid enters the stripe from the left side, fluid leaves the stripe from the top

side and no fluid crosses the other two sides. The rate at which fluid enters the stripe in

Figure 2 is the same as if the flow was as in Figure 1. Thus, from equation (36), we have

rate at which area of fluid enters the stripe in Figure 2 ≈ YmW
γ

2
. (38)

In Figure 3 we construct a periodic composite. That figure shows a period cell. The

stripes seen in Figure 3 are as in Figure 2, but instead of being straight rectangles, these
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W

L

L

W

�

w

Fig. 2. Stripe made of the composite of Figure 1. Top figure, macro-
scopic view. Bottom figure, microscopic view. The arrows indicate
the velocity field σ.

stripes are curved. Note that all of these stripes are finite in length. Note also that the

inclusions are much smaller than the stripes and cannot be seen in Figure 3. To help the

reader visualize this microstructure, we have shaded one of the stripes black.

Our final goal is to show that, for the composite of Figure 3, we can construct ad-

missible fields σ that satisfy 〈σ〉 ≈ (Ym/2)
√
γν/2(±1,±1), where as mentioned before

γ = �/w. This and the fact that Yhom is convex implies that, for the composite of

Figure 3,

Yhom ⊇ ball centered at the origin of radius
Ym

2

√
γν

2
. (39)

As a consequence, for the composite of Figure 3, we have

Y weak
hom ≥ Ym

√
γν

8
for γ � 1 (40)

(see equation (28) for the definition of Y weak
hom ). This shows that our bound, which is

equation (35) for composites with rectangular inclusions, gives the correct scaling law in

terms of the parameters Ym, γ and ν.

We now proceed with the construction of the mentioned admissible fields. More pre-

cisely, we will construct an admissible field σ such that 〈σ〉 ≈ (Ym/2)
√
γν/2(1, 1) (the

other fields with average (Ym/2)
√
γν/2(±1,±1) are constructed similarly).

To avoid a very crowded figure, in the left side of Figure 4 we only show two halved

stripes. These two halved stripes are part of the stripes in the upper left corner of

Figure 3. Even though the stripes are not rectangles, since the bending of the stripes

occurs in a length scale much larger than the length of the inclusions (which are not
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Fig. 3. Periodic composite. The stripes (both dark and white) are
as in Figure 2 but curved.

seen in this figure), we can use similar arguments as in Figure 2 to construct the flow

displayed in the left side of Figure 4. The arrows indicate the average direction of the

flow when the flow is looked at in the scale of the stripes. If we were to look at the details

of the flow in the scale of the inclusions, the flow would look as in the bottom part of

Figure 2. Let W be the width of a stripe and L be now the length of half a stripe, from

the arguments in the discussion of Figure 3, we need W/L ≤ 2w/� = 2/γ so that this

flow satisfies the constraints (8) and (9). Thus, we will have

L

W
≈ γ

2
, where L = length of half a stripe and W = width of a stripe. (41)

In the right side of Figure 4, we show the complete upper left corner of Figure 3.

The arrows indicate the average direction of σ. Fluid flows between neighboring stripes

crossing the dashed lines. There is no flow across the solid lines. While we do not show

it here, fluid flows similarly in the rest of the period cell. Fluid flows from stripe to a

neighboring stripe so that, on average, fluid flows in the direction of the vector (1, 1).

We now compute 〈σ〉 for the flow of Figure 4. The period cell Q is a square. Denote

by q the length of each side of Q. Simple arguments show that

〈σ〉 = 1

q
× rate area of fluid enters Q from the left × (1, 1). (42)

Since fluid enters through the two stripes that intersect the left side of the period cell,

equation (38) implies

〈σ〉 ≈ 1

q
YmWγ(1, 1), (43)
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Fig. 4. Flow in the upper left corner of the composite of Figure 3.
Only two halved stripes are shown in the left figure. All the stripes
are shown in the right figure.

where we recall that W is the width of each stripe. Recall also that L is half the length

of each stripe. In the limit in which the size of the inclusions is much smaller than the

size of the stripes, we can fill most of the stripes with inclusions. Thus, since there are

4 half stripes in a quarter of the period cell, we have

ν ≈ 16WL

q2
. (44)

Finally, equations (41), (43) and (44) imply

〈σ〉 ≈ Ym

√
νγ

8
(1, 1). (45)

7. Discussion. We have introduced a bound on the strength of the weakest direc-

tion of fiber-reinforced ideally plastic composites that is valid under some symmetry

conditions. This bound is a simple formula that explicitly shows the dependence of the

strength of the reinforced material on the shape of the fibers and their volume fraction.

We have shown with examples that this bound is optimal.

The rectangular shape of the inclusions in the examples of Sections 5 and 6 is not

critical. The results remain valid if instead of rectangular we consider elliptical inclusions.

The important feature needed is that the inclusions be slender. We decided to use

rectangular inclusions because the calculations are easier to follow in this case.

This article has clear limitations. It is a detailed analysis on ideal scenarios that may

be impossible to reproduce experimentally. The shape of cross sections of real world fibers

are nearly circular and difficult to control. Having fibers parallel or nearly parallel to

each other may also be a difficult task to produce experimentally. Thus, the predictions

of this article cannot be easily verified experimentally. Additionally, we were forced to

restrict our attention to anti-plane loads to reduce our problem to a two-dimensional

scalar context. Our analysis cannot be easily extended beyond these restrictions.
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In spite of its limitations, we believe this work is an interesting, valuable, and certainly

very novel step toward the difficult goal of understanding the dependence of the strength

of fiber-reinforced composites on the microgeometry and the properties of the fibers and

of the matrix.
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