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Abstract. The proposal of this paper is to study the convergence of the compressible

Navier-Stokes equations with no-slip boundary condition to the corresponding problem

of the Euler equations in a smooth bounded domain Ω ⊆ R
3. Motivated by Wang’s

work (2001), we obtain a sufficient condition for the convergence to take place in the

energy space L2(Ω) uniformly in time, by using Kato’s idea (1984) of constructing an

artificial boundary layer. This improves the result of Sueur in the sense that this sufficient

condition contains the tangential or the normal component of velocity only.
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1. Introduction. This paper is devoted to the issue of the inviscid limit for the

compressible Navier-Stokes system with no-slip boundary condition. More specifically,

for a smooth bounded domain Ω ⊆ R
3 we consider the question of convergence of the
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weak solution to the following problem for the compressible Naiver-Stokes system in

[0, T ]× Ω: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = εdivS(∇u),

u|x∈∂Ω = 0,

ρ|t=0 = ρ0, (ρu)|t=0 = ρ0u0,

(1.1)

to the solution of the compressible Euler system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ
E + div(ρEuE) = 0,

∂t(ρ
EuE) + div(ρEuE ⊗ uE) +∇p(ρE) = 0,

(uE · �n)|x∈∂Ω = 0,

ρE |t=0 = ρE0 , (ρ
EuE)|t=0 = ρE0 u

E
0 ,

(1.2)

where

S(∇u) := μ

(
∇u+ (∇u)T − 2

3
(div u)Id

)
+ η(div u)Id, p(ρ) = ργ with γ >

3

2
,

and �n denotes the unit outward normal vector to the boundary of Ω, when the initial

data of (1.1) goes to the initial data of (1.2) in energy space as ε vanishes. Since the

Navier-Stokes equations and the Euler equations admit different boundary conditions in

(1.1) and (1.2) respectively, this leads to the formulation of boundary layers in the small

neighborhood of boundary ∂Ω, in which the flow (1.1) changes very fast in the small

viscosity limit.

The study of vanishing viscosity limit for solutions of the Navier-Stokes equations is

a classical problem. Prandtl, in the pioneer work [20], studied the flow near the physical

boundary and introduced the boundary layer concept. For the incompressible Navier-

Stokes equations with no-slip boundary condition, Prandtl derived that the boundary

layer is described by a degenerate parabolic equation coupled with the divergence free

constrain, which is now called the Prandtl equations. Till now, there have been many

interesting mathematical results on the well-posedness of the Prandtl equations; cf. see

[11, 19, 21]. The rigorous justification of Prandtl’s boundary layer theory was known

only for some special cases. Lopes Filho et al. [17] studied the small viscosity limit for

solutions to an incompressible circularly symmetric viscous flow, in which the boundary

layer is described by the heat equation. The problem of circularly symmetric viscous

compressible flow was studied in [16]. Recently, Guo et al. [12] showed the validity of the

Prandtl boundary layer theory for two-dimensional steady incompressible Navier-Stokes

flows with a no-slip boundary condition over a moving plate. Sammartino and Caflisch

[22] obtained a rigorous theory of the Prandtl boundary layer problem in the class of

analytic solutions in two or three space variables. By using the vorticity formulation,

Maekawa [18] proved the convergence of the two-dimensional Navier-Stokes flow to the

Euler flow away from the boundary and to the Prandtl flow in the boundary layer in

the small viscosity limit when the initial vorticity of the Euler flow is supported away

from the boundary. There are also many works on vanishing viscosity limit of solutions
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to the Navier-Stokes equations with a slip boundary condition, see [26–28], in which the

boundary layer is much weaker than the problem with non-slip boundary condition.

Another approach for proving the convergence from the solutions of the Navier-Stokes

equations to the solutions of the Euler equations was introduced by Kato in [13], in

which he studied the small viscosity limit of the incompressible viscous flow with the

non-slip boundary condition, and concluded that the viscous flow can be approximated

by the inviscid flow in the energy space under a dissipation condition of energy in a

neighborhood of the physical boundary with width proportional to the viscosity, by

constructing an artificial boundary layer. Since then, this result has been improved in a

series of works. Wang [25] observed that one can relax Kato’s dissipation condition of

energy to the case only containing the tangential derivatives of the tangential or normal

velocity at the expense of increasing the size of the neighborhood of the boundary slightly.

In [14], Kelliher extends Kato’s result in the way that the gradient of velocity of Kato’s

energy condition can be replaced by the vorticity only of the flow. In [4], Constantin et

al. obtained that under the assumption of the Oleinik condition of no back-flow in the

trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity in a Kato-

like boundary layer, the inviscid limit from the Navier-Stokes equations to the Euler

equations holds in energy space.

Recently, there are some progresses in studying the small viscosity limit of the com-

pressible viscous flow. For the compressible Navier-Stokes system (1.1), Sueur [24] gave

the following sufficient condition for the convergence holding from the compressible vis-

cous flow to the inviscid flow:

ε

∫
(0,T )×Γcε

(
ρ|u|2
d2Ω

+
ρ2(u · n)2

d2Ω
+ |∇u|2

)
dxdt → 0 when ε → 0, (1.3)

where u · n denotes the normal component of u, dΩ(x) is the distance of x ∈ Ω to the

boundary ∂Ω, and Γcε = {x ∈ Ω| dΩ(x) ≤ cε} for a positive c > 0. By using the Hardy

inequality, one can regard (1.3) as an extension of Kato’s result in the compressible flow.

Besides (1.3), there are some criteria for the validity of the small viscosity limit for the

compressible viscous flow; see [2].

The main proposal of this work is to weaken the above condition (1.3) to include only

the tangential or the normal component of velocity in the integrand to have the small

viscosity limit for the problem (1.1) in the energy space L∞(0, T ;L2(Ω)). By developing

the idea of [25], we improve the result of [24] by requiring only the second term in (1.3),

at the cost of increasing the width of the boundary layer. Moreover, we shall obtain

another similar condition with the integrand only containing tangential component of

the velocity.

This paper is organized as follows. In Section 2, we recall the definition of the weak

solutions to the compressible Navier-Stokes system with no-slip condition, and some

results on existence of solutions to problems (1.1) and (1.2), then state the main result

of this paper. In Section 3, we introduce an important relative energy inequality similar

to that given in [24]. Finally, we prove the main result in Section 4.
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2. Preliminaries and the main result. In the following calculation, we shall use

the notation o(1) or O(1) to denote a quantity converging to zero or being bounded

respectively, as ε → 0, and C to denote a generic constant that may change from line to

line.

For the system given in (1.1), first assume the lower bounds on μ and η entail that

the tensor product

S(∇u) : ∇u =
∑

1≤i,j≤3

μ

2
(∂iuj + ∂jui)

2 + (η − 2

3
μ)|divu|2

is a positively definite quadratic form with respect to (∂iuj)1≤i,j≤3, and there exists a

constant C0 > 0 such that for any u ∈ H1(Ω),∫
Ω

S(∇u) : ∇udx ≥ C0

∫
Ω

|∇u|2dx. (2.1)

Let’s recall the definition of weak solutions to the compressible Naiver-Stokes equations

with no-slip condition, cf. [8]:

Definition 2.1. For a fixed T >0, we say that (ρ, u) is a finite energy weak solution

of the problem (1.1) for the compressible Navier-Stokes system with no-slip boundary

condition on [0, T ] associated to the initial data satisfying

ρ0 ≥ 0, ρ0 ∈ Lγ(Ω), ρ0|u0|2 ∈ L1(Ω), (2.2)

if:

ρ ∈ Cw([0, T ];L
γ(Ω)), ρu ∈ Cw([0, T ];L

2γ
γ+1 (Ω)),

u ∈ L2([0, T ];H1
0 (Ω)), ρu2 ∈ Cw([0, T ];L

1(Ω)),

satisfy the problem (1.1) in the sense of distributions, and the energy inequality:

E(ρ(σ, ·), u(σ, ·)) + ε

∫ σ

0

∫
Ω

S(∇u) : ∇udxdt ≤ E(ρ0, u0) (2.3)

holds for almost all σ ∈ [0, T ], where

E(ρ, u) =
∫
Ω

E(ρ, u)dx, with E(ρ, u) :=
1

2
ρ|u|2 +H(ρ) and H(ρ) :=

ργ

γ − 1
.

The following existence of such a weak solution of (1.1) was given in [9, 15]:

Proposition 2.1. Let (ρ0, u0) satisfy the assumption (2.2), for any fixed T > 0, there

exists a finite energy weak solution of the problem (1.1) for the compressible Navier-

Stokes equations on [0, T ].

Also, the following existence of a strong solution to the problem (1.2) for the com-

pressible Euler equations can be found in many works; cf. [1, 3]:

Proposition 2.2. Assume that ρE0 , u
E
0 ∈ H3(Ω) satisfy the compatibility conditions of

the problem (1.2), and 0 < infΩ ρE0 ≤ supΩ ρE0 < ∞, then there exist T > 0 and a unique

solution (ρE, uE) of (1.2) in [0, T ]× Ω satisfying

0 < inf
(0,T )×Ω

ρE ≤ sup
(0,T )×Ω

ρE < ∞,
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and

∂j
t u

E , ∂j
t ρ

E ∈ C(0, T ;H3−j(Ω)), j = 0, 1, 2.

Denote by

dΩ(x) := dist(x, ∂Ω) and Γε := {x ∈ Ω| dΩ(x) < ε}
for ε > 0 small enough.

The main result of this paper is as follows:

Theorem 2.1. Let (ρE , uE) be a strong solution of the Euler equations on [0, T ] corre-

sponding to an initial data (ρE0 , u
E
0 ) as given in Proposition 2.2, and (ρε, uε) be a weak

solution of the compressible Navier-Stokes equations (1.1) on [0, T ] with initial data

(ρε0, u
ε
0) satisfying (2.2) for any ε ∈ (0, 1), as given in Proposition 2.1. Assume that

‖ ρε0 − ρE0 ‖Lγ(Ω) +

∫
Ω

ρε0|uε
0 − uE

0 |2dx → 0 when ε → 0, (2.4)

we have

sup
t∈(0,T )

(
‖ ρε − ρE ‖Lγ(Ω) +

∫
Ω

ρε|uε − uE |2dx
)
(t) → 0 when ε → 0

if one of the following conditions holds:

ε

∫
(0,T )×Γδ

ρε2(uε · n)2
d2Ω

dxdt → 0 when ε → 0, (2.5)

ε

∫
(0,T )×Γδ

ρε2(uε · τ )2
d2Ω

dxdt → 0 when ε → 0, (2.6)

where uε ·n and uε ·τ denote the normal and the tangential components of uε respectively,

and δ → 0 when ε → 0, with ε = o(δ).

3. Relative energy inequality. As in [24], we introduce the following relative en-

ergy E([ρ, u]|[r, U ]) of (ρ, u) with respect to (r, U):

E([ρ, u]|[r, U ]) :=

∫
Ω

E([ρ, u]|[r, U ])dx,

where

E([ρ, u]|[r, U ]) =
1

2
ρ|u− U |2 +H(ρ|r),

with

H(ρ|r) = ργ

γ − 1
− γ(ρ− r)rγ−1

γ − 1
− rγ

γ − 1
.

We shall use the following inequality of relative energy frequently, which has been given

in [10, 24].

Lemma 3.1. For any compact set K ⊂ (0,∞), there exist two positive constants C1 and

C2 such that for any ρ ≥ 0 and r ∈ K,

C1(|ρ− r|21|ρ−r|<1+ |ρ− r|γ1|ρ−r|≥1) ≤ H(ρ|r) ≤ C2(|ρ− r|21|ρ−r|<1+ |ρ− r|γ1|ρ−r|≥1),

(3.1)

where 1|ρ−r|<1 or 1|ρ−r|≥1 denotes the classical characteristic functions.
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For completeness, we give the proof of this inequality.

Proof. i) If |ρ− r| ≤ 1, we use the Taylor expansion to get

H(ρ|r) = γ

2
((1− θ)ρ+ θr)γ−2|ρ− r|2

for some θ ∈ (0, 1). Since r ∈ K, ((1 − θ)ρ + θr)γ−2 is bounded from above and has a

positive lower bound. Thus we have the estimate (3.1) as |ρ− r| < 1.

ii) For |ρ− r| ≥ 1, we will discuss in two cases. If ρ− r ≥ 1, obviously we have

H(ρ|r) = (ρ− r)γ

γ − 1

(
ργ

(ρ− r)γ
− γrγ−1

(ρ− r)γ−1
− rγ

(ρ− r)γ

)
.

Since r ∈ K, we know that

ργ

(ρ− r)γ
− γrγ−1

(ρ− r)γ−1
− rγ

(ρ− r)γ
is bounded from above.

Let x := r
ρ−r ; then

ρ
ρ−r = 1 + x. Using the Taylor expansion we have

ργ

(ρ−r)γ − γrγ−1

(ρ−r)γ−1 − rγ

(ρ−r)γ = (1 + x)γ − γxγ−1 − xγ

=
∫ 1+x

x
tγ−2(1 + x− t)dt =

∫ 1

0
(z + x)γ−2(1− z)dz

≥
∫ 1

0
zγ−2(1− z)dz.

This implies that ργ

(ρ−r)γ − γrγ−1

(ρ−r)γ−1 − rγ

(ρ−r)γ has a positive lower bound.

When r − ρ ≥ 1, we have

H(ρ|r) = (r − ρ)γ

γ − 1

(
ργ

(r − ρ)γ
+

γrγ−1

(r − ρ)γ−1
− rγ

(r − ρ)γ

)
.

Since r ∈ K, we know that

ργ

(r − ρ)γ
+

γrγ−1

(r − ρ)γ−1
− rγ

(r − ρ)γ
is bounded from above.

Let x := ρ
r−ρ ; then

r
r−ρ = 1 + x. Using the Taylor expansion we have

ργ

(r−ρ)γ + γrγ−1

(r−ρ)γ−1 − rγ

(r−ρ)γ = xγ + γ(x+ 1)γ−1 − (x+ 1)γ

=
∫ x

1+x
tγ−2(x− t)dt =

∫ 1

0
(z + x)γ−2zdz

≥
∫ 1

0
zγ−1dz.

This implies that ργ

(ρ−r)γ − γrγ−1

(ρ−r)γ−1 − rγ

(ρ−r)γ has also a positive lower bound. Therefore,

the inequality (3.1) holds when |ρ− r| ≥ 1.

�
From Lemma 3.1 we deduce that for a bounded domain Ω and any compact K ⊂

(0,∞), there exist constants C3, C4 > 0 such that for any functions ρ : Ω → [0,∞) and

r : Ω → K, one has

C3‖ρ− r‖γLγ(Ω) ≤
∫
Ω

H(ρ|r)dx+

(∫
Ω

H(ρ|r)dx
) γ

2

, (3.2)

C4

∫
Ω

H(ρ|r)dx ≤ ‖ρ− r‖γLγ(Ω) + ‖ρ− r‖2Lγ(Ω).
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Before the end of this section, let us recall the following relative energy inequality

given in [8]:

Proposition 3.1. Let T > 0 and (ρ, u) be a finite energy weak solution of the com-

pressible Navier-Stokes system on [0,T] associated to an initial data (ρ0, u0) as given in

Proposition 2.1. Then, for any smooth pairs (r, U) : [0, T ]× Ω̄ → (0,∞)× R
3 satisfying

the no-slip condition U |∂Ω = 0, we have the following relative energy inequality:

E([ρ, u]|[r, U ])(σ) +

∫ σ

0

∫
Ω

εS(∇u) : ∇udxdt ≤ E0 +R(ρ, u, r, U)

for almost all σ ∈ (0, T ), where

E0 = E([ρ0, u0]|[r0, U0]), (3.3)

with r0(x) = r(0, x), U0(x) = U(0, x), and

R(ρ, u, r, U) :=

∫ σ

0

∫
Ω

ρ (∂tU + (u · ∇)U) · (U − u)dxdt+

∫ σ

0

∫
Ω

εS(∇u) : ∇Udxdt

+

∫ σ

0

∫
Ω

((r − ρ)∂tH
′(r) +∇H ′(r) · (rU − ρu)) dxdt

−
∫ σ

0

∫
Ω

(div U) (p(ρ)− p(r))dxdt.

4. Proof of the main result. In this section we will prove our main result, Theo-

rem 2.1.

At first we introduce a Kato type “fake” boundary layer: Let uE = (uE
1 , u

E
2 , u

E
3 )

T be

a smooth solution of (1.2) as given in Proposition 2.2. Define

v := ξ

(
dΩ(x)

δ

)
uE |∂Ω,

with

ξ ∈ C∞[0,∞), ξ(0) = 1, ‖ ξ ‖L∞< ∞, ‖ ξ′ ‖L∞< ∞, supp ξ ⊆ [0, 1),

and δ = δ(ε) tending to zero as ε → 0, which will be determined later.

It is obvious to see that v has the following properties:

vn = 0, ‖v‖L∞([0,T ]×Ω) = O(1), (4.1)

‖∂tv‖L∞([0,T ]×Ω) = O(1), ‖div v‖L∞([0,T ]×Ω) = O(1),

‖∂τvτ‖L∞([0,T ]×Ω) = O(1), ‖∂nvτ‖L∞([0,T ]×Ω) = O(δ−1),

where vn and vτ denote the normal and the tangential components of v, ∂n and ∂τ denote

the normal and the tangential derivatives respectively.
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For simplicity of notation, we drop the index ε, and simply denote by (ρ, u) the weak

solution of the problem (1.1) as given in Proposition 2.1. Using (2.1), (2.3) and the

assumption (2.4) of the initial data, we can easily obtain

‖ ρ ‖L∞([0,T ];Lγ(Ω)) + ‖ ρu2 ‖L∞([0,T ];L1(Ω)) +
√
ε ‖ ∇u ‖L2([0,T ]×Ω)≤ O(1). (4.2)

Set (r, U) = (ρE , uE − v). Since U |∂Ω = 0, by applying Proposition 3.1 we obtain

∫
Ω

(
1

2
ρ|u− U |2 +H(ρ|ρE)

)
dx+

∫ σ

0

∫
Ω

εS(∇u) : ∇udxdt ≤ E0 +R(ρ, u, r, U) (4.3)

with E0 being given in (3.3), and

R(ρ, u, r, U) :=

∫ σ

0

∫
Ω

ρ
(
∂tu

E + (uE · ∇)uE
)
· (U − u)dxdt

+

∫ σ

0

∫
Ω

ρ
(
((u− uE) · ∇)uE

)
· (U − u)dxdt

−
∫ σ

0

∫
Ω

ρ (∂tv + (u · ∇)v) · (U − u)dxdt+

∫ σ

0

∫
Ω

εS(∇u) : ∇Udxdt

+

∫ σ

0

∫
Ω

(
(ρE − ρ)∂tH

′(ρE) +∇H ′(ρE) · (ρEU − ρu)
)
dxdt

−
∫ σ

0

∫
Ω

(div U)(p(ρ)− p(ρE))dxdt.

From (1.2), we deduce

∂tu
E + (uE · ∇)uE = −∇H ′(ρE),

∂tH
′(ρE) + uE · ∇H ′(ρE) = −(divuE)p′(ρE).

As in [24], this gives

R(ρ, u, ρE, U)

=

∫ σ

0

∫
Ω

ρ
(
((u− uE) · ∇)uE

)
· (U − u)dxdt−

∫ σ

0

∫
Ω

ρ (∂tv + (u · ∇)v) · (U − u)dxdt

+

∫ σ

0

∫
Ω

εS(∇u) : ∇Udxdt−
∫ σ

0

∫
Ω

(div uE)
(
p(ρ)− p(ρE)− p′(ρE)(ρ− ρE)

)
dxdt

−
∫ σ

0

∫
Ω

(ρE − ρ)
(
v · ∇H ′(ρE)

)
dxdt+

∫ σ

0

∫
Ω

(div v)(p(ρ)− p(ρE))dxdt

=

6∑
j=1

Rj ,

with obvious notions Rj(1 ≤ j ≤ 6). Denoting by w = u − U , we will estimate each

Rj(1 ≤ j ≤ 6).
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i) For R1, by using (4.1), (4.2) and the Hölder inequality, we deduce

|R1| =
∣∣∣∣−

∫ σ

0

∫
Ω

ρ((u− uE)⊗ (u− uE)) : ∇uEdxdt−
∫ σ

0

∫
Ω

ρ(((u− uE) · ∇)uE) · vdxdt
∣∣∣∣

≤ C

∫ σ

0

∫
Ω

ρ|u− uE |2dxdt+ C

∫ σ

0

(∫
Ω

ρ|u− uE |2dx
) 1

2
(∫

Ω

ρ|v|2dx
) 1

2

dt

≤ C

∫ σ

0

∫
Ω

ρ|u− uE |2dxdt+ C

∫ σ

0

∫
Ω

ρ|v|2dxdt

≤ C

∫ σ

0

∫
Ω

ρ|w|2dxdt+ C

∫ σ

0

∫
Ω

ρ|v|2dxdt

≤ C

∫ σ

0

∫
Ω

ρ|w|2dxdt+ C

∫ σ

0

(∫
Ω

ργdx

) 1
γ
(∫

Γδ

|v|
2γ

γ−1 dx

) γ−1
γ

dt

≤ C

∫ σ

0

∫
Ω

ρ|w|2dxdt+ o(1).

ii) Decompose R2 into

R2 =

∫ σ

0

∫
Ω

ρ∂tv · wdxdt+
∫ σ

0

∫
Ω

ρ(u · ∇)v · wdxdt. (4.4)

By using (4.1), (4.2) and the Hölder inequality again, we estimate the above first term

by ∣∣∣∣
∫ σ

0

∫
Ω

ρ∂tv · wdxdt
∣∣∣∣ ≤C

∫ σ

0

(∫
Ω

ρ|w|2dx
) 1

2
(∫

Ω

ρ|∂tv|2dx
) 1

2

dt

≤C

∫ σ

0

∫
Ω

ρ|w|2dxdt+ o(1).

Now we turn to the second term on the right hand side of (4.4). For simplicity of

presentation, we consider the case of boundary being flat. As usual, one can treat the

problem with a general smooth boundary, by using the technique of localization and

transforming the curved boundary into a flat one. Without loss of generality we assume

that the domain lies in the upper half plane, Ω = {(x1, x2, x3)|(x1, x2) ∈ R
2, x3 > 0},

with {x3 = 0} being the boundary.

With the construction of v, we can decompose the second term on the right hand side

of (4.4) into

∫ σ

0

∫
Ω

ρ(u · ∇)v · wdxdt =
∫ σ

0

∫
Ω

ρ

2∑
i=1

⎡
⎣
⎛
⎝ 3∑

j=1

uj∂j

⎞
⎠ viwi

⎤
⎦ dxdt. (4.5)

By using (4.1), (4.2) and the Hölder inequality, we have∣∣∫ σ

0

∫
Ω
ρujwi∂jvidxdt

∣∣ ≤ ∣∣∫ σ

0

∫
Ω
ρwjwi∂jvidxdt

∣∣+ ∣∣∫ σ

0

∫
Ω
ρUjwi∂jvidxdt

∣∣
≤ C

∫ σ

0

∫
Ω
ρ|w|2dxdt+

∫ σ

0

(∫
Ω
ρ|wi|2dx

) 1
2
(∫

Ω
ρ|Uj∂jvi|2dx

) 1
2 dt

≤ C
∫ σ

0

∫
Ω
ρ|w|2dxdt+ o(1),

(4.6)

for i, j ∈ {1, 2}, by noting suppx3
v ⊆ [0, δ).
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Now let us study another two terms given in (4.5). By using (4.1), the Young inequality

and the Poincaré inequality we have∣∣∣∣
∫ σ

0

∫
Ω

ρu3w1∂3v1dxdt

∣∣∣∣ =
∣∣∣∣
∫ σ

0

∫
Ω

ρu3

dΩ
· w1dΩ∂3v1dxdt

∣∣∣∣
≤C

∫ σ

0

δ‖ρu3

dΩ
‖L2(Γδ)‖∂3w1‖L2(Ω)dt

≤C
δ2

ε
‖ρu3

dΩ
‖2L2((0,T )×Γδ)

+
C0ε

4
‖∂3w1‖2L2((0,T )×Ω). (4.7)

On the other hand, we can decompose this term into∫ σ

0

∫
Ω

ρu3w1∂3v1dxdt =

∫ σ

0

∫
Ω

ρu3u1∂3v1dxdt−
∫ σ

0

∫
Ω

ρu3U1∂3v1dxdt. (4.8)

For the first term on the right hand of (4.8), by using (4.1), the Young inequality and

the Poincaré inequality we have∣∣∣∣
∫ σ

0

∫
Ω

ρu3u1∂3v1dxdt

∣∣∣∣ =
∣∣∣∣
∫ σ

0

∫
Ω

ρu1

dΩ
· u3dΩ∂3v1dxdt

∣∣∣∣
≤ C

∫ σ

0

δ‖ρu1

dΩ
‖L2(Γδ)‖∂3u3‖L2(Ω)dt

≤ C
δ2

ε
‖ρu1

dΩ
‖2L2((0,T )×Γδ)

+
C0ε

4
‖∂3u3‖2L2((0,T )×Ω). (4.9)

Next we study the second term on the right hand side of (4.8). First from the definition

of weak solution of (1.1), we deduce that for any φ ∈ C1([0, T ]× Ω̄;R),∫
Ω

ρ(σ, ·)φ(σ, ·)dx−
∫
Ω

ρ0φ(0, ·)dx =

∫ σ

0

∫
Ω

(ρ∂tφ+ ρu · ∇φ)dxdt. (4.10)

Notice that v1u
E
1 ∈ C1([0, T ]× Ω̄;R3), we take φ = v1u

E
1 in (4.10) and get∫

Ω

ρ(σ, ·)(v1uE
1 )(σ, ·)dx−

∫
Ω

ρ0(v1u
E
1 )(0, ·)dx =

∫ σ

0

∫
Ω

(ρ∂t(v1u
E
1 ) + ρu · ∇(v1u

E
1 ))dxdt,

which implies∫ σ

0

∫
Ω
ρu3u

E
1 ∂3v1dxdt

=
∫
Ω
ρ(σ, ·)(v1uE

1 )(σ, ·)dx−
∫
Ω
ρ0(v1u

E
1 )(0, ·)dx−

∫ σ

0

∫
Ω
ρ∂t(v1u

E
1 )dxdt

−
∫ σ

0

∫
Ω
ρu2∂2(v1u

E
1 )dxdt−

∫ σ

0

∫
Ω
ρu1∂1(v1u

E
1 )dxdt−

∫ σ

0

∫
Ω
ρu3v1∂3u

E
1 dxdt.

(4.11)

Similarly, we have the identity∫ σ

0

∫
Ω

ρu3v1∂3v1dxdt =
1

2

∫
Ω

ρ(σ, ·)v21(σ, ·)dx− 1

2

∫
Ω

ρ0v
2
1(0, ·)dx− 1

2

∫ σ

0

∫
Ω

ρ∂t(v
2
1)dxdt

−
∫ σ

0

∫
Ω

ρu2v1∂2v1dxdt−
∫ σ

0

∫
Ω

ρu1v1∂1v1dxdt (4.12)
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by choosing φ = v21 in (4.10). Thus, from (4.11) and (4.12) we have by noting U1 =

uE
1 − v1,

∫ σ

0

∫
Ω
ρu3U1∂3v1dxdt

=
∫
Ω
ρ(σ, ·)(v1uE

1 )(σ, ·)dx−
∫
Ω
ρ0(v1u

E
1 )(0, ·)dx−

∫ σ

0

∫
Ω
ρ∂t(v1u

E
1 )dxdt

− 1
2

∫
Ω
ρ(σ, ·)v21(σ, ·)dx+ 1

2

∫
Ω
ρ0v

2
1(0, ·)dx+ 1

2

∫ σ

0

∫
Ω
ρ∂t(v

2
1)dxdt

−
∫ σ

0

∫
Ω
ρu2∂2(v1u

E
1 )dxdt−

∫ σ

0

∫
Ω
ρu1∂1(v1u

E
1 )dxdt−

∫ σ

0

∫
Ω
ρu3v1∂3u

E
1 dxdt

+
∫ σ

0

∫
Ω
ρu2v1∂2v1dxdt+

∫ σ

0

∫
Ω
ρu1v1∂1v1dxdt.

(4.13)

By using the Hölder inequality, we can deduce from (4.13) that

∣∣∣∣
∫ σ

0

∫
Ω

ρu3U1∂3v1dxdt

∣∣∣∣
≤C

(∫
Ω

|ρ(σ, ·)|γdx
) 1

γ

(∫
Γδ

∣∣∣∣(v1uE
1 )(σ, ·)−

1

2
v21(σ, ·)

∣∣∣∣
γ

γ−1

dx

) γ−1
γ

+ C

(∫
Ω

|ρ(0, ·)|γdx
) 1

γ

(∫
Γδ

∣∣∣∣(v1uE
1 )(0, ·)−

1

2
v21(0, ·)

∣∣∣∣
γ

γ−1

dx

) γ−1
γ

+ C

∫ σ

0

(∫
Ω

|ρ|γdx
) 1

γ

(∫
Γδ

∣∣∣∣∂t(v1uE
1 )−

1

2
∂t(v

2
1)

∣∣∣∣
γ

γ−1

dxdt

) γ−1
γ

dt

+ C

∫ σ

0

∫
Γδ

ρ
(
|∂2(v1uE

1 )|2 + |∂1(v1uE
1 )|2 + |v1∂3uE

1 |2 + |v1∂1v1|2|+ |v1∂2v1|2
)
dxdt

+ C

∫ σ

0

∫
Γδ

ρ|u|2dxdt,

which implies that

∣∣∣∣
∫ σ

0

∫
Ω

ρu3U1∂3v1dxdt

∣∣∣∣ ≤ C

∫ σ

0

∫
Ω

1

2
ρ|w|2dxdt+ o(1). (4.14)

By using (4.1) and (4.2), and plugging (4.9) and (4.14) into (4.8), we get

|
∫ σ

0

∫
Ω

ρu3w1∂3v1dxdt|

≤ C
δ2

ε
‖ρu1

dΩ
‖2L2(Γδ)

+
C0ε

4
‖∂3u3‖2L2(Ω) + C

∫ σ

0

∫
Ω

1

2
ρ|w|2dxdt+ o(1). (4.15)

One can get a similar estimate for the other term

∫ σ

0

∫
Ω

ρu3w2∂3v2dxdt
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given on the right hand of (4.5). Obviously we have

ε

∫ σ

0

∫
Ω

|∇w|2dxdt ≤ ε

∫ σ

0

∫
Ω

|∇u|2dxdt+ ε

∫ σ

0

∫
Ω

|∇v|2dxdt+ ε

∫ σ

0

∫
Ω

|∇uE |2dxdt

≤ ε

∫ σ

0

∫
Ω

|∇u|2dxdt+ C
ε

δ
+ o(1),

thus combining (4.5), (4.6), (4.7), (4.15) with (4.4) it follows

|R2| ≤ C

∫ σ

0

∫
Ω

1

2
ρ|w|2dx+

C0ε

2
‖∇u‖2L2((0,T )×Ω) + C

δ2

ε
‖ρu · n

dΩ
‖2L2((0,T )×Γδ)

+ C
ε

δ
+ o(1),

(4.16)

or

|R2| ≤C

∫ σ

0

∫
Ω

1

2
ρ|w|2dx+

C0ε

2
‖∇u‖2L2((0,T )×Ω) + C

δ2

ε
‖ρu · τ

dΩ
‖2L2((0,T )×Γδ)

+ C
ε

δ
+ o(1).

(4.16’)

iii) For R3, we have

|R3| ≤
∣∣∣∣ε
∫ σ

0

∫
Ω

S(∇u) : ∇uEdxdt

∣∣∣∣+
∣∣∣∣ε
∫ σ

0

∫
Ω

S(∇u) : ∇vdxdt

∣∣∣∣
≤ C0ε

8

∫ σ

0

∫
Ω

|∇u|2dxdt+ o(1) +
C0ε

8

∫ σ

0

∫
Ω

|∇u|2dxdt+ C
ε

δ

=
C0ε

4

∫ σ

0

∫
Ω

|∇u|2dxdt+ C
ε

δ
+ o(1).

The estimates of R4,R5 and R6 have been studied in [24]. For completeness we recall

them briefly.

|R4| =
∣∣∣∣(γ − 1)

∫ σ

0

∫
Ω

(div uE)H(ρ|ρE)dxdt
∣∣∣∣ ≤ C

∫ σ

0

∫
Ω

H(ρ|ρE)dxdt,

|R5| ≤C

∫ σ

0

∫
Ω

|ρE − ρ|21|ρ−r|<1dxdt+ C

∫ σ

0

∫
Ω

|v · ∇H ′(ρE)|2dxdt

+ C

∫ σ

0

∫
Ω

|ρE − ρ|γ1|ρ−r|≥1dxdt+ C

∫ σ

0

∫
Ω

|v · ∇H ′(ρE)|
γ

γ−1 dxdt

≤C

∫ σ

0

∫
Ω

H(ρ|ρE)dxdt+ o(1),

and

|R6|=
∣∣∣∣
∫ σ

0

∫
Ω

(div v)(p(ρ)− p(ρE)− p′(ρE)(ρ− ρE))dxdt+

∫ σ

0

∫
Ω

(div v)p′(ρE)(ρE− ρ)dxdt

∣∣∣∣
≤
∫ σ

0

‖div v‖L∞(Γδ)

∫
Ω

H(ρ|ρE)dxdt+ C

∫ σ

0

‖div v‖L2(Γδ)

(∫
Ω

H(ρ|ρE)dx
) 1

2

dt

+ C

∫ σ

0

‖div v‖
L

γ
γ−1 (Γδ)

(∫
Ω

H(ρ|ρE)dx
) 1

γ

dt

≤C

∫ σ

0

∫
Ω

H(ρ|ρE)dxdt+ o(1).
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Summing up all the above estimates for R1 to R6 with estimate (4.16) or (4.16’) of R2,

from (4.3) we get∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx+

∫ σ

0

∫
Ω

εS(∇u) : ∇udxdt

≤E0 + C

∫ σ

0

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dxdt+

3C0ε

4

∫ σ

0

∫
Ω

|∇u|2dx

+ C
ε

δ
+ C

δ2

ε
‖ρu · n

dΩ
‖2L2((0,T )×Γδ)

+ o(1),

or ∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx+

∫ σ

0

∫
Ω

εS(∇u) : ∇udxdt

≤E0 + C

∫ σ

0

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dxdt+

3C0ε

4

∫ σ

0

∫
Ω

|∇u|2dx

+ C
ε

δ
+ C

δ2

ε
‖ρu · τ

dΩ
‖2L2((0,T )×Γδ)

+ o(1).

From the assumption (2.4) and (3.2) we have E0 → 0 when ε → 0, thus from the above

two inequalities we get that by using (2.1),∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx ≤C

∫ σ

0

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dxdt

+ C
ε

δ
+ C

δ2

ε
‖ρu · n

dΩ
‖2L2((0,T )×Γδ)

+ o(1),

or ∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx ≤C

∫ σ

0

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dxdt

+ C
ε

δ
+ C

δ2

ε
‖ρu · τ

dΩ
‖2L2((0,T )×Γδ)

+ o(1),

which implies

sup
0≤t≤T

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx ≤ C

(
ε

δ
+

δ2

ε
‖ρu · n

dΩ
‖2L2((0,T )×Γδ)

)
+ o(1), (4.17)

or

sup
0≤t≤T

∫
Ω

(
1

2
ρ|w|2 +H(ρ|ρE)

)
dx ≤ C

(
ε

δ
+

δ2

ε
‖ρu · τ

dΩ
‖2L2((0,T )×Γδ)

)
+ o(1), (4.17’)

by using the Gronwall inequality, as δ → 0 when ε → 0.

The above results that we obtained are summarized in the following proposition.

Proposition 4.1. Assume that T > 0, and (ρE, uE) is the strong solution of the prob-

lem (1.2) of the Euler equations corresponding to an initial data (ρE0 , u
E
0 ) as given in

Proposition 2.2. For any ε ∈ (0, 1), let (ρε0, u
ε
0) be an initial data satisfying (2.2), and

(ρε, uε) be the associated weak solution of the compressible Navier-Stokes equations (1.1)
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on [0, T ] as given in Proposition 2.1. Set w = uε − uE + v with v being the artificial

boundary layer given at the beginning of this section, and

H(ρ|r) = ργ

γ − 1
− γ(ρ− r)rγ−1

γ − 1
− rγ

γ − 1
.

When

‖ ρε0 − ρE0 ‖Lγ(Ω) +

∫
Ω

ρε0|uε
0 − uE

0 |2dx → 0 when ε → 0, (4.18)

then, we have

sup
0≤t≤T

∫
Ω

(
1

2
ρε|w|2 +H(ρε|ρE)

)
dx ≤ C

(
ε

δ
+

δ2

ε
‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

)
+ o(1),

(4.19)

and

sup
0≤t≤T

∫
Ω

(
1

2
ρε|w|2 +H(ρε|ρE)

)
dx ≤ C

(
ε

δ
+

δ2

ε
‖ρ

εuε · τ
dΩ

‖2L2((0,T )×Γδ)

)
+ o(1) (4.20)

for any δ = δ(ε) satisfying δ → 0 when ε → 0.

It remains to prove the results given in Theorem 2.1, which will be obtained by using

Proposition 4.1 and developing an idea similar to that given in [25].

Proof of Theorem 2.1. We shall only prove the condition (2.5) by using the inequality

(4.19), while (2.6) can be derived similarly from the inequality (4.20).

Denote by α = ε
δ ; then δ2

ε = ε
α2 . Obviously, as a function of a > 0, a +

ε
a2 ‖ρεuε·n

dΩ
‖2L2((0,T )×Γδ)

attains its minimum at

a = αct =

(
2ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

.

Now fix α, that means δ being fixed. If αct ≥ α, then δct =
ε

αct
≤ ε

α = δ, and

αct +
ε

α2
ct

‖ρ
εuε · n
dΩ

‖2L2((0,T )×Γδct )
≤ αct +

ε

α2
ct

‖ρ
εuε · n
dΩ

‖2L2((0,T )×Γδ)

= min
a>0

(
a+

ε

a2
‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

)

=
3

2

(
2ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

. (4.21)

Since

αct =

(
2ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

−→ 0

as ε → 0 under the assumption (2.5), we know ε = αctδct = o(δct). Moreover, from δ →
as ε → 0 we get that δct ≤ δ gives rise to δct → 0 when ε → 0. Thus, the inequality

(4.19) holds for δ = δct. Together with (4.21), we obtain

sup
0≤t≤T

∫
Ω

(
1

2
ρε|w|2 +H(ρε|ρE)

)
dx ≤ C

(
ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

+ o(1). (4.22)
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If αct < α, that is, (
2ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

< α,

we know

ε‖ρ
εuε · n
dΩ

‖2L2((0,T )×Γδ)
<

α3

2
,

which implies

α+
ε

α2
‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)
<

3α

2
. (4.23)

Combining (4.19),(4.22) with (4.23), we deduce that∫
Ω

1

2
ρε|w|2 +H(ρε|ρE)dx ≤ Cmax

{
α,

(
ε‖ρ

εuε · n
dΩ

‖2L2((0,T )×Γδ)

) 1
3

}
+ o(1). (4.24)

Noticing from the definition of w that∫
Ω

1

2
ρε|uε − uE |2dx ≤

∫
Ω

1

2
ρε|w|2dx+

∫
Ω

1

2
ρε|v|2dx =

∫
Ω

1

2
ρε|w|2dx+ o(1),

from (3.2) and (4.24) we get the conclusion given in Theorem 2.1 in the case of (2.5), as

δ = δ(ε) is chosen such that ε = o(δ), and δ → 0 as ε → 0. �
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