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Abstract. The Evans function is a powerful tool for the stability analysis of viscous

shock profiles; zeros of this function carry stability information. In the one-dimensional

case, it is typical to compute the Evans function using Goodman’s integrated coordinates

(1986); this device facilitates the search for zeros of the Evans function by winding number

arguments. Although integrated coordinates are not available in the multidimensional

case, we show here that there is a choice of coordinates which gives similar advantages.

1. Introduction.

1.1. Overview. The Evans function has proven to be a potent theoretical and nu-

merical tool for the stability analysis of viscous shock profiles; see, e.g., [9, 19]. In the

multidimensional setting, the Evans function D is a function of frequencies (λ, ξ) ∈
{Reλ ≥ 0} ×Rd−1 where the complex spectral parameter λ is dual to time and the vec-

tor ξ is dual to the transverse spatial directions. Zeros of D with Reλ > 0 correspond to

perturbations that grow exponentially in time. A central task in the stability analysis of

viscous shock profiles is therefore the determination of the number and location of zeros

(if any) of D in the unstable half space. Indeed, generalized spectral stability—roughly,
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the absence of such zeros—is a sufficient condition for nonlinear asymptotic stability with

explicit algebraic-in-time rates of decay in Lp, p ≥ 2; see [19]. The precise statement of

generalized spectral stability is formulated in terms of the Evans function itself. For im-

portant physical problems, e.g., gas dynamics or magnetohydrodynamics, locating zeros

of the Evans function and verifying this Evans-function condition is a task that requires

the numerical approximation of D.

We discuss here one important practical aspect of computing Evans functions associ-

ated with viscous shock profiles for multidimensional systems of conservation laws with

physically appropriate “real” or partially parabolic viscosity. In particular, we develop

the basic properties of various formulations of the Evans function based on particular

choices of the phase variables in the first-order formulation of the associated eigenvalue

problem. We call these the flux, the balanced flux, and the modified balanced flux for-

mulations, and we show that these formulations have concrete benefits for the numerical

computation of D. The flux coordinates have their origins in the work of Goodman [7,8],

and the balanced flux formulation was originally introduced by Plaza & Zumbrun [17]

for the purpose of analyzing the spectral stability of small-amplitude multidimensional

relaxation shocks. Here, we propose a further modification of these coordinates that

preserves the desirable property of analyticity with respect to the complex eigenvalue

parameter.

To put these developments in context, we recall that in one space dimension it is a

standard practice to use Goodman’s tactic of integrated coordinates [7]. Importantly,

this maneuver removes the translational eigenvalue at the origin and is advantageous

both for energy estimates [11] and for computation of the Evans function [3,9]. We show

that our balanced flux coordinates and modified balanced flux coordinates also have this

desirable property. Indeed, we give a new, transparent proof of this fact which recovers

Zumbrun & Serre’s fundamental link [18] between low-frequency behavior of the (viscous)

Evans function and the (inviscid) Lopatinskĭı determinant (see Proposition 4.1 below).

Moreover, unlike the balanced flux formulation, our modified version retains analyticity

with respect to λ while still reducing to the usual integrated Evans function when ξ = 0

(the one-dimensional case). For each constant ξ-slice of frequency space, this is perhaps

the truest generalization of the integrated Evans function to the multidimensional setting.

However, some of the radial uniformity is lost.

Both of our balanced flux formulations accommodate multidimensional systems with

real viscosity and are therefore applicable to physical systems such as gas dynamics or

magnetohydrodynamics. Indeed, one significant benefit of the flux framework presented

here is that it provides a systematic choice of “good” coordinates for Evans-function

computations for the stability of viscous shock profiles. We note that, for example, the

coordinates used for the Evans-function computations for one-dimensional gas dynamics

in [9] were created on an ad hoc basis. That is, though they were based on Goodman’s

integrated coordinates, the actual construction relied heavily on the precise form of the

equations of compressible gas dynamics. Here, under minimal hypotheses, we show—for

a broad class of equations in one and several space dimensions—that there is a choice

of coordinates that accommodates real viscosity, maintains analyticity with respect to

the spectral paramter λ, and removes the translational eigenvalue at the origin. These
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features are all important for the practical treatment of shock stability by numerical

computation of the Evans function. Finally, the utility of our proposed formulation is

demonstrated by numerical computations of the Evans function for multidimensions in

the fundamental settings of isentropic [1] and nonisentropic [10] gas dynamics and MHD

[4]; collectively, these are the first successful multidimensional Evans-function computa-

tions for viscous shock waves.

1.2. Plan. In §2 we establish the setting of our analysis. Namely, we outline the

rather general framework of hyperbolic–parabolic systems of conservation laws to which

our flux formulations apply. In §3 we describe the balanced flux formulation and its

modification. For the convenience of the reader, we describe the full development in

both the important special case d = 1 and in the general case d > 1. This slight

repetition allows us to highlight the connection between the balanced flux form and the

oft-used integrated coordinates in one dimension. We establish the main result of the

paper—a proof detailing the low-frequency behavior of the flux forms—in §4. Finally,

in conclusion, we discuss some practical consequences in §5. Appendix A outlines the

generalization of integrated coordinates to the case that the lower-left-hand block of the

viscosity matrices does not vanish; see Remark 2.1.

2. Preliminaries.

2.1. Conservation laws with viscosity. A number of physical systems take the form of

conservation laws with partially parabolic or “real” viscosity. That is, they are partial

differential equations of block hyperbolic–parabolic type with form

f0(U)t +

d∑
j=1

f j(U)xj
=

d∑
j,k=1

(Bjk(U)Uxk
)xj

.

Here, x = (x1, . . . , xd) ∈ R
d, t ∈ R, and U ∈ R

n with

f j : Rn → R
n , j = 0, 1, . . . , d .

The d2 viscosity matrices Bjk ∈ R
n×n are each assumed to have the block structure

Bjk(U) =

(
0 0

0 bjk(U)

)
. (2.1)

The blocks in (2.1) have sizes(
r × r r × (n− r)

(n− r)× r (n− r)× (n− r)

)
, (2.2)

and we write U as

U =

(
u1

u2

)
, u1 ∈ R

r , u2 ∈ R
(n−r) , (2.3)

to respect this block structure. We write Aj(U) := df j(U) for j = 0, 1, . . . , d, and, when

necessary, we write any n× n matrix M in block form

M =

(
M11 M12

M21 M22

)
, (2.4)
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with block sizes as in (2.2). We also write f j
� with � = 1 (or 2) to denote the first r (or

the last n− r) component functions of the flux f j .

Our interest is in the stability of planar viscous shock profiles. Thus, we consider

traveling-wave solutions of the form

U(x, t) = Ū(x1 − st) , lim
z→±∞

Ū(z) = U± , (2.5)

and, given our interest in the stability of these waves, our first step is to transform to

moving coordinates x̃1 = x1 − st in which Ū becomes stationary. This gives (dropping

tildes) the modified system of equations

f0(U)t +
(
f1(U)− sf0(U)

)
x1

+

d∑
j=2

f j(U)xj
=

d∑
j,k=1

(Bjk(U)Uxk
)xj

. (2.6)

We make the structural assumptions

det(A1
11(Ū)− sA0

11(Ū)) �= 0 (hyperbolic noncharacteristicity) (H1)

and

σ
(∑

ηjηkb
jk(Ū)

)
≥ θ|η|2, θ > 0, for all η = (η1, . . . , ηd) ∈ R

d (parabolicity). (H2)

Remark 2.1. Our structural conditions apply in complete generality to the principal

equations of continuum mechanics: compressible gas dynamics, MHD, and viscoelasticity.

The methods described here can be extended to the case that the viscosity matrices have

nonzero lower-left-hand blocks, i.e.,

Bjk(U) =

(
0 0

bjk21(U) bjk22(U)

)
,

under (H2) and the modified hyperbolic condition

det(A1
11 −A1

12(b
11
22)

−1b1121 − sA0
11)(Ū) �= 0 , (H1′)

introducing an “approximate parabolic coordinate” ǔ2 = u2 + b−1
22 b21u2 similarly as in

[14,15]. This is essential, for example, if there does not exist a true parabolic variable, i.e.,

b12∂u1
+b22∂u2

is not a matrix multiple of ∇U ũ2(U), ũ2 ∈ R
n−r for some “exact parabolic

coordinate” ũ2. It can be useful also if it is more convenient to work with a coordinate

other than the true parabolic one. However, in practice we find it more convenient to

work with the actual parabolic variable, and so, to simplify the presentation, we will

restrict our attention to the main case (2.1), (H1), (H2). We briefly treat the more

general case (in one space dimension) in Appendix A.

2.2. Standing-wave profiles & the eigenvalue problem.

2.2.1. Profile solutions. Examining (2.6), we see that the standing wave Ū must satisfy

the ordinary differential equation (′ = d/dx1)

f̃1(Ū)′ = (B11(Ū)Ū ′)′ , f̃1(Ū) := f1(Ū)− sf0(Ū) . (2.7)

Evidently, equation (2.7) can be integrated once to

B11U ′ = f̃1(Ū)− f̃1(U−) . (2.8)
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Note that, using block structure, we may rewrite (2.8) as

0 = f̃1
1 (Ū)− f̃1

1 (U−) , (2.9a)

b11(Ū)ū′
2 = f̃1

2 (Ū)− f̃1
2 (U−) . (2.9b)

We expect that the algebraic equation (2.9a) defines a submanifold of Rn on which (2.9b)

defines a flow. To solve for u1 in terms of u2, locally at least, the implicit function theorem

requires that det Ã1
11(Ū) �= 0, or, equivalently, (H1). This motivates the introduction of

assumption (H1).

An obvious necessary condition for the existence of a traveling-wave connection is

that the end states U± must be equilibria of (2.8). Therefore, from (2.9), we obtain

immediately the Rankine–Hugoniot condition

f̃1(U+)− f̃1(U−) = 0 . (RH)

Remark 2.2 (Hyperbolic classification). We denote by i+ the number of character-

istics incoming to the shock from the right and by i− the number of characteristics

incoming from the left. We write i := i++ i− for the total number of incoming character-

istics. Then, the hyperbolic classification of Ū(·), i.e., the classification of the associated

hyperbolic shock (U−, U+), is given in the table below.

Shock Type i

Lax i = n+ 1

Undercompressive (u.c.) i ≤ n

Overcompressive (o.c.) i ≥ n+ 2

2.2.2. Linearization, eigenvalue problem. Supposing, as above, that U(x, t) = Ū(x1)

is a steady solution of (2.6), we linearize about Ū to obtain an equation describing the

approximate evolution of a perturbation also called U = U(x, t). The linearized equations

for U read

Ā0Ut +
d∑

j=1

(ĀjU)xj
=

d∑
j,k=1

(B̄jkUxk
)xj

, (2.10)

where

Ā1U := A1(Ū)U − sA0(Ū)− dB11(Ū)(U, Ūx1
)

and

Ā0 := A0(Ū) , ĀjU := Aj(Ū)U − dBj1(Ū)(U, Ūx1
) , (j �= 1) , B̄jk := Bjk(Ū) .

Taking the Laplace transform in time (dual variable λ) and Fourier transform (dual

variable ξ = (ξ2, . . . , ξd)) in the transverse spatial directions (x2, . . . , xd), finally, we

obtain the generalized eigenvalue equation

λĀ0U + (Ā1U)′ +
d∑

j=2

iξjĀ
jU = (B̄11U ′)′ +

d∑
k=2

(iξkB̄
1kU)′

+
d∑

j=2

iξjB̄
j1U ′ −

d∑
j,k=2

ξjξkB̄
jkU . (2.11)

In (2.11) we have now used U = U(x1, λ, ξ) to represent the transformed perturbation.

Now, a basic criterion for stability of the viscous profile Ū is that the eigenvalue equation
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(2.11) should have no solutions which decay at x1 = ±∞ with (λ, ξ) ∈ {Reλ > 0}×Rd−1.

Searching for such values of (λ, ξ) is the spectral stability problem, and the Evans function

D = D(λ, ξ) vanishes precisely at such values. Our focus, then, is on locating zeros (if

any) of D. It is clearly advantageous to design an Evans function with as much structure

as possible to aid the search for unstable zeros. For example, analyticity is valuable; it

allows the search for zeros to proceed using the argument principle.

2.2.3. First-order systems. One may visualize the construction of the Evans function

as follows. The basic set-up is based on reformulating the eigenvalue problem (2.11) as

a first-order system of differential equations

W ′ = A(x1;λ, ξ)W . (2.12)

We note that our block structure hypotheses imply that A is an N × N matrix with

N = (2n − r). If Ū decays rapidly to its limiting values U± as x1 → ±∞, then the

coefficient matrix A should also have constant (with respect to x1) limiting values. We

denote these by A±(λ, ξ).

Then, the Evans function is built out of the subspaces of solutions of (2.12) which grow

at −∞ and decay at +∞; the construction of these subspaces starts with an analysis

of the constant-coefficient limiting system W ′ = A±(λ, ξ)W . That is, if the collection

{W+

1 , . . . ,W
+

k } forms a basis for the solutions of (2.12) that decay at +∞ and, similarly,

{W−
k+1, . . . ,W

−
N} spans the solutions that grow at −∞, the Evans function can be written

as

D(λ, ξ) := det(W+

1 , . . . ,W
+

k ,W
−
k+1, . . . ,W

−
N )|x1=0 . (2.13)

Evidently, if D(λ◦, ξ◦) = 0, then (2.13) shows that there is a linear dependence between

these two subspaces. But then there must be a solution which decays at both ±∞, an

eigenfunction.

Remark 2.3. Clearly, different choices of bases lead to distinct Evans functions, and

the Evans function is highly nonunique. However, the construction guarantees that each

representative chosen from the family of Evans functions has the fundamental property

that it vanishes at eigenvalues of (2.11). Indeed, in a companion paper, we discuss how

differing coordinate systems at the level of original partial differential equation (2.6)

influence the character of the resulting Evans function(s) [1]. A related issue is the

previously mentioned use of integrated coordinates and the ability to manipulate the

character of the Evans function through the formulation of the first-order system (2.12).

For example, there are several choices of the phase variable W . Even though all of these

Evans functions carry the same stability information, different versions may be more

amenable to analysis or computation in various regimes/settings. For example, when

counting zeros by the argument principle, it may be useful to limit excessive winding

and unwinding.

3. Formulating the Evans function.

3.1. Flux variables and integrated coordinates (d = 1). For its independent interest

and to showcase the relationship between the flux and balanced flux variables we intro-

duce below and the integrated coordinates that are commonly used in one-dimensional

Evans-function calculations, in this subsection we specialize to a single space dimension
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(d = 1). We recall that, when formulated in terms of integrated coordinates, the Evans

function has the useful property that, for Lax or overcompressive shocks, it does not

vanish at the origin. Among other benefits, this feature is useful for the practical com-

putation of the Evans function. While integrated coordinates do not naturally generalize

to the multidimensional setting, the flux and balanced flux forms do; we describe this

generalization to the case d > 1 below in §3.2.
3.1.1. Integrated coordinates. In the case d = 1, the linearized equation (2.11) collapses

(ξ = 0), and we may write the associated eigenvalue equation as

λĀ0U + (Ā1U)′ = (B̄11U ′)′ . (3.1)

To obtain the integrated Evans function, we define

w := Ā0U, W ′ = w, (3.2)

and we find, integrating (3.1),

λW + Ā1(Ā0)−1W ′ = B̄11((Ā0)−1W ′)′ . (3.3)

To write (3.3) as a first-order system, we set

Z :=

(
W

(0, In−r)(Ā
0)−1W ′

)
.

We thus have Z ′ = Aint(x;λ)Z, where (denoting by a the inverse of the matrix Ā1
11,

recall (H1))

Aint(x;λ) =

⎛
⎝ −λĀ0

11a 0 Ā0
12 − Ā0

11aĀ
1
12

−λĀ0
21a 0 Ā0

22 − Ā0
21aĀ

1
12

−λ(b̄11)−1Ā1
21a λ(b̄11)−1 (b̄11)−1(Ā1

22 − Ā1
21aĀ

1
12)

⎞
⎠ (3.4)

is obtained by solving for (I, 0)(Ā0)−1W ′, whence, together with the coordinate

(0, I)(Ā0)−1W ′, we obtain (Ā0)−1W ′ and thus W ′. For this step, multiply (3.3) by

(I, 0) to obtain

λW1 = −(Ā1
11, Ā

1
12)(Ā

0)−1W ′ ,

from which we see that, provided Ā1
11 is invertible (same assumption needed for flux

variables, and indeed even for framing via implicit function theorem of the profile equa-

tion; see discussion below (2.9)), we can solve for (I, 0)(Ā0)−1W ′ in terms of the known

coordinates W and (0, I)(Ā0)−1W ′ of Z. We shall not carry out this computation in

detail, as we shall reproduce it by an equivalent and somewhat simpler derivation below.

3.1.2. Flux variables. We now describe an alternative way to write the eigenvalue

equation as a first-order system. To write the eigenvalue equation in flux variables, we

observe that (3.1) can be rewritten as

λĀ0U = (B̄11U ′ − Ā1U)′ , (3.5)

which motivates the definition of the flux variable

f := B̄11U ′ − Ā1U , (3.6)



538 B. BARKER, J. HUMPHERYS, G. LYNG, AND K. ZUMBRUN

or

f1 = −Ā1
11u1 − Ā1

12u2 , (3.7a)

f2 = b̄11u′
2 − Ā1

21u1 − Ā1
22u2 , (3.7b)

with

f ′ = λĀ0U. (3.8)

Provided that the r×r matrix Ā1
11 is invertible—as assumed in (H1), we see immediately

from (3.7a) that

u1 = −(Ā1
11)

−1
(
f1 + Ā1

12u2

)
. (3.9)

Thus, using (3.9), we may write (3.1) as a first-order system in flux variables as

W ′ = Af(x1;λ)W , (3.10)

with

W =

(
f

u2

)
, (3.11)

and the coefficient matrix Af given by

Af(x1;λ) =

⎛
⎝ −λĀ0

11a 0 λ(Ā0
12 − Ā0

11aĀ
1
12)

−λĀ0
21a 0 λ(Ā0

22 − Ā0
21aĀ

1
12)

−(b̄11)−1Ā1
21a (b̄11)−1 (b̄11)−1(Ā1

22 − Ā1
21aĀ

1
12)

⎞
⎠ . (3.12)

Remark 3.1. Perhaps the quickest route to the form of Af comes from multiplying

(3.6) from the left by the matrix(
(Ā1

11)
−1 0

−Ā1
21(Ā

1
11)

−1 In−r

)
, (3.13)

from which we immediately obtain(
0 0

0 b̄11

)(
u′
1

u′
2

)
−
(
I (Ā1

11)
−1Ā1

12

0 Ā1
22 − Ā1

21(Ā
1
11)

−1Ā1
12

)(
u1

u2

)
=

(
(Ā1

11)
−1f1

−Ā1
21(Ā

1
11)

−1f1 + f2

)
. (3.14)

Observe that the first row of (3.14) gives (3.9), and the row operation in (3.13) has

eliminated u1 from the second row.

3.1.3. Balanced flux variables. Introducing the balanced flux variable

f� := λ−1(B̄11U ′ − Ā1U) =
f

λ
, (3.15)

and

W � =

(
f�

u2

)
, (3.16)

effects a scaling transformation on (3.10); we find in this case that the eigenvalue ODE

can be written as

(W �)′ = Abf(x1;λ)W
� , (3.17)

with

Abf(x1;λ) =

⎛
⎝ −λĀ0

11a 0 Ā0
12 − Ā0

11aĀ
1
12

−λĀ0
21a 0 Ā0

22 − Ā0
21aĀ

1
12

−λ(b̄11)−1Ā1
21a λ(b̄11)−1 (b̄11)−1(Ā1

22 − Ā1
21aĀ

1
12)

⎞
⎠ (3.18)

identical to Aint. That is, the balanced flux and integrated formulations exactly agree.
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Remark 3.2. Noting that the balanced flux variable f� satisfies

(f�)′ = λ−1(B̄U ′ − Ā1U)′ = Ā0U = w, (3.19)

we see that (f�)′ and W ′ agree, so that the ODEs must be equivalent. Moreover, keeping

in mind the relation (3.19), one may check directly that the two described derivations

coincide.

3.2. Flux, balanced flux, and modified balanced flux variables (d > 1).

3.2.1. Flux variables (d > 1). We now proceed to describe the flux formulation for

the multidimensional system (2.6). The starting point is the eigenvalue equation (2.11).

First, we note that⎛
⎝ d∑

j=2

iξjB̄
j1U

⎞
⎠

′

=
d∑

j=2

iξj(B̄
j1)′U +

d∑
j=2

iξjB̄
j1U ′ ,

so that we may rearrange (2.11) to

λĀ0U +

d∑
j=2

iξjÃ
jU +

d∑
j,k=2

ξjξkB̄
jkU =

⎛
⎝B̄11U ′ +

d∑
j=2

iξjB̄
jU − Ā1U

⎞
⎠

′

, (3.20)

where Ãj := Āj + (B̄j1)′ and B̄j := B̄j1 + B̄1j . Thus, we may define the flux variable f

by

f := B̄11U ′ +
d∑

j=2

iξjB̄
jU − Ā1U , (3.21)

and the goal is to recast (3.20) as a first-order system. W ′ = Af(x1;λ, ξ)W with

W =

(
f

u2

)
.

We write B̄ξ :=
∑

j �=1 ξjB̄
j (and similarly, Ãξ :=

∑
j �=1 ξjÃ

j , B̄ξξ, and so on), and we

note that our block structure assumption implies that B̄ξ has the form

B̄ξ =

(
0 0

0 b̄ξ

)
.

Thus, we may perform a simplifying row operation on (3.21); we multiply on the left by(
(Ā1

11)
−1 0

−Ā1
21(Ā

1
11)

−1 I

)
, (3.22)

Equation (3.21) then becomes

(
0 0

0 b̄11

)(
u′
1

u′
2

)
+

(
0 0

0 ib̄ξ

)(
u1

u2

)
−
(
I (Ā1

11)
−1Ā1

12

0 Ā1
22 − Ā1

21(Ā
1
11)

−1Ā1
12

)(
u1

u2

)

=

(
(Ā1

11)
−1f1

−Ā1
21(Ā

1
11)

−1f1 + f2

)
. (3.23)

Evidently, the third row of Af can be read off from (3.23). In addition, (3.23) contains

the fundamental identity

−u1 − (Ā1
11)

−1Ā1
12u2 = (Ā1

11)
−1f1 (3.24)
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which allows us to eliminate u1 in favor of u2 and f1. To obtain the first two rows of Af ,

we write

f ′ = λĀ0U + iÃξU + B̄ξξU (3.25)

in terms of components, so that

f ′1 = λĀ0
11u1 + λĀ0

12u2 + iÃξ
11u1 + iÃξ

12u2 , (3.26a)

f ′2 = λĀ0
21u1 + λĀ0

22u2 + iÃξ
21u1 + iÃξ

22u2 + b̄ξξu2 . (3.26b)

Thus, we may use (3.24) to eliminate u1 from (3.26) and obtain Af . Thus, continuing to

denote (A1
11)

−1 by a, we find that

Af =

⎛
⎜⎝
−λĀ0

11a− iÃξ
11a 0 −λ(Ā0

11aĀ
1
12 − Ā0

12)− iÃξ
11aĀ

1
12 + iÃξ

12

−λĀ0
21a− iĀξ

21a 0 −λ(Ā0
21aĀ

1
12 − Ā0

22)− iÃξ
21aĀ

1
12 + iÃξ

22 + b̄ξξ

−(b̄11)−1(Ā1
21a) (b̄11)−1 (b̄11)−1(Ā1

22 − Ā1
21aĀ

1
12 − ib̄ξ)

⎞
⎟⎠ .

(3.27)

Remark 3.3. This may readily be seen to be equivalent to the usual Evans function

of [19, Eq. (3.1), p. 356], based on variable (u, b11u
′
1 + b22u

′
2), since the phase vari-

ables for the two Evans functions are conjugate by a frequency-independent coordinate

transformation.

3.2.2. Balanced flux variables (d > 1). Proceeding from the flux form, we may, sim-

ilarly as in §3.1.3 above, define a multidimensional Evans function analogous to the

integrated Evans function used in one dimension. We define

f� := f/r(λ, ξ), λ� = λ/r(λ, ξ), and ξ� = ξ/r(λ, ξ) (3.28)

where r(λ, ξ) is the �2 Cd norm,

r(λ, ξ) := ‖(λ, ξ)‖, (3.29)

to obtain an alternative Evans function. In this case, the first-order system takes the

form W̃ ′ = A�(x1;λ, ξ)W̃ with W̃ = (f�, u2)
� and

A�=

⎛
⎜⎝
r(−λ�Ā0

11a− iÃξ�

11a) 0 −λ�(Ā0
12aĀ

1
12 − Ā0

12)− iÃξ�

11aĀ
1
12 + iÃξ�

12

r(−λ�Ā0
21a− iĀξ�

21a) 0 −λ�(Ā0
21aĀ

1
12 − Ā0

22)− iÃξ�

21aĀ
1
12 + iÃξ�

22 + rb̄ξ
�ξ�

−r(b̄11)−1(Ā1
21a) r(b̄11)−1 (b̄11)−1(Ā1

22 − Ā1
21aĀ

1
12 − irb̄ξ

�

)

⎞
⎟⎠.

(3.30)

This determines an Evans function D�(r, ξ�, λ�) in the variables (r, ξ�, λ�), from which we

may then extract an Evans function

Dbf(λ, ξ) := D�(r(λ, ξ), ξ/r(λ, ξ), λ/r(λ, ξ)). (3.31)

3.2.3. Modified balanced flux variables (d > 1). Alternatively, we may replace r in

(3.29) with

r2(λ, ξ) := |ξ|+ λ (3.32)

in the above derivation, to obtain an Evans function

Dmbf(λ, ξ) := D�(r2(λ, ξ), ξ/r2(λ, ξ), λ/r2(λ, ξ)) (3.33)

that is analytic in λ, reducing to the usual (1D) integrated Evans function for ξ = 0,

and still has the desirable property that it is nonvanishing at the origin (where it is now
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multi-valued, depending on limiting angle). This is perhaps the truest generalization of

the integrated Evans function to multidimensions, considered ξ-slice by ξ-slice. However,

it loses some uniformity in replacing ‖(λ, ξ)‖ by the norm-equivalent (for Reλ ≥ 0)

quantity |ξ|+ λ.

4. Low-frequency behavior of the balanced flux forms. The Evans function

Dbf in the phase variables W̃ =

(
f�

u2

)
is approximately homogeneous near (0, 0) and an-

alytic along rays through the origin (equivalently, when written in polar coordinates). As

noted above, in one dimension, (f�)′ = U , and so the Evans function D̃(λ, ξ) determined

by phase variables

(
f�

u2

)
=

(
f�

(f�2)
′

)
is exactly the usual integrated Evans function, with

the desirable property that, for Lax or overcompressive shocks, it does not vanish at

the origin. We now show that this desirable property persists also for multidimensions.

Recall [13, 18] that inviscid stability of multidimensional shock waves is determined by

a Lopatinski determinant Δ(λ, ξ) analogous to the Evans function, defined on ξ ∈ R,

Reλ ≥ 0; a shock is uniformly inviscid stable if Δ �= 0 on {Reλ ≥ 0} \ {(0, 0)}.

Proposition 4.1. With appropriately chosen bases at x1 = ±∞,

Dbf(λ, ξ) = γΔ(λ̌, ξ̌) + o(1), (4.1)

for r := ‖(λ, ξ)‖ sufficiently small, where (λ̌, ξ̌) := r−1(λ, ξ), Δ(λ, ξ) is the inviscid

Lopatinski determinant, and γ is a transversality coefficient for the traveling-wave ODE

that is a constant independent of angle (λ̌, ξ̌). In particular, for a uniformly inviscid

stable shock, Dbf(λ, ξ) has a nonvanishing limit γΔ(λ̌, ξ̌) as (λ, ξ) → 0 with (λ̌, ξ̌) held

fixed.

Proof. This follows from the fact that the component bases of decaying solutions for

the standard (“unintegrated”) flux system, when multiplied by diag{I, ‖(λ, ξ)‖}, yield a

basis for the balanced flux system, except for “fast” decay elements (corresponding to

incoming inviscid modes) which vanish in the f coordinate and must be treated instead by

multiplying by diag{‖(λ, ξ)‖−1, I} using l’Hôpital’s rule. But, this means the determinant

will change by factor of

‖(λ, ξ)‖o−i = ‖(λ, ξ)‖−c,

where i is the number of incoming and o the number of outgoing hyperbolic modes, and

c = i−o is the “degree of compressivity” [18,20], equal for Lax or overcompressive shocks

to the number of zeros at the origin.

Here, we are using the important fact that fast modes may be chosen analytically in

r and (locally) in (λ̌, ξ̌), and in the usual flux variables are independent of angle (λ̌, ξ̌),

being of form (
0 + w1(λ̌, ξ̌)r +O(r2)

v

)
.

Thus when multiplied by diag{‖(λ, ξ)‖−1, I}, they transform to form(
w1(λ̌, ξ̌) +O(r)

v

)
,
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which are legitimate basis elements that are still analytic in polar coordinates (r, ξ̌, λ̌).

This validates the choice of fast bases. Likewise, we may check that the first coordinates

f of slow modes are chosen as bases for the associated Lopatinski determinant, so that(
f

0

)
are still independent, and clearly independent of fast modes, so we still have a

basis. For details on construction of “fast” and “slow” basis elements in the vicinity of

the origin, see [18–20].

We thus have Dbf (λ, ξ) = r−cD(λ, ξ), where D is the usual Evans function as defined,

e.g., in [19], whereupon (4.1) follows from the fundamental property of the standard

Evans function [18, 19], valid for Lax and overcompressive shocks, that

D(λ, ξ) = γΔ(λ, ξ) + o(rc) = rcγΔ(λ̌, ξ̌) + o(rc).

(For undercompressive shocks D(λ, ξ) = γΔ(λ, ξ) + o(rc) = rγΔ(λ̌, ξ̌) + o(r), so that

the number of zeros at the origin in balanced flux coordinates equals or exceeds the

number of zeros in standard flux coordinates.) �
Remark 4.2. The modified balanced flux formulation also removes zeros at the origin,

by essentially the same argument, substituting for ‖(λ, ξ)‖ the commensurate (for Reλ ≥
0) quantity |ξ|+ λ.

5. Practical considerations.

5.1. Kato bases. Proposition 4.1 concerns the Evans function induced by a particular

choice of (local) bases near ‖(λ, ξ)‖ = 0, or, equivalently [5, 6, 12, 19], by the choice of

initializing stable/unstable eigenbases R± of the limiting coefficient matrices at x →
±∞, where R± are matrices with columns corresponding to basis elements. In standard

practice, this is done using the Kato ODE

Ṙ = PP ′R, (5.1)

where P is the corresponding stable/unstable eigenprojector [2,5,12], and ˙ denotes vari-

ation along a given path in frequency space (λ, ξ). It can be shown that this is the

unique choice such that PṘ = 0. When there exist locally (jointly) analytic bases and

projectors V±, P± with respect to (r, λ̌, ξ̌), we can write R± = V±α± and use (5.1) to

derive a linear analytic-coefficient ODE for coefficients α±, which are therefore locally

(jointly) analytic in (r, λ̌, ξ̌) as well. The change from bases R± to V± changes the value

of the resulting Evans function by a nonvanishing analytic factor, hence the conclusions

of Proposition 4.1 remain valid for the standard Kato basis as well. Points where analyt-

icity in (λ̌, ξ̌) fails at r = 0 correspond (see [18,19]) to glancing modes for the associated

inviscid problem, in which the coefficient matrix possesses a Jordan block. It is shown

in [16, 19] that, at such a point, variations in r and λ enter “together”, to lowest order

as a linear combination in the lower-left-hand corner of the standard Jordan form. For

example, a model for a glancing mode/Jordan block of order 2 is

A(r, λ̌, ξ̌) =

(
0 1

λ̂− iτ (ξ̂) + r 0

)
,

where τ (ξ̂) is an analytic function of ξ. In this case, writing δ := λ̂−iτ (ξ̂)+r, and making

a similar computation, we see that variations enter via a Puissieux series, through
√
δ. In
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particular, we find that, both in the inviscid and the viscous problem, the Evans function

exhibits a square root-type singularity in λ̂ at λ̂ = iτ (ξ̂). This gives a useful check for

multidimensional viscous computations; see [10].

5.2. Application in different frequency regimes. By (4.1), the balanced flux form of

the Evans function is, with uniform stability, nonvanishing at the origin. This is useful

for numerical conditioning in the delicate low-frequency regime. To conveniently check

intermediate frequencies by a robust winding number computation, we may instead use

the modified balanced flux formulation Dmb, recovering the desirable property of analyt-

icity in λ. This reduces to the usual integrated Evans function for ξ = 0, and still has

the desirable property that it is nonvanishing at the origin (now multivalued, depending

on the limiting angle, as is the balanced flux version). For an example of how this works

in practice, see [10].

Appendix A. Integrated coordinates: b̄21 �= 0 (d = 1). In the case d = 1, we

indicate the changes incurred by dropping the condition b̄jk21 = 0 in (2.1). Suppose

B11(U) =

(
0 0

b̄21(U) b̄22(U)

)
. (A.1)

Linearizing about the steady solution Ū , we obtain, as before, the linearized system

A0(Ū)Ut + ((A1(Ū)− sA0(Ū))U)x = (B11(Ū)Ux + dB11(Ū)(U, Ūx))x , (A.2)

and we may write the associated eigenvalue equation as

λĀ0U + (Ā1U)′ = (B̄11U ′)′ . (A.3)

In (A.3), we have written

Ā0 := A0(Ū) , Ā1U := A1(Ū)U −sA0(Ū)−dB11(Ū)(U, Ūx) , B̄11 := B11(Ū) . (A.4)

Defining w := Ā0U , W ′ = w, as in §3.1.1, and integrating (A.3), we have again (3.3).

Setting now

Z :=

(
W

(b̄−1
22 b̄21, In−r)(Ā

0)−1W ′

)
,

we obtain by a similar, but more involved, computation to that in the case b̄21 = 0,

Z ′ = AintZ, where

Aint =

⎛
⎝Ā0

11M1 + Ā0
12N1 0 Ā0

11M3 + Ā0
12N3

Ā0
21M1 + Ā0

22N1 0 Ā0
21M3 + Ā0

22N3

A31 A32 A33

⎞
⎠ . (A.5)

Here,

A31 = b̄−1
22 {−λĀ1

21B−1 − λb̄22(b̄
−1
22 b̄21)

′B−1 + λĀ1
22b̄

−1
22 b̄21B−1} , (A.6)

A32 = b̄−1
22 λ, (A.7)

A33 = b̄−1
22 {−Ā1

21B−1Ā1
12 − b̄22(b̄

−1
22 b̄21)

′B−1Ā1
12 + Ā1

22 + Ā1
22b̄

−1
22 b̄21B−1Ā1

12}, (A.8)

and

M1 = −λB−1 ,M3 = −B−1Ā1
12 , N1 = λb̄−1

22 b̄21B−1 , N3 = I + b̄−1
22 b̄21B−1Ā1

12 , (A.9)
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with

B = Ā1
11 − Ā1

12b̄
−1
22 b̄21 . (A.10)

Note that (H1′) implies that B is invertible. The system is closed by solving for

(I, 0)(Ā0)−1W ′,

whence, together with the coordinate

(b̄−1
22 b̄21, In−r)(Ā

0)−1W ′,

we obtain (Ā0)−1W ′ and thus W ′. For this step, multiply (3.3) by (I, 0) to obtain

λW1 = −(Ā1
11, Ā

1
12)(Ā

0)−1W ′ ,

from which we see that, provided the modified condition (H1′) holds, we can solve for

(I, 0)(Ā0)−1W ′ in terms of the known coordinates W and (b̄−1
22 b̄21, In−r)(Ā

0)−1W ′.
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