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SECOND ORDER PERIODIC DIFFERENTIAL OPERATORS.
THRESHOLD PROPERTIES AND HOMOGENIZATION

M. SH. BIRMAN AND T. A. SUSLINA

Abstract. The vector periodic differential operators (DO’s) A admitting a factor-
ization A = X ∗X , where X is a first order homogeneous DO, are considered in
L2(Rd). Many operators of mathematical physics have this form. The effects that
depend only on a rough behavior of the spectral expansion of A in a small neighbor-
hood of zero are called threshold effects at the point λ = 0. An example of a threshold
effect is the behavior of a DO in the small period limit (the homogenization effect).
Another example is related to the negative discrete spectrum of the operator A−αV ,
α > 0, where V (x) ≥ 0 and V (x) → 0 as |x| → ∞. “Effective characteristics”, such
as the homogenized medium, effective mass, effective Hamiltonian, etc., arise in these
problems. The general approach to these problems proposed in this paper is based
on the spectral perturbation theory for operator-valued functions admitting analytic
factorization. Most of the arguments are carried out in abstract terms. As to appli-
cations, the main attention is paid to homogenization of DO’s.
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§0. Introduction

0.1. The periodic differential operators (DO’s) on Rd, d ≥ 1, can be partially diagonal-
ized with the help of the Gelfand transformation (see Chapter 2). Under this approach,
the initial DO is represented as the direct integral of a family of DO’s; each operator in
this family acts on the cell of periods Ω glued into a torus. This family depends on a
parameter k ∈ Rd (called the quasimomentum). We consider the semibounded selfadjoint
DO’s.

Further analysis (the Floquet–Bloch decomposition) is possible for operators acting in
L2(Ω) and having compact resolvent that depends on k continuously. This condition is
fulfilled for many DO’s of mathematical physics. In this case, the spectrum of the initial
DO has a band structure. It is convenient to assume that the lower edge of the spectrum
coincides with the point λ = 0. In some situations, it suffices to know the approximate
spectral expansion of the initial DO near the lower edge of the spectrum. In such cases
we talk about the threshold effects at the point λ = 0. Threshold effects can be related
to the edges of internal spectral gaps, but we shall only deal with the threshold λ = 0.
Usually, it is not an easy task to detect whether a given effect is threshold. For instance,
we mention the question about the discrete spectrum that arises to the left of the point
λ = 0 when a periodic DO is perturbed by a negative potential vanishing at infinity.
If the potential does not decay too rapidly, then the threshold effect dominates; on the
contrary, if a perturbation decays rapidly, then the main role is played by the high-energy
part of the initial DO that corresponds to large values of λ. Another important example
of the threshold effect at the point λ = 0 is the behavior of a periodic DO in L2(Rd) in
the small period limit. In what follows, we pay the main attention to this problem.

0.2. One of our goals is to give a description, concise and convenient for applications, of
the spectral characteristics of periodic DO’s near the threshold λ = 0. By using partial
diagonalization, we reduce the problem to some questions of perturbation theory for the
discrete spectrum. The difficulties are related to the fact that, usually, the unperturbed
eigenvalue is multiple and the parameter k is multidimensional. Such cases cannot be
treated by means of the classical perturbation theory, and a roundabout way must be
sought. (If at least one of the two reasons mentioned above does not occur, the problem
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simplifies.) We take t = |k| as the perturbation parameter; then we must make our
constructions and estimates uniform in θ = t−1k.

We start with an abstract operator theory method (see Chapter 1), distinguishing
the case where the family in question admits an analytic factorization. This additional
structure allows us to advance unexpectedly far in abstract terms. Often, the operators
occurring in applications admit the required factorization from the outset. In some other
cases, such factorization can be introduced forcedly. In the absence of the required
factorization, the study of the threshold properties becomes much more difficult; the
clear understanding of this is useful.

Keeping in mind applications to (vector) second order DO’s, in the abstract method we
restrict ourselves to the quadratic dependence on the parameter. The crucial point for us
is to distinguish and study the notion of the spectral germ of an operator family at t = 0
(see Chapter 1, § 1). In general, we believe that an effect should be classified as threshold
if it can be described in terms of the corresponding spectral germ. The abstract form of
the threshold effects is considered in Chapter 1, § 5. For instance, estimate (5.10) gives an
abstract answer to the question about the behavior of periodic DO’s in the small period
limit. To a great extent, the present paper is devoted to realization of this approach, as
applied to DO’s. However, the specific properties of DO’s are not employed much.

0.3. The threshold effects are responsible for the emergence of the so-called effective
characteristics. We believe that the mechanism of their appearance is as follows. Since
a threshold effect is determined by the spectral germ only, in the description of this
effect the initial periodic DO can be replaced by any other periodic DO with the same
spectral germ. Among these “equivalent” DO’s, some simple operators may occur; of-
ten, these are DO’s with constant coefficients. That is why the notions of effective
mass, effective Hamiltonian, etc., arise in quantum mechanics problems, and the notions
of effective (homogenized) medium and homogenized DO arise in problems concerning
periodic structures with vanishing period. The advantages of description in terms of
effective characteristics are obvious. Usually, the idea itself of the existence of effective
characteristics has physical origin. At the same time, when using the effective character-
istics, one should remember that, in fact, they only keep information about the spectral
germ, and, moreover, in a disguised form.

0.4. In Chapter 2, we distinguish a rather wide class of elliptic periodic second order
DO’s that act in L2(Rd;Cn). This class includes a number of operators of mathematical
physics, though it does not cover all needs of applications. Under the Gelfand transfor-
mation, each operator A of this class generates an operator family A(t,θ), tθ = k, in
L2(Ω;Cn), which admits a factorization analytic in t = |k|. Now, the spectral germ S(θ)
for A(t,θ) at t = 0 depends on the parameter θ; this is essential for further considera-
tions.

In Chapter 3, on the basis of the general results of Chapter 1, for each operator A we
introduce the effective characteristics. These are defined directly via the corresponding
germ S(θ). In Chapter 4 we show that these characteristics are responsible for the
homogenization procedure for DO in the small period limit.

0.5. At present, the study of periodic problems with rapidly varying medium parameters
(with small period) is a broad field of theoretical and applied science. There are vari-
ous methods specific for this field, and a lot of significant results. Limit procedures for
boundary value problems in bounded domains have been studied; methods for construct-
ing full asymptotic expansions (with respect to the small period) have been developed;
homogenization procedures have been analyzed for nonselfadjoint operators, nonstation-
ary operators, and nonlinear problems. Many surveys and monographs are devoted to
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these topics. For us, acquaintance with the remarkable books [BaPa, BeLP, ZhKO]
turned out to be especially useful. We are far from the idea to revise all this large area
by our methods. At the same time, we would like to draw the reader’s attention to the
following.

0.6. In homogenization theory, finding the effective characteristics is the initial problem,
which usually is solved by direct methods. Even in the cases where the Floquet–Bloch
decomposition and the analytic perturbation theory (usually, for a simple eigenvalue)
are employed for this purpose, these methods are viewed as purely technical and are not
related to the general notion of a threshold effect. The essence of our approach is in
distinguishing the notion of the spectral germ at λ = 0. The germ directly determines
the effective characteristics, which then arise inevitably in any specific threshold effect.
The homogenization in the small period limit is one of such effects; another corresponds
to the problem about the negative discrete spectrum mentioned before. In Chapters 5–7,
we use traditional operators of mathematical physics to illustrate our unified approach.
Many facts mentioned there are new for the corresponding specific operators, though
they follow from the general pattern of Chapters 1–4 almost immediately. Apparently,
the possibilities offered by our approach are not exhausted by the applications presented.

0.7. Formally speaking, the present text is written as a survey. This means more care
about the reader’s interests than it is customary in research papers. In this connection,
we note that the content of this Introduction is supplemented in Subsections 4.1 and
7.1, in comments on Chapters 4–7, and in concluding remarks. Most of references and
comparisons can be found there.

We clearly understand that the present text is in no way a survey on homogenization
theory. This would be impossible not only for reasons of volume, but also because the
authors are not experts in that theory. However, having been pondering for a number
of years over spectral phenomena near thresholds, we have realized that homogeniza-
tion is one of the most pronounced threshold effects. Thus, the paper is a step-by-step
presentation of our point of view on homogenization as a threshold effect. Of course,
other authors also employed this viewpoint; we mention, e.g., the articles [Zh1] and [Se].
However, we develop the “threshold” approach more systematically, and we use operator
theory as the basis for our considerations.

The paper [BSu2] is the initial version of the present exposition. As compared to
[BSu2], we refined the abstract part, bridged a number of technical gaps, and extended
the collection of applications. Primarily, the latter concerns Chapter 7. The organization
of the paper is clear from the table of contents.

0.8. Notation. Let H and G be two separable Hilbert spaces. The symbols (·, ·)H

and ‖ · ‖H denote the inner product and the norm in H; the symbol ‖ · ‖H→G stands
for the norm of a bounded operator from H to G. If H = G, we write only one index
in the notation of the operator norm. Sometimes, we omit the indices if this does not
lead to confusion. I = IH is the identity operator on H. If N is a subspace in H, then
N⊥ := H	N. If P is the orthogonal projection of H onto N, then P⊥ is the orthogonal
projection onto N⊥. For a closed operator T in H, σ(T ) denotes its spectrum, and ρ(T )
denotes the set of its regular points. The symbol 〈·, ·〉 stands for the standard inner
product in Cn; | · | denotes the norm of a vector in Cn; the unit (n×n)-matrix is denoted
by 1n. Next, we use the notation x = (x1, . . . , xd) ∈ Rd, iDj = ∂j = ∂/∂xj, j = 1, . . . , d,
∇ = grad = (∂1, . . . , ∂d), D = −i∇ = (D1, . . . , Dd), ∇∗ = − div. The Lp-spaces of
Cn-valued functions in a domain Ω ⊆ Rd are denoted by Lp(Ω;Cn), 1 ≤ p ≤ ∞. The
Sobolev classes of order s with integrability index p of Cn-valued functions in a domain
Ω ⊆ Rd are denoted by W s

p (Ω;Cn). For p = 2 we denote this space by Hs(Ω;Cn),
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s ∈ R. If n = 1, we write simply W s
p (Ω), Hs(Ω). Within one chapter, we use two-digit

numbers for subsections, statements, and formulas. When referring to other chapters,
we use three-digit enumeration (where the first number stands for the chapter).

0.9. We are grateful to V. Ivrĭı, P. Kuchment, V. V. Zhikov, and A. L. Pyatnitskĭı for
fruitful scientific contacts that stimulated our interest in the topic of the present paper.
Especially, we would like to mention the survey [Ku] by P. Kuchment on the theory of
photonic crystals.

The authors thank R. G. Shterenberg who has read the manuscript and found some
inaccuracies.

The authors are grateful to the International Mittag-Leffler Institute in Stockholm
and to the head of the program Professor A. Laptev for hospitality. Our stay in the
Institute in the fall of 2002 contributed to completing this work.

Chapter 1. Operator families admitting factorization

The material of this chapter concerns the spectral perturbation theory for selfadjoint
operator families. Our goal is to specify the case where the positive operator family
in question admits factorization. Our considerations are adapted to the study of the
threshold effects near the lower edge of the spectrum. The resulting estimates are efficient
for applications, and the constants in estimates are well controlled.

§1. Quadratic pencils of the form X(t)∗X(t)

1.1. Pencils of the form X(t) and X(t)∗X(t). Let H and H∗ be complex separable
Hilbert spaces. Suppose that X0 : H→ H∗ is a densely defined and closed operator and
that X1 : H→ H∗ is a bounded operator. Then the operator (the linear operator pencil)

(1.1) X(t) = X0 + tX1, t ∈ R,

is closed on the domain DomX(t) := DomX0. We have X(t)∗ = X∗0 + tX∗1 on the
domain DomX∗0 (which is dense in H∗). The selfadjoint positive operator family

(1.2) A(t) := X(t)∗X(t)

in H is our main object. The operator (1.2) is generated by the closed quadratic form
‖X(t)u‖2

H∗
, u ∈ DomX0. For the operator A0 := A(0) = X∗0X0, we put

N := KerA0 = KerX0.

Throughout, we assume that the following condition is fulfilled.

Condition 1.1. The point λ = 0 is an isolated point of the spectrum of A0, and

(0 <) n := dim N <∞.

We denote by F (t, s) the spectral projection of the operator A(t) for a closed interval
[0, s], and put F(t, s) := F (t, s)H. We fix a number δ > 0 such that 8δ < d0, where d0

is the distance from the point λ = 0 to the rest of the spectrum of A0. We often write
F (t) in place of F (t, δ) and F(t) in place of F(t, δ). The following statement is an easy
consequence of the spectral theorem.

Proposition 1.2. We have

(1.3) F (t, δ) = F (t, 3δ), rankF (t, δ) = n, |t| ≤ t0 = t0(δ) := δ1/2‖X1‖−1.
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Proof. Assume that rankF (t, δ) < n. Then there exists an element f ∈ N such that
‖f‖ = 1 and f ⊥ F(t, δ). Hence, ‖X(t)f‖2 > δ. On the other hand, ‖X(t)f‖2 =
‖X0f + tX1f‖2 ≤ t2‖X1‖2 ≤ δ. This contradiction shows that

(1.4) rankF (t, δ) ≥ n.
Now, assume that rankF (t, 3δ) > n. Then there exists f ∈ F(t, 3δ) such that ‖f‖ = 1
and f ⊥ N. Therefore, ‖X0f‖2 ≥ d0 > 8δ. But

‖X0f‖2 ≤ 2‖X(t)f‖2 + 2t2‖X1‖2 ≤ 6δ + 2δ = 8δ,

a contradiction. Consequently,

(1.5) rankF (t, 3δ) ≤ n.
Comparing (1.4) and (1.5), we see that rankF (t, δ) = rankF (t, 3δ) = n, which is equiv-
alent to (1.3). �

Together with (1.2), it is convenient to consider the selfadjoint operator family

(1.6) A∗(t) := X(t)X(t)∗

in H∗. We put A∗0 := X0X
∗
0 ,

N∗ := KerA∗0 = KerX∗0 , n∗ := dim N∗.

The operators A(t) and A∗(t) have the same nonzero spectrum. In general, the numbers
n and n∗ are distinct. We assume that

n ≤ n∗ ≤ ∞.
Let P and P∗ denote the orthogonal projections onto N and N∗, respectively.

1.2. The operator R. We introduce the notation D := DomX0 ∩ N⊥. Since the
point λ = 0 is isolated in σ(A0), the form (X0ϕ,X0ζ)H∗ , ϕ, ζ ∈ D, determines an inner
product in D, converting D into a Hilbert space. Let z ∈ H∗. Suppose ϕ̂ ∈ D satisfies
the equation X∗0 (X0ϕ̂− z) = 0, which is understood in the weak sense. In other words,
we look for an element ϕ̂ ∈ D satisfying the identity

(1.7) (X0ϕ̂,X0ζ)H∗ = (z,X0ζ)H∗ , ζ ∈ D.
Since the right-hand side of (1.7) is an antilinear continuous functional of ζ ∈ D, there
exists a unique solution ϕ̂. Moreover, ‖X0ϕ̂‖H∗ ≤ ‖z‖H∗. Note also that X0ϕ̂− z ∈ N∗.

Now, let

(1.8) ω ∈ N, z := −X1ω.

We denote by ϕ̂(ω) the element ϕ̂ satisfying (1.7) with this z and put

(1.9) ω∗ := X0ϕ̂(ω) +X1ω ∈ N∗.

In accordance with (1.7)–(1.9), we introduce the linear operator R that takes ω to ω∗:

(1.10) R : N→ N∗, Rω = ω∗.

Clearly, ω∗ ∈ N∗ and X0ϕ̂(ω) ∈ RanX0 ⊂ N⊥∗ . If follows that ω∗ = P∗X1ω. This yields
another representation for R:

(1.11) R = P∗X1|N,
which is equivalent to

(1.12) P∗X1P = R⊕O
(we extend R to N⊥ by zero). The continuous operator R∗ : N∗ → N is defined in a
similar way. Then

(1.13) R∗ = PX∗1 |N∗ , PX∗1P∗ = R∗ ⊕O.
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Relations (1.11)–(1.13) imply that

(1.14) R∗ = R∗.

1.3. The spectral germ S of the family A(t) at t = 0.

Definition 1.3. The selfadjoint operator

(1.15) S := R∗R : N→ N

is called the spectral germ of the operator family (1.2) at t = 0.

From (1.12)–(1.14) it follows that

(1.16) S = PX∗1P∗X1|N, S ⊕O = PX∗1P∗X1P.

Observe also the identity

(1.17) (Sζ, ζ)H = ‖Rζ‖2H∗ = ‖P∗X1ζ‖2H∗ , ζ ∈ N.

For the family (1.6), the role of the spectral germ is played by S∗ := RR∗ : N∗ → N∗.
The part of the operator S acting in (KerS)⊥ is unitarily equivalent to the part of S∗
acting in (KerS∗)⊥. Below (cf. Subsection 1.6), we shall clarify the role of the operator
S. In particular, it will be shown that S is independent of the choice of a factorization
as in (1.2) for A(t).

Definition 1.4. The spectral germ S of the operator family (1.2) at t = 0 is called
nondegenerate if KerS = {0}.

Obviously, the nondegeneracy of S is equivalent to the condition KerR = {0}, or,
equivalently, to the condition rankR = n.

Let Ã(t) = X̃(t)∗X̃(t) be yet another operator family in H subject to the same con-
ditions (see Subsection 1.1) as A(t). (The space H̃∗ may be different from H∗.) Let
Ñ := Ker Ã(0), and let S̃ : Ñ→ Ñ be the spectral germ of the family Ã(t) at t = 0.

Definition 1.5. The operator families A(t) and Ã(t) are said to be threshold equivalent
if N = Ñ and S = S̃.

This relation is an equivalence on the set of operator families of the form (1.2).

1.4. Estimates for the operator S. Upper estimates. Let N∗ ⊂ G∗ ⊂ H∗, where G∗
is a subspace in H∗, and let Π∗ be the orthogonal projection onto G∗. Obviously, (1.16)
implies the inequality

S ⊕O ≤ PX∗1 Π∗X1P,

or, equivalently,

(1.18) (Sζ, ζ)H ≤ ‖Π∗X1ζ‖2H∗ , ζ ∈ N

(cf. also (1.17)). In particular, if G∗ = H∗, we obtain

(1.19) (Sζ, ζ)H ≤ ‖X1ζ‖2H∗ , ζ ∈ N.

Finally, (1.19) (or (1.16)) implies the estimate ‖S‖ ≤ ‖X1‖2. Inequality (1.18) offers an
opportunity of refining estimates for the operator S on the basis of the Ritz method.

Lower estimates for S. Let G′∗ be a subspace in N∗, and let Π′∗ be the orthogonal
projection onto G′∗. Then S ⊕O ≥ PX∗1 Π′∗X1P, or

(Sζ, ζ)H ≥ ‖Π′∗X1ζ‖2H∗ , ζ ∈ N.



646 M. SH. BIRMAN AND T. A. SUSLINA

1.5. The case where X(t) = X̂(t)M . Let Ĥ be yet another Hilbert space, and let
X̂(t) = X̂0 + tX̂1 : Ĥ → H∗ be a family of the form (1.1) that satisfies the assumptions
of Subsection 1.1. We emphasize that the space H∗ is the same as before. Suppose that
M : H → Ĥ is an isomorphism. Suppose M DomX0 = Dom X̂0, X(t) = X̂(t)M : H →
H∗, X0 = X̂0M , X1 = X̂1M , and

(1.20) A(t) = M∗Â(t)M.

In what follows, all the objects related to X̂(t) are marked by “̂”. Observe that

N̂ = MN, n̂ = n, N̂∗ = N∗, n̂∗ = n∗, P̂∗ = P∗.

Moreover, R = P∗X1|N = P̂∗X̂1M |N, i.e.,

(1.21) R = R̂M |N.

In accordance with (1.17) and (1.21), for ζ ∈ N and ζ̂ = Mζ(∈ N̂) we have

(1.22) (Sζ, ζ)H = ‖Rζ‖2H∗ = ‖R̂ζ̂‖2H∗ = (Ŝζ̂, ζ̂)
Ĥ

= (M∗ŜMζ, ζ)H.

Consequently,

S = PM∗ŜM |N, S ⊕O = PM∗ŜMP,(1.23)

Ŝ = P̂ (M∗)−1SM−1|
N̂
, Ŝ ⊕O = P̂ (M∗)−1SM−1P̂ .(1.24)

Formulas (1.24) follow from (1.23) by interchanging the roles of X(t) and X̂(t). Relation
(1.21) implies that rankR = rank R̂; therefore, S and Ŝ are nondegenerate or degenerate
simultaneously. By (1.22), we have

(1.25)
(Sζ, ζ)H

‖ζ‖2
H

=
(Ŝζ̂, ζ̂)

Ĥ

‖ζ̂‖2
Ĥ

‖Mζ‖2
Ĥ

‖ζ‖2
H

≤ ‖M‖2
(Ŝζ̂, ζ̂)

Ĥ

‖ζ̂‖2
Ĥ

,

and, similarly, (Ŝζ̂, ζ̂)
Ĥ
‖ζ̂‖−2

Ĥ
≤ ‖M−1‖2(Sζ, ζ)H‖ζ‖−2

H
. Thus, the eigenvalues γl of S

and the eigenvalues γ̂l of Ŝ satisfy

‖M−1‖−2γ̂l ≤ γl ≤ ‖M‖2γ̂l, l = 1, . . . , n.

Now, let n = 1. Then (1.25) implies the following relation for γ = γ1, γ̂ = γ̂1:

(1.26) γ = γ̂‖Mζ‖2
Ĥ
‖ζ‖−2

H
, ζ ∈ N.

1.6. The eigenvalue problem for the operator S. The general analytic perturbation
theory (see [Ka]) says that, for |t| ≤ t0, there exist real-analytic functions λl(t) (branches
of eigenvalues) and real-analytic H-valued functions ϕl(t) (branches of eigenvectors) such
that

(1.27) A(t)ϕl(t) = λl(t)ϕl(t), l = 1, . . . , n, |t| ≤ t0 = t0(δ),

and the ϕl(t), l = 1, . . . , n, form an orthonormal basis in F(t). Moreover, for sufficiently
small t∗, we have the convergent power series expansions

λl(t) = γlt
2 + · · · , γl ≥ 0, l = 1, . . . , n, |t| ≤ t∗ ≤ t0,(1.28)

ϕl(t) = ωl + tϕ
(1)
l + t2ϕ

(2)
l + · · · , l = 1, . . . , n, |t| ≤ t∗ ≤ t0.(1.29)

The elements ωl := ϕl(0), l = 1, . . . , n, form an orthonormal basis in N, and P =∑n
l=1(·, ωl)ωl. Relations (1.27) are equivalent to

(1.30) (X(t)ϕl(t), X(t)ζ)H∗ = λl(t)(ϕl(t), ζ)H, ζ ∈ DomX0.
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The numbers γl and the elements ωl, ϕ
(1)
l , ϕ(2)

l , . . . , can be found from (1.30) and from
the normalization condition ‖ϕl(t)‖2H = 1, by comparing the coefficients of the same
powers of t. Comparing the first order terms, we obtain (see (1.7)–(1.9))

(1.31) ϕ
(1)
l − ϕ̂(ωl) ∈ N, l = 1, . . . , n.

Comparing the terms with t2, we see that

(1.32) (X0ϕ
(1)
l +X1ωl, X1ζ)H∗+(X0ϕ

(2)
l +X1ϕ

(1)
l , X0ζ)H∗ = γl(ωl, ζ)H, ζ ∈ DomX0.

By (1.9), (1.10), and (1.31), we have X0ϕ
(1)
l + X1ωl = Rωl. For ζ ∈ N, relation (1.32)

takes the form

(1.33) (Rωl, X1ζ)H∗ = γl(ωl, ζ)H, ζ ∈ N.

By (1.11) and (1.16),

(Rωl, X1ζ)H∗ = (PX∗1Rωl, ζ)H = (Sωl, ζ)H.

Thus, (1.33) yields the following statement.

Proposition 1.6. The numbers γl and the elements ωl defined by (1.27)–(1.29) are
eigenvalues and eigenvectors of the operator S:

(1.34) Sωl = γlωl, l = 1, . . . , n.

This clarifies the meaning of the eigenvalue problem for S. Relations (1.34) show that

(1.35) SP =
n∑
l=1

γl(·, ωl)Hωl.

The series (1.28) and (1.29) are determined by the family A(t) directly, independently of
factorization (1.2). This shows that S does not depend on the choice of factorization. At
the same time, relation (1.15) can be interpreted as the fact that the factorization chosen
for A(t) is inherited by S. The nondegeneracy of S is equivalent to the inequalities

(1.36) γl ≥ c∗ > 0, l = 1, . . . , n,

for the numbers γl defined by (1.28).
If all the eigenvalues γl are simple, then from (1.34) we can find the initial elements

ωl in (1.29) (up to a phase factor). If multiple eigenvalues occur among the γl, then, in
general, the knowledge of S does not suffice for this purpose.

1.7. Operator-valued functions F (t) and A(t)F (t). For what follows, it is important
to find “good” approximations for the operator-valued functions F (t) and A(t)F (t). Both
functions are real-analytic for |t| ≤ t0(δ). From (1.29) and Proposition 1.2 it follows that,
for sufficiently small t∗ ≤ t0(δ), we have

(1.37) F (t, δ) = F (t) = P + tF1 + · · · , |t| ≤ t∗,

where F1 = F̌1 + F̌ ∗1 , F̌1 =
∑n
l=1(·, ωl)Hϕ

(1)
l . Next, by (1.27) and Proposition 1.2,

A(t)F (t) =
n∑
l=1

λl(t)(·, ϕl(t))Hϕl(t), |t| ≤ t0(δ).

Combining this with (1.28), (1.29), and (1.35), we obtain

(1.38) A(t)F (t) = t2SP + · · · , |t| ≤ t∗.
The significance of (1.38) is in the fact that S admits the representations (1.15) and
(1.16), which do not require the knowledge of the eigenvectors ω1, . . . , ωn.

However, the power series expansions (1.37) and (1.38) are not quite suitable for
our purposes. We need only estimates of F (t) − P and A(t)F (t) − t2SP , but on the



648 M. SH. BIRMAN AND T. A. SUSLINA

wider interval |t| ≤ t0(δ), and with constants controlled explicitly. Such estimates can
be obtained by integrating the difference of the resolvents for A(t) and A0 over an
appropriate contour Γ. However, the difficulty is that the ordinary resolvent identity
(A(t) − zI)−1 − (A0 − zI)−1 = (A0 − zI)−1(A0 − A(t))(A(t) − zI)−1 is not applicable
under our assumptions. Indeed, in general, the difference A(t)−A0 makes no sense. The
only remaining possibility is to use the version of the resolvent identity for operators
whose quadratic forms have the same domain. (In our case, the domain of the quadratic
form coincides with DomX(t) = DomX0.) Since the corresponding relations are not of
common use, in the next §2 we present the necessary auxiliary material.

1.8. Families with block structure. Families of the form

X(t) =
(

0 X(t)∗

X(t) 0

)
act in the space

H = H⊕ H∗.

It is natural to assume that n = n∗. Let w = col(u, v), s = col(q, r) ∈ H, and let

(1.39) (X(t) − iκI)w = s, κ > 0.

We write the solution w of equation (1.39) as

w = wq + wr,

where wq is the solution of (1.39) with r = 0, and wr is the solution of (1.39) with q = 0.
We have wq = col(uq, vq), wr = col(ur, vr), and

X(t)∗vq − iκuq = q, X(t)uq − iκvq = 0,(1.40)

X(t)∗vr − iκur = 0, X(t)ur − iκvr = r.(1.41)

From (1.40) and (1.41) it follows that

uq = iκ(A(t) + κ2I)−1q, vq = (A∗(t) + κ2I)−1X(t)q,

ur = (A(t) + κ2I)−1X(t)∗r, vr = iκ(A∗(t) + κ2I)−1r.

The functions vq and ur admit also other representations:

vq = X(t)(A(t) + κ2I)−1q, ur = X(t)∗(A∗(t) + κ2I)−1r.

Observe that the expressions for uq and vr are simpler than those for vq and ur.

§2. Auxiliary material

2.1. The resolvent identity. Let H be a Hilbert space. The symbols (·, ·) and ‖ · ‖
stand for the inner product and the norm in this space. Let a and b be two sesquilinear
nonnegative closed forms in H. Suppose that

(2.1) Dom a = Dom b =: d

and that d is dense in H. By A (respectively, B) we denote the selfadjoint operator in H

generated by the form a (respectively, b). We put

(2.2) aγ [u, v] = a[u, v] + γ(u, v), γ > 0.

The notation bγ has a similar meaning. The linear set d is a complete Hilbert space
d(aγ) with respect to the inner product (2.2). We denote the norm in d(aγ) by ‖ · ‖d.
Obviously,

(2.3) ‖u‖ ≤ γ−1/2‖u‖d.
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By (2.1), the form bγ is continuous on d(aγ), and in this space it generates a metric
equivalent to the standard one. We put

(2.4) α2 = sup
06=f∈d

aγ [f, f ]
bγ [f, f ]

.

Obviously, the real-valued form t = b − a is (aγ)-continuous; therefore, it generates a
continuous selfadjoint operator Tγ in d(aγ). Thus,

t[u, v] = aγ [Tγu, v], u, v ∈ d,(2.5)

‖Tγ‖d = sup
06=u∈d

|t[u, u]|
aγ [u, u]

.(2.6)

The operator Tγ can be viewed as an operator from d(aγ) to H. Then, by (2.3),

(2.7) ‖Tγ‖d→H ≤ γ−1/2‖Tγ‖d.

Consider the equations

(A+ γI)x = f, (B + γI)y = f,

which are equivalent to the relations

aγ [x, v] = (f, v), bγ [y, v] = (f, v), v ∈ d.

From (2.5) it follows that

bγ [y, v] = aγ [y, v] + t[y, v] = aγ [(I + Tγ)y, v], v ∈ d,

whence x = y + Tγy. Thus,

(2.8) (B + γI)−1 − (A+ γI)−1 = −Tγ(B + γI)−1.

Let Rz(A) and Rz(B) denote the corresponding resolvents. Using the Hilbert identity
Rz(B)−R−γ(B) = (z + γ)R−γ(B)Rz(B) and the same identity for Rz(A), we see that,
by (2.8),
(2.9)
Rz(B)−Rz(A) = −TγR−γ(B) (I + (z + γ)Rz(B)) + (z + γ)R−γ(A)(Rz(B)− Rz(A)).

We introduce the notation

(2.10) Ωz(A) := I + (z + γ)Rz(A)

and a similar notation Ωz(B) for B. Since (I−(z+γ)R−γ(A))−1 = Ωz(A), identity (2.9)
implies that

(2.11) Rz(B)−Rz(A) = −Ωz(A)TγR−γ(B)Ωz(B), z ∈ ρ(A) ∩ ρ(B).

Next, since

(2.12) Rz(B) = R−γ(B)Ωz(B),

from (2.11) we deduce that

(2.13) Rz(B)−Rz(A) = −Ωz(A)TγRz(B), z ∈ ρ(A) ∩ ρ(B).

Relation (2.13) is an analog of the usual resolvent identity under the condition that (2.1)
is fulfilled, but, possibly, DomA 6= DomB. We keep calling (2.13) the resolvent identity.
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2.2. Estimates for operators of the form LRz(B) (where L is a continuous operator
in d(aγ)). We write the identity

LR−γ(B) = L(A+ γI)−1/2
(
(A+ γI)1/2(B + γI)−1/2

)
(R−γ(B))1/2.

Using (2.3) (see also (2.7)) and the fact that the mapping (A + γI)−1/2 : H → d(aγ) is
an isometry, we obtain

‖L(A+ γI)−1/2‖H ≤ ‖(A+ γI)−1/2‖H→d‖L‖d→H ≤ γ−1/2‖L‖d.

Next, ‖R−γ(B)‖1/2
H
≤ γ−1/2, and it is easily seen that ‖(A+ γI)1/2(B + γI)−1/2‖H = α,

where α = α(γ) is as in (2.4). Thus,

(2.14) ‖LR−γ(B)‖H ≤ αγ−1‖L‖d,
and, by (2.12),

(2.15) ‖LRz(B)‖H ≤ αγ−1‖L‖d‖Ωz(B)‖H, z ∈ ρ(B).

If we replace B by A in (2.15), then we must take α = 1, whence

(2.16) ‖LRz(A)‖H ≤ γ−1‖L‖d‖Ωz(A)‖H, z ∈ ρ(A).

We also need to estimate operators of the form L1Ωz(A)L2Rz(B), where L1, L2 are
continuous operators in d(aγ). By (2.10),

‖L1Ωz(A)L2Rz(B)‖H ≤ ‖(L1L2)Rz(B)‖H + |z + γ| ‖L1Rz(A)‖H‖L2Rz(B)‖H.
Inequalities (2.15) and (2.16) show that

(2.17) ‖L1Ωz(A)L2Rz(B)‖H ≤ αγ−1‖Ωz(B)‖H
(
1 + |z + γ|γ−1‖Ωz(A)‖H

)
‖L1‖d‖L2‖d

for z ∈ ρ(A) ∩ ρ(B).

§3. Estimates for the difference of resolvents on the contour

3.1. The contour Γ. We need to integrate the difference of resolvents Rz(A(t)) −
Rz(A(0)) over the contour Γ that envelopes the real interval [0, δ] equidistantly at the
distance δ. We recall that δ is a fixed number such that 8δ < d0, where d0 is the distance
between the nonzero part of the spectrum of A0 and the point zero. The parameter t is
subject to the condition

(3.1) |t| ≤ t0 = t0(δ) = δ1/2‖X1‖−1,

i.e., t satisfies (1.3). Below, we shall write Rz(t) in place of Rz(A(t)), Ωz(t) in place of
Ωz(A(t)), etc. Also, we omit the lower indices H or H∗ in the notation of the norm and
the inner product. By Proposition 1.2, if condition (3.1) is fulfilled, then the distance
between Γ and σ(A(t)) is at least δ, whence

(3.2) ‖Rz(t)‖ ≤ δ−1, z ∈ Γ, |t| ≤ t0(δ).

3.2. Incorporation into the pattern of §2. When using the results of §2, we assume
that γ = 2δ. To begin with, we mention an estimate for the operator-valued function
Ωz(t) = I + (z + 2δ)Rz(t) of the form (2.10). By (3.2) and the inequality |z| ≤ 2δ for
z ∈ Γ, we have

(3.3) ‖Ωz(t)‖ ≤ 5, z ∈ Γ, |t| ≤ t0(δ).

Now, the role of the forms b and a (see §2) is played by the forms a(t) and a(0), respec-
tively:

a(t)[u, u] = ‖X(t)u‖2, a(0)[u, u] = ‖X0u‖2, u ∈ DomX0 =: d.
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First, we estimate the number α defined by (2.4). By (3.1),

‖X0u‖2 = ‖(X(t)− tX1)u‖2

≤ 2‖X(t)u‖2 + 2t2‖X1‖2‖u‖2 ≤ 2(‖X(t)u‖2 + δ‖u‖2), u ∈ d,

which corresponds to the estimate

(3.4) α2 ≤ 2.

Now, the difference of the forms a(t)− a(0) is equal to the form

(3.5) 2tRe(X0u,X1u) + t2‖X1u‖2, u ∈ d,

which gives rise to an operator Tγ in the space d with the metric form aγ(0), γ = 2δ.
From (3.5) it follows that the operator Tγ = Tγ(t) can be represented as

(3.6) Tγ(t) = tT (1)
γ + t2T (2)

γ ,

where the operators T (1)
γ and T

(2)
γ do not depend on t. We estimate their norms on d.

Since

2|Re(X0u,X1u)| ≤ κ‖X0u‖2 + κ−1‖X1‖2‖u‖2, κ > 0,

for κ = (2δ)−1/2‖X1‖ we obtain

2|Re(X0u,X1u)| ≤ (2δ)−1/2‖X1‖(‖X0u‖2 + 2δ‖u‖2),

or, by (2.6),

(3.7) ‖T (1)
γ ‖d ≤ (2δ)−1/2‖X1‖.

Next, we have ‖X1u‖2 ≤ (2δ)−1‖X1‖2(‖X0u‖2 + 2δ‖u‖2), i.e.,

(3.8) ‖T (2)
γ ‖d ≤ (2δ)−1‖X1‖2.

Finally, we estimate the norm of the operator (3.6). Relations (3.7) and (3.8) imply that

‖Tγ(t)‖d ≤ |t|(2δ)−1/2‖X1‖+ t2(2δ)−1‖X1‖2.

Combining this with (3.1), we obtain

(3.9) ‖Tγ(t)‖d ≤
√

2 + 1
2
|t|δ−1/2‖X1‖.

3.3. Estimate for the norm of the difference of resolvents. We start with the
representation (2.11). By (2.14), (3.4), and (3.9), we obtain

‖Tγ(t)R−γ(t)‖ ≤ 4−1(1 +
√

2)
√

2|t|δ−3/2‖X1‖.

Combining this with (3.3) yields

(3.10) ‖Rz(t)−Rz(0)‖ ≤ β◦1 |t|δ−3/2‖X1‖, |t| ≤ t0(δ), z ∈ Γ,

where β◦1 = 522−1(1+2−1/2). In what follows, the bulky expressions for absolute constants
will not be written down explicitly; these constants will be denoted by β or β◦ with indices.
However, it should be kept in mind that concrete numerical bounds can be given for these
constants.
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3.4. The difference of resolvents. Separation of the main part. Estimate (3.10)
does not suffice for our purposes. We separate the terms of the resolvent up to the
order of t2 and give an estimate of order t3 for the remainder term. For this, we use a
representation of the form (2.13):

(3.11) Rz(0)−Rz(t) = Ωz(0)Tγ(t)Rz(t), z ∈ Γ.

Here |t| ≤ t0(δ), γ = 2δ, and the operator Tγ(t) is defined as in (3.6). The difference
(3.11) can be written as follows:

Rz(0)−Rz(t) = tI1 + t2I2,(3.12)

Ik = Ωz(0)T (k)
γ Rz(t), k = 1, 2.(3.13)

We start with the operator I2. Iterating (3.11), we obtain

I2 = Ωz(0)T (2)
γ Rz(0)− Ωz(0)T (2)

γ Ωz(0)Tγ(t)Rz(t) = I0
2 − I

(1)
2 .

The operator

(3.14) I0
2 = Ωz(0)T (2)

γ Rz(0)

does not depend on t, and for I(1)
2 it suffices to prove an estimate of order |t|. Such an

estimate is a direct consequence of the corresponding inequality of the form (2.17). It
suffices to use (3.8) and (3.9), and to refer to (3.3), (3.4), and the fact that |z+γ|γ−1 ≤ 2
for z ∈ Γ. As a result, we obtain ‖I(1)

2 ‖ ≤ β◦2 |t|δ−5/2‖X1‖3, whence

(3.15) t2I2 = t2I0
2 + Ψ0

2(t), ‖Ψ0
2(t)‖ ≤ β◦2 |t|3δ−5/2‖X1‖3.

3.5. Investigation of the operator I1. This is somewhat more cumbersome. We
need to separate the zero and first order terms in t from I1, and to efficiently control the
remainder term. For this, we need to apply formula (3.11) twice. Namely, by (3.13), we
have

I1 = Ωz(0)T (1)
γ Rz(0)− Ωz(0)T (1)

γ Ωz(0)Tγ(t)Rz(t) = I0
1 − I

(1)
1 .

Here

(3.16) I0
1 = Ωz(0)T (1)

γ Rz(0)

does not depend on t. For the analysis of I(1)
1 , we use (3.11) once again:

I(1)
1 = Ωz(0)T (1)

γ Ωz(0)Tγ(t)Rz(0)− Ωz(0)T (1)
γ Ωz(0)Tγ(t)Ωz(0)Tγ(t)Rz(t)

= tΩz(0)T (1)
γ Ωz(0)T (1)

γ Rz(0) + t2Ωz(0)T (1)
γ Ωz(0)T (2)

γ Rz(0)

− Ωz(0)T (1)
γ Tγ(t)Ωz(0)Tγ(t)Rz(t)

− (z + 2δ)Ωz(0)(T (1)
γ Rz(0))(Tγ(t)Ωz(0)Tγ(t)Rz(t)).

The first term on the right is equal to tI00
2 , where

(3.17) I00
2 = Ωz(0)T (1)

γ Ωz(0)T (1)
γ Rz(0),

and the other three terms can be estimated with the help of (2.16), (2.17), and (3.7)–(3.9).
All three terms give contributions of the same type. As a result, we obtain

(3.18)
tI1 = tI0

1 − t2I00
2 + Ψ0

1(t),

‖Ψ0
1(t)‖ ≤ β◦3 |t|3δ−5/2‖X1‖3.
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3.6. The final result. From (3.15), (3.18), and (3.12) we obtain the following state-
ment.

Theorem 3.1. Suppose condition (3.1) is fulfilled, z ∈ Γ, and γ = 2δ. Then

(3.19) Rz(0)−Rz(t) = tI0
1 + t2I+

2 + Ψ0(t).

Here I+
2 = I0

2 − I00
2 . The operators I0

1 , I0
2 , and I00

2 are defined by (3.16), (3.14), and
(3.17), respectively. We have

‖Ψ0(t)‖ ≤ β◦|t|3δ−5/2‖X1‖3.

§4. Threshold approximations

4.1. The difference of the spectral projections. We start with the representation

(4.1) F (t, δ) = − 1
2πi

∫
Γ

Rz(t) dz.

If t = 0, the left-hand side of (4.1) is equal to P ; therefore,

(4.2) F (t, δ)− P = − 1
2πi

∫
Γ

(Rz(t)−Rz(0)) dz.

Directly from (3.10) and (4.2), it follows that

(4.3) F (t, δ)− P = Φ(t), ‖Φ(t)‖ ≤ β1|t|δ−1/2‖X1‖, |t| ≤ t0(δ).

Thus, we have proved the following theorem.

Theorem 4.1. Let X(t) and A(t) be the operator families introduced in Subsection 1.1.
Suppose that 8δ < d0, where d0 is the distance between the point λ = 0 and the remaining
part of the spectrum of A0 = A(0). Finally, suppose that condition (3.1) is satisfied. If
F (t, δ) is the spectral projection for A(t) corresponding to the interval [0, δ], and P is the
orthogonal projection onto KerA0, then estimate (4.3) is true.

Remark 4.2. 1) Along with (4.3), we have the trivial estimate ‖Φ(t)‖ ≤ 2.
2) The right-hand side of (4.3) can be represented as β1|t|/t0(δ).

4.2. Approximation for A(t)F (t, δ). For t = 0, the left-hand side in the representation

A(t)F (t, δ) = − 1
2πi

∫
Γ

zRz(t) dz

is equal to A0P = 0; therefore,

(4.4) A(t)F (t, δ) =
1

2πi

∫
Γ

z(Rz(0)−Rz(t)) dz.

By (3.19), from (4.4) we deduce that

(4.5) A(t)F (t, δ) = tI1 + t2I2 + Ψ(t), |t| ≤ t0(δ),

where I1 and I2 are bounded operators independent of t, and

(4.6) ‖Ψ(t)‖ ≤ β2|t|3δ−1/2‖X1‖3, |t| ≤ t0(δ).

The coefficients I1 and I2 can be expressed via integrals of zI0
1 , zI+

2 over Γ. However,
it is easier to find these coefficients by comparing (4.5) and (1.38). This yields I1 = 0,
I2 = SP , and the following theorem is true.

Theorem 4.3. Under the assumptions of Theorem 4.1, we have

(4.7) A(t)F (t, δ) − t2SP = Ψ(t), |t| ≤ t0(δ),

where Ψ(t) satisfies estimate (4.6).
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Remark 4.4. In Theorem 4.3, the germ S is not assumed to be nondegenerate.

Now, let Ã(t) be yet another operator family in H of the same type as A(t). All the
objects related to the family Ã will be marked by “˜”. Relations (4.6) and (4.7) imply
the following theorem.

Theorem 4.5. Suppose that 8δ < min(d0, d̃0), and that the families A and Ã are thresh-
old equivalent, i.e., N = Ñ and S = S̃. Then

‖A(t)F (t, δ) − Ã(t)F̃ (t, δ)‖ ≤ β2|t|3δ−1/2(‖X1‖3 + ‖X̃1‖3),

|t| ≤ δ1/2 min(‖X1‖−1, ‖X̃1‖−1).

4.3. Approximation for the imaginary exponential. For τ ∈ R, consider the group
exp (−iτA(t)). We put

E(τ) := (exp (−iτA(t)))F (t, δ)−
(
exp (−iτt2SP )

)
P,(4.8)

Σ(τ) :=
(
exp (it2τSP )

)
E(τ) =

(
exp (it2τSP )

)
F (t, δ) (exp (−iτA(t)))− P.

Note that Σ(0) = F (t, δ)− P = Φ(t). Next, we have

dΣ(τ)
dτ

= ieit
2τSP (t2SPF (t, δ)− F (t, δ)A(t))e−iτA(t),

whence ‖Σ′(τ)‖ = ‖Ψ(t)F (t, δ)‖ ≤ ‖Ψ(t)‖ and ‖E(τ)‖ = ‖Σ(τ)‖ ≤ ‖Φ(t)‖ + |τ | ‖Ψ(t)‖,
where Φ(t) and Ψ(t) satisfy estimates (4.3) and (4.6). This proves the following state-
ment.

Theorem 4.6. Under the assumptions of Theorem 4.1, the operator-valued function
(4.8) satisfies the estimate

‖E(τ)‖ ≤ β1|t|δ−1/2‖X1‖+ β2|τ ||t|3δ−1/2‖X1‖3, |t| ≤ t0(δ).

Theorem 4.6 automatically implies a statement similar to Theorem 4.5, but we do not
dwell on this.

§5. Approximation for the operator-valued function (A(t) + ε2I)−1

5.1. Statement of the problem. Our goal is to approximate the resolvent of A(t) by
the resolvent of the corresponding germ S. As compared to the assumptions of Theorems
4.1 and 4.3, we now need an additional condition. Namely, we assume that

(5.1) A(t)F (t, δ) ≥ c∗t2F (t, δ), c∗ > 0, |t| ≤ t0(δ).

Condition (5.1) is equivalent to the following estimate for the eigenvalues λl(t), l =
1, . . . , n, of the family A(t) introduced in (1.27):

(5.2) λl(t) ≥ c∗t2, l = 1, . . . , n, c∗ > 0, |t| ≤ t0(δ).

Clearly, under this condition, the germ S of the family A(t) is nondegenerate, and in-
equalities (1.36) are valid with the same constant c∗ as in (5.2). In other words, S ≥ c∗IN,
where IN = P |N is the identity operator in N.

Remark 5.1. In fact, by (1.28), inequalities (1.36) yield inequalities of the form (5.2),
but with a smaller constant c∗ and for t belonging to a smaller interval. In applications,
it is often more convenient to check (5.2) directly.

We shall estimate the norm of the operator-valued function

(5.3) G(ε, t, δ) := (A(t) + ε2I)−1F (t, δ)− (t2SP + ε2I)−1P, ε > 0, |t| ≤ t0(δ).

First, we note that
(t2SP + ε2I)−1P = (t2S + ε2IN)−1P,

where t2S + ε2IN is viewed as an operator in N.
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The following estimates are direct consequences of (5.1) and (1.36):

(5.4) ‖(A(t) + ε2I)−1‖ ≤ (c∗t2 + ε2)−1, |t| ≤ t0(δ),

(5.5) ‖(t2S + ε2IN)−1‖ ≤ (c∗t2 + ε2)−1, |t| ≤ t0(δ).

For a while, we shall use the abridged notation

A(t) = A, F (t, δ) = F, G(ε, t, δ) = G, |t| ≤ t0(δ).

It is convenient to separate the factor depending on |t| in estimates (4.3) and (4.6). We
have

‖Φ(t)‖ ≤ C1|t|, C1 = β1δ
−1/2‖X1‖ = β1(t0(δ))−1, |t| ≤ t0(δ),(5.6)

‖Ψ(t)‖ ≤ C2|t|3, C2 = β2δ
−1/2‖X1‖3 = β2δ(t0(δ))−3, |t| ≤ t0(δ).(5.7)

Finally, we write the obvious identity

(5.8) (A+ ε2I)−1F = (AF + ε2I)−1F.

5.2. Approximation of the resolvent near the threshold. Our nearest goal is the
proof of the following theorem.

Theorem 5.2. Under condition (5.2), the operator-valued function (5.3) satisfies the
estimate

(5.9) ‖G(ε, t, δ)‖ ≤ C0|t|(c∗t2 + ε2)−1, ε > 0, |t| ≤ t0(δ), C0 = 2C1 + c−1
∗ C2,

and, consequently,

(5.10) 2ε‖G(ε, t, δ)‖ ≤ C, C = c
−1/2
∗ C0, ε > 0, |t| ≤ t0(δ).

Here c∗ is the same constant as in (5.2), and C1, C2 are defined by (5.6), (5.7).

Proof. We start with the identity

F (AF + ε2I)−1(AF + ε2I − (t2SP + ε2I))(t2SP + ε2I)−1P

= F (t2SP + ε2I)−1P − F (AF + ε2I)−1P.

By (5.8), this implies that G = G1 +G2 +G0, where

G1 = (A+ ε2I)−1FΦ(t),

G2 = Φ(t)(t2SP + ε2I)−1P,

G0 = −F (A+ ε2I)−1Ψ(t)(t2SP + ε2I)−1P.

Recall that the operators Φ(t) = F − P and Ψ(t) = AF − t2SP satisfy (5.6) and (5.7).
From (5.4)–(5.7) we see that, for ε > 0 and |t| ≤ t0(δ),

‖G1‖+ ‖G2‖ ≤ 2C1(c∗t2 + ε2)−1|t|,
‖G0‖ ≤ C2(c∗t2 + ε2)−2|t|3

≤ c−1
∗ C2(c∗t2 + ε2)−1|t|,

and estimate (5.9) follows. �

Remark 5.3. Estimate (5.9) is two-parametric. For t fixed, the operator-valued function
G(ε, t, δ) is bounded as ε → 0. Estimate (5.10) (which follows from (5.9)) is uniform in
t for |t| ≤ t0(δ).

Now, let Ã(t) be a new family of the form (1.2) satisfying the analog of condition
(5.1). Estimate (5.10) implies the following statement.
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Theorem 5.4. Suppose the families A(t) and Ã(t) are threshold equivalent and 8δ <
min{d0, d̃0}. Then, for ε > 0 and |t| ≤ δ1/2 min{‖X1‖−1, ‖X̃1‖−1} = min{t0(δ), t̃0(δ)},
the operator-valued function

J = (A(t) + ε2I)−1F (t, δ)− (Ã(t) + ε2I)−1F̃ (t, δ)

satisfies the estimate

2ε‖J‖ ≤ C + C̃ = c
−1/2
∗ (2C1 + c−1

∗ C2) + c̃
−1/2
∗ (2C̃1 + c̃−1

∗ C̃2).

By Proposition 1.2, we have ‖(A(t) + ε2I)−1F (t, δ)⊥‖ ≤ (3δ)−1. Therefore, the fol-
lowing two statements are direct consequences of Theorems 5.2 and 5.4.

Theorem 5.5. Under the assumptions of Theorem 5.2, we have

(5.11) ε‖(A(t) + ε2I)−1 − (t2SP + ε2I)−1P‖ ≤ 2−1C + ε(3δ)−1, ε > 0, |t| ≤ t0(δ).

Theorem 5.6. Under the assumptions of Theorem 5.4, we have

(5.12) ε‖(A(t)+ε2I)−1− (Ã(t)+ε2I)−1‖ ≤ 2−1(C+ C̃)+2ε(3δ)−1, ε > 0, |t| ≤ t0(δ).

5.3. Approximation of the generalized resolvent near the threshold. 1 Theorem
5.5 can be extended to the case where the resolvent (A(t) + ε2I)−1 is replaced by the
operator (Â(t)+ε2Q)−1. Here Q is a bounded positive definite operator in Ĥ. This useful
generalization will be deduced from Theorem 5.5 on the basis of Subsection 1.5. We shall
use the notation and material of Subsection 1.5 without repeating the explanations. We
only note that, by (1.20),

(5.13) M(A(t) + ε2I)−1M∗ = (Â(t) + ε2Q)−1,

where

(5.14) Q = (M∗)−1M−1 = (M∗)−1 : Ĥ→ Ĥ.

We start with preliminary remarks. Since P̂⊥MP = 0, we have PM∗P̂⊥ = 0. Conse-
quently,

(5.15) PM∗P̂ = PM∗.

Next, since MPM−1P̂ = P̂ , we have

(5.16) P̂ = P̂ (M−1)∗PM∗.

Consider the block Q
N̂

of the operator Q in the subspace N̂:

(5.17) Q
N̂

= P̂Q|
N̂

: N̂→ N̂.

By (5.2), the germ S of the family A(t) is nondegenerate. Then so is the germ Ŝ of Â(t).
Therefore, the operator

(t2Ŝ + ε2Q
N̂

)−1 : N̂→ N̂

exists.

Proposition 5.7. We have

(5.18) M(t2SP + ε2I)−1PM∗ = (t2Ŝ + ε2Q
N̂

)−1P̂ .

1The results of this subsection were obtained by the authors with the participation of R. G. Shteren-
berg.
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Proof. Both operators in (5.18) act in Ĥ and take N̂ into itself. The operator on the left
can be represented (cf. (5.15)) as

P̂M(t2SP + ε2I)−1PM∗P̂ .

We put ζ̂ = M(t2SP + ε2I)−1PM∗η̂. Suppose η̂ ∈ N̂; then ζ̂ ∈ N̂ and PM∗η̂ =
(t2SP + ε2I)M−1ζ̂. By (5.14), (5.16), (5.17), and also (1.24), we have

η̂ = t2P̂ (M∗)−1SM−1ζ̂ + ε2P̂ (M∗)−1M−1ζ̂ = (t2Ŝ + ε2Q
N̂

)ζ̂.

Thus, ζ̂ = (t2Ŝ + ε2Q
N̂

)−1η̂, which is equivalent to (5.18). �

For the operator-valued function

(5.19) Y(ε, t) = (A(t) + ε2I)−1 − (t2SP + ε2I)−1P,

we write (5.11) as

(5.20) ε‖Y(ε, t)‖ ≤ C, C = 2−1C + (3δ)−1, 0 < ε ≤ 1, |t| ≤ t0(δ).

By (5.13), (5.18), and (5.19),

MY(ε, t)M∗ = (Â(t) + ε2Q)−1 − (t2Ŝ + ε2Q
N̂

)−1P̂ .

Combining this with (5.20), we obtain

(5.21) ε‖(Â(t) + ε2Q)−1 − (t2Ŝ + ε2Q
N̂

)−1P̂‖ ≤ C‖M‖2 = C‖Q−1‖.

All quantities in (5.21) are expressed in terms of the family Â(t) and the operator Q,
which act in Ĥ. Thus, estimate (5.21) can be treated as a generalization of (5.20) for the
operator-valued function (5.19). However, the constant C comes from the initial family.
This constant can be recalculated (with making it rougher), but, for applications, we do
not need this.

Now, let Â+(t) be yet another family of the form Â(t) acting in Ĥ, and let Q+ be a
bounded positive definite operator in Ĥ. Suppose that the families Â(t) and Â+(t) are
threshold equivalent and that the blocks of the operators Q and Q+ in N̂ coincide. Next,
let M+ = (Q+)−1/2 and A+(t) = M+Â+(t)M+, and let C+ be the analog of the constant
C (see (5.20)) for the family A+(t).

Theorem 5.8. Under the above conditions, we have

(5.22) ε‖(Â(t) + ε2Q)−1 − (Â+(t) + ε2Q+)−1‖ ≤ C‖Q−1‖+ C+‖Q−1
+ ‖,

where 0 < ε ≤ 1, 8δ < min{d0, d0
+}, and |t| ≤ min{t0(δ), t0+(δ)}.

Finally, (5.13), (5.14), and (5.22) imply the following statement.

Theorem 5.9. Under the assumptions of Theorem 5.8, we have

ε‖(A(t) + ε2I)−1 −M−1(Â+(t) + ε2Q+)−1(M∗)−1‖ ≤ ‖M−1‖2(C‖M‖2 + C+‖Q−1
+ ‖).

Chapter 2. Periodic differential operators in L2(Rd;Cn)

§1. Main definitions. Preliminaries

1.1. Factorized second order operators. We consider selfadjoint matrix second
order DO’s represented as a product of two mutually adjoint first order DO’s. Let b(D) :
L2(Rd;Cn) → L2(Rd;Cm) be a homogeneous first order DO with constant coefficients.
We always assume that

(1.1) m ≥ n.
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We fix orthonormal bases ẽ1, . . . , ẽn in Cn, e1, . . . , em in Cm, and e′1, . . . , e
′
d in Rd. Then

the symbol b(ξ) is associated with the operator b(D). This symbol is an (m×n)-matrix-
valued linear homogeneous function of ξ ∈ Rd. Suppose that

(1.2) rank b(ξ) = n, 0 6= ξ ∈ Rd;
then

(1.3) α01n ≤ b(θ)∗b(θ) ≤ α11n, |θ| = 1, 0 < α0 ≤ α1 <∞.
Note that

(1.4) b(ξ) =
d∑
j=1

ξjbj , ξ =
d∑
j=1

ξje′j ,

where the bj are constant (m× n)-matrices with rank bj = n.
Suppose that an (n× n)-matrix-valued function f(x) and an (m×m)-matrix-valued

function h(x), x ∈ Rd, are bounded, together with their inverses:

(1.5) f, f−1 ∈ L∞(Rd); h, h−1 ∈ L∞(Rd).

We consider the DO

(1.6) X := hb(D)f : L2(Rd;Cn)→ L2(Rd;Cm),

(1.7) DomX := {u ∈ L2(Rd;Cn) : fu ∈ H1(Rd;Cn)}.
The operator (1.6) is closed on the domain (1.7). The selfadjoint operator

(1.8) A := X ∗X
in L2(Rd;Cn) is generated by the closed quadratic form

(1.9) a[u,u] := ‖Xu‖2L2(Rd;Cm), u ∈ DomX .

Formally,

(1.10) A = f(x)∗b(D)∗g(x)b(D)f(x), g(x) := h(x)∗h(x).

By using the Fourier transformation and conditions (1.3) and (1.5), it is easy to show
that

c0

∫
Rd
|D(fu)|2 dx ≤ a[u,u] ≤ c1

∫
Rd
|D(fu)|2 dx, u ∈ DomX ,(1.11)

c0 = α0‖h−1‖−2
L∞

, c1 = α1‖h‖2L∞.(1.12)

1.2. The lattices Γ and Γ̃. In what follows, the functions f and h (and, with them,
the operators X , A) are assumed to be periodic with respect to some lattice Γ ⊂ Rd:

f(x + a) = f(x), h(x + a) = h(x), a ∈ Γ.

Let a1, . . . ,ad ∈ Rd be the basis in Rd that generates the lattice Γ, i.e.,

Γ =
{

a ∈ Rd : a =
d∑
j=1

νjaj , νj ∈ Z
}
,

and let Ω be the (elementary) cell of Γ:

(1.13) Ω :=
{

x ∈ Rd : x =
d∑
j=1

τ jaj , 0 < τ j < 1
}
.
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The basis b1, . . . ,bd in Rd dual to a1, . . . ,ad is defined by the relations 〈bi,aj〉 = 2πδij .
This basis generates the lattice Γ̃ dual to Γ:

Γ̃ =
{

b ∈ Rd : b =
d∑
i=1

µibi, µi ∈ Z
}
.

The cell of Γ̃ can be defined by analogy with (1.13). However, it is more convenient to
denote by Ω̃ the Brillouin zone

Ω̃ = {k ∈ Rd : |k| < |k− b|, 0 6= b ∈ Γ̃}.

Like the cell, the domain Ω̃ is a fundamental domain for Γ̃. This means that all Γ̃-shifted
copies of Ω̃ are mutually disjoint and the union of the Γ̃-shifted copies of clos Ω̃ covers
Rd. The closure clos Ω̃ is a convex polyhedron. The points k ∈ ∂Ω̃ are characterized
by the relation |k| = min |k − b|, 0 6= b ∈ Γ̃. We shall use the notation |Ω| = meas Ω,
|Ω̃| = meas Ω̃. Note that |Ω| |Ω̃| = (2π)d. Let r0 be the radius of the ball inscribed in
clos Ω̃. Then

(1.14) 2r0 = min |b|, 0 6= b ∈ Γ̃.

We denote
K(r) = {k ∈ Rd : |k| ≤ r}, 0 < r ≤ r0.

Associated with the lattice Γ is the discrete Fourier transformation

(1.15) v(x) = |Ω|−1/2
∑
b∈Γ̃

vb exp(i〈b,x〉), x ∈ Ω.

This transformation maps l2(Γ̃) onto L2(Ω) unitarily:∫
Ω

|v(x)|2 dx =
∑
b∈Γ̃

|vb|2.

Below, H̃1(Ω) stands for the subspace of all functions in H1(Ω) such that the Γ-periodic
extension of them to Rd belongs to H1

loc(Rd). We have

(1.16)
∫

Ω

|((D + k)v)(x)|2 dx =
∑
b∈Γ̃

|b + k|2|vb|2, v ∈ H̃1(Ω;Cn), k ∈ Rd.

The convergence of the series in (1.16) is equivalent to the fact that v ∈ H̃1(Ω;Cn). We
mention a more general relation. Let b(ξ) be the symbol introduced in Subsection 1.1.
Then

(1.17)
∫

Ω

|b(D + k)v|2 dx =
∑
b∈Γ̃

|b(b + k)vb|2, v ∈ H̃1(Ω;Cn), k ∈ Rd.

1.3. The Gelfand transformation. Initially, the Gelfand transformation U is defined
on the functions of the Schwartz class S by the formula

ṽ(k,x) = (Uv)(k,x) = |Ω̃|−1/2
∑
a∈Γ

exp(−i〈k,x + a〉)v(x + a),

v ∈ S(Rd;Cn), x ∈ Rd, k ∈ Rd.
Since ∫

Ω̃

∫
Ω

|ṽ(k,x)|2 dx dk =
∫
Rd
|v(x)|2 dx, ṽ = Uv,
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U extends by continuity to a unitary mapping

(1.18) U : L2(Rd;Cn)→
∫

Ω̃

⊕L2(Ω;Cn) dk =: H.

Next, the relation v ∈ H1(Rd;Cn) is equivalent to the fact that ṽ(k, ·) ∈ H̃1(Ω) for
almost every k ∈ Ω̃ and∫

Ω̃

∫
Ω

(
|(D + k)ṽ(k,x)|2 + |ṽ(k,x)|2

)
dx dk <∞.

Under the transformation U , the operator of multiplication by a bounded periodic func-
tion in L2(Rd;Cn) turns into multiplication by the same function on the fibers of the di-
rect integralH (see (1.18)). On these fibers, the operator b(D) applied to v ∈ H1(Rd;Cn)
turns into the operator b(D + k) applied to ṽ(k, ·) ∈ H̃1(Ω;Cn).

§2. Direct integral expansion for the operator A

2.1. The forms a(k) and the operators A(k). Putting

(2.1) H = L2(Ω;Cn), H∗ = L2(Ω;Cm),

we consider the closed operator

X (k) : H→ H∗, k ∈ Rd,
defined on the domain

(2.2) d := DomX (k) = {u ∈ H : fu ∈ H̃1(Ω;Cn)}
by the formula

(2.3) X (k) = hb(D + k)f, k ∈ Rd.
The selfadjoint operator

(2.4) A(k) := X (k)∗X (k) : H→ H, k ∈ Rd,
is generated by the closed quadratic form

(2.5) a(k)[u,u] := ‖X (k)u‖2H∗ , u ∈ d, k ∈ Rd.
Using the Fourier series expansion (1.15), identity (1.17), and estimates (1.3), we see
that

(2.6)
c0

∫
Ω

|(D + k)v|2 dx ≤ a(k)[u,u] ≤ c1
∫

Ω

|(D + k)v|2 dx,

v = fu ∈ H̃1(Ω;Cn), k ∈ Rd,

where c0 and c1 are defined by (1.12). From (2.6) and the compactness of the embedding
of H̃1(Ω;Cn) in H it follows that the spectrum of A(k) is discrete. Observe also that the
resolvent of the operator A(k) is compact and depends on k ∈ Rd continuously (in the
operator norm).

Let

(2.7) N := KerA(0) = KerX (0).

Relations (2.6) with k = 0 show that

(2.8) N = {u ∈ L2(Ω;Cn) : fu = c ∈ Cn}, dim N = n.

We see that N does not depend on the matrix g.
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2.2. The band functions. Let

(2.9) E1(k) ≤ E2(k) ≤ · · · ≤ Es(k) ≤ · · · , k ∈ Rd,

be the consecutive eigenvalues of the operator A(k) (counted with multiplicities). The
band functions Es(k) are continuous and Γ̃-periodic.

In H, we consider the closed quadratic form

a0(k)[v,v] =
∫

Ω

|(D + k)v|2 dx, v ∈ H̃1(Ω;Cn).

By (1.16), we have a0(k)[v,v] =
∑

b∈Γ̃ |b+k|2|vb|2. This implies that the band functions
E0
j (k) of the corresponding operator A0(k) reduce to the numbers |b + k|2, b ∈ Γ̃. Each

of these eigenvalues is of multiplicity n. We list the properties of E0
j (k) necessary for

what follows. They are quite obvious.
1◦. E0

l (k) = |k|2, l = 1, . . . , n, k ∈ clos Ω̃.
2◦. E0

1 (k) ≥ r2, k ∈ clos Ω̃ \ K(r), 0 < r ≤ r0.
3◦. E0

n+1(k) ≥ r2
0 , k ∈ Rd.

4◦. E0
n+1(0) = min06=b∈Γ̃ |b|2 = 4r2

0.
Now, we return to the functions (2.9). They coincide with the consecutive minima of

the quotient a(k)[u,u]
/
‖u‖2H. By (2.6), this quotient can be estimated from below as

follows: for u ∈ d, v = fu, we have

a(k)[u,u]
‖u‖2

H

≥ c0
a0(k)[v,v]
‖u‖2

H

≥ c0‖f−1‖−2
L∞

a0(k)[v,v]
‖v‖2

H

.

Variational type arguments show that

(2.10) Ej(k) ≥ c∗E0
j (k),

where, in accordance with (1.12),

(2.11) c∗ = α0‖f−1‖−2
L∞
‖h−1‖−2

L∞
.

Combining estimates (2.10) with the properties 1◦–4◦ of the functions E0
j (k), we obtain

the following:

El(k) ≥ c∗|k|2, l = 1, . . . , n, k ∈ clos Ω̃,(2.12)

E1(k) ≥ c∗r2, k ∈ clos Ω̃ \ K(r), 0 < r ≤ r0,(2.13)

En+1(k) ≥ c∗r2
0 , k ∈ Rd,

En+1(0) ≥ 4c∗r2
0 .(2.14)

2.3. The direct integral for the operator A. The operators A(k) allow us to
partially diagonalize the operator A in the direct integral H (see (1.18)). Let us compare
relations (1.6), (1.7), and (1.9), which define the form a of the operator A, with relations
(2.2), (2.3), and (2.5), which define the form a(k) of the operatorA(k). For u ∈ DomX =
Dom a, we denote v = fu. From what was said in Subsection 1.3 about v, we see directly
that the following is true for u. Let ũ = Uu, u ∈ Dom a. Then

ũ(k, ·) ∈ d for a.e. k ∈ Rd,(2.15)

a[u,u] =
∫

Ω̃

a(k)[ũ(k, ·), ũ(k, ·)] dk.(2.16)

Conversely, if ũ ∈ H satisfies (2.15) and the integral in (2.16) is finite, then u ∈ Dom a and
(2.16) is valid. The above arguments show that, in the direct integral H, the operator A
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(see (1.8)) turns into multiplication by the operator-valued function A(k), k ∈ Ω̃, defined
by (2.4). All this can be expressed briefly by the formula

(2.17) UAU−1 =
∫

Ω̃

⊕A(k) dk.

From (2.17) it follows that the spectrum σ(A) is a union of segments (spectral bands)
that are the ranges of the band functions (2.9). Relations (2.7) and (2.8) imply that

min
k∈Rd

Ej(k) = Ej(0) = 0, j = 1, . . . , n.

Consequently, the lower edge of the spectrum of A coincides with the point λ = 0:
inf σ(A) = 0.

§3. Incorporation of the operators A(k) into the pattern of §1, Chapter 1

3.1. Concordance of notions. For d > 1, the operators A(k) depend on the multi-
dimensional parameter k. In this case, the analytic perturbation theory gives satisfactory
results only for simple eigenvalues. The role of the unperturbed operator A0 is played by
A(0). By (2.7) and (2.8), we now have dim N = n ≥ 1, i.e., for n > 1, the eigenvalue λ = 0
for A(0) is multiple. To avoid this difficulty, for k ∈ Rd we put k = tθ, t = |k|, |θ| = 1,
and view t as the perturbation parameter. At the same time, all the constructions will
depend on the additional parameter θ. This dependence will often be reflected in the
notation.

We shall apply the method described in §1 of Chapter 1; we put

(3.1) H = L2(Ω;Cn), H∗ = L2(Ω;Cm),

which coincides with (2.1). Next,

(3.2) X(t) = X(t,θ) = X (tθ) = hb(D + tθ)f,

(3.3)

X0 = X (0) = hb(D)f, DomX0 = d,

X1 = X1(θ) = hb(θ)f,

X(t) = X0 + tX1,

and, in (3.3), we may assume that t ∈ R. Finally,

(3.4) A(t) = A(t,θ) = A(tθ)

and, in accordance with (2.7) and (2.8),

N = KerX0 = KerX (0), dim N = n.

Relation (1.1) guarantees that n ≤ n∗. Moreover, since

(3.5) N∗ = KerX∗0 = {q ∈ L2(Ω;Cm) : h∗q ∈ H̃1(Ω;Cm), b(D)∗h(x)∗q = 0},

we see that, under condition (1.1), the following alternative realizes for n∗ = dim N∗:
either n∗ =∞ (if m > n), or n∗ = n (if m = n). By (2.14), instead of the precise value
d0 = En+1(0) we take

(3.6) d0 = 4c∗r2
0

(possibly, a larger value could be taken). Here c∗ is the constant (2.11). In Subsection
1.1.1, it was required to choose δ < d0/8. Recalling (3.6), we fix δ so that

(3.7) δ < c∗r
2
0/2 = 2−1r2

0α0‖f−1‖−2
L∞
‖h−1‖−2

L∞
.
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Next, the estimate ‖X1(θ)‖ ≤ α
1/2
1 ‖f‖L∞‖h‖L∞ allows us to choose t0(δ) (see (1.1.3))

equal not to δ1/2‖X1(θ)‖−1, but to a smaller number independent of θ. Namely, we put

(3.8) t0(δ) = δ1/2α
−1/2
1 ‖f‖−1

L∞
‖h‖−1

L∞
.

Observe that t0(δ) < r0/
√

2 by (3.7) and (3.8). Thus,

{k ∈ Ω̃ : |k| = t ≤ t0(δ)} ⊂ K(2−1/2r0) ⊂ Ω̃.

In what follows, we always assume that c∗ and t0(δ) are defined by (2.11) and (3.8).

3.2. Nondegeneracy of the germ of the family A(t,θ). The analytic (in t) branches
of the eigenvalues λl(t,θ) (see (1.1.28) and (1.1.29)) and the branches of the eigenvectors
ϕl(t,θ), l = 1, . . . , n, |t| ≤ t0(δ), depend on θ. The first band functions El(tθ), l =
1, . . . , n (see (2.9)), coincide with λl(t,θ) only partially, because the analytic branches
λl are not enumerated in nondecreasing order. At the same time, from (2.12) it follows
that

(3.9) λl(t,θ) ≥ c∗t2, l = 1, . . . , n, t ∈ [0, t0(δ)].

It is essential that c∗ and t0(δ) in (3.9) do not depend on θ. Inequalities (3.9) show that
the germ S(θ) of the family A(t,θ) (see (3.4)) is nondegenerate uniformly in θ.

Chapter 3. Effective characteristics near the lower edge

of the spectrum

In this chapter, we consider the spectral germ S(θ) of the operator family A(t,θ) (see
(2.3.4)). We introduce a family that is threshold equivalent to the given one simulta-
neously for all θ and is such that the corresponding matrix g = h∗h for this family is
constant. This constant matrix is called the effective matrix (notation: geff) for the initial
periodic matrix g. We discuss the question about the uniqueness of geff ; herewith, we
correct a wrong statement concerning this question that occurred in [BSu2]. We distin-
guish the main effective matrix g0 and discuss its properties. We introduce the effective
DO for the DO A (see (2.1.10)). The effective DO is of the same type as A, but with g
replaced by geff . On the basis of §5 in Chapter 1, we study the behavior of the resolvent
(A+ ε2I)−1 as ε→ 0.

Below, we shall use the following notation. Let φ(x) be a Γ-periodic matrix-valued
function such that φ ∈ L1,loc(Rd). We put

(0.1) φ = |Ω|−1

∫
Ω

φ(x) dx.

If, moreover, the matrix φ is square, nonsingular, and such that φ−1 ∈ L1,loc(Rd), we
put

(0.2) φ =
(
|Ω|−1

∫
Ω

φ(x)−1 dx
)−1

.

Observe that, if φ(x) > 0, then we always have φ ≤ φ, and equality occurs only if φ is a
constant matrix.

§1. Effective matrices and the effective DO

First, we need to construct the operators R = R(θ) and S = S(θ) for the family
A(t,θ). It is convenient to start with the case where f = 1n, and then proceed to the
general case on the basis of Subsection 1.1.5. In the case where f = 1n, we agree to mark
all the corresponding objects by “̂”.
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1.1. The operator R̂(θ). We shall use the notation (2.3.1). In accordance with (2.2.8),

(1.1) N̂ = {u ∈ H : u = c ∈ Cn}, n̂ = n.

Since N∗ does not depend on f (see (2.3.5)), we have N̂∗ = N∗. On the other hand, N∗
depends on g, and, moreover, on h.

Let

(1.2) M = {q ∈ H∗ : q = C ∈ Cm}
be the subspace of constant vector-valued functions. By Subsection 1.1.2, for every
C ∈ M there exists a unique element v ∈ H̃1(Ω;Cn) such that

∫
Ω v dx = 0 and (see

(1.1.7) with z = −hC)

(1.3) (gb(D)v, b(D)w)H∗ = −(gC, b(D)w)H∗ , w ∈ H̃1(Ω;Cn).

We put

(1.4) BC = h(b(D)v + C) ∈ N∗ ⊂ H∗.

Obviously, the operator B : M → N∗ is independent of k = tθ. Observe the identity∫
Ω h
−1BC dx = |Ω|C. This implies that KerB = {0}, whence rankB = m. Now,

let c ∈ N̂ and C = b(θ)c. Then (see (1.1.7)–(1.1.10)) v plays the role of ϕ̂(c) and
R̂(θ)c = B(b(θ)c). Thus,

(1.5) R̂(θ) : N̂→ N∗, R̂(θ) = Bb(θ), θ ∈ SSd−1.

By condition (2.1.2), from (1.5) and the relation KerB = {0} it follows that Ker R̂(θ) =
{0}, or, equivalently,

(1.6) rank R̂(θ) = n.

We emphasize that, in the preceding calculations, the operators b(ξ), B, and R̂(θ) were
represented as matrices written in some fixed bases (see Subsection 2.1.1). However, the
final relations (e.g., (1.5)) have invariant meaning. The same concerns all that follows; in
particular, we do not distinguish between the germ Ŝ(θ) and the matrix corresponding
to this germ in a fixed basis.

1.2. The operator Ŝ(θ). Effective matrices. In the sequel, it is convenient to
indicate the dependence of the objects on the matrix g (for a fixed matrix b(ξ)) in the
notation. For instance, we shall write Â(t,θ; g), R̂(θ; g), Ŝ(θ; g), etc. By (1.5), it is clear
that the operator

(1.7) Ŝ(θ; g) = R̂(θ; g)∗R̂(θ; g) : N̂→ N̂

(the germ of the family Â(t,θ; g)) satisfies the relation Ŝ(θ; g) = b(θ)∗(B∗B)b(θ). From
(1.6) and (1.7) (see Subsection 2.3.2) it follows that the germ Ŝ(θ; g) is nondegenerate.
In a fixed basis e1, . . . , em, the operator B∗B : M→M is represented by a constant (and
independent of θ) positive matrix g0. Thus,

(1.8) Ŝ(θ; g) = b(θ)∗g0b(θ), g0 = B∗B.

Now, along with Â(t,θ; g), we consider the family Â(t,θ; g0), where the matrix g0 is
associated with the matrix-valued function g as described above. We may assume that
the matrix g0 is factorized somehow: g0 = (h0)∗h0; the final results do not depend on the
choice of this factorization. If g = g0, relation (1.3) yields v = 0. Then R̂(θ; g0) = h0b(θ)
and Ŝ(θ; g0) = b(θ)∗g0b(θ), i.e., (g0)0 = g0. Thus,

(1.9) Ŝ(θ; g) = Ŝ(θ; g0) = b(θ)∗g0b(θ), θ ∈ SSd−1.
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In particular, (1.9) shows that the families Â(t,θ; g) and Â(t,θ; g0) are threshold equiv-
alent. We put

Ŝ(k; g0) := t2Ŝ(θ; g0) = b(k)∗g0b(k), k = tθ ∈ Rd.
Then Ŝ(k; g0) is the symbol of the DO

(1.10) Â0 := b(D)∗g0b(D)

with constant coefficients.

Definition 1.1. A constant positive (m×m)-matrix geff is called an effective matrix for
the operator family Â(t,θ; g) if Ŝ(θ; g) = Ŝ(θ; geff) for all θ ∈ SSd−1.

If geff is an effective matrix for g, then

(1.11) Ŝ(θ; g) = Ŝ(θ; geff) = b(θ)∗geffb(θ), θ ∈ SSd−1.

Relations (1.8) and (1.9) imply the following statement.

Proposition 1.2. For the operator family Â(t,θ; g), there exists at least one effective
matrix. Namely, the matrix g0 corresponding to the operator B∗B is effective.

Definition 1.3. The matrix g0 is called the main effective matrix for the family Â(t,θ; g).

Definition 1.4. The operator (1.10) Â0 is called the effective DO for the operator
Â = b(D)∗gb(D) acting in L2(Rd;Cn).

We mention at once that, by (1.11), Ŝ(θ; geff) coincides with Ŝ(θ; g0), and then
Ŝ(k; geff) = t2Ŝ(θ; geff) = Ŝ(k; g0). This implies that the effective operator Â0 for
Â = b(D)∗gb(D) is defined uniquely. In other words, Â0 will not change if in (1.10) we
replace g0 by any other matrix geff .

Let vj be the solution of problem (1.3) with C = ej , j = 1, . . . ,m. We put uj :=
Bej = h(b(D)vj + ej). Then |Ω|g0 is a Gram matrix, i.e.,

(1.12) g0 = |Ω|−1{(uj ,ul)H∗}, j, l = 1, . . . ,m.

If all the entries of the matrices g(x) and b(ξ) are real-valued, then the solutions vj are
purely imaginary, and the vector-valued functions uj are real. In this case, from (1.12)
it follows that the matrix g0 also has real entries. Then it is natural (but not necessary)
to require that all other effective matrices have real entries.

We supplement the representations g0 = B∗B and (1.12) with yet another useful
representation for the main effective matrix g0. Usually, this representation is viewed as
initial in homogenization theory.

We recall the notation (2.3.2), (2.3.3), and (1.2). For C ∈M, we rewrite (1.4) as

(1.13) hC = BC− hb(D)v, C ∈M.

Since BC ∈ N∗ = KerX∗0 and hb(D)v ∈ RanX0, the summands on the right are
orthogonal to each other in H∗. Consequently,

‖BC‖2H∗ = (BC, hC)H∗ = (h∗BC,C)H∗ = (g(C + b(D)v),C)H∗ ,

whence

|Ω|〈g0C,C〉Cm =
〈∫

Ω

g(b(D)v + C) dx,C
〉
Cm
.

Thus, for g0 we have

(1.14) g0C = |Ω|−1

∫
Ω

g(x)(b(D)v + C) dx, C ∈M,

where v is defined by (1.3).
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1.3. On the uniqueness of an effective matrix. Comparing (1.9) and (1.11) and
passing to quadratic forms, we obtain

〈g0b(θ)ζ, b(θ)ζ〉 = 〈geffb(θ)ζ, b(θ)ζ〉, ζ ∈ Cn, θ ∈ SSd−1.

It follows that the matrix geff = g0 is unique if and only if

(1.15) clos
⋃
θ

Ran b(θ) = Cm.

If the matrices g(x) and b(θ) (and then also g0) have all entries real, then the uniqueness
of the real matrix geff is ensured by the condition

(1.16) clos
⋃
θ

{b(θ)Rn} = Rm.

In [BSu2], a false algebraic criterion of the validity of (1.15) was formulated. In fact, the
uniqueness of geff is a comparatively rare property. This is related to the fact that one
and the same operator Â = b(D)∗g(x)b(D) can be described by different matrices g(x).

Note that, by (2.1.2), conditions (1.15) and (1.16) are valid a fortiori if m = n. So, if
m = n, then an effective matrix is unique. Next, it is easily seen that, in the real-valued
case, (1.16) is valid if n = 1 and m = d. This case corresponds to a real scalar elliptic
operator Â. Here the requirement that g(x) have all entries real is essential. For instance,
if n = 1, m = d = 2, and b(ξ) = e1ξ

1 + e2ξ
2, then any matrix of the form g0 + iαǧ will

be effective. Here ǧ =
(

0 1
−1 0

)
and α ∈ R is sufficiently small. If n > 1, the uniqueness of

geff may be violated even in the real-valued case.
Since the effective DO Â0 does not depend on the choice of geff , the nonuniqueness of

the latter matrix is not very essential. In what follows, the main attention will be paid
to the main effective matrix g0.

1.4. Estimates for the matrix g0. The Voight–Reuss bracketing. In accordance
with (0.1) and (0.2), for the matrix g(x) we put

(1.17) g = |Ω|−1

∫
Ω

g(x) dx, g =
(
|Ω|−1

∫
Ω

g(x)−1 dx
)−1

.

Since the summands on the right-hand side of (1.13) are orthogonal to each other, we
have

(1.18) ‖BC‖2H∗ ≤ ‖hC‖2H∗ .
It is easily seen that (1.18) is equivalent to the relation 〈B∗BC,C〉Cm ≤ 〈gC,C〉Cm , and
since g0 = B∗B (see (1.8)), we obtain the upper estimate g0 ≤ g.

In order to prove the lower estimate, we observe that, by (2.3.5), P := (h∗)−1M ⊂
N∗ ⊂ H∗. We put

Πw = |Ω|−1(h∗)−1g

∫
Ω

h−1w dx, w ∈ H∗.

An elementary argument shows that Πw ∈ P, Π|P = IP, and

(1.19) (Πw,w)H∗ = |Ω|−1〈gCw,Cw〉Cm , Cw =
∫

Ω

h−1w dx, w ∈ H∗.

This means that Π is the orthogonal projection of H∗ onto the subspace P. Now, we
apply the projection Π to (1.13). Since hb(D)v ∈ N⊥∗ , we obtain ΠBC = ΠhC. Putting
w = hC in (1.19), we arrive at

‖ΠhC‖2H∗ = |Ω|〈gC,C〉Cm .



PERIODIC DIFFERENTIAL OPERATORS 667

Consequently,

(1.20) |Ω|〈g0C,C〉Cm = ‖BC‖2H∗ ≥ ‖ΠBC‖2H∗ = ‖ΠhC‖2H∗ = |Ω|〈gC,C〉Cm .
Thus, we have proved the lower estimate: g0 ≥ g.

In the case where m = n, we can say more. Then dim N∗ = n∗ = n = m. Since
dim P = m, we have N∗ = P. Since BC ∈ N∗, we have equality throughout in (1.20).
As a result, we see that if m = n, then we always have g0 = g.

Summarizing, we obtain the following statement.

Theorem 1.5. For the main effective matrix g0 of the family Â(t,θ; g), we have

(1.21) g ≤ g0 ≤ g,
where the constant matrices g and g are defined by (1.17). If m = n, then the (unique)
effective matrix g0 is equal to g:

(1.22) g0 = g, m = n.

Now, we find conditions under which one of the inequalities in (1.21) becomes an
identity. We start with the case where g0 = g. This is equivalent to the fact that
equality occurs in (1.18) for any C. By (1.13), the latter means that hb(D)v = 0, where
v satisfies (1.3). But then (1.3) reduces to the relation b(D)∗g(x)C = 0, C ∈ Cm. Let
gk(x), k = 1, . . . ,m, be the columns of the matrix g(x). As a result, we obtain the
following statement.

Proposition 1.6. The identity g0 = g is equivalent to the relations

(1.23) b(D)∗gk(x) = 0, k = 1, . . . ,m.

We note that (1.23) contains mn differential conditions imposed on the m2 coefficients
of the matrix g.

In the analysis of the case where g0 = g we may assume that m > n. By (1.20), the
relation g0 = g is equivalent to the fact that BC ∈ P, C ∈ M. In other words, for any
C ∈ Cm there exists C∗ ∈ Cm such that BC = (h∗)−1C∗. By (1.4), this means that

(1.24) g−1C∗ = C + b(D)v.

Integrating (1.24), we obtain C = g−1C∗. Putting C∗ = ek, we can rewrite (1.24) in
terms of the columns lk(x) of the matrix g(x)−1. We have proved the following statement.

Proposition 1.7. The identity g0 = g is equivalent to the relations

(1.25) lk(x) = l0k + b(D)vk, vk ∈ H̃1(Ω;Cn), l0k ∈ Cm, k = 1, . . . ,m,

for the columns lk(x) of the matrix g(x)−1.

Moreover, (1.25) automatically implies that l0k = g−1ek and vk satisfies (1.3) with
C = l0k.

Let us comment on relations (1.21), (1.23), and (1.25). In specific cases (the acoustic
operator, the operator of elasticity theory, etc.), estimates (1.21) are well known in ho-
mogenization theory; they are called the Voigt–Reuss bracketing (see, e.g., [ZhKO]). Our
proof of (1.21) is parallel to the proof of the estimates for the germ S given in Subsection
1.1.4 in abstract terms. By (1.9), estimates (1.21) imply the following inequalities for
germs:

(1.26) Ŝ(θ; g) ≤ Ŝ(θ; g0) = Ŝ(θ; g) ≤ Ŝ(θ; g).

We can return from (1.26) to (1.21), but only under the additional condition (1.15).
Precisely under this condition estimates (1.21) were proved in [BSu2] for the operators
b(D)∗g(x)b(D). Relation (1.22) with n > 1 was distinguished for the first time in [BSu2].
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For the acoustic operator, i.e., in the case where n = 1, m = d, and b(D) = D, the
results of Propositions 1.6 and 1.7 have been known (see [ZhKO]). In this case relations
(1.23) mean that the columns gk(x) are solenoidal, and relations (1.25) mean that the
columns lk(x) are potential (up to a constant summand — this will be meant in what
follows).

1.5. The case where f 6= 1n. We return to the operators A of the general form
(2.1.10) and to the corresponding families A(t,θ) of the form (2.3.4). As before, we shall
indicate the dependence on the matrix g (but not on the matrices f , b) in the notation.
The upper mark “̂” is reserved for denoting the objects that correspond to the case of
f = 1n, with the same b and g.

We use the pattern of Subsection 1.1.5. Now we have

Ĥ = H = L2(Ω;Cn),

and the role of the isomorphism M is played by the operator of multiplication by the
matrix-valued function f . The kernel N = KerX0 is defined by (2.2.8):

N = {u ∈ H : fu = c ∈ Cn};
it does not depend on b and g. By (1.1.21), we have R(θ; g) = R̂(θ; g)f |N. From (1.1.23)
it follows that

(1.27) S(θ; g) = Pf∗Ŝ(θ; g)f |N,
where P is the orthogonal projection of H onto N. Definition 1.1 is carried over to the
general case of the family A(t,θ; g).

Definition 1.8. A constant positive (m×m)-matrix geff is called an effective matrix for
the operator family A(t,θ; g) if S(θ; g) = S(θ; geff) for all θ ∈ SSd−1.

The following proposition is a direct consequence of (1.27).

Proposition 1.9. The matrix geff is an effective matrix for the families A(t,θ; g) and
Â(t,θ; g) simultaneously.

In particular, the main effective matrix g0 corresponding to the family Â(t,θ; g) is also
an effective matrix for the family A(t,θ; g) = f∗Â(t,θ; g)f . It is natural to associate the
operator

(1.28) A = f∗Âf
with the operator

(1.29) A0 = f∗Â0f

acting in L2(Rd;Cn). Here Â0 is defined by (1.10). Recall that Â0 will not change if in
(1.10) we replace g0 by any other effective matrix geff . Consequently, the operator A0

also does not depend on the choice of the matrix geff . Thus, the operator (1.29) is defined
via the operator (1.28) uniquely. We agree to call the operator A0 the effective DO for
the DO A.

We distinguish the case where n = 1. Then Ŝ(θ; g) (see (1.9)) is the operator of
multiplication by the number γ̂(θ) = b(θ)∗g0b(θ). By (1.1.26) and (1.27), the operator
S(θ; g) is reduced to multiplication by the number

(1.30) γ(θ) = γ̂(θ)|Ω| ‖f−1‖−2
L2(Ω), γ̂(θ) = b(θ)∗g0b(θ).

§2. Behavior of the resolvent (A + ε2I)−1
as ε→ 0

As in §1, we start with the case where f = 1n, and then pass to the general case.
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2.1. The resolvent of the operator Â. We consider the resolvent (Â+ ε2I)−1 of the
operator Â = b(D)∗g(x)b(D) acting in L2(Rd;Cn). We rely on Theorem 1.5.6, which is
applied to the families Â(t,θ; g) and Â(t,θ; g0) of the form (2.3.4). Here g0 is the main
effective matrix for g(x).

Recall that α0 and α1 are the constants occurring in (2.1.3), and r0 is the radius of
the ball inscribed into the Brillouin zone (r0 is defined by (2.1.14)). In the notation of
the constants we use the mark “̂” to distinguish the case of f = 1n. In accordance with
(2.2.11),

(2.1) ĉ∗ = α0‖g−1‖−1
L∞

.

Recalling (2.3.7), we fix

(2.2) δ̂ = (r0/2)2α0‖g−1‖−1
L∞

.

Next, in accordance with (2.3.8) and (2.2),

(2.3) t̂ 0 = t̂ 0(δ̂) = (r0/2)(α0α
−1
1 )1/2

(
‖g−1‖L∞‖g‖L∞

)−1/2
.

Since δ̂ is fixed, we do not need to indicate the dependence of t̂ 0 on δ̂ anymore.
Now, we must specify the constant C in (1.5.12). Using (1.5.10), (1.5.9), (1.5.6),

(1.5.7), and (2.1) subsequently, we find

(2.4) Ĉ = α
−1/2
0 ‖g−1‖1/2L∞

(
2β1(t̂ 0)−1 + β2α

−1
0 ‖g−1‖L∞ δ̂(t̂ 0)−3

)
.

Observe that, by (1.21), ‖g0‖L∞ ≤ ‖g‖L∞ and ‖(g0)−1‖L∞ ≤ ‖g−1‖L∞ . It follows
that if g is replaced by g0, then the quantities (2.1)–(2.3) may only become larger, and
the constant (2.4) may only become smaller. Therefore, Theorem 1.5.6 leads directly
to the following result. In its statement, we use the notation (2.3.1), k = tθ, and
Â(k; g) = Â(t,θ; g), Â(k; g0) = Â(t,θ; g0).

Proposition 2.1. For the operator

(2.5) Ĝ(ε,k) = (Â(k; g) + ε2I)−1 − (Â(k; g0) + ε2I)−1,

we have

(2.6) ε‖Ĝ(ε,k)‖H→H ≤ Ĉ + 2ε(3δ̂)−1, ε > 0, |k| ≤ t̂ 0,

where the constants δ̂, t̂ 0, and Ĉ are defined by (2.2)–(2.4).

Together with (2.6), we need estimates of resolvents for k ∈ clos Ω̃ ∩ {k : |k| > t̂ 0}.
By (2.2.13),

(2.7) ‖(Â(k; g) + ε2I)−1‖H→H ≤ ĉ∗−1(t̂ 0)−2, k ∈ clos Ω̃ ∩ {k : |k| > t̂ 0},

and the same estimate remains true with g replaced by g0. Therefore, we have the
following statement.

Proposition 2.2. The following estimates are valid, where the notation (2.1)–(2.5) is
used:

ε‖Ĝ(ε,k)‖H→H ≤ Ĉ×, 0 < ε ≤ 1, k ∈ clos Ω̃,

Ĉ× = max{Ĉ + 2(3δ̂)−1, 2ĉ∗−1(t̂ 0)−2};
(2.8)

lim sup
ε→0

ε‖Ĝ(ε,k)‖H→H ≤ Ĉ.(2.9)
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Now, it is easy to obtain one of the main results of the paper. We estimate the
difference between the resolvents of the operator Â = Â(g) and of the effective DO
Â0 = Â(g0). We use the representation (2.2.17) for Â(g) viewed as an operator acting
in the direct integral H (see (2.1.18)). Now, the required relations can be written as

(2.10) H =
∫

Ω̃

⊕H dk, Â(g) = U−1

(∫
Ω̃

⊕Â(k; g) dk
)
U ,

where U is a unitary mapping of the space G := L2(Rd;Cn) onto H. From (2.10) it
follows that

(Â(g) + ε2I)−1 = U−1

(∫
Ω̃

⊕(Â(k; g) + ε2I)−1 dk
)
U .

A similar representation is valid with g replaced by g0, and also for the difference of
the resolvents. Combining this with estimates (2.8) and (2.9), we arrive at the following
theorem.

Theorem 2.3. Let Â(g) = b(D)∗g(x)b(D), and let Â0 = Â(g0) = b(D)∗g0b(D) be the
effective DO for the DO Â(g). Then

ε‖(Â(g) + ε2I)−1 − (Â(g0) + ε2I)−1‖G→G ≤ Ĉ×, 0 < ε ≤ 1,(2.11)

lim sup
ε→0

ε‖(Â(g) + ε2I)−1 − (Â(g0) + ε2I)−1‖G→G ≤ Ĉ,(2.12)

where the constants Ĉ× and Ĉ are the same as in (2.8) and (2.9).

Estimates (2.11) and (2.12) show that the norm of the difference of the resolvents is
of order O(ε−1). At the same time, the norm of each resolvent is O(ε−2). The reason for
this compensation in the difference is that the germs of the families Â(k; g) and Â(k; g0)
coincide for k = 0. Thus, in Theorem 2.3, the threshold effect near the edge of the
spectrum is taken into account.

Remark 2.4. We emphasize once again that, in fact, the effective operator Â0 = Â(g0)
does not depend on the choice of the effective matrix, but is determined by the initial
operator Â = Â(g). In general, the latter operator may also be described by a nonunique
Γ-periodic matrix g(x).

2.2. The resolvent of the operator A. Now, we lift the assumption f = 1n and
consider the operator

(2.13) A = f∗Âf = f∗b(D)∗gb(D)f.

The constants (2.1)–(2.4) should be changed in order to take the dependence on f into
account. In accordance with (2.2.11), (2.3.7), and (2.3.8), we put

c∗ = ĉ∗‖f−1‖−2
L∞

= α0‖f−1‖−2
L∞
‖g−1‖−1

L∞
,(2.14)

δ = c∗(r0/2)2 = δ̂‖f−1‖−2
L∞

,(2.15)

t0 = t0(δ) = t̂ 0(δ̂)
(
‖f‖L∞‖f−1‖L∞

)−1
.(2.16)

Now, the role of the constant (2.4) is played by the constant

(2.17) C = c
−1/2
∗

(
2β1(t0(δ))−1 + c−1

∗ β2δ(t0(δ))−3
)
.

Using the notation of Proposition 2.1, we put

A(k; g, f) = f∗Â(k; g)f, A(k; g0, f) = f∗Â(k; g0)f.

Theorem 1.5.6 implies the following generalization of Proposition 2.1.
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Proposition 2.5. For the operator

G(ε,k) = (A(k; g, f) + ε2I)−1 − (A(k; g0, f) + ε2I)−1,

we have

(2.18) ε‖G(ε,k)‖H→H ≤ C + 2ε(3δ)−1, ε > 0, |k| ≤ t0,
where the constants δ, t0, and C are defined by (2.15)–(2.17).

For A(k; g, f) and A(k; g0, f), estimate (2.7) remains true with ĉ∗ replaced by c∗ and
t̂ 0 replaced by t0. Combining this with (2.18), we obtain a generalization of Proposition
2.2.

Proposition 2.6. The following estimates are valid, where we use the notation (2.14)–
(2.17):

ε‖G(ε,k)‖H→H ≤ C×, 0 < ε ≤ 1, k ∈ clos Ω̃,

C× = max{C + 2(3δ)−1, 2c−1
∗ (t0)−2};

(2.19)

lim sup
ε→0

ε‖G(ε,k)‖H→H ≤ C.(2.20)

Finally, we obtain the following theorem.

Theorem 2.7. Let A = A(g, f) be the operator (2.13), and let A0 = A(g0, f) be the
corresponding effective DO. Then

ε‖(A(g, f) + ε2I)−1 − (A(g0, f) + ε2I)−1‖G→G ≤ C×, 0 < ε ≤ 1,(2.21)

lim sup
ε→0

ε‖(A(g, f) + ε2I)−1 − (A(g0, f) + ε2I)−1‖G→G ≤ C,(2.22)

where the constants C× and C are the same as in (2.19), (2.20).

Proof. This theorem can be deduced from Proposition 2.6 in the same way as Theorem
2.3 was deduced from Proposition 2.2. �

In (2.21) and (2.22), the difference of the resolvents corresponding to g and g0 is
estimated. The matrix f is fixed. It is impossible to find a good approximation for
the resolvent of A(g, f) with variable f by the resolvent of some operator with constant
coefficients.2 A more convenient approximation than that in (2.21) and (2.22) can be
found, but the approximating operator will not be a resolvent anymore. This will be
done in the next section; see Theorem 3.4.

§3. Behavior of the generalized resolvent as ε→ 0

3.1. We are going to establish an analog of Theorem 2.3 for the generalized resolvent
(Â(g) + ε2Q)−1. Here Q = Q(x) > 0 is a Γ-periodic (n×n)-matrix-valued function such
that Q+Q−1 ∈ L∞. We use the abstract results of Subsections 1.1.5 and 1.5.3, assuming
that Ĥ = H = L2(Ω;Cn). Also, we recall (see (1.1)) that

(3.1) N̂ = Ker Â(0; g) = {u ∈ H : u = c ∈ Cn}.
Keeping in mind Theorem 1.5.8, we represent Q as

(3.2) Q(x) = (f(x)f(x)∗)−1.

By (1.5.14), now multiplication by the Γ-periodic matrix-valued function f plays the
role of the isomorphism M . From (3.1) we see directly that the block of the operator of
multiplication by Q in the subspace N̂ is multiplication by the constant matrix Q, i.e., by
the mean value of Q(x) over Ω. If we view the operator of multiplication by Q as an

2In this case, the name “effective DO” for A(g0, f) with variable f does not seem quite adequate.
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operator in the entire space H, then its block in N̂ also coincides with multiplication by
Q. We apply Theorem 1.5.8 in order to estimate the difference

(3.3) F(ε,k) = (Â(k; g) + ε2Q)−1 − (Â(k; g0) + ε2Q)−1.

In accordance with Subsection 1.5.3, the constant C = 2−1C+(3δ)−1 in (1.5.20)–(1.5.22)
is expressed in terms of constants (2.14)–(2.17) corresponding to the operator A(g, f),
rather than to the operator Â(g). Here f is as in (3.2). We note that ‖Q‖ ≤ ‖Q‖L∞,
‖(Q)−1‖ ≤ ‖Q−1‖L∞ , and we put f+ = (Q)−1/2. Then it is easily seen that the same
constants (2.14)–(2.17) are also suitable for the operator A(g0, f+). Consequently, now
in (1.5.22) we can take C+ = C and replace ‖(Q)−1‖ by ‖Q−1‖L∞ . As a result, we obtain
an analog of estimate (2.6). Namely, the following statement is true.

Proposition 3.1. For the operator F(ε,k) defined by (3.3), we have

ε‖F(ε,k)‖H→H ≤ (C + 2(3δ)−1)‖Q−1‖L∞ , 0 < ε ≤ 1, |k| ≤ t0,

where the constants δ, t0, and C are defined by (2.15)–(2.17).

As has already been mentioned, the operator A(k; g, f) satisfies (2.7) with ĉ∗ replaced
by c∗ and t̂ 0 replaced by t0. Therefore, using (1.5.13), we obtain the estimate

‖(Â(k; g) + ε2Q)−1‖H→H ≤ ‖Q−1‖L∞c−1
∗ (t0)−2, k ∈ clos Ω̃ ∩ {k : |k| > t0}.

The same estimate is valid for (Â(k; g0) + ε2Q)−1. Combining these estimates with
Proposition 3.1, we arrive at the following.

Proposition 3.2. For the operator F(ε,k) defined by (3.3), we have

(3.4) ε‖F(ε,k)‖H→H ≤ C×‖Q−1‖L∞ , k ∈ clos Ω̃, 0 < ε ≤ 1,

where C× is the constant occurring in (2.19).

Finally, (3.4) implies the following theorem (cf. the deduction of Theorem 2.3 from
Proposition 2.2).

Theorem 3.3. We have

(3.5) ε‖(Â(g) + ε2Q)−1 − (Â(g0) + ε2Q)−1‖G→G ≤ C×‖Q−1‖L∞ , 0 < ε ≤ 1.

If Q = I, estimate (3.5) turns into (2.11).

3.2. Another approximation for the operator

(3.6) (A(g, f) + ε2I)−1,

more practical than (2.21), easily follows from Theorem 3.3. Now we assume that the
matrix-valued function f is given, while Q is defined by (3.2). Clearly,

(3.7) (A(g, f) + ε2I)−1 = f−1(Â(g) + ε2Q)−1(f∗)−1.

We put

(3.8) F(ε) := (A(g, f) + ε2I)−1 − f−1(Â(g0) + ε2Q)−1(f∗)−1.

Then (3.7) implies that

F(ε) = f−1
(
(Â(g) + ε2Q)−1 − (Â(g0) + ε2Q)−1

)
(f∗)−1.

The latter expression is estimated with the help of (3.5). As a result, we obtain the
following statement.
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Theorem 3.4. For the operator F(ε) defined by (3.8), we have

(3.9) ε‖F(ε)‖G→G ≤ C×‖Q−1‖L∞‖Q‖L∞, 0 < ε ≤ 1,

where the matrix-valued function Q is defined by (3.2).

Remark 3.5. In (3.8) and (3.9), the operator (3.6) is approximated by the operator
f(x)−1(Â(g0) + ε2Q)−1(f(x)∗)−1. Although this operator involves x-dependent factors
“from both sides”, the generalized resolvent must be calculated for a DO with constant
coefficients. That is why estimate (3.9) has a big advantage as compared to (2.21).

3.3. A generalization of Theorem 3.4. A result that is more self-contained can be
obtained for the operator A(g, f) if we consider the generalized resolvent

(A(g, f) + ε2Q)−1

instead of the resolvent (3.6). Here Q(x) > 0 is a Γ-periodic (n × n)-matrix-valued
function such that Q + Q−1 ∈ L∞. We represent Q(x) in the form (3.2),

Q = (ϕϕ∗)−1,

and put
f = fϕ, Q = (ff∗)−1.

The following theorem can be deduced from Theorem 3.3 by the method used to derive
Theorem 3.4.

Theorem 3.6. We have

ε‖(A(g, f) + ε2Q)−1 − f−1(Â(g0) + ε2Q)−1(f∗)−1‖G→G

≤ C×(f)‖f−1‖2L∞‖f‖
2
L∞‖Q

−1‖L∞ , 0 < ε ≤ 1,

where C×(f) is the constant (2.19) recalculated after the replacement of f by f in (2.14)–
(2.17).

Chapter 4. Homogenization problems for periodic DO’s

We proceed to the study of homogenization problems, treating them as threshold
effects near the lower edge of the spectrum. The present chapter contains general ho-
mogenization results for periodic operators

A(g, f) = f(x)∗b(D)∗g(x)b(D)f(x) = f(x)∗Â(g)f(x)

acting in G = L2(Rd;Cn). Further, in Chapters 5–7, we discuss applications of these
results to specific periodic DO’s of mathematical physics.

We use the following notation for Hilbert spaces:

H = L2(Ω;Cn), H∗ = L2(Ω;Cm), G = L2(Rd;Cn),

G∗ = L2(Rd;Cm), Gs = Hs(Rd;Cn), s ∈ R.

Also, we use the obvious notation like Gloc, G∗,loc, etc. The symbol (F,u)G with u ∈ G1

and F ∈ G−1 stands for the value of the functional F on the element u. The symbol w
indicates passage to the weak limit. If φ is a measurable Γ-periodic function, we denote
φε(x) = φ(ε−1x). We also recall the notation (3.0.1), (3.0.2).

The following elementary proposition will often be used in weak limit procedures.

Proposition 0.1. 1◦. Let Ψ be a Γ-periodic function of class L2,loc(Rd). Then

(0.1) Ψε w−−−→
ε→0

Ψ in L2,loc(Rd).
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2◦. Let G ∈ L∞(Rd) be a Γ-periodic function and let Φ ∈ L1(Rd). Then

(0.2) lim
ε→0

∫
Rd
Gε(x)Φ(x) dx = G

∫
Rd

Φ(x) dx.

Relation (0.1) is the well-known mean value property (see, e.g., [ZhKO]), which easily
follows from the Riemann–Lebesgue lemma. Relation (0.2) is a direct consequence of
(0.1).

§1. Statement of the problem

1.1. Concept of homogenization. For the operators A(g, f), we consider the family
of (εΓ)-periodic operators Aε(g, f) = A(gε, fε), ε > 0. The coefficients of the operator
Aε are rapidly oscillating as ε → 0. Homogenization theory studies the behavior of the
solutions uε of the equation

Aε(g, f)uε + uε = F

as ε→ 0. In other words, we deal with the behavior of the resolvent (Aε(g, f) + I)−1 as
ε→ 0. The simplest case is that of f = 1n, i.e., the case of the equation

(1.1) Âε(g)uε + uε = F.

It turns out that, as ε → 0, the solution uε of (1.1) converges (in an appropriate sense)
to the solution u0 of the equation

(1.2) Â(g0)u0 + u0 = F.

Here g0 is the (main) effective matrix for the operator Â(g), and Â(g0) is the (effective)
DO with constant coefficients.

Along with convergence of solutions, we are interested in convergence of what is called
flows: pε → p0. The flows are defined by the formulas

(1.3) pε = gεb(D)uε, p0 = g0b(D)u0.

Note that the operator Â(g0) and, with it, the solution u0 of (1.2) do not depend on the
choice of the effective matrix. At the same time, the flow p0 is defined in terms of the
main effective matrix g0.

The convergence of solutions and flows for equation (1.1) with rapidly oscillating
coefficients to the solution and the flow for equation (1.2) with constant coefficients is
commonly interpreted as homogenization of the medium. Usually, the medium described
by the matrix g0 is called the homogenized medium relative to the medium described by
the periodic matrix gε. Herewith, it is convenient to fix the operator b(D), because, as
a rule, this operator is responsible for the type of the physical process, rather than for
its parameters. Often, the effective DO Â(g0) is also called the homogenized DO.

For more general operators A(g, f) with variable f , we have not succeeded in finding
an operator of the same class with constant f and g and such that its resolvent is the limit
of the resolvents of the operators Aε(g, f). We must approximate the family of resolvents
by another (as simple as possible) operator family depending on ε. Uniqueness of approx-
imation is lost, and homogenization of the medium can be talked about only with some
reservations (cf. the footnote after Theorem 2.7 in Chapter 3). However, the weaker the
convergence of solutions, the wider the choice of a “candidate” for approximation. All
these features are well illustrated by the results of the present chapter.
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1.2. About the nature of results. In §2, we present approximation theorems for the
family of resolvents

(1.4) (Aε(g, f) + I)−1

with respect to the operator norm in G = L2(Rd;Cn). We also consider approximations
for generalized resolvents. (After this extension of the question, the results on the exis-
tence of the (at least, weak) limit become self-contained (see Subsection 2.4).) For the
norm of the difference, not only do we obtain an estimate of the right order O(ε), but
we also control the constants in estimates efficiently. Our considerations lean upon The-
orems 3.2.3, 3.2.7, 3.3.3, 3.3.4, and 3.3.6, which automatically imply the results about
homogenization. This allows us to view homogenization as a threshold phenomenon of
spectral nature. The theorems in §2 are the most original results of this paper, as applied
to homogenization theory. Part of these results were published by the authors in [BSu2].

In particular, the estimates with respect to the operator norm in G are suitable for
interpolation and allow us to estimate uε − u0 in the Sobolev classes Hs, 0 < s < 1 (see
Subsection 2.3). However, in §2 we do not discuss convergence of flows. The reason is
that, in principle, convergence of flows cannot be “too good”. Therefore, in §§3 and 4 we
discuss other versions of limit procedures, namely, weak ones, which is more traditional
for homogenization theory. The proofs are also close to traditional in spirit, though
there are some differences related to the fact that we consider a rather general class
of operators. However, the material of §§3 and 4 contains some new observations. In
particular, we distinguish conditions under which the convergence of solutions or flows
turns out to be strong.

It is convenient to postpone the further discussion till the comments at the end of this
chapter.

§2. Approximation of the resolvent in the operator norm

2.1. The case of the family Âε(g). Here

(2.1) Âε(g) = b(D)∗gε(x)b(D), ε > 0.

As before, g(x) = h(x)∗h(x), and the (m×m)-matrix h(x) is invertible, Γ-periodic, and
such that h, h−1 ∈ L∞(Rd). The selfadjoint operator (2.1) in G is generated by the
quadratic form

(2.2) âε(g)[u,u] = (gε(x)b(D)u, b(D)u)G∗ , u ∈ G1.

Clearly, Â1(g) coincides with the operator Â(g) that was discussed in Theorem 3.2.3.
We denote by Tε the following unitary scale transformation in G: (Tεu)(·) = εd/2u(ε·).
From (2.2) it follows directly that Âε(g) = ε−2T ∗ε Â(g)Tε, whence

(2.3) (Âε(g) + I)−1 = ε2T ∗ε (Â(g) + ε2I)−1Tε.

If the matrix is constant, then (2.3) turns into an even simpler relation:

(2.4) (Â(g0) + I)−1 = ε2T ∗ε (Â(g0) + ε2I)−1Tε.

Here Â(g0) = Â0 is the effective DO for the DO Â(g). Subtracting (2.4) from (2.3) and
applying Theorem 3.2.3, we obtain the following statement.

Theorem 2.1. Let Â0 = Â(g0) be the effective DO for the DO Â(g) = b(D)∗g(x)b(D).
Then

‖(Âε(g) + I)−1 − (Â0 + I)−1‖G→G ≤ Ĉ×ε, 0 < ε ≤ 1,(2.5)

lim sup
ε→0

ε−1‖(Âε(g) + I)−1 − (Â0 + I)−1‖G→G ≤ Ĉ,

where the constants Ĉ and Ĉ× are defined by (3.2.4) and (3.2.8).
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Remark 2.2. The above scale transformation turns out to be efficient only because esti-
mates in the operator norm have been obtained before. A direct way like this is unlikely
to suit the study of other types of convergence.

2.2. Four more theorems follow equally easily from the results of Chapter 3 with the
help of the scale transformation. We give the statements.

Theorem 2.3. Under the assumptions of Theorem 3.2.7, let Aε(g, f) = A(gε, fε) and
Aε(g0, f) = A(g0, fε). Then

‖(Aε(g, f) + I)−1 − (Aε(g0, f) + I)−1‖G→G ≤ C×ε, 0 < ε ≤ 1,

lim sup
ε→0

ε−1‖(Aε(g, f) + I)−1 − (Aε(g0, f) + I)−1‖G→G ≤ C,

where the constants C, C× are defined by (3.2.17) and (3.2.19).

In the following theorems we omit estimates for lim sup. The first of these theorems
carries estimate (2.5) over to the case of a generalized resolvent. Here the matrix-valued
function Q(x) is the same as in Subsection 3.3.1, and f is defined in accordance with
(3.3.2).

Theorem 2.4. We have

(2.6) ‖(Âε(g) +Qε)−1 − (Â(g0) +Q)−1‖G→G ≤ εC×‖Q−1‖L∞ , 0 < ε ≤ 1,

where C× is the constant occurring in (3.2.19).

If Q = I, estimate (2.6) coincides with (2.5). In the following theorem, we give a
more convenient approximation for the resolvent (1.4). Here f and Q are still related by
(3.3.2).

Theorem 2.5. Under the above assumptions, we have

‖(Aε(g, f) + I)−1 − (fε)−1(Â(g0) +Q)−1((fε)∗)−1‖G→G

≤ εC×‖Q−1‖L∞‖Q‖L∞, 0 < ε ≤ 1,
(2.7)

where C× is the constant occurring in (3.2.19).

Finally, we proceed to a statement that generalizes Theorem 2.5. Here we use the
notation of Subsection 3.3.3.

Theorem 2.6. Under the assumptions and in the notation of Theorem 3.3.6, we have

‖(Aε(g, f) + Qε)−1 − (fε)−1(Â(g0) +Q)−1((fε)∗)−1‖G→G

≤ εC×(f)‖f−1‖2L∞‖f‖
2
L∞‖Q

−1‖L∞ =: εC∇, 0 < ε ≤ 1.
(2.8)

These four theorems follow from Theorems 3.2.7, 3.3.3, 3.3.4, and 3.3.6 respectively,
by the scale transformation. We omit the obvious arguments.

2.3. Interpolation. Along with (2.6), we have the following simple estimates for both
generalized resolvents viewed as operators from G−1 to G1:

(2.9) ‖(Âε(g) +Qε)−1‖G−1→G1 + ‖(Â(g0) + Q)−1‖G−1→G1 ≤ 2c+,

where

(2.10) c−1
+ = min{α0‖g−1‖−1

L∞
, ‖Q−1‖−1

L∞
}.

The standard interpolation between (2.6) and (2.9) implies the following result.
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Theorem 2.7. Under the assumptions of Theorem 2.4, we have

‖(Âε(g) +Qε)−1 − (Â(g0) +Q)−1‖G−s→Gs ≤ ε1−s(2c+)s(C×‖Q−1‖L∞)1−s,

0 ≤ s < 1, 0 < ε ≤ 1.
(2.11)

If Q = I, the expressions for the constants in (2.10) and (2.11) simplify.
Under the assumptions of Theorems 2.3, 2.5, and 2.6, the interpolation is less natural,

because we only have fεuε ∈ G1. However, it is still easy to interpolate the properties
of the product fεuε. We formulate the corresponding result, based on Theorem 2.5. We
put

(2.12) W(ε) = fε(Aε(g, f) + I)−1 − (Â(g0) +Q)−1((fε)∗)−1.

By (2.7), for the operator (2.12) we have

(2.13) ‖W(ε)‖G→G ≤ εC×‖Q−1‖3/2L∞
‖Q‖L∞ =: εC4, 0 < ε ≤ 1.

Moreover, it is easily seen that
(2.14)
‖fε(Aε(g, f) + I)−1‖G→G1 + ‖(Â(g0) +Q)−1((fε)∗)−1‖G→G1 ≤ 2c+‖f−1‖L∞ =: c4.

Here c+ is defined by (2.10). Interpolating between (2.13) and (2.14), we arrive at the
following statement.

Theorem 2.8. Under the assumptions of Theorem 2.5, we have

‖W(ε)‖G→Gs ≤ ε1−scs4C1−s
4 , 0 ≤ s < 1, 0 < ε ≤ 1.

2.4. On the weak limit for the generalized resolvent. Under the assumptions of
Theorem 2.6, the weak operator limit in G can be found for the generalized resolvent

(2.15) (Aε(g, f) + Qε)−1.

Indeed, by (2.8), it suffices to find the (w)-limit for the operator

Rε(f) = (fε)−1(Â(g0) +Q)−1((fε)∗)−1.

Since the (G → G)-norm of Rε(f) is bounded with respect to ε, it suffices to find the
limit

(2.16) lim
ε→0

(Rε(f)F,G)G, F,G ∈ C∞0 (Rd;Cn).

By the mean value property (see Proposition 0.1), we have

(w,G)- lim
ε→0

((fε)∗)−1F = (f∗)−1F, (w,G)- lim
ε→0

((fε)∗)−1G = (f∗)−1G.

Let η ∈ C∞0 (Rd) be such that η(x) = 1 for x ∈ supp F. Then, in (2.16), the operator
(Â(g0) +Q)−1 can be replaced by the compact operator (Â(g0) +Q)−1η. Now, it is clear
that the limit in (2.16) is equal to(

(Â(g0) +Q)−1(f∗)−1F, (f∗)−1G
)
G
.

As a result, we obtain the following theorem.

Theorem 2.9. Under the assumptions of Theorem 2.6, the weak limit for the resolvent
(2.15) exists:

(w,G→ G)- lim
ε→0

(Aε(g, f) + Qε)−1 = (f)−1(Â(g0) + Q)−1((f)−1)∗

= (A(g0, f) +Q0)−1,
(2.17)

where the constant matrix Q0 is given by the formula Q0 = f∗Qf = f∗(ff∗)−1f .
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The operator on the right-hand side of (2.17) is a generalized resolvent for A(g0, f).
However, the expression for Q0 in terms of f and Q is fairly involved. On the other
hand, the “homogenized” matrix Q0 does not depend on b(D) and g. Observe also that
if Q = 1n, then Q0 = f∗(ff∗)−1f 6= 1n, provided f 6= const. The existence of the limit
for the family (2.15) is related to the essential weakening of the “quality” of the limit
procedure.

§3. Weak convergence of solutions and flows

3.1. Under the assumptions of Theorem 2.7, the solutions uε of the equations

(3.1) (Âε(g) +Qε(x))uε = F

converge (with good control) in Gs, s < 1, to the solution u0 of the homogenized equation

(3.2) (Â(g0) +Q)u0 = F.

For s = 1, a result of such a kind definitely fails, although the weak G1-limit of the
solutions exists, even for F ∈ G−1. Moreover, the weak G-limit of the flows exists. These
results about convergence are traditional for homogenization theory. In this section, we
prove a theorem of this kind for general equations of the form (3.1). Moreover, we assume
that F depends on ε. This assumption will allow us to deduce a useful consequence (see
Subsection 4.2).

Suppose Fε,F0 ∈ G−1, where the family {Fε} is bounded in G−1:

(3.3) ‖Fε‖G−1 ≤ C∗.

Moreover, we assume that

(3.4) (G−1
loc)- lim

ε→0
Fε = F0.

Suppose that Q(x) is a measurable Γ-periodic matrix-valued function such that Q(x) > 0
and

(3.5) Q+Q−1 ∈ L∞.

Consider equations (3.1) and (3.2) with F = Fε and F = F0, respectively. These
equations are equivalent to the relations

(gεb(D)uε, b(D)z)
G∗

+ (Qεuε, z)
G

= (Fε, z)
G
, z ∈ G1,(3.6) (

g0b(D)u0, b(D)z
)

G∗
+
(
Qu0, z

)
G

= (F0, z)
G
, z ∈ G1.(3.7)

Let c+ be the constant occurring in (2.10). Combining (2.1.11) (for f = 1n) with (3.3)
and (3.6), we see that

(3.8) ‖uε‖G1 ≤ c+C∗, ‖b(D)uε‖G∗ ≤ α
1/2
1 c+C

∗,

where α1 is the constant occurring in (2.1.3). Next, (3.8) implies that the flows (1.3) are
bounded:

(3.9) ‖pε‖G∗ ≤ α
1/2
1 c+C

∗‖g‖L∞.

Theorem 3.1. Suppose uε,u0 ∈ G1 satisfy identities (3.6) and (3.7), respectively. Under
the above assumptions about Q, Fε, and F0, the following statements are true:

1◦. As ε→ 0, the solutions uε converge to u0 weakly in G1.
2◦. As ε→ 0, the flows pε converge to the flow p0 = g0b(D)u0 weakly in G∗.

The remaining part of §3 is devoted to the proof of this theorem.
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3.2. Proof of Theorem 3.1. By (3.8) and (3.9), the limits

(w,G1)- lim
εj→0

uεj = u ∈ G
1,(3.10)

(w,G∗)- lim
εj→0

pεj = p ∈ G∗(3.11)

exist for some sequence εj → 0. Our goal is to show that u = u0, p = p0. Then (3.10)
and (3.11) will imply both conclusions of the theorem.

We repeat the representation (3.1.14) for g0:

(3.12) g0C = |Ω|−1

∫
Ω

g(x)(b(D)v + C) dx, C ∈ Cm,

where v ∈ H̃1(Ω;Cn) is determined by (3.1.3) and by the condition v = 0. We put
ψ(x) = (b(D)v)(x)+C and extendψ to a Γ-periodic functionψ ∈ G∗,loc. By Proposition
0.1 (1◦), we have

(w,G∗,loc)- lim
ε→0

ψε = C,

and, by (3.12),

(3.13) (w,G∗,loc)- lim
ε→0

gεψε = g0C.

Now we need the following lemma.

Lemma 3.2. Let η ∈ C∞0 (Rd). Then

(3.14) lim
εj→0

(ηψε,pε)G∗
= (ηC,p)

G∗
.

Proof of Lemma 3.2. The expression under the limit sign splits into the sum

(3.15) (ηC,pε)G∗
+ (η(b(D)v)ε,pε)G∗

.

By (3.11), the limit of the first summand (as εj → 0) coincides with the right-hand side
of (3.14). Thus, the problem is reduced to checking that the second summand in (3.15)
(we denote it by Θ(ε)) tends to zero. We have

Θ(ε) = ε (ηb(D)vε,pε)G∗
= ε (b(D)(ηvε), gεb(D)uε)G∗

− ε (b(Dη)vε,pε)G∗

=: ε(Θ1(ε)−Θ2(ε)).

The matrix-valued function b(Dη) has compact support (see the representation (2.1.4)).
By (0.1) and the condition v = 0, we have

(3.16) (w,Gloc)- lim
ε→0

vε = 0.

Combining this with (3.9), we see that limε→0 εΘ2(ε) = 0.
It remains to show that

(3.17) lim
ε→0

εΘ1(ε) = 0.

Let K ⊂ Rd be a ball satisfying K ⊃ supp η. It is easily seen that

(3.18) ‖ηvε‖H1(K;Cn) ≤ C(η,K)ε−1‖v‖H1(Ω;Cn).

By (3.6) (with z = ηvε),

Θ1(ε) = (ηvε,Fε)G
− (ηvε, Qεuε)G

=: Θ11(ε)−Θ12(ε).

By (3.4) and (3.18), we have limε→0 ε(ηvε,Fε−F0)G = 0. Next, limε→0 ε(ηvε,F0)G = 0.
Indeed, by (3.18), we may assume that F0 ∈ G, and then the required fact follows from
(3.16). Thus, limε→0 εΘ11(ε) = 0. Finally, relations (3.5), (3.8), and (3.16) show that
limε→0 εΘ12(ε) = 0. This yields (3.17). �
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3.3. Proof of Theorem 3.1 (continuation). On the basis of the obvious identity

〈ψε,pε〉Cm = 〈gεψε, b(D)uε〉Cm ,
one can calculate the limit in (3.14) by another method. Namely,

(ηψε,pε)G∗
= (ηgεψε, b(D)uε)G∗

= (ηgεψε, b(D)u)
G∗

+ (ηgεψε, b(D)(uε − u))
G∗

=: Θ3(ε) + Θ4(ε).
(3.19)

From (3.13) it follows that

(3.20) lim
ε→0

Θ3(ε) =
(
g0C, η+b(D)u

)
G∗

=
(
ηC, g0b(D)u

)
G∗
.

Here η+ is the complex conjugate of η. We shall show that

(3.21) lim
εj→0

Θ4(ε) = 0.

Relations (3.19)–(3.21) imply that

(3.22) lim
εj→0

(ηψε,pε)G∗
=
(
ηC, g0b(D)u

)
G∗
.

Comparing the right-hand sides of (3.14) and (3.22) for all η ∈ C∞0 (Rd), C ∈ Cm, we
obtain

(3.23) p = g0b(D)u.

In order to prove that u = u0 (and then p = p0), we pass to the limit in (3.6) as
εj → 0. We may assume that z ∈ C∞0 (Rd;Cn). Using (3.11) and (3.23), we obtain

(3.24) (gεb(D)uε, b(D)z)
G∗

= (pε, b(D)z)
G∗
−→
εj→0

(p, b(D)z)
G∗

=
(
g0b(D)u, b(D)z

)
G∗
.

Condition (3.4) implies that

(3.25) (Fε, z)
G
−→
ε→0

(F0, z)
G
, z ∈ C∞0 (Rd;Cn).

Let K0 be a ball such that K0 ⊃ supp z. From (3.10) we see that, as εj → 0, the uεj
converge to u in L2(K0;Cn). Combining this with (0.1), we arrive at

(3.26) (Qεuε, z)
G
−→
εj→0

(
Qu, z

)
G
, z ∈ C∞0 (Rd;Cn).

As a result, by (3.24)–(3.26), passage to the limit in (3.6) yields (3.7) with u0 replaced
by u. Thus, u = u0 and p = p0, which is equivalent to the conclusions of the theorem.

3.4. Proof of Theorem 3.1 (end). It remains to check (3.21). We represent Θ4(ε) as

Θ4(ε) = −
(
gεψε, b(Dη+)(uε − u)

)
G∗

+
(
gεψε, b(D)η+(uε − u)

)
G∗

=: Θ5(ε) + Θ6(ε).

The matrix-valued function b(Dη+) has compact support. From (3.13) and the conver-
gence of uεj to u in L2(K;Cn) it follows that Θ5(εj) → 0 as εj → 0. Now we show
that

(3.27) Θ6(ε) = 0, ε > 0,

which implies (3.21).
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The scale transformation allows us to rewrite (3.27) as

(3.28)
∫
K̃
〈gψ, b(D)z〉Cm dx = 0,

where K̃ is a ball, and z is a function such that z ∈ G1 and supp z ⊂ K̃. (Since ε

is fixed now, we do not reflect the dependence of K̃ and z on ε in the notation.) We
choose an appropriate “partition of unity” {ζl}L1 . Namely, let ζl ∈ C∞0 (Rd) be such that∑L

1 ζl(x) = 1 for x ∈ K̃ and supp ζl ⊂ Ω + x0
l for each l and some x0

l ∈ Rd. Then∫
K̃
〈gψ, b(D)ζlz〉Cm dx =

∫
Ω+x0

l

〈gψ, b(D)wl〉Cm dx,

where wl = ζlz. We extend the restriction of the function wl to Ω+x0
l up to a Γ-periodic

function on Rd. Then

(3.29)
∫
K̃
〈gψ, b(D)ζlz〉Cm dx =

∫
Ω

〈gψ, b(D)wl〉Cm dx = 0.

The second identity in (3.29) follows from (3.1.3), because wl|Ω ∈ H̃1(Ω;Cn). Summing
identities (3.29), we arrive at (3.28). �

§4. Convergence of solutions and flows (part 2)

Here we deduce some corollaries to Theorem 3.1, and also analyze the question about
conditions under which the convergence of solutions or flows is strong.

4.1. The following theorem is a direct consequence of Theorem 3.1.

Theorem 4.1. Let uε be the solution of equation (3.1), and let u0 be the solution of
equation (3.2) with F ∈ G−1. Then:

1◦. As ε→ 0, the solutions uε converge to u0 weakly in G1.
2◦. As ε→ 0, the flows pε converge to the flow p0 weakly in G∗.

4.2. The case where f 6= 1n. Consider now the equation

(4.1) Aε(g, f)ũε + Qεũε = F, F ∈ G,

which is more general than (3.1). We call the reader’s attention to the fact that the
restriction F ∈ G is imposed in order to lighten the statements. We put uε = fεũε, and
denote

(4.2) Fε = ((fε)∗)−1F = ((f∗)−1)εF, Q = (f∗)−1Qf−1.

Then (4.1) turns into the following equation for uε:

(4.3) Âε(g)uε +Qεuε = Fε.

We apply Theorem 3.1 to this equation. Namely, we put

(4.4) F0 = (f∗)−1F = (f∗)−1F,

and consider the equation

(4.5) Â(g0)u0 +Qu0 = F0.

Equations (4.3) and (4.5) satisfy the conditions of Theorem 3.1. Indeed, by (0.2) we have

(4.6) (w,G)- lim
ε→0

Fε = F0.

Let K ⊂ Rd be a ball. Since the natural embedding G⊂>H−1(K;Cn) is compact, (4.6)
implies that

(H−1(K;Cn))- lim
ε→0

Fε = F0.
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So, (3.4) is satisfied. Obviously, the other conditions of Theorem 3.1 are also fulfilled.
Thus, we arrive at the following theorem.

Theorem 4.2. Let ũε be the solution of equation (4.1), and let Q and F0 be as in
(4.2) and (4.4). Let u0 be the solution of equation (4.5). We put p̃ε = gεb(D)fεũε and
p0 = g0b(D)u0. Then

(w,G1)- lim
ε→0

fεũε = u0,

(w,G∗)- lim
ε→0

p̃ε = p0.

Remark 4.3. Theorem 2.9 can be proved on the basis of Theorem 4.2. We shall not dwell
on this.

4.3. About strong convergence. It is of interest to distinguish the cases where the
weak limit becomes strong in one of the conclusions of Theorem 4.1.

Theorem 4.4. Under the assumptions of Theorem 4.1, let F ∈ G. Then:
1◦. The (G1)-convergence of the solutions uε of (3.1) to the solution u0 of (3.2) is

equivalent to the condition

(4.7) (g − g0)b(D)u0 = 0.

2◦. The (G∗)-convergence of the flows pε = gεb(D)uε to the flow p0 = g0b(D)u0 is
equivalent to the condition

(4.8) (g0 − g)b(D)u0 = 0.

Proof. Both statements are proved similarly. For definiteness, we prove statement 2◦.
We write

(4.9)

Jε :=
(
(gε)−1(pε − p0), (pε − p0)

)
G∗

= (gεb(D)uε, b(D)uε)G∗
−
(
g0b(D)u0, b(D)uε

)
G∗

+
(
(gε)−1g0b(D)u0, g

0b(D)u0

)
G∗
−
(
b(D)uε, g0b(D)u0

)
G∗

=: J (1)
ε − J (2)

ε + J (3)
ε − J (4)

ε .

From (3.1) and (3.2) it follows that

J (1)
ε − J (2)

ε = (Qu0 −Qεuε,uε)G

= ((Q−Qε)u0,u0)G + (Qε(u0 − uε),uε)G + ((Q−Qε)u0,uε − u0)G.

By Theorem 2.4, we have (G)- limε→0 uε = u0. Combining this with (0.2), we obtain

(4.10) lim
ε→0

(J (1)
ε − J (2)

ε ) = 0.

Next, by (0.2),

(4.11) lim
ε→0

J (3)
ε =

(
(g)−1g0b(D)u0, g

0b(D)u0

)
G∗
.

Finally, by statement 1◦ of Theorem 4.1,

(4.12) (w,G∗)- lim
ε→0

b(D)uε = b(D)u0,

whence

(4.13) lim
ε→0

J (4)
ε =

(
b(D)u0, g

0b(D)u0

)
G∗
.

Relations (4.9)–(4.11) and (4.13) imply

lim
ε→0

Jε =
(
(g0 − g)b(D)u0, (g)−1g0b(D)u0

)
G∗
.
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Consequently, if (4.8) is satisfied, then Jε → 0 as ε→ 0. We conclude that

(4.14) (G∗)- lim
ε→0

pε = p0.

Conversely, suppose that (4.14) is fulfilled for a given F. Then the first summand in
the identity b(D)uε = (gε)−1(pε − p0) + (gε)−1p0 tends to zero in G∗. By (0.2), the
second summand G∗-weakly converges to (g)−1p0. Thus,

(w,G∗)- lim
ε→0

b(D)uε = (g)−1g0b(D)u0.

Combining this with (4.12), we arrive at (4.8). �

Relations (4.7) or (4.8) are valid for any F ∈ G whenever g0 = g or g0 = g, respectively.
Moreover (see (3.8) and (3.9)), the estimates

‖uε‖G1 ≤ c+‖F‖G−1, ‖pε‖G∗ ≤ α
1/2
1 c+‖g‖L∞‖F‖G−1

allow us to extend the statements about strong convergence to any F ∈ G−1. Thus, we
have the following theorem.

Theorem 4.5. Under the assumptions of Theorem 4.1, the following is true.
1◦. If g0 = g, then

(G1)- lim
ε→0

uε = u0

for any F ∈ G−1.
2◦. If g0 = g, then

(4.15) (G∗)- lim
ε→0

pε = p0

for any F ∈ G−1. In particular, (4.15) is valid for m = n.

In contrast to Theorem 4.4, these sufficient conditions for strong convergence fail to
be necessary.

4.4. Theorem 4.5 does not cover all needs of applications. Let R be yet another Γ-
periodic matrix-valued function such that R(x) > 0 and R +R−1 ∈ L∞. Consider the
equations

(Âε(g) +Qε)uε = RεF, F ∈ G,(4.16)

(Â(g0) +Q)u0 = RF, F ∈ G.(4.17)

First, we distinguish the following proposition.

Proposition 4.6. We have

(4.18) (G)- lim
ε→0

uε = u0.

Proof. It suffices to prove (4.18) for F ∈ C∞0 (Rd;Cn). Let u∨ε be the solution of equation
(4.17) with the right-hand side replaced byRεF. By Theorem 2.4, we have ‖uε−u∨ε ‖G →
0 as ε→ 0. From (0.1) it follows that

(4.19) (w,G)- lim
ε→0

(Rε −R)F = 0.

Let η ∈ C∞0 (Rd) be such that ηF = F. Then

u∨ε − u0 =
(
(Â(g0) +Q)−1η

)
(Rε −R)F G−−−→

ε→0
0.

This follows from (4.19) and from the presence of a compact operator (in G) applied to
(Rε −R)F. �
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Theorem 4.7. Let uε and u0 be the solutions of equations (4.16) and (4.17), respectively.
Then:

1◦. If g0 = g, then
(G1)- lim

ε→0
uε = u0.

2◦. If g0 = g, then
(G∗)- lim

ε→0
pε = p0

for the flows (1.3).

We omit the proof, which differs only slightly from that of Theorem 4.4. Note only
that again we can assume that F ∈ C∞0 (Rd;Cn), and that we take (4.18) and (4.19) into
account in our estimates. �

Now we apply Theorem 4.7 to the case where f 6= 1n. Consider equation (4.1):

(4.20) Aε(g, f)ũε + Qεũε = F, F ∈ G.

We put uε = fεũε and denote

(4.21) Q = (f∗)−1
Qf−1, R = (f∗)−1.

Then (4.20) turns into (4.16). Applying Theorem 4.7 to the latter equation, we arrive at
the following theorem.

Theorem 4.8. Let ũε be the solution of equation (4.20), and let u0 be the solution of
equation (4.17), where Q and R are defined by (4.21). Then:

1◦. If g0 = g, then
(G1)- lim

ε→0
fεũε = u0.

2◦. If g0 = g, then, for the flows p̃ε = gεb(D)fεũε, we have

(G∗)- lim
ε→0

p̃ε = p0 = g0b(D)u0.

Comments on Chapter 4

Here we collect various remarks and comments concerning theorems on homogeniza-
tion. This material supplements what was said in §1.

1. The general method of Chapter 1 concerns operators that admit an appropriate fac-
torization. The linear dependence of the factors on the parameter corresponds to the
study of second order DO’s. Both assumptions, on the one hand, allow us to advance far
in analysis, and on the other hand, restrict somewhat the range of applications. However,
as can be seen from Chapters 5–7, many important periodic operators of mathematical
physics belong to the classes of DO’s of the form Â(g) and A(g, f), which were distin-
guished in Chapters 2 and 3.

2. In the case of operators of the form Âε(g), we deal with homogenization indeed: among
the operators that are threshold equivalent to a given one, there exists an operator with
constant coefficients. This is directly related to the fact that, for the operator family
Â(k; g), k = tθ, the corresponding kernel N̂ consists of constants, and the calculation
of projections onto N̂ is reduced to usual averaging. The class of operators Â(g) (with
fixed b(D)) is closed with respect to homogenization under the resolvent convergence in
the operator norm. This is well illustrated by Theorems 2.1 and 2.4.

A different situation arises if we consider a wider class of DO’s, namely, A(g, f). A
good approximation for (Aε(g, f) + I)−1 is given by another operator family, also having
oscillating factors. The choice of such a family is not unique. In this direction, a good
result is given by Theorem 2.5, while the result of Theorem 2.3 is less convenient.



PERIODIC DIFFERENTIAL OPERATORS 685

The class of generalized resolvents (2.15) is already closed with respect to homoge-
nization viewed as a weak limit procedure (see Theorem 2.9). This class contains three
functional parameters: g, f , and Q. Each of them is “homogenized” by its own rule.

3. Usually, the matrix b(D) is responsible for the type of the physical process in question,
while g and f are responsible for its parameters. However, the choice of b(D) is not always
unique. For instance (see Subsection 5.2.3 below), the isotropic operator of elasticity
theory with constant shear modulus (the Hill body) can be described not only in the
universal form, but also via a matrix b(D) of smaller size. This fact leads to useful
conclusions.

4. Theorem 2.7 was deduced from Theorem 2.4 with the help of interpolation. Similarly,
interpolation could be applied on the basis of Theorem 3.2.3. More specificaly, (3.2.11)
could be supplemented by an estimate of the (G−s → Gs)-norm of the difference of
resolvents for 0 ≤ s < 1.

5. Apparently, in homogenization theory, the results like those in §2 have not been
distinguished before. These theorems are the most essential results of the paper both in
content and in the method of proof. The corresponding estimates are of precise order, and
the constants are well controlled. Theorems 2.1 and 2.3 were published by the authors
before in the paper [BSu2]. The other theorems of §2 are published for the first time.
For other possible approaches to such results, see the comments on Chapter 5.

6. The material of §§3 and 4 is closer to the usual formulations and techniques of ho-
mogenization theory. For instance, the conclusion of Theorem 4.1 looks quite traditional,
and in many special cases it leads to known results (see [BeLP, Sa, ZhKO]). Here, the
representation (3.1.14) for the (main) effective matrix g0 is viewed as initial. In the proof
of the (main) Theorem 3.1, we, as well as our predecessors, use the periodic solution of
the equation on the cell, but only for k = 0. Thus, we do not use much of the Floquet
decomposition.

Observe that we do not use (at least, explicitly) the method of proof that is usually
called a compensated compactness argument (see [BeLP, ZhKO]).

New useful observations are related to Theorems 4.5, 4.7, and 4.8. The corresponding
results will be applied in Subsections 5.2.3, 6.2.3, and 6.3.3; see also Remarks 5.1.1 and
6.1.9 and Propositions 7.2.4 and 7.3.8.

Chapter 5. Applications of the general method. The case where f = 1n

Here we consider applications of the results of Chapters 3 and 4 to specific periodic
operators of mathematical physics in the case where f = 1n. We discuss homogenization
problems and specific properties of threshold characteristics. The main examples are the
acoustic operator, the Schrödinger operator, and the operator of elasticity theory.

§1. The periodic acoustic and Schrödinger operators

1.1. The acoustic operator. In L2(Rd), d ≥ 1, we consider the operator

(1.1) Â(g) = D∗g(x)D = ∇∗g(x)∇,

which describes a periodic acoustic medium. Here g(x) is a Γ-periodic (d × d)-matrix-
valued function with real entries and such that

g(x) > 0, g + g−1 ∈ L∞.



686 M. SH. BIRMAN AND T. A. SUSLINA

Now n = 1, m = d ≥ 1, b(ξ) = ξ, H = L2(Ω), H∗ = L2(Ω;Cd). Obviously, condition
(2.1.2) is satisfied. The representation

(1.2) g(x) = h(x)∗h(x)

can be realized, e.g., by putting h = g1/2. However, the specific choice of a representation
as in (1.2) is immaterial. The kernels (3.1.1) and (2.3.5) are given by the relations

N̂ = {u ∈ H : u = const}, d ≥ 1,(1.3)

N̂∗ = {q ∈ H∗ : h∗q ∈ H̃1(Ω;Cd), div h∗q = 0}, n∗ =∞, d ≥ 2,(1.4)

N̂∗ = {q ∈ H∗ : h∗q = const}, H∗ = H, n∗ = 1, d = 1.(1.5)

In accordance with (3.1.5) and (3.1.8), we describe the operators R̂(θ) : N̂ → N̂∗ and
Ŝ(θ) : N̂→ N̂. Let v = v(θ) ∈ H̃1(Ω) be a (weak) solution of the equation D∗g(Dv+θ)
= 0. We put u(θ) = h(Dv(θ) + θ) ∈ N̂∗. Then R̂(θ)c = cu(θ), c ∈ N̂, and Ŝ(θ) is
reduced to multiplication by the number

(1.6) γ̂(θ) = |Ω|−1‖u(θ)‖2H∗ , θ ∈ SSd−1.

Now, we construct the effective matrix g0 for the operator (1.1). We introduce the
functions vj ∈ H̃1(Ω), vj = v(ej), where {ej} is a fixed basis in Rd. Then (see (3.1.12))

(1.7) g0 = |Ω|−1{(uj ,ul)H∗}, j, l = 1, . . . , d, uj = h(Dvj + ej).

By Subsection 3.1.3, now the effective matrix g0 with real entries is unique. Therefore,
it is fair to call g0 the matrix of effective medium.

Formula (3.1.8) shows that

(1.8) γ̂(θ) = θ∗g0θ = 〈g0θ,θ〉Rd .

It is easily seen that the expressions in (1.6)–(1.8) do not depend on the factorization
(1.2).

We put

(1.9) γ̂(k) = t2γ̂(θ) = 〈g0k,k〉Rd , k = tθ ∈ Rd, t = |k|.

Then the effective DO Â0 = Â(g0) can be written as

Â(g0) = D∗g0D = γ̂(D).

Note that, for d = 1, we have m = n (= 1), whence (see Theorem 3.1.5)

(1.10) g0 = g for d = 1.

By (1.8), if d = 1, the number γ̂(θ) does not depend on θ, and now only two values
θ = ±1 are possible.

Theorem 3.2.3 can be applied directly to the operator (1.1). This gives an estimate
for the (G → G)-norm of the difference of resolvents (Â(g) + ε2I)−1 − (Â(g0) + ε2I)−1

for small ε > 0; here G = L2(Rd). One can also apply interpolation, as was done in
the proof of Theorem 4.2.7. Then we obtain estimates for the (G−s → Gs)-norm of the
difference of resolvents with s ∈ (0, 1). Such estimates may be of interest for the study of
the negative discrete spectrum for the periodic operator Â(g) perturbed by a potential
decaying as |x| → ∞ ( “admixture” type potential).

To the resolvent of the operator Âε(g) = Â(gε), we can apply results about ho-
mogenization. Namely, Theorems 4.2.1 and 4.2.7 (the latter theorem with Q = 1) are
applicable. Theorems 4.4.1, 4.4.4, and 4.4.5 (again with Q = 1) are also applicable.
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Remark 1.1. Let us dwell on application of Theorem 4.4.5 in more detail. In Subsection
3.1.4 the following known fact (see [ZhKO]) was mentioned. The relation g0 = g for the
acoustic operator is fulfilled if and only if the columns of the matrix g are solenoidal;
the relation g0 = g is fulfilled if and only if the columns of the matrix g−1 are potential.
Respectively, in the first case the (G1)-convergence of the solutions uε to u0 is strong,
and in the second case the (G∗)-convergence of the flows pε to p0 is strong.

1.2. The Schrödinger operator. Now, we consider the operator

(1.11) H(g) = Â(g) +Q(x),

where Q(x) > 0 is a Γ-periodic function such that Q+Q−1 ∈ L∞. The operator H(g) is
a periodic Schrödinger operator (with metric g). If g = 1d, the operator (1.11) is a usual
Schrödinger operator for the quantum particle in the external electric field corresponding
to the periodic potential Q. To the operator

(1.12) Hε(g) = Âε(g) +Qε(x),

we can apply Theorems 4.2.4 and 4.2.7 on homogenization. Now, it is convenient to
interpret them as estimates for the norm of the difference of the inverses for the operator
(1.12) and for the “effective Schrödinger operator”

(1.13) H0 = Â(g0) +Q.

Theorems 4.4.1, 4.4.4, and 4.4.5 are also applicable, and the analog of Remark 1.1 is
true. The operator (1.13) can be viewed as the operator of the free particle in the space
with homogeneous metric g0. The constant Q is responsible for the shift in the energy
scale (“renormalization”). Thus, for a rapidly oscillating periodic metric and for electric
field, the quantum particle behaves like a free one. The theorems mentioned above
give qualitative and quantitative characteristics of the passage of a particle into a free
particle, as ε → 0. In Subsection 6.1 below, we shall consider another statement of the
homogenization problem for the Schrödinger operator.

1.3. Other examples, to which we proceed, will be useful in Subsection 6.2 for the
study of the two-dimensional Pauli operator. These examples are also interesting in
themselves.

Suppose d = 2, n = m = 1, and let ω(x) be a Γ-periodic function such that ω(x) > 0
and ω + ω−1 ∈ L∞. We consider the pair of operators

(1.14) B̂−(ω2) = ∂−ω
2(x)∂+, B̂+(ω2) = ∂+ω

2(x)∂−, ∂± := D1 ± iD2.

The operator B̂∓(ω2) is of the form Â(g) with g = ω2 and b(ξ) = ξ1 ± iξ2. Since
m = n = 1, the number g0

∓ is defined by the formula

(1.15) g0
− = g0

+ = g0 = (ω2) =
(
|Ω|−1

∫
Ω

(ω(x))−2 dx
)−1

.

We calculate the germ Ŝ∓(θ;ω2) = Ŝ∓(θ; g0) of the operator B̂∓(ω2). By (3.1.9), we
have

Ŝ∓(θ;ω2) = (θ1 ∓ iθ2)g0(θ1 ± iθ2) = g0.

Thus, the germs Ŝ∓ do not depend on θ, coincide with each other (Ŝ− = Ŝ+ =: Ŝ), and
are reduced to multiplication by the constant γ̂ = g0 defined by (1.15). By (3.1.10), the
effective DO B̂0

∓ for B̂∓(ω2) is given by the formula

(1.16) B̂0
∓ = ∂∓g

0∂± = −g0∆.

Thus, the effective operators coincide with each other:

B̂0
− = B̂0

+ =: B̂0 = −g0∆.
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The expression (1.16) provides a reason for calling the constant (g0)−1 the effective mass
for the operators B̂∓(ω2) at the lower edge of the spectrum (i.e., for λ = 0).

The operators (1.14) can be treated as the two-dimensional (complex) analogs of the
one-dimensional acoustic operator. The fact that Ŝ(ω2) does not depend on θ for any
ω(x), bears witness to some hidden symmetry.

Note that the operators (1.14) can also be written more traditionally:

B̂∓(ω2) = D∗ω2g∓D, g∓ =
(

1 ±i
∓i 1

)
,

but the matrices g∓ have one-dimensional kernels.
Consider now the “vector” version of the preceding example, where d = n = m = 2.

Let ω±(x) be two (real-valued) Γ-periodic functions such that ω±(x) > 0 and ω±+ω−1
± ∈

L∞. We put

(1.17) f0 = diag{ω+, ω−}.
In G = L2(R2;C2), we consider the operators

(1.18) E =
(

0 ∂−
∂+ 0

)
, B̂× = Ef2

0E .

Then

(1.19) B̂× = diag(∂−ω2
−∂+, ∂+ω

2
+∂−) =: diag{B̂−(ω2

−), B̂+(ω2
+)}.

The operator B̂× is of the form Â(g×) with g× = f2
0 ,

(1.20) b×(ξ) =
(

0 ξ1 − iξ2

ξ1 + iξ2 0

)
.

The effective matrix is given by the formula

g0
× = g× = diag{g0

+, g
0
−}, g0

± = (ω2
±)

(see (1.15)). Again, the germ Ŝ(θ; g×) = b×(θ)g0
×b×(θ) does not depend on θ and is

reduced to multiplication by the constant diagonal matrix

Ŝ(θ; g×) = diag{g0
−, g

0
+}.

Finally, now the effective DO B̂0
× has the form

(1.21) B̂0
× = diag{g0

−, g
0
+}(−∆).

As a concluding example, we consider the analog of B̂× that involves the metric.
Namely, let g̃(x) be a Γ-periodic (2 × 2)-matrix-valued function with real entries and
such that g̃(x) > 0 and g̃ + g̃−1 ∈ L∞. Consider the operator

(1.22) B̂×(g) = EgE , g = f0g̃f0.

(Of course, we could include the factors f0 in g̃, but in that form the operator (1.22)
would be less convenient for application in Subsection 6.2.) The operator (1.22) is of
the form Â(g) with b(ξ) = b×(ξ) (see (1.20)). Again, an effective matrix is unique (see
Subsection 3.1.3) and can be calculated explicitly:

(1.23) g0 = g =
(
|Ω|−1

∫
Ω

f−1
0 g̃−1f−1

0 dx
)−1

.

Now, the germ Ŝ×(θ; g) = b×(θ)gb×(θ) depends on θ, but, obviously,

Tr Ŝ×(θ; g) = Tr g, det Ŝ×(θ; g) = det g.
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Therefore, the eigenvalues γ1, γ2 of the germ Ŝ×(θ; g) do not depend on θ and coincide
with the eigenvalues of the matrix (1.23). The effective operator for the DO (1.22) is
given by the general formula (3.1.10):

B̂×(g0) = Eg0E .
We shall not comment on applications of the general homogenization results to the ex-
amples of the present subsection. We only note that, since m = n (= 2), Theorem 4.4.5
ensures the strong convergence of the flows for the operator Efε0 g̃εfε0E .

§2. The operator of elasticity theory on Rd, d ≥ 2

2.1. Preliminaries. To represent the operator of elasticity theory in the form Â =
b(D)∗g(x)b(D), we need some agreements. Let ζ be an orthogonal second rank tensor in
Rd. In a fixed orthonormal basis in Rd, it can be represented by a matrix ζ = {ζjl}dj,l=1.

In the linear space of tensors we introduce the norm ζ
2

=
∑

j,l |ζjl|2; this norm does
not depend on the choice of the orthonormal basis in Rd. We shall consider symmetric
tensors, which will be identified with vectors ζ∗ ∈ Cm, 2m = d(d + 1), by the following
rule. The vector ζ∗ is formed by all components ζjl, j ≤ l, and the pairs (j, l) are put in
order in some fixed way. Let χ be an (m×m)-matrix, χ = diag{χ(j,l)}, where χ(j,l) = 1
for j = l and χ(j,l) = 2 for j < l. Then

ζ
2

= 〈χζ∗, ζ∗〉Cm .
For the displacement vector u ∈ G1 = H1(Rd;Cd), we introduce the tensors

(2.1) ∇u =
{
∂uj
∂xl

}
, e(u) =

1
2

{
∂uj
∂xl

+
∂ul
∂xj

}
, r(u) =

1
2

{
∂uj
∂xl
− ∂ul
∂xj

}
.

The deformation tensor e(u) is symmetric. Let e∗(u) be the vector corresponding to the
tensor e(u) in accordance with the rule described above. The relation

(2.2) b(D)u = −ie∗(u)

determines an (m×d)-matrix b(D) uniquely. For instance, with an appropriate ordering,
we have

b(ξ) =

 ξ1 0
1
2 ξ

2 1
2ξ

1

0 ξ2

, d = 2; b(ξ) =


ξ1 0 0
1
2ξ

2 1
2 ξ

1 0
0 ξ2 0
0 1

2 ξ
3 1

2ξ
2

0 0 ξ3

1
2ξ

3 0 1
2ξ

1

, d = 3.

Now n = d ≥ 2, 2m = d(d + 1), G = L2(Rd;Cd), and G∗ = L2(Rd;Cm). For b(D) as
in (2.2), it is easily seen that rank b(ξ) = d for ξ 6= 0, i.e., condition (2.1.2) is satisfied.
Now, let g(x) be a Γ-periodic (m×m)-matrix-valued function with real entries and such
that g(x) > 0 and g + g−1 ∈ L∞, and let

(2.3) σ∗(u) := g(x)e∗(u).

The corresponding tensor σ(u) is called the stress tensor, and relation (2.3) expresses
Hooke’s law. The matrix g gives a “concise” description of the Hooke tensor that relates
the tensors σ(u) and e(u). The matrix g characterizes the parameters of an elastic (in
general, anisotropic) medium filling Rd. The quadratic form

(2.4) w[u,u] =
1
2

∫
Rd
〈σ∗(u), e∗(u)〉Cm dx =

1
2

(σ∗(u), e∗(u))G∗
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gives the energy of elastic deformations. The operator W =W(g) of elasticity theory is
generated in the space G by the quadratic form (2.4). Now, it is clear that 2W(g) = Â(g),
where g is the “Hooke matrix” (see (2.3)), and b(D) is defined by (2.2).

In the case of an isotropic medium, the expression for the form (2.4) simplifies signif-
icantly and depends only on two functional Lamé parameters λ(x), µ(x):

w[u,u] =
∫
Rd

(
µ(x) e(u)

2
+
λ(x)

2
| div u|2

)
dx

=
∫
Rd

(
µ(x)〈χe∗(u), e∗(u)〉Cm +

λ(x)
2
| div u|2

)
dx.

The parameter µ is the shear modulus. Often, another parameter K(x) is introduced
instead of λ(x); K(x) is called the modulus of volume compression. We shall also use yet
another modulus β(x). Here are the relations:

(2.5) K(x) = λ(x) +
2µ(x)
d

, β(x) = µ(x) +
λ(x)

2
.

The modulus λ(x) may be negative. In the isotropic case, the conditions that ensure the
positive definiteness of the matrix g(x) are µ(x) ≥ µ0 > 0, K(x) ≥ K0 > 0. We write
down the “isotropic” matrices g for d = 2 and d = 3:

gµ,K(x) =

K + µ 0 K − µ
0 4µ 0

K − µ 0 K + µ

, d = 2,

gµ,K(x) =
1
3


3K + 4µ 0 3K − 2µ 0 3K − 2µ 0

0 12µ 0 0 0 0
3K − 2µ 0 3K + 4µ 0 3K − 2µ 0

0 0 0 12µ 0 0
3K − 2µ 0 3K − 2µ 0 3K + 4µ 0

0 0 0 0 0 12µ

, d = 3.

All our general results, including those valid only for f = 1n, can be applied to the
operator W(g). In particular, the upper and lower estimates (3.1.21) are valid. Note
that, in the isotropic case, we have

gµ,K = gµ,K , gµ,K = gµ,K .

This follows from the fact that the isotropic Hooke tensor is linear with respect to µ and
K, and the inverse tensor (see [ZhKO, Chapter 12, §1]) is linear with respect to µ−1 and
K−1.

2.2. On homogenization for the operator W. Relation (2.3) shows that the flows
pε = gεb(D)uε = −igεe∗(uε) corresponding to the operator 2Wε(g) = Â(gε) can be
viewed as stresses. The effective matrix g0 and the effective DO W(g0) are constructed
in accordance with the general rules. Though the effective matrix g0 is not unique now,
its choice is determined by the desire to trace the behavior of the stress tensor as ε→ 0.
By Theorem 4.4.1, the solutions uε of the equation

(2.6) 2Wε(g)uε + uε = F, F ∈ G−1,

G1-weakly converge to the solution u0 of the equation

(2.7) 2W(g0)u0 + u0 = F, F ∈ G−1,

and the stresses (the flows) gεe∗(uε) converge G∗-weakly to the limit flow g0e∗(u0),
which corresponds to the “limit” stress tensor. For the solutions of equations (2.6) and
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(2.7), these (known) facts are supplemented substantially by applying Theorems 4.2.1
and 4.2.7.

To the more general equation

(Wε(g) +Qε)uε = F,

we can also apply Theorems 4.2.4, 4.2.7, and 4.4.1.
No simplification or refinement occurs in the isotropic case; in general, the effective

medium is anisotropic.

2.3. The Hill body. In mechanics (see, e.g., [ZhKO]), the isotropic medium with
µ(x) = µ0 = const is called the Hill body. In this case, more economical description of
the operatorW is possible, and the homogenization results can be refined. We start with
the identity ∫

Rd
e(u)

2
dx =

∫
Rd

(
r(u)

2
+ | div u|2

)
dx, u ∈ G1,

where the notation (2.1) is used. Then, for µ(x) = µ0, the energy form can be represented
(by using the notation (2.5)) as

(2.8) w[u,u] = µ0

∫
Rd

r(u)
2
dx +

∫
Rd
β(x)| div u|2 dx, u ∈ G

1.

We write the form (2.8) as (g∧b∧(D)u, b∧(D)u)G∗ with other m = m∧, g = g∧, and
b = b∧, than those in Subsection 2.1. Namely, let m∧ = 1 + d(d − 1)/2. The symbol
of the (m∧ × d)-matrix b∧ can be described as follows. The first row of b∧(ξ) coincides
with (ξ1, ξ2, . . . , ξd). The other rows correspond to (different) pairs of indices (j, l),
1 ≤ j < l ≤ d. The element standing in the (j, l)th row and the jth column is ξl, and the
element in the (j, l)th row and the lth column is (−ξj); all other elements of the (j, l)th
row are equal to zero. The order of the rows is irrelevant. Finally, g∧(x) is defined by
the formula

g∧(x) = diag{β(x), µ0/2, µ0/2, . . . , µ0/2}.
It is easily seen that w[u,u] = (g∧b∧(D)u, b∧(D)u)G∧∗ , G∧∗ = L2(Rd;Cm∧), or, equiva-
lently,

W = (b∧(D))∗g∧(x)b∧(D).

Now we show that

(2.9) g0
∧ = g∧ = diag{β, µ0/2, µ0/2, . . . , µ0/2}.

For this, we apply Proposition 3.1.7. The assumptions of that proposition need checking
only for the first column col(β(x)−1, 0, . . . , 0) of the matrix (g∧(x))−1. Let ϑ ∈ H̃2(Ω)
be a solution of the equation ∆ϑ = i(β(x)−1−β−1), and let v = ∇ϑ ∈ H̃1(Ω;Cd). Then
(b∧(D)v)1 = −i div v = β−1 − β−1. Obviously, the relations (b∧(D)v)j = 0, j > 1, are
equivalent to r(v) = r(∇ϑ) = 0. This yields (2.9). Observe that if µ(x) = µ0, then
there is no analog of the identity g0

∧ = g∧ for the representation of W , which was used
in Subsection 2.1. However, in the case of the Hill body, the “usual” effective matrix g0

also corresponds to the isotropic medium with parameters µ0 and β.
From (2.9) and Theorem 4.4.5 it follows that, in the homogenization problem for the

Hill body, the flows converge strongly. Namely, let uε be the solution of the equation

(b∧(D))∗gε∧b∧(D)uε + uε = F, F ∈ G
−1,

and let u0 be the solution of the equation

(b∧(D))∗g0
∧b∧(D)u0 + u0 = F.
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Then

(2.10) (G∧∗ )- lim
ε→0

gε∧b∧(D)uε = g0
∧b∧(D)u0.

Clearly, (2.10) is equivalent to the pair of relations

(L2(Rd))- lim
ε→0

βε div uε = β div u0,(2.11)

(L2(Rd))- lim
ε→0

r(uε) = r(u0).(2.12)

However, this is less than the strong convergence of the full stress tensor.

Comments on Chapter 5

1. For all three main examples (the acoustic operator, the Schrödinger operator, and the
operator of elasticity theory), application of Theorems 4.2.1, 4.2.4, 4.2.7 to the homoge-
nization problem yields new results (partly, these results were published by the authors
in [BSu2]). In contrast, application of Theorem 4.4.1 to these cases gives well known
statements. Relations (2.11) and (2.12) concerning strong convergence for the Hill body
have not been mentioned before.

2. The examples in Subsection 1.3 are given by way of illustration; they also prepare
the study of the two-dimensional periodic Pauli operator in §6.2. In many respects,
the operators B̂±(ω2) (see (1.14)) are similar to the acoustic operator with d = 1. In
particular, formulas (1.15) have the same form as (1.10).

3. For the acoustic and Schrödinger operators, we have n = 1. Then the only eigenvalue
γ(k) of the operator Â(k, g) acting in L2(Ω) (and corresponding to the DO (1.1)) is
analytic near the point k = 0. The same is true for the corresponding eigenfunction. On
this basis, for instance, an estimate of the type

(∗) ‖(Âε(g) + I)−1 − (Â(g0) + I)−1‖G→G ≤ (const)ε

can be proved in a more direct way. For this, the Floquet decomposition should be
employed, but there is no need to use general results of Chapters 1 and 3. Similar
methods were applied earlier for the study of the Schrödinger operator perturbed by
potentials of admixture type (see [B1, B2, BLaSu]). However, it is more difficult to
control the constant in (∗) under this approach.

4. In the paper [Zh1] (see also [ZhKO, II.6]), Zhikov used the Floquet theory to obtain
meaningful estimates for the fundamental solution of the parabolic equation correspond-
ing to the DO (1.1). In a discussion of the results of [BSu2], Zhikov [Zh2] communicated
to the authors that an estimate of the form (∗) can be deduced from estimates for the
fundamental solution in a relatively easy way. This can be done on the basis of [Zh1],
but some smoothness assumptions on g are required, and it is difficult to control the
constants in estimates.

Chapter 6. Applications of the general method. The case where f 6= 1n

In this case, the general results are less perfect, although even these results allow us to
advance essentially at a number of points. In particular, this concerns the homogeniza-
tion problems. Our main examples are the Schrödinger operator and the two-dimensional
Pauli operator. Both operators can be represented as A(g, f), by appropriate factoriza-
tion. Finally, we consider the homogenization problem for a certain first order DO.
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§1. The periodic Schrödinger operator

1.1. Preliminaries. Factorization. In the space L2(Rd), d ≥ 1, we consider the
periodic Schrödinger operator (with metric) of the form

(1.1) H = D∗g̃(x)D + p(x), x ∈ Rd,

where a (d × d)-matrix g̃(x) > 0 with real entries and a real-valued potential p(x) are
Γ-periodic and such that

g̃ + g̃−1 ∈ L∞,(1.2)

p ∈ Ls(Ω), where 2s > d for d ≥ 2 and s = 1 for d = 1.(1.3)

The precise definition of the selfadjoint operator H in G = L2(Rd) is given in terms
of the quadratic form

(1.4) h[u, u] =
∫
Rd

(〈g̃Du,Du〉Cd + p|u|2) dx, u ∈ G1 = H1(Rd).

Under conditions (1.2) and (1.3), this form is lower semibounded and closed in G. Adding
an appropriate constant to p, we can assume that the point λ = 0 is the lower edge of
the spectrum of H. The latter condition is assumed in the sequel.

We consider the homogeneous equation (D∗g̃D + p)ω = 0, which is understood in the
sense of the following identity for ω ∈ H̃1(Ω):

(1.5)
∫

Ω

(〈g̃Dω,Dz〉Cd + pωz+) dx = 0, z ∈ H̃1(Ω).

Under conditions (1.2) and (1.3), this equation has a positive Γ-periodic solution ω that
belongs to H1

loc(Rd)∩ Lip τ (for some τ > 0). Moreover, the function ω is a multiplier in
the classes G1 and H̃1(Ω). After the substitution u = ωv, the form (1.4) turns into

h[u, u] =
∫
Rd
ω2〈g̃Dv,Dv〉Cd dx, u = ωv, v ∈ G

1.

This means that the operator (1.1) is represented as a product

(1.6) H = ω−1D∗ω2g̃Dω−1.

Thus, the operator H takes the form

(1.7) H = A(g, f), g = ω2g̃, f = ω−1,

with n = 1, m = d ≥ 1, b(ξ) = ξ.

Remark 1.1. Expression (1.6) can be taken as the definition of the operator H for any
measurable Γ-periodic function ω such that

ω(x) > 0, ω + ω−1 ∈ L∞.

The form (1.1) can be recovered by the formula p = −ω−1(D∗g̃Dω). The corresponding
potential p may be strongly singular.

Remark 1.2. Let Ej(k) be the band functions of the periodic operator (1.1). The rep-
resentation (1.7) implies that E1(k) has a nondegenerate minimum (equal to zero) at
k = 0 and that minE2(k) > 0. These properties follow from the existence of a positive
periodic solution of equation (1.5). In fact, any other way of establishing these properties
of the band functions is equivalent to the proof of the existence of a positive solution ω.
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1.2. Relationship with the acoustic operator. The operator Â(g) corresponding
to the operator (1.7) with f = 1 coincides with the acoustic operator (5.1.1). Thus, we
are under the conditions of the general pattern of Subsection 1.1.5 with M = M∗ = ω−1.
In accordance with (5.1.3), H = L2(Ω) and

(1.8) N = {u ∈ H : u = cω, c ∈ C},
while N∗ = N̂∗ is defined by (5.1.4) and (5.1.5). By definition, the effective matrix g0 for
the operator (1.7) is the same as for the acoustic operator. For the latter, since n = 1,
the germ Ŝ(θ) acting in N̂ is reduced to multiplication by the number

(1.9) γ̂(θ) = 〈g0θ,θ〉Rd
(see (5.1.8)). For calculating the germ S(θ) of the operator H, we use formula (1.1.26).
Now M = ω−1, and we can put ζ = ω (see (1.8)). Then (1.1.26) shows that S(θ) acts
as multiplication of the elements of the kernel (1.8) by the number

(1.10) γ(θ) = γ̂(θ)|Ω|‖ω‖−2
H
, θ ∈ SSd−1.

We normalize the choice of ω by the condition

(1.11) |Ω|−1

∫
Ω

ω2 dx = 1.

Then (1.10) leads to the following useful statement.

Proposition 1.3. Suppose a positive solution ω of equation (1.5) is normalized as in
(1.11), and the matrix g is defined by (1.7). Then

(1.12) γ(θ) = γ̂(θ) = 〈g0θ,θ〉Rd , θ ∈ SSd−1.

Remark 1.4. In quantum mechanics, the tensor inverse to the tensor γ is called the tensor
of effective masses. Thus, (1.12) means that, under condition (1.11) and for g = g̃ω2,
the tensors of effective masses for the operators (1.1) and (5.1.1) coincide.

By our definitions, under condition (1.11) and for g = g̃ω2, the effective DO for the
operator H can be written as

(ω(x))−1γ̂(D)(ω(x))−1,

where the tensor γ̂ (see (1.9)) is related to the corresponding acoustic operator.
We distinguish the case where d = 1. Then m = n = 1 and (see (5.1.10)) γ̂ = g0 = g.

Combining this with (1.10), we obtain

γ = |Ω|2‖ω‖−2
H
‖g̃−1/2ω−1‖−2

H
, d = 1.

In particular,

(1.13) γ = |Ω|2‖ω‖−2
H
‖ω−1‖−2

H
for d = 1, g̃ = 1.

The latter formula is well known in quantum mechanics as the formula for the effective
mass γ−1 on the left edge of the spectrum.

1.3. Homogenization. We consider the family of operators Hε that are defined, in
accordance with (1.6) and (1.7), by the formulas

(1.14) Hε = Hε(g̃, ω) = (ωε)−1D∗gεD(ωε)−1, gε = (ω2g̃)ε, ε > 0.

Also, this definition can be rewritten in the initial terms:

(1.15) Hε = D∗(g̃)εD + ε−2pε.

The family (1.15) differs from (5.1.12): now the potential p is certainly not sign-definite.
Moreover, pε is multiplied by ε−2, which “equalizes” the roles of the summands in (1.15).
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In homogenization of the family (5.1.12), the potential term has a smaller impact on the
result.

To the operator Hε we can apply all the results of general nature for the family
Aε(g, f) with variable f . We formulate some consequences of the general results. We
shall not write down the constants in estimates explicitly, though this can easily be done:
the general formulas for the constants may only simplify. All constants in estimates in
this subsection will be denoted by the letter C without indices.

First, we apply Theorem 4.2.5.

Theorem 1.5. Suppose g = g̃ω2 and (1.11) is satisfied. Let Ĥ(g0) denote the operator
D∗g0D. Then

(1.16) ‖(Hε(g̃, ω) + I)−1 − ωε(Ĥ(g0) + I)−1ωε‖G→G ≤ Cε, 0 < ε ≤ 1.

Proof. It suffices to refer to (3.3.2) and the normalization condition (1.11). As a result,
we obtain Q = 1. �

This estimate can be supplemented with the interpolation estimate from Theorem
4.2.8.

Theorem 1.6. Under the assumptions of Theorem 1.5, we have

‖(ωε)−1(Hε(g̃, ω) + I)−1 − (Ĥ(g0) + I)−1ωε‖G→Gs ≤ Cε1−s, 0 ≤ s < 1, 0 < ε ≤ 1.

Next, Theorem 4.2.9 (with Q = 1) implies the following result.

Theorem 1.7. Under the assumptions of Theorem 1.5, we have

(w,G→ G)- lim
ε→0

(Hε(g̃, ω) + I)−1 = (ω)2(Ĥ(g0) + I)−1.

Finally, we mention the following consequence of Theorem 4.4.2 (again with Q = 1).
Let ũε be the solution of the equation

(Hε(g̃, ω) + I)ũε = F, F ∈ G.

Suppose that (1.11) is satisfied and g = g̃ω2. Let u0 be the solution of the equation

(Ĥ(g0) + I)u0 = ωF.

Theorem 1.8. Under the above assumptions,

(w,G1)- lim
ε→0

(ωε)−1ũε = u0,(1.17)

(w,G∗)- lim
ε→0

gεD((ωε)−1ũε) = g0Du0.(1.18)

By Theorem 4.4.8 and Propositions 3.1.6 and 3.1.7, the following analog of Remark
5.1.1 is valid for the Schrödinger operator (1.1).

Remark 1.9. If the columns of the matrix g = ω2g̃ are solenoidal, convergence in (1.17) is
strong. If the columns of the matrix g−1 = ω−2g̃−1 are potential, convergence in (1.18)
is strong.

§2. The two-dimensional periodic Pauli operator

2.1. Definition and factorization of the Pauli operator. The role of the magnetic
potential will be played by a Γ-periodic R2-valued function A = {A1, A2} on R2 such
that

(2.1) A ∈ Lρ(Ω;C2), ρ > 2.
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Recall the standard notation for the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the space G = L2(R2;C2) we consider the operator

(2.2) D := (D1 −A1)σ1 + (D2 − A2)σ2, DomD = G
1 = H1(R2;C2).

By definition, the Pauli operator P is the square of the operator D:

(2.3) P := D2 =
(
P− 0
0 P+

)
.

The precise definition of P is given via the closed quadratic form

(2.4) ‖Du‖2G, u ∈ DomD,
in G. If the potential A is sufficiently smooth, the blocks P± of the operator (2.3) can
be written as

(2.5) P± = (D−A)2 ± (∂1A2 − ∂2A1).

The expression ∂1A2 − ∂2A1 corresponds to the strength of the magnetic field.
We use the known factorization for the operators (2.2) and (2.3) (see [BSu1,2] for the

details). A gauge transformation allows us to assume that the potential A is subject to
the requirements

(2.6) div A = 0,
∫

Ω

A dx = 0

and still satisfies (2.1). Under conditions (2.1) and (2.6), there exists a (unique) real-
valued Γ-periodic function ϕ such that

(2.7) ∇ϕ = {A2,−A1}, ϕ = 0.

From (2.1) and (2.7) it follows that

(2.8) ϕ ∈ W̃ 1
ρ (Ω) ⊂ Lip τ, τ = 1− 2ρ−1.

Here W̃ 1
ρ (Ω) is the subspace of the Sobolev space W 1

ρ (Ω) formed by the functions whose
Γ-periodic extension belongs to W 1

ρ,loc(R2).
We introduce the notation (cf. (5.1.14), (5.1.17), and (5.1.18))

(2.9) ω± := exp(±ϕ), f0 =
(
ω+ 0
0 ω−

)
, E =

(
0 ∂−
∂+ 0

)
.

By (2.8), we have ω± ∈ W̃ 1
ρ (Ω) and

(2.10) ω−(x)ω+(x) = 1, x ∈ R2.

The operators (2.2) and (2.3) can be written as

D = f0Ef0,(2.11)

P = f0Ef2
0Ef0.(2.12)

The blocks (2.5) of the operator (2.3) admit the representations

(2.13) P+ = Y ∗Y , P− = Y Y ∗, where Y := ω+∂−ω−.

It is convenient to view formulas (2.11)–(2.13) as the definitions of the operators D,
P , and P±, assuming that the ω± are arbitrary Γ-periodic functions satisfying (2.10) and
such that

ω±(x) > 0, ω+, ω− ∈ L∞.
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More precisely, the operator D is given by (2.11) on the domain

(2.14) DomD = {u ∈ G : f0u ∈ G1}.

The operator P corresponds to the quadratic form (2.4) defined on the domain (2.14).
The blocks P± are defined via the quadratic forms

‖ω±∂∓ω∓u‖2L2(R2), ω∓u ∈ H1(R2).

Here, the magnetic field strength in (2.5) loses its immediate meaning.
Clearly, KerY = KerY ∗ = {0}. Therefore, (2.13) implies that the operator P+ is

unitarily equivalent to P−. Obviously, the study of the operator P reduces to the study
of the blocks P±.

2.2. Effective masses and DO. The operators P± and P fall into the general pattern.
We start with P±. Now, we have d = 2, m = n = 1, G = G∗ = L2(R2), and

H = H∗ = L2(Ω). The corresponding kernels are given by the formulas

N± = {u ∈ H : u = cω±, c ∈ C}, (N∗)± = N∓, n = n∗ = 1.

The operators P± can be represented as A(g, f). Namely, the roles of g, f , and b(ξ) are
played by ω2

±, ω∓, and ξ1 ∓ iξ2, respectively. Then P± = A(ω2
±, ω∓), and the role of

the corresponding operator Â(g) is played by B̂±(ω2
±) (see (5.1.14)). Consequently (see

(5.1.15)), the effective matrix g0
± reduces to the number

(2.15) g0
± =

(
|Ω|−1

∫
Ω

ω2
∓ dx

)−1

.

Accordingly (see (5.1.16)), the effective DO is given by the formula

(2.16) P 0
± = −g0

±ω∓(x)∆ω∓(x).

In order to calculate the germ S±(θ) of P±, we use (3.1.30). By this formula, S±(θ)
reduces to multiplication by the number γ±(θ) = γ̂±(θ)|Ω|‖ω±‖−2

H
. Now, the relation

γ̂(θ) = g0 in Subsection 5.1.3, applied to B̂±(ω2
±), shows that γ̂±(θ) = g0

±. By (2.10)
and (2.15), we obtain

(2.17) γ±(θ) = |Ω|2‖ω−‖−2
H
‖ω+‖−2

H
=: γ.

Thus, the numbers γ±(θ) do not depend on θ and coincide with each other. Formulas
(2.17) are full analogs of formula (1.13) for the one-dimensional Schrödinger operator.
Herewith, the effective masses for the two Pauli operators P± coincide with each other
and do not depend on θ.

We say a few words about the operator P . Here m = n = d = 2, and G = G∗ =
L2(R2;C2). The operator P is of the form A(g, f), where g = f2

0 , f = f0, and b(ξ)
is defined by (5.1.20). The role of the corresponding operator Â(g) is played by the
operator B̂× defined by (5.1.19). In accordance with (3.1.29) and (5.1.21), the effective
DO P0 for the operator P looks like this:

P0 = f0(x)B̂0
×f0(x) = f0(x)

(
−g0
−∆ 0
0 −g0

+∆

)
f0(x) =

(
P 0
− 0
0 P 0

+

)
.

Thus, P0 is expressed in terms of the operators (2.16).
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2.3. About homogenization. It is more convenient to start with the vector Pauli oper-
ator. As usual, we define the operators Pε and P0

ε , replacing f0(x) by fε0 (x) = f0(ε−1x).
Theorems 4.2.3, 4.2.6, 4.2.9, 4.4.2, and 4.4.8 are applicable. Here it is convenient to
change the notation somewhat. Let ω̃± be a positive function belonging to the kernel
N± and such that ‖ω̃±‖2L2(Ω) = |Ω|. We put f̃ = diag{ω̃−, ω̃+}. Let γ be the number
(2.17). Then, by Theorem 4.2.6,

(2.18) ‖(Pε + I)−1 − f̃ε(−γ∆ + I)−1f̃ε‖G→G ≤ Cε,

and the constant C can easily be decoded. Theorem 4.2.9 shows that the limit

(2.19) (w,G→ G)- lim
ε→0

(Pε + I)−1 = (f̃)(−γ∆ + I)−1(f̃)

exists.
Now, let ũε be the solution of the equation

(2.20) Pεũε + ũε = F, F ∈ G,

and let u0 be the solution of the equation

(2.21) −γ∆u0 + u0 = diag
{
ω−
(
ω2
−
)−1

, ω+

(
ω2

+

)−1}
F.

Then, by Theorems 4.4.2 and 4.4.8 (2◦) (with Q = 12), we have

(w,G1)- lim
ε→0

fε0 ũε = u0,(2.22)

(G)- lim
ε→0

p̃ε = p0.(2.23)

Here the flows p̃ε, p0 are defined by the formulas

p̃ε = (fε0 )2Efε0 ũε =
(

0 (ωε+)2∂−ω
ε
−

(ωε−)2∂+ω
ε
+ 0

)
ũε,(2.24)

p0 =

(
0

(
ω2
−
)−1

∂−(
ω2

+

)−1
∂+ 0

)
u0.(2.25)

The homogenization results for P directly imply the corresponding results for the
blocks P±. In the spirit of (2.13), we put

(2.26) P+,ε = Y ∗ε Yε, P−,ε = YεY
∗
ε , Yε = ωε+∂−ω

ε
−.

Then Pε = diag{P−,ε, P+,ε}, and (2.18) yields

(2.27±) ‖(P±,ε + I)−1 − ω̃ε±(−γ∆ + I)−1ω̃ε±‖L2(R2)→L2(R2) ≤ Cε.

From (2.19) it follows that

(2.28±)
(w,L2(R2)→ L2(R2))- lim

ε→0
(P±,ε + I)−1 =

(
ω̃±
)2(−γ∆ + I)−1

= (ω±)2
(
ω2
±
)−1

(−γ∆ + I)−1.

Now, let ũ(±)
ε be the solution of the equation

P±,εũ
(±)
ε + ũ(±)

ε = F±, F± ∈ L2(R2),

and let u(±)
0 be the solution of the equation

−γ∆u(±)
0 + u

(±)
0 = ω±

(
ω2
±
)−1

F±.
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Then, by (2.20)–(2.25),

(w,H1(R2))- lim
ε→0

ωε∓ũ
(±)
ε = u

(±)
0 ,(2.29±)

(L2(R2))- lim
ε→0

p̃(±)
ε = p

(±)
0 ,(2.30±)

where the flows p̃(±)
ε , p(±)

0 are defined by the formulas

p̃(±)
ε = (ωε±)2∂∓ω

ε
∓ũ

(±)
ε ,(2.31±)

p
(±)
0 =

(
ω2
∓
)−1

∂∓u
(±)
0 .

2.4. The periodic Pauli operator with metric. Suppose that g̃(x) is a Γ-periodic
(2×2)-matrix-valued function with real entries and such that g̃(x) > 0 and g̃+ g̃−1 ∈ L∞.
In the space L2(R2;C2), we consider the operator

(2.32) P(g) = f0EgEf0, g = f0g̃f0.

If g̃ = 12, the operator (2.32) turns into the Pauli operator P . However, in contrast to
P , in the general case P(g) does not split into blocks. We note that

(2.33) P(g) = f0B̂×(g)f0, g = f0g̃f0,

where the operator B̂×(g) is defined by (5.1.22).
The operator P(g) falls into the general pattern with m = n = d = 2 and G = G∗ =

L2(R2;C2). From (2.33) it is clear that the operator (2.32) can be written as A(g, f0)
with b(ξ) = b×(ξ) defined by (5.1.20). Now the kernel N has the form

N = {u ∈ L2(Ω;C2) : f0u = c ∈ C2}.

The effective matrix g0 is unique and is defined by (5.1.23). The effective DO is given
by the formula

P(g0) = f0(x)Eg0Ef0(x).

Now, the germ S(θ) (acting in N) of the operator P(g) depends on θ. However, it can be
checked that its eigenvalues γ1(θ) and γ2(θ) coincide with the eigenvalues of the constant
matrix

|Ω|f∗g0f∗, f∗ := diag{‖ω+‖−1
L2(Ω), ‖ω−‖

−1
L2(Ω)}.

Thus, the eigenvalues of the germ do not depend on θ. The said above can be verified
easily by using (1.1.22); see [BSu2, Subsection 7.3] for the details.

The homogenization problem for the operator Pε(g) can be studied like this was done
for the operator Pε in Subsection 2.3. We shall not dwell on this.

§3. Homogenization problem for the operator D
3.1. Here we study the operator D introduced in Subsection 2.1. This operator will be
analyzed by the method described in Subsection 1.1.8, though now there is no need to
use the abstract results directly. Note that D may be interpreted as the two-dimensional
Dirac operator with zero mass in the absence of electric field. However, for us, this
operator is interesting as a model one. In the study of it, we clarify some features that
are also typical for the much more difficult case of the Maxwell operator. The latter will
be considered in Chapter 7.
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3.2. We start with the definition (2.11):

D = f0Ef0 =
(

0 Y
Y ∗ 0

)
,

where the operator Y is given by (2.13). As usual, we introduce the operator

(3.1) Dε = fε0Efε0 =
(

0 Yε
Y ∗ε 0

)
=
(

0 ωε+∂−ω
ε
−

ωε−∂+ω
ε
+ 0

)
, ε > 0.

Let uε = col(u(−)
ε , u

(+)
ε ) be the solution of the equation

(3.2) (Dε − iI)uε = s = col(q, r), s ∈ G = L2(R2;C2).

We write uε as

(3.3) uε = uq,ε + ur,ε, uq,ε = col(u(−)
q,ε , u

(+)
q,ε ), ur,ε = col(u(−)

r,ε , u
(+)
r,ε ),

where uq,ε is the solution of equation (3.2) with r = 0, and ur,ε is the solution of (3.2)
with q = 0.

Let u0 = col(u(−)
0 , u

(+)
0 ) be the solution of the equation

(3.4) (D0 − iΛ)u0 = s = col(q, r), s ∈ G,

where

(3.5) D0 = (ω−)(ω+)
(

0 ∂−
∂+ 0

)
, Λ =

((
ω̃−
)−2 0

0
(
ω̃+

)−2

)
.

As in (3.3), we write u0 as

u0 = uq,0 + ur,0, uq,0 = col(u(−)
q,0 , u

(+)
q,0 ), ur,0 = col(u(−)

r,0 , u
(+)
r,0 ).

Our goal is to prove the following theorem.

Theorem 3.1. 1◦. Let Dε be the operator defined by (3.1). Suppose that the operator
D0 and the matrix Λ are as in (3.5). Then

(3.6) (w,G→ G)- lim
ε→0

(Dε − iI)−1 = (D0 − iΛ)−1.

2◦. We have

(w,H1(R2))- lim
ε→0

ωε+u
(−)
q,ε = ω+u

(−)
q,0 ,(3.7)

(w,H1(R2))- lim
ε→0

ωε−u
(+)
r,ε = ω−u

(+)
r,0 ,(3.8)

(L2(R2))- lim
ε→0

ωε−u
(+)
q,ε = ω−u

(+)
q,0 ,(3.9)

(L2(R2))- lim
ε→0

ωε+u
(−)
r,ε = ω+u

(−)
r,0 .(3.10)

It is natural to call the operator D0 the effective DO for D. However, the right-hand
side of (3.6) is a generalized resolvent. Relations (3.7)–(3.10) show that the results about
the limit procedure are of different strength for different “blocks” of the solution uε.
The combination of these results leads inevitably to losses. However, we formulate the
“united” result. Let f0 be the matrix defined by (2.9). From (3.7)–(3.10) it is clear
that fε0uε is represented as the sum of two terms. One of them converges weakly in
G1 = H1(R2;C2), and the other converges strongly in G. Then the sum converges
strongly in Gloc. As a result, we obtain the following statement.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

(Gloc)- lim
ε→0

fε0uε = f0u0.
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3.3. Proof of Theorem 3.1. The summands uq,ε and ur,ε in (3.3) are treated similarly.
For definiteness, we consider uq,ε. From equation (3.2) with r = 0, we have

(3.11) Yεu
(+)
q,ε − iu(−)

q,ε = q, Y ∗ε u
(−)
q,ε − iu(+)

q,ε = 0.

From (3.11) it follows that

u(−)
q,ε = i(YεY ∗ε + I)−1q = i(P−,ε + I)−1q,(3.12)

u(+)
q,ε = Y ∗ε (P−,ε + I)−1q,(3.13)

where P−,ε is defined by (2.26). Relations (3.12) and (2.28−) show that

(3.14) (w,L2(R2))- lim
ε→0

u(−)
q,ε = i

(
ω̃−
)2(−γ∆ + I)−1q.

By (3.12) and (2.29−) (with F− = iq), we obtain

(3.15) (w,H1(R2))- lim
ε→0

ωε+u
(−)
q,ε = iω−

(
ω2
−
)−1(−γ∆ + I)−1q.

Combining (3.13), (2.26), and (2.31−) (with F− = q), we see that

u(+)
q,ε = ωε+p̃

(−)
ε , p̃(−)

ε = (ωε−)2∂+ω
ε
+(P−,ε + I)−1q.

This and (2.30−) imply the strong L2(R2)-convergence for the product ωε−u
(+)
q,ε :

(3.16) (L2(R2))- lim
ε→0

ωε−u
(+)
q,ε = p

(−)
0 = ω−γ∂+(−γ∆ + I)−1q.

By Proposition 4.0.1, relation (3.16) implies

(3.17) (w,L2(R2))- lim
ε→0

u(+)
q,ε = (ω−)(ω+)γ∂+(−γ∆ + I)−1q.

Similarly, using the properties of the operator P+,ε, we arrive at the following conver-
gence results for u(−)

r,ε , u(+)
r,ε :

(w,L2(R2))- lim
ε→0

u(+)
r,ε = i

(
ω̃+

)2(−γ∆ + I)−1r,(3.18)

(w,H1(R2))- lim
ε→0

ωε−u
(+)
r,ε = iω+

(
ω2

+

)−1(−γ∆ + I)−1r,(3.19)

(L2(R2))- lim
ε→0

ωε+u
(−)
r,ε = ω+γ∂−(−γ∆ + I)−1r,(3.20)

(w,L2(R2))- lim
ε→0

u(−)
r,ε = (ω−)(ω+)γ∂−(−γ∆ + I)−1r.(3.21)

Finally, relations (3.3), (3.14), (3.17), (3.18), and (3.21) show that

(3.22) (w,G)- lim
ε→0

uε = u0 = col(u(−)
0 , u

(+)
0 ),

where

u
(−)
0 = i

(
ω̃−
)2(−γ∆ + I)−1q + (ω−)(ω+)γ∂−(−γ∆ + I)−1r,

u
(+)
0 = i

(
ω̃+

)2(−γ∆ + I)−1r + (ω−)(ω+)γ∂+(−γ∆ + I)−1q.

It can be checked directly that u0 satisfies equation (3.4). Now, (3.22) implies (3.6).
Relations (3.7), (3.8), (3.9), and (3.10) follow from (3.15), (3.19), (3.16), and (3.20),

respectively. �
We note that, for u(−)

q,ε and u(+)
r,ε , some results can be deduced from (2.27±). We write

the estimate for u(−)
q,ε :

‖u(−)
q,ε − iω̃ε−(−γ∆ + I)−1ω̃ε−q‖L2(R2) ≤ Cε‖q‖L2(R2).

Homogenization of the oscillating factors ω̃ε− necessarily affects the quality of convergence
(cf. (3.14)).
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Comments on Chapter 6

1. About factorization for the Schrödinger operator, see, e.g., [KiSi, BSu1]. Apparently,
Proposition 1.3 (formula (1.12)) was mentioned in [BSu1] for the first time. The results
of §1 about homogenization are new; at least, this concerns Theorems 1.5–1.7. Especially,
we distinguish estimate (1.16).

2. The two-dimensional periodic Pauli operator was treated by the authors in [BSu1,
BSu2]. In these papers the factorization formulas were given, and it was shown that
the effective masses for the two-dimensional Pauli operator can be calculated explicitly
and do not depend on the direction of the quasimomentum, i.e., on the vector θ. All
the results concerning homogenization for the Pauli operator are new. In this case, we
benefited from the relation m = n.

3. For the first time, the Pauli operator with metric was introduced in [BSu1], although
the version suggested in that paper does not seem appropriate. The version considered
in Subsection 2.4 was proposed in [BSu2]. From the mathematical point of view, its
definition looks natural, although the authors cannot suggest a physical interpretation
for this operator.

4. The operator D from §3 is discussed by way of illustration. It is instructive that, even
for proving the existence of the weak limit (3.6), we had to use the specific properties of
the case where m = n.

Chapter 7. The periodic Maxwell operator

§1. Preliminary remarks

In this chapter, we apply the general results of Chapters 3 and 4 to the stationary
periodic Maxwell operator, one of the cases that are most difficult and important for
applications. Mainly, we concentrate on homogenization problems. The study of the
Maxwell operator encounters a number of complications. First, written in terms of elec-
tric and magnetic field strengths, the Maxwell operator acts in weighted L2-spaces, which
depend on the parameter ε. Therefore, the question about the resolvent convergence loses
its direct meaning. Second, the Maxwell operator has “reasonable” properties only in
the corresponding solenoidal spaces, which, moreover, depend on ε. In order to avoid
these difficulties, we write the Maxwell operator in terms of displacements rather than
strengths. Thereby, we are forced to sacrifice selfadjointness. Some results for strengths
can be obtained afterwards.

Next, it turns out that in the study of homogenization for the Maxwell operator it is
convenient to represent each field as a sum of two terms, like it was done in Subsection
1.1.8 and also in §6.3 (for the operator D). In this way, the results for different terms
are of different quality.

We cannot include the general Maxwell operator in the scheme developed above; we
have to assume that one of the two coefficients (dielectric permittivity ε or magnetic
permeability µ) is unit. This assumption is caused by the fact that only in this case
can the study be based on the results about homogenization for an appropriate operator
of the form Â(g). We give a preliminary treatment of such an operator in §2. Results
about homogenization for the Maxwell operator are presented in §3. In the Comments on
Chapter 7, we compare the results obtained here with the known ones. For definiteness,
we assume that µ = 1; this is preferable from the physical point of view.

The second author is going to devote a separate paper to the study of the homoge-
nization problem for the periodic Maxwell operator in the general case.



PERIODIC DIFFERENTIAL OPERATORS 703

§2. The operator L(ε, ν) = rot ε−1 rot−∇ν div

2.1. Definition of the operator. Let ε(x) be a Γ-periodic (3 × 3)-matrix-valued
function in R3 with real entries and such that

(2.1) ε(x) > 0, ε+ ε−1 ∈ L∞.
Let ν(x) be a real-valued Γ-periodic function in R3 such that

ν(x) > 0, ν + ν−1 ∈ L∞.
In G = L2(R3;C3), we consider the operator L(ε, ν) given formally by the expression

(2.2) L(ε, ν) = rot(ε(x))−1 rot−∇ν(x) div .

The precise definition of L(ε, ν) as a selfadjoint operator in G is given via the closed
positive form∫

R3

(
〈(ε(x))−1 rot u, rot u〉+ ν(x)| div u|2

)
dx, u ∈ G

1 = H1(R3;C3).

The operator L(ε, ν) is of the form Â(g) = b(D)∗g(x)b(D) with n = 3, m = 4, G∗ =
L2(R3;C4),

b(D) =
(
−i rot
−i div

)
, g(x) =

(
(ε(x))−1 0

0 ν(x)

)
.

The corresponding symbol b(ξ) looks like this:

(2.3) b(ξ) =


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0
ξ1 ξ2 ξ3

.
Obviously, rank b(ξ) = 3 for ξ 6= 0, i.e., condition (2.1.2) is satisfied. Now H = L2(Ω;C3).
The kernel N̂ is defined in accordance with (3.1.1):

(2.4) N̂ = {u ∈ H : u = c ∈ C3}.

2.2. The effective matrix g0 for the operator L(ε, ν) can be calculated by the general
rules described in §3.1. Let C ∈ C4, and let v ∈ H̃1(Ω;C3) be the solution of the
equation

b(D)∗g(x)(b(D)v + C) = 0,
which now takes the form

rot ε(x)−1(rot v + iC̃)−∇ν(x)(div v + iC4) = 0,

where C =
∑4
j=1 C

jej , C̃ =
∑3

j=1 C
jej . In other words, v ∈ H̃1(Ω;C3) satisfies an

identity of the form (3.1.3):∫
Ω

(
〈ε(x)−1(rot v + iC̃), rot z〉C3 + ν(x)(div v + iC4)(div z)+

)
dx = 0,

z ∈ H̃1(Ω;C3).
(2.5)

Representing z as the sum z = z̃ +∇ϕ, where div z̃ = 0, we write (2.5) for z = z̃. The
term with div z̃ will disappear. By the identity rot z̃ = rot z, we obtain

(2.6)
∫

Ω

〈ε(x)−1(rot v + iC̃), rot z〉C3 dx = 0, z ∈ H̃1(Ω;C3).

From (2.6) it follows that

(2.7) ε(x)−1(rot v + iC̃) = ∇Φ + ic, Φ ∈ H̃1(Ω), c ∈ C3,
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whence

(2.8) rot v + iC̃ = ε(x)(∇Φ + ic).

Relation (2.8) implies∫
Ω

〈ε(x)(∇Φ + ic),∇Ψ〉C3 dx = 0, Ψ ∈ H̃1(Ω).

Thus, Φ is an H̃1(Ω)-solution of the equation

div ε(x)(∇Φ + ic) = 0, c ∈ C3.

Let ε0 be the effective matrix for the acoustic operator − div ε(x)∇. In accordance
with the representation (3.1.14), we have

(2.9) ε0c = |Ω|−1

∫
Ω

ε(x)(−i∇Φ + c) dx, c ∈ C3.

Integrating (2.8) and using (2.9), we obtain

(2.10) C̃ = ε0c.

On the other hand, integrating (2.7), we arrive at the relation

(2.11) ic|Ω| =
∫

Ω

ε(x)−1(rot v + iC̃) dx.

Next, (2.5) and (2.6) imply the identity∫
Ω

ν(x)(div v + iC4)(div z)+ dx = 0, z ∈ H̃1(Ω;C3),

which means that

(2.12) ν(x)(div v + iC4) = α ∈ C.
From (2.12) it is clear that

iC4|Ω| = α

∫
Ω

ν(x)−1 dx,

i.e.,

(2.13) α = iC4ν.

Now we calculate g0 starting with the representation (3.1.14) for the operator (2.2).
By (2.10)–(2.13), we have

g0C = |Ω|−1

∫
Ω

g(x)(b(D)v + C) dx = |Ω|−1

∫
Ω

(
ε(x)−1(−i rot v + C̃)
ν(x)(−i div v + C4)

)
dx

=
(

c
−iα

)
=
(

(ε0)−1C̃
νC4

)
=
(

(ε0)−1 0
myO ν

)
C.

Thus, the effective matrix g0 of the operator L(ε, ν) can be expressed in terms of ν and
the effective matrix ε0 for the operator − div ε(x)∇:

(2.14) g0 = diag{(ε0)−1, ν}.

It is easy to check that for the effective matrix with real entries the uniqueness condition
(3.1.16) is satisfied. Indeed,

b(θ)y = col(θ× y,θ · y), y ∈ R3,
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whence

b(θ)R3 = {col(e, a) ∈ R4 : e ⊥ θ, a ∈ R},

clos
⋃
θ

b(θ)R3 = R4.

The following operator is the effective DO for the operator L(ε, ν):

(2.15) L0 = L(ε0, ν) = rot(ε0)−1 rot−∇ν div .

The germ SL(θ) corresponding to the operator L(ε, ν) acts in N̂ as multiplication by the
matrix

SL(θ) = b(θ)∗g0b(θ), θ ∈ SS2.

By (2.3) and (2.14), the germ SL(θ) can be represented as the sum

(2.16) SL(θ) = br(θ)∗(ε0)−1br(θ) + νbd(θ)∗bd(θ),

where

(2.17) br(θ) =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

, bd(θ) =
(
θ1 θ2 θ3

)
.

2.3. Splitting of the operator L(ε, ν). We use the Weyl decomposition

G = L2(R3;C3) = J(R3)⊕G(R3),(2.18)

J(R3) = J = {w ∈ G : div w = 0},
G(R3) = {u = ∇ϕ : ϕ ∈ H1

loc(R3),∇ϕ ∈ G}.

Decomposition (2.18) reduces the operator L(ε, ν):

L(ε, ν) = LJ(ε)⊕ LG(ν).

The operator LJ(ε) acting in the subspace J(R3) corresponds to the differential expres-
sion rot ε(x)−1 rot, and the operator LG(ν) acting in G(R3) is defined by the expression
−∇ν(x) div. We are interested mainly in the operator LJ(ε), the definition of which does
not depend on ν.

Observe that the germ (2.16), which acts in the kernel (2.4), also splits in the “induced”
orthogonal decomposition

N̂ = J(θ)⊕G(θ),

J(θ) = {c ∈ C3 : c ⊥ θ},
G(θ) = {c = λθ : λ ∈ C}.

The part of SL(θ) in J(θ) is denoted by SL,J(θ) and corresponds to the first summand in
(2.16), and the part of SL(θ) inG(θ) is denoted by SL,G(θ) and corresponds to the second
summand. In the subspace G(θ), the operator SL(θ) has a unique eigenvalue γ3(θ) = ν.
In the subspace J(θ), it has two eigenvalues γ1(θ) and γ2(θ), which correspond to the
algebraic problem

br(θ)∗(ε0)−1br(θ)c = γc, c ⊥ θ.
In some sense, SL,J(θ) plays the role of the germ for the operator LJ(ε), and SL,G(θ)
plays the role of the germ for LG(ν). We shall not dwell on the corresponding analysis.
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2.4. Homogenization. To the operator

Lε(ε, ν) = L(εε, νε) = rot(εε)−1 rot−∇νε div,

we can apply the general theorems about homogenization for the case where f = 1n. As
in §5.1, we shall not write down the constants in estimates explicitly, though it is easy
to do this. In what follows, we denote such constants by the letter C without indices.

First, we apply Theorem 4.2.1. We use the fact that decomposition (2.18) simulta-
neously reduces the operator Lε(ε, ν) and the effective operator L0 defined by (2.15).
Therefore, the estimate for the difference of the resolvents of Lε(ε, ν) and L0 directly
implies an estimate for the difference of the resolvents of the operators LJ,ε(ε) = LJ(εε)
and L0

J = LJ (ε0), which act in the subspace J . As a result, we obtain the following
statement.

Theorem 2.1. We have

‖(Lε(ε, ν) + I)−1 − (L0 + I)−1‖G→G ≤ Cε, 0 < ε ≤ 1,

‖(LJ,ε(ε) + I)−1 − (L0
J + I)−1‖J→J ≤ Cε, 0 < ε ≤ 1.

Now we discuss application of the “interpolation” Theorem 4.2.7 (with Q = I). Let
PJ be the orthogonal projection of G onto the subspace J . In the Fourier representation,
the operator PJ turns into multiplication by the symbol (ibr(θ))2, θ = ξ/|ξ|, where br
is defined by (2.17). In other words, PJ is a pseudodifferential operator of zero order,
which acts continuously in each of the spaces Gs = Hs(R3;C3), s ∈ R. Moreover, let
P

(s)
J be the restriction of PJ to Gs for s > 0 and the extension of PJ by continuity to Gs

for s < 0. Then P
(s)
J is an orthogonal projection in all spaces Gs, s ∈ R. We introduce

the spaces Js = P
(s)
J Gs with the norm induced by the norm in Gs. The following result

is true.

Theorem 2.2. For 0 ≤ s < 1, we have

‖(Lε(ε, ν) + I)−1 − (L0 + I)−1‖G−s→Gs ≤ Cε1−s, 0 < ε ≤ 1,(2.19)

‖(LJ,ε(ε) + I)−1 − (L0
J + I)−1‖J−s→Js ≤ Cε1−s, 0 < ε ≤ 1.(2.20)

Here (2.19) is a direct consequence of Theorem 4.2.7, and (2.20) follows from (2.19),
by applying the corresponding orthogonal projections.

Now we use Theorem 4.4.1 (again with Q = I). Let vε be the solution of the equation

(2.21) Lε(ε, ν)vε + vε = F, F ∈ G
−1,

and let v0 be the solution of the equation

(2.22) L0v0 + v0 = F, F ∈ G
−1.

Observe that if F ∈ J−1, we automatically have div vε = 0 and div v0 = 0. In this case
vε coincides with the solution of the problem

(2.23) rot(εε(x))−1 rot vε + vε = F, div vε = 0, F ∈ J−1,

and v0 coincides with the solution of the problem

(2.24) rot(ε0)−1 rot v0 + v0 = F, div v0 = 0, F ∈ J−1.

Theorem 4.4.1 implies the following result.
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Theorem 2.3. 1◦. Let vε be the solution of equation (2.21), and v0 the solution of
(2.22). Then

(w,G1)- lim
ε→0

vε = v0,(2.25)

(w,G∗)- lim
ε→0

gεb(D)vε = g0b(D)v0.(2.26)

2◦. Let vε be the solution of problem (2.23), and v0 the solution of problem (2.24).
Then

(w, J1)- lim
ε→0

vε = v0,(2.27)

(w,G)- lim
ε→0

(εε)−1 rot vε = (ε0)−1 rot v0.(2.28)

We distinguish the case where the convergence of solutions or flows is strong. By
(2.14), the case where g0 = g corresponds to ε0 = ε, ν = const. The case where g0 = g is
equivalent to the relation ε0 = ε. Then Theorem 4.4.8 and Propositions 3.1.6 and 3.1.7
yield the following statement.

Proposition 2.4. 1◦. If the columns of the matrix ε(x) are solenoidal, then convergence
in (2.26) and (2.28) is strong.

2◦. If the columns of the matrix ε(x)−1 are potential (up to an additive constant), then
convergence in (2.27) is strong. If, moreover, ν(x) = const, then convergence in (2.25)
is also strong.

§3. Homogenization for a periodic Maxwell system with µ = 1

3.1. Statement of the problem. We apply the results of §2 to the homogenization
problem for the periodic Maxwell system. (Herewith, it suffices to assume that ν = 1 in
the definition (2.2) for L(ε, ν).) We assume that the magnetic permeability µ is equal
to 1. In what follows, u and v stand for the strength of the electric and the magnetic
field, respectively. The dielectric permittivity ε(x) is a Γ-periodic (3 × 3)-matrix-valued
function with real entries and satisfying (2.1). Next, w = εu is the electric displacement
vector (the magnetic displacement vector is equal to v, because µ = 1). We denote
G = L2(R3;C3).

Written in terms of the displacement vectors, the Maxwell operator M =M(ε) acts
in the space

G̃ = J ⊕ J, J = J(R3),
and is defined by the formula

(3.1) M(ε) col(w,v) = col(i rotv,−i rot(ε(x))−1w)

on the domain

(3.2) DomM(ε) = {col(w,v) : w ∈ J, rot ε−1w ∈ G,v ∈ J1}.
The conditions w ∈ J and v ∈ J1 automatically supplement relations (3.1) with the

equations
div w = div v = 0.

The operatorM(ε) is closed in G̃, but is not selfadjoint.
We introduce the operatorMε(ε), ε > 0, acting in G̃ by the formula

Mε(ε) =M(εε).

The domain DomMε is given by the relations

v ∈ J1, w ∈ J, rot(εε)−1w ∈ G,

and, consequently, depends on ε.
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Our goal is to study the behavior of the resolvent (Mε− iI)−1 as ε→ 0. Consider the
equation

(3.3) (Mε − iI) col(wε,vε) = col(q, r), q, r ∈ J−1.

In detailed writing, (3.3) has the form

(3.4)

i rot vε − iwε = q,

−i rot(εε)−1wε − ivε = r,

div vε = 0,
div wε = 0.

It is convenient (cf. §6.3) to represent the solutions wε, vε as the sums

wε = w(q)
ε + w(r)

ε ,(3.5)

vε = v(q)
ε + v(r)

ε ,(3.6)

where col(w(q)
ε ,v(q)

ε ) is the solution of system (3.4) with r = 0, and col(w(r)
ε ,v(r)

ε ) is the
solution of (3.4) with q = 0.

3.2. The case where q = 0. For col(w(r)
ε ,v(r)

ε ), system (3.4) takes the form

(3.7)

w(r)
ε = rot v(r)

ε ,

rot(εε)−1 rot v(r)
ε + v(r)

ε = ir,

div v(r)
ε = 0.

Therefore,

(3.8) v(r)
ε = i(LJ,ε(ε) + I)−1r,

where LJ,ε(ε) is the operator defined in Subsection 2.3. The displacement vector w(r)
ε

can be found from the relation

(3.9) w(r)
ε = rot v(r)

ε = i rot(LJ,ε(ε) + I)−1r,

while the strength u(r)
ε is expressed in terms of the flow for v(r)

ε :

(3.10) u(r)
ε = (εε)−1w(r)

ε = (εε)−1 rot v(r)
ε .

Let v(r)
0 = i(L0

J + I)−1r, i.e., v(r)
0 is the solution of the problem

rot(ε0)−1 rot v(r)
0 + v(r)

0 = ir, div v(r)
0 = 0.

We put
w(r)

0 = rot v(r)
0 , u(r)

0 = (ε0)−1 rot v(r)
0 .

On the basis of (3.8)–(3.10) and Theorems 2.1–2.3, we obtain the following result.

Theorem 3.1. The following is true for the solutions of system (3.7).
1◦. If r ∈ J , then v(r)

ε converges in G to v(r)
0 , and

‖v(r)
ε − v(r)

0 ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.

2◦. If r ∈ J−s, 0 ≤ s < 1, then v(r)
ε converges in Gs to v(r)

0 , and

‖v(r)
ε − v(r)

0 ‖Gs ≤ Cε1−s‖r‖G−s , 0 < ε ≤ 1.

3◦. If r ∈ J−1, then, as ε→ 0, v(r)
ε converges to v(r)

0 weakly in G1.
4◦. If r ∈ J−1, then, as ε→ 0, w(r)

ε converges to w(r)
0 weakly in G, and u(r)

ε converges
to u(r)

0 weakly in G.
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We note also that the second equation in (3.7) implies

rot u(r)
ε = ir− v(r)

ε .

Similarly, rot u(r)
0 = ir− v(r)

0 . Consequently,

‖ rotu(r)
ε − rot u(r)

0 ‖G ≤ Cε‖r‖G, r ∈ J, 0 < ε ≤ 1.

The following result is a consequence of Proposition 2.4.

Proposition 3.2. If the columns of the matrix ε(x)−1 are potential, then v(r)
ε converges

to v(r)
0 strongly in G1. If the columns of the matrix ε(x) are solenoidal, then u(r)

ε con-
verges to u(r)

0 strongly in G.

3.3. The case where r = 0. For col(w(q)
ε ,v(q)

ε ), system (3.4) has the form

(3.11)

i rot v(q)
ε − iw(q)

ε = q,

rot(εε)−1w(q)
ε + v(q)

ε = 0,

div v(q)
ε = 0,

div w(q)
ε = 0.

In this subsection we restrict ourselves to the case where q ∈ J .

Lemma 3.3. Let q ∈ J . Then the solutions of system (3.11) satisfy the inequalities

‖v(q)
ε ‖G1 ≤ C‖q‖G,(3.12)

‖w(q)
ε ‖G ≤ C‖q‖G.(3.13)

Therefore, for u(q)
ε = (εε)−1w(q)

ε we have

‖u(q)
ε ‖G ≤ C‖q‖G.

Proof. We multiply the second equation in (3.11) by v(q)
ε and integrate:(

(εε)−1w(q)
ε , rot v(q)

ε

)
G

+ ‖v(q)
ε ‖2G = 0.

The first equation yields

(3.14) w(q)
ε = rot v(q)

ε + iq;

substituting, we obtain(
(εε)−1 rot v(q)

ε , rot v(q)
ε

)
G

+ ‖v(q)
ε ‖2G = −i

(
(εε)−1q, rot v(q)

ε

)
G
.

Combining this with the relation div v(q)
ε = 0, we arrive at (3.12). Estimate (3.13) follows

from (3.12) and (3.14). �

By Lemma 3.3, in the proof of the weak (G1)-convergence of v(q)
ε and the weak (G)-

convergence of w(q)
ε and u(q)

ε we may assume that

(3.15) q = rot F, F ∈ J1.

We put

(3.16) Φ(q)
ε = i(LJ,ε(ε) + I)−1F.

It is easy to check that the functions

w(q)
ε = rotΦ(q)

ε ,(3.17)

v(q)
ε = Φ(q)

ε − iF(3.18)
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satisfy system (3.11) with q defined by (3.15). Then, by (3.17),

(3.19) u(q)
ε = (εε)−1 rotΦ(q)

ε ,

i.e., u(q)
ε is expressed via the flow for Φ(q)

ε . Furthermore, the second relation in (3.11)
means that

(3.20) rot u(q)
ε = −v(q)

ε .

Let

Φ
(q)
0 = i(L0

J + I)−1F,(3.21)

v(q)
0 =Φ(q)

0 − iF,(3.22)

w(q)
0 = rotΦ(q)

0 , u(q)
0 = (ε0)−1 rotΦ(q)

0 .(3.23)

Theorem 2.3 and (3.16)–(3.23) imply the following theorem.

Theorem 3.4. Let q ∈ J . Then, as ε→ 0,
1) the fields v(q)

ε converge to v(q)
0 weakly in G1;

2) the fields w(q)
ε converge to w(q)

0 weakly in G;
3) the fields u(q)

ε converge to u(q)
0 weakly in G, and rot u(q)

ε converges to rot u(q)
0 weakly

in G1.

Moreover, we have the following consequence of Proposition 2.4.

Proposition 3.5. If the columns of the matrix ε(x)−1 are potential, then the fields v(q)
ε

converge to v(q)
0 strongly in G1. If the columns of the matrix ε(x) are solenoidal, then

the fields u(q)
ε converge to u(q)

0 strongly in G.

Now, we apply Theorems 2.1 and 2.2 to functions (3.16), and take (3.18) into account.
Then, for F ∈ J1 and q = rot F, we have

‖v(q)
ε − v(q)

0 ‖G ≤ Cε‖F‖G, 0 < ε ≤ 1,(3.24)

‖v(q)
ε − v(q)

0 ‖Gs ≤ Cε1−s‖F‖G−s , 0 ≤ s < 1, 0 < ε ≤ 1.(3.25)

These relations and estimate (3.12) yield the (Gs)-convergence of v(q)
ε to v(q)

0 for any
q ∈ J , but already without a “qualified” estimate. The latter feature is related to the
fact that condition (3.15) does not imply any estimate of the norm ‖F‖G in terms of
‖q‖G. Thus, we arrive at the following statement.

Theorem 3.6. If q ∈ J , then, as ε→ 0, the fields v(q)
ε converge to v(q)

0 strongly in Gs,
0 ≤ s < 1.

3.4. As we have seen, the quality of convergence for separate summands can be better
than for the sums (3.5) and (3.6). Still, we formulate the summarizing result. Theorems
3.1, 3.4, and 3.6 lead to the following conclusion.

Theorem 3.7. Let M0 =M(ε0) be the effective Maxwell operator defined by (3.1) and
(3.2) with ε(x) replaced by ε0. Let

col(wε,vε) = (Mε − iI)−1 col(q, r), col(w0,v0) = (M0 − iI)−1 col(q, r),

where q ∈ J , r ∈ J , and let

uε = (εε)−1wε, u0 = (ε0)−1w0.

Then, as ε→ 0,
1) the fields vε converge to v0 strongly in Gs, 0 ≤ s < 1, and weakly in G1;



PERIODIC DIFFERENTIAL OPERATORS 711

2) the fields wε converge to w0 weakly in G;
3) the fields uε converge to u0 weakly in G, and rot uε converges to rot u0 strongly

in G.

Combining Propositions 3.2 and 3.5, we obtain the following.

Proposition 3.8. If the columns of the matrix ε(x)−1 are potential, then the fields vε
converge to v0 strongly in G1. If the columns of the matrix ε(x) are solenoidal, then the
fields uε converge to u0 strongly in G.

Comments on Chapter 7

1. The results of Theorems 2.1, 2.2 about homogenization applied to the operator LJ,ε(ε)
are new. Relation (2.27) in Theorem 2.3 is close to some results of [BeLP]. We dwell on
this in more detail.

In [BeLP], an equation of type (2.23) (but in a bounded domain and with appropriate
boundary conditions) was called a “Maxwell type” equation. The condition div vε = 0
was not assumed, but if div F = 0, it is fulfilled automatically. Extension of the system
to an elliptic one was not employed. Up to these minor differences, our statement about
the limit (2.27) repeats the result of [BeLP]. In [BeLP], convergence of flows was not
discussed. Therefore, our relation (2.28) is of certain interest: it is applied in §3 to the
homogenization problem for the Maxwell system itself.

2. Application of the results to the stationary Maxwell system was not discussed in
[BeLP]. However, along with (2.23), the more general system

(+) rot(εε)−1 rot vε + aεvε = F

was considered in that paper. It was proved that the solutions vε converge weakly in
the space with the metric form ‖ rot v‖2L2

+ ‖v‖2L2
. In the limit equation, a is also

homogenized by the acoustic rule. The condition div F = 0 automatically implies that
div aεvε = 0. Application to the stationary Maxwell system was not discussed.

Equation (+) is not covered by our scheme. Theorem 4.4.1 is not applicable; moreover,
the homogenization rule for the lower term given by this theorem does not agree with
the acoustic rule.

3. Homogenization for the stationary and nonstationary Maxwell systems was studied
in [ZhKO]. In both cases, the solenoidal conditions were not included in the system. The
weak L2-convergence of solutions to the solution of the limit equation was established in
[ZhKO]; both electric permittivity and magnetic permeability were homogenized by the
acoustic rule. Some earlier and weaker results about the nonstationary Maxwell system
can be found in [Sa, BeLP].

4. We recall that, in our approach to the homogenization problem for the Maxwell
system, two simplifying assumptions were made: 1) µ(x) = 0 and 2) the solenoidal
conditions are included in the system. Besides, the splitting representation of the fields
into the sum of two terms turned out to be rather useful.

Concluding remarks

1. As compared to [BSu2], the abstract basis enriched in the present paper. New Theo-
rems 1.5.8 and 1.5.9 have appeared, along with the fact that all constants in estimates are
controlled carefully. As applied to homogenization, this has led to felicitous Theorems
4.2.5 and 4.2.6.
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2. As has already been mentioned, in homogenization theory it is more traditional to
consider, e.g., equations of the form Aε(g, f) = F in a fixed bounded domain O with
appropriate boundary conditions. As compared to the case of the entire space Rd, there
are some differences. On the one hand, the compactness of the embedding of H1(O) in
L2(O) facilitates the study. On the other hand, the effects near ∂O may hinder obtaining
a good estimate for the difference uε − u0 (see [ZhKO]).

3. Homogenization problems can be related not only to the lower edge of the spectrum,
but also to the edges of internal gaps. Then, a shift to the high energy area arizes
necessarily. Thus, a homogenization effects begin to interact with high-energy ones. For
the case of the simplest model, this phenomenon was discussed in the recent paper [B3].

4. Throughout the text, the authors tried to distinguish the cases where weak conver-
gence becomes strong. There is no need to explain that “the weak limit is much weaker
than the strong one”. In this connection, we mention that, e.g., in the problem considered
in [B3], the weak limit always exists but is equal to zero. In this case, the ε-depending
approximations of solutions turn out to be informative.

5. In homogenization theory, many specific methods are well developed. The idea to
apply the methods of analytic perturbation theory (on the basis of the Floquet–Bloch
decomposition) stands somewhat apart. However, this idea itself is not new at all. Some
material of this kind can be found in [BeLP, Chapter 4] and [ZhKO, Chapter 2]. Ap-
parently, this way was not employed consistently and intensively enough. We think that
what was missing is an exact definition of a threshold effect. Also, the class of operators
admitting an appropriate factorization was not distinguished. Finally, the abstract op-
erator theory basis of threshold effects was not analyzed. For these reasons, the present
paper has almost no direct intersections with the papers by other authors that used the
Floquet–Bloch decomposition and perturbation theory. Among such papers, we have
already mentioned the remarkable paper [Zh1]. The paper [Se], where the acoustic op-
erator with g ∈ C∞ and d ≥ 3 was considered, also deserves special mention. With the
help of perturbation theory, the full asymptotic expansion in powers of ε was obtained
in [Se] for the solution of the equation D∗g(ε−1x)Du = F ∈ C∞0 (Rd). In [CV], for
the acoustic operator, formula (5.1.9) (in our notation) was proved, where the left-hand
side was defined in terms of perturbation theory, and g0 on the right-hand side was the
effective matrix arising in the classical homogenization theory. In all these papers n = 1,
which significantly simplifies the arguments.

6. The applicability limits. The number of examples could be extended substantially.
Besides periodic operators in Rd, we can study periodic problems in domains of cylinder or
layer type, etc., on the same abstract basis. In such problems, the momentum dimension
is less than the coordinate dimension. This leads to new phenomena in the study of the
effective characteristics and to other technical difficulties. An informative example of
this kind was discussed in [Su].

We now indicate some cases where our method is not applicable.
1) Consider the matrix Schrödinger operator Hn = −∆ + p(x) in L2(Rd;Cn), where p

is a periodic Hermitian (n× n)-matrix-valued potential. In this case we have no analog
of the factorization (6.1.6). Assume that λ = 0 is the lower edge of the spectrum of Hn,
and let Hn(k) be the corresponding operator in L2(Ω;Cn). Now, the point k = 0 does
not play any distinguished role. It may happen that KerHn = {0}. As a result, the
possibility to study the threshold properties efficiently is lost.
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2) The periodic Pauli operator for d = 3 is defined by the formula D3 = (D1−A1)σ1 +
(D2 − A2)σ2 + (D3 − A3)σ3. For this operator, there is no analog of the factorization
(6.2.12). Moreover, we cannot describe the kernel KerD3(0) in reasonable terms.

3) The magnetic periodic Schrödinger operator is defined by the formula M = (D −
A(x))∗(D −A(x)), d ≥ 2, where div A = 0,

∫
Ω

A dx = 0. Now the lower edge of the
spectrum is a positive number. After shifting the lower edge to zero, factorization is lost.
The question as to whether the factorization can be recovered is not easy. If the magnetic
potential is not too large, the answer is in the positive; otherwise serious complications
may occur even for d = 2. The corresponding analysis was performed recently in [Sh].
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MR 1708785 (2000g:81049)

[BSu2] , Threshold effects near the lower edge of the spectrum for periodic differential operators
of mathematical physics, Systems, Approximation, Singular Integral Operators, and Related
Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71–
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