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ON SPACES OF POLYNOMIAL GROWTH
WITH NO CONJUGATE POINTS

N. D. LEBEDEVA

Abstract. The following generalization of the Hopf conjecture is proved: if the fun-
damental group of an n-dimensional compact polyhedral space M without boundary
and with no conjugate points has polynomial growth, then there exists a finite cov-
ering of M by a flat torus.

§1. Introduction

By an n-dimensional polyhedral space we mean a metric space M (with an inner
metric) covered by n-simplexes; each simplex is endowed with a smooth Riemannian
metric, and these metrics coincide on the common (n− 1)-faces of the n-simplexes. The
precise definition is given at the end of this section. In the definitions below, it is assumed
that we deal with a fixed triangulation.

A polyhedral pseudomanifold is an n-dimensional polyhedral space in which the (n−1)-
simplexes of the triangulation are adjacent to at most two n-simplexes. The boundary
of a polyhedral space is the union of the (n − 1)-simplexes of the triangulation that are
adjacent to only one n-simplex. We say that M has no conjugate points if any two points
in the universal covering space of M are connected by a unique geodesic. All polyhedral
spaces considered in this paper are assumed to be connected.

Let M be a compact polyhedral space without boundary and with no conjugate points.
It is well known that M is isometric to the quotient space M̃/Γ, where M̃ is the universal
covering space of M , and Γ is a subgroup of the group of isometries of M̃ ; recall that Γ
is isomorphic to π1(M).

Our aim in this paper is to prove the following two theorems.

Theorem 1. Let M be an n-dimensional compact polyhedral space without boundary and
with no conjugate points. If the fundamental group π1(M) of M is nilpotent, then M is
a flat torus.

Theorem 2. Let M be an n-dimensional compact polyhedral space without boundary and
with no conjugate points. If the fundamental group π1(M) of M is of polynomial growth,
then there exists a finite covering of M by a flat torus.

Theorem 2 can be derived from Theorem 1. Indeed, let M satisfy the assumptions of
Theorem 1. Then π1(M) is of polynomial growth. The well-known result by Gromov (see
[G2]) says that π1(M) is virtually nilpotent, i.e., π1(M) contains a nilpotent subgroup G
of finite index. Consequently, there exists a finite covering M → M such that π1(M) = G.

2000 Mathematics Subject Classification. Primary 57N16.
Key words and phrases. n-dimensional polyhedral space, polyhedral pseudomanifold, fundamental

group.
Partially supported by RFBR (grant no. 02-01-00090), by CRDF (grant no. RM1-2381-ST-02), and

by SS (grant no. 1914.2003.1).

c©2005 American Mathematical Society

341



342 N. D. LEBEDEVA

Since M is a compact polyhedral space without boundary and with no conjugate points,
M is flat by Theorem 1. In the remaining part of the paper we prove Theorem 1. The
proof is organized as follows.

In §2 we prove that Mn is a pseudomanifold and that it is homotopy equivalent to an
n-dimensional torus.

In §3 we construct a map f : M → T n, where T n is a flat torus. We show that f is a
local isometry on the complement of the (n− 2)-skeleton of M . This step of the proof is
similar to a version of the proof of the Hopf conjecture (see [I]). For the first time, the
Hopf conjecture was proved by D. Burago and S. Ivanov in [BI].

In §4 we prove that the map f : M → T n is an isometry. In contrast to the case of
Riemannian manifolds considered in [I], this step is not trivial for Riemannian polyhedra.

Now we explain more precisely what we mean by polyhedral spaces.
An n-dimensional Riemannian simplex is an n-simplex in R

n equipped with a smooth
Riemannian metric (as usual, we assume that the metric is defined in a neighborhood of
this simplex), as well as any metric space isometric to such a simplex.

An n-dimensional polyhedral space is a connected metric space that can be obtained
by gluing together n-dimensional Riemannian simplexes along some isometries between
their faces.

§2. Homotopy type of M

In the proof of Theorem 1 we use the following results obtained earlier (see [L1, L2]).

Claim 1 ([L1]). Let M be a compact locally simply connected space without conjugate
points. Then every nilpotent subgroup of the fundamental group of M is Abelian and
torsion free.

Claim 2 ([L2]). Let M be an n-dimensional compact polyhedral space without boundary
and with no conjugate points. If the triangulation of M contains three n-simplexes with
a common (n − 1)-face, then the fundamental group π1(M) is of exponential growth.

Our aim in this section is to prove the following auxiliary statement.

Lemma 1. Let M be as in Theorem 1. Then M is a pseudomanifold that is homotopy
equivalent to an n-dimensional torus.

Proof. Since the fundamental group of a compact metric space with intrinsic metric is
finitely generated, from Claim 1 it follows that π1(M) = Z

m for some m. Applying
Claim 2, we see that at most two n-simplexes of M may have a common (n − 1)-face,
i.e., M is a pseudomanifold. Since the universal covering space of M is contractible, the
fundamental group of M determines the homotopy type of M . Hence, M is homotopy
equivalent to an m-torus T m. It follows that Hk(M, ·) = Hk(T m, ·) for every k.

We prove that m = n, where n is the dimension of M .
Suppose that n > m. Since M is a pseudomanifold, we have Hn(M, Z2) = Z2. This

contradicts the relation Hn(T m, Z2) = 0.
Suppose n < m; then Hm(M, Z) = 0. This contradicts the relation Hm(T m, Z) = Z.

Thus, π1(M) = Z
n. �

§3. Constructing a local isometry

We denote by M ′ the complement of the (n − 2)-skeleton of M ; then M ′ is an open
dense subset of M . In this section we shall prove the following statement.

Proposition 1. Under the assumptions of Theorem 1, there exists a map f : M → T n,
where T n is a flat n-torus, with the following properties :
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(1) f |M ′ is a local isometry on M ′, i.e., f |M ′ is an open map preserving distances ;
(2) f is Lipschitz ;
(3) f induces an isomorphism between the corresponding fundamental groups.

We start with several lemmas.
Let SM denote the space of all unit tangent vectors of M . A canonical measure µL

on the space SM is defined in a standard way as the product of two measures: the
normalized Riemannian volume on M and the normalized Riemannian volume on the
unit (n − 1)-sphere. This measure is called the Liouville measure.

Since for almost every unit vector e ∈ SM there exists a unique generic geodesic γ with
γ′(0) = e (see [L1]), the geodesic flow transformation is well defined almost everywhere
on SM , and it is known that the Liouville measure is invariant with respect to this
transformation (see [L1]).

We recall that M is isometric to the quotient space M̃/Γ, where M̃ is the universal
covering space of M and Γ is a deck transformation group isomorphic to π1(M) = Z

n

and acting by isometries on M̃ .
Consider the vector space V = Γ⊗R; it is isomorphic to R

n. There exists a canonical
immersion of Γ = Z

n ↪→ V , and its image is an integral lattice in V = R
n. Below we shall

denote elements of Γ and the corresponding points of the lattice by the same symbol. Fix
a point x0 ∈ M̃ . The orbit of Γ is a lattice in M̃ ; there is a one-to-one correspondence
between the points of the lattice and the elements of Γ. For k ∈ Γ and x ∈ M̃ , we denote
by x + k the image of x under the isometry k. When studying distances between remote
points, it is convenient to approximate points of M̃ by elements of the lattice. We define
a map k : M̃ → Γ commuting with Γ. For this, we fix a bounded fundamental domain F

containing the point x0. For an arbitrary x ∈ M̃ , we put k(x) = k, where k is a unique
element of Γ such that x ∈ F + k.

Consider the function ‖ · ‖: Γ → [0,∞) given by the formula

‖k‖ = lim
n→∞

ρ̃(x0, x0 + nk)
n

,

where ρ̃ is the lift of the metric ρ. The function ‖ · ‖ is well known to be a norm on
Γ; therefore, it extends to a norm on V , called the stable norm. For a linear function
L : V → R we set ‖L‖ = max{L(x)|‖x‖ = 1}.
Lemma 2. Let L : V → R be a linear function with ‖L‖ = 1. There exists a function
B̃L : M̃ → R such that

1) B̃L is Lipschitz with Lipschitz constant 1;
2) B̃L(x + k) = B̃L(x) + L(k) for every x ∈ M̃, k ∈ Γ.

Proof. Indeed, let

B̃L(x) = inf
k∈Γ

(L(k) + ρ(x, x0 + k)).

We prove that the function B̃L is well defined. Since ‖L‖ = 1, from the definition of the
stable norm it follows that

−ρ(x0 + k, x0) ≤ −‖k‖ ≤ L(k),

whence

L(k) + ρ(x, x0 + k) ≥ −ρ(x0 + k, x0) + ρ(x, x0 + k) ≥ −ρ(x, x0).

The required properties of B̃L immediately follow from the definition. �
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For a linear function L : V → R, let B̃L denote the function constructed in Lemma 2.
Since B̃L is Lipschitz, it has a gradient almost everywhere; this gradient will be denoted
by ṽL.

For ṽ ∈ S̃M , let γ̃ : R → M̃ be a geodesic with γ′(0) = ṽ. We define the direction at
infinity R̃(ṽ) = R̃(γ̃) ∈ V by

R̃(ṽ) = lim
T→∞

k(γ̃(T )) − k(γ̃(0))
T

.

By definition, for v ∈ SM we put R(v) = R̃(ṽ), where ṽ is a lifting of v.
Since M has no conjugate points, it is clear that ‖R(v)‖ = 1.

Lemma 3. The functions R and R̃ are defined almost everywhere on SM and S̃M ,
respectively.

Proof. Let φ : M → V/Γ � R
n/Z

n be a homotopy equivalence; we may assume that φ
is simplicial. Since φ induces an isomorphism between fundamental groups, the lifting
function φ̃ : M̃ → V commutes with Γ.

Since the functions φ̃ and k commute with Γ, we have ‖φ̃ − k‖ ≤ const. Thus, in
the definition of R̃ we can replace k by φ̃. Since the differential dφ̃ is defined almost
everywhere on TM̃ and is Γ-invariant, it is the lift of some measurable function ω :
TM → V . For a geodesic γ in M and its lifting γ̃, we have

φ̃(γ̃(T )) − φ̃(γ̃(0)) =
∫ T

0

dφ̃(γ̃′) =
∫ T

0

ω(γ′).

Thus, R(v) is equal to the average of ω along γ. The Birkhoff ergodic theorem shows
that R(v) is defined for almost all v ∈ SM . �

Lemma 4. Let L : V → R be a linear function with ‖L‖ = 1. Recall that ṽL denotes the
gradient field of BL. Then

lim
T→∞

1
T

∫ T

0

〈γ′, ṽL〉 = L(R(γ))

if both sides are well defined.

Proof. Since BL ◦ γ is Lipschitz, the Newton–Leibniz formula yields∫ T

0

〈γ′, ṽL〉 =
∫ T

0

(BL ◦ γ)′ = BL(γ(T )) − BL(γ(0)).

Since the function BL(x)−L(k(x)) is bounded on the fundamental domain and periodic,
it is bounded. This implies that BL(γ(T ))−BL(γ(0)) differs from L(k(γ(T )))−L(k(γ(0)))
by a constant. So, we have

lim
T→∞

1
T

∫ T

0

〈γ′, ṽL〉 = lim
T→∞

L

(
k(γ(T )) − k(γ(0))

T

)
= L(R(γ)). �

Let F denote the unit sphere of the norm ‖ · ‖, and let m be the measure on F that
is the image of µL under R : SM → F .

Lemma 5. If L : V → R is a linear function with ‖L‖ = 1, then∫
F

L2 dm ≤ 1
n

.

Equality occurs if and only if 〈ṽL, w〉 = L(R̃(w)) for almost every w ∈ SM̃ .
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Proof. Consider the average of 〈vL, ·〉 along geodesics. By Lemma 3, we have

lim
T→∞

1
T

∫ T

0

〈γ′, vL〉 = L ◦ R.

By the Schwartz inequality,

lim
T→∞

1
T

∫ T

0

〈γ′, vL〉2 ≥ (L ◦ R)2.

Since R is constant on every trajectory of the geodesic flow, we have

lim
T→∞

1
T

∫ T

0

〈vL, w〉2 = (L ◦ R)2 + lim
T→∞

1
T

∫ T

0

(〈vL, ·〉 − L ◦ R)2.

Integrating and using the Birkhoff ergodic theorem, we obtain∫
SM

〈vL, ·〉2 dµL =
∫

SM

(L ◦ R)2 dµL +
∫

SM

(〈vL, ·〉 − L ◦ R)2 dµL.

From the inequality |vL| < 1 it follows that
∫

SM〈vL, ·〉2 dµL ≤ 1/n. Consequently,∫
F

L2 dm =
∫

SM

(L ◦ R)2 dµL ≤ 1
n
−
∫

SM

(〈vL, ·〉 − L ◦ R)2 dµL.

The integral on the right is nonnegative, and it vanishes if and only if 〈vL, w〉 = L(R(w))
for almost every w ∈ SM . The lemma is proved. �

We use the following known result (for its proof, see, e.g., [BI]).

Lemma 6. Let (V, ‖ · ‖) be an n-dimensional Banach space, let F be the unit sphere of
the norm ‖ · ‖, and let F ∗ be the set of linear functions L such that ‖L‖ = 1. Then there
exists an (“inscribed”) quadratic form Q : V → R representable as a finite sum

Q =
∑

aiL
2
i , Li ∈ F ∗, ai > 0,

∑
ai = n,

and such that Q(x) ≥ ‖x‖2 for every x ∈ V . In particular, Q is positive.

Remark 1. The unit ball of Q is the ellipsoid of maximal volume inscribed in F .

Let Q =
∑

aiL
2
i be the corresponding (inscribed) quadratic form for the stable norm

‖ · ‖ associated with ρ̃. We denote by Bi the functions constructed as in Lemma 2 for
the linear functions Li, and by ṽi their gradients.

Lemma 7. For all i, we have

(1) 〈ṽi, w〉 = Li(R(w))

for almost every w ∈ SM̃ .

Proof. Applying Lemma 5 to Li, we obtain∫
F

Q dm =
∑

ai

∫
F

L2
i dm ≤ 1

n

∑
ai = 1.

But Q|F ≥ 1 on F . Therefore,
∫

F
Q dm = 1, so that

∫
F

L2
i dm = 1

n for every i. By
Lemma 5, it follows that 〈ṽi, w〉 = Li(R̃(w)) for almost every w ∈ SM̃ . �

The lemma just proved implies that (1) is true almost everywhere for almost every
trajectory of the geodesic flow; this means that for almost every w ∈ SM̃ , if γ is a geodesic
with γ′(0) = w, then the function 〈ṽi, γ

′〉 = (Bi ◦ γ)′ is defined almost everywhere.
Moreover it is equal to the constant Li(R(γ)). Since this function is Lipschitz, it is
linear. Thus,

(2) (Bi ◦ γ)′ ≡ Li(R(γ)), t ∈ R.
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Since Q|F ≥ 1, the relation
∫

F
Q dm = 1 implies that m-almost everywhere on F we

have Q = 1. By the definition of m, this means that

(3) Q(R(w)) = 1

for almost all w ∈ SM̃ . Since Q is nondegenerate, there is no loss of generality in
assuming that L1, . . . , Ln are linearly independent.

Consider the map
f̃ = (B̃1, . . . , B̃n) : M̃ → R

n.

We endow R
n with the Euclidean structure corresponding to the quadratic form Q under

the isomorphism
I = (L1, . . . , Ln) : V → R

n.

For almost every geodesic γ : R → M̃ we obtain

(f̃ ◦ γ)′ = (L1(R̃(γ)), . . . , Ln(R̃(γ))) = I(R̃(γ)).

Since for almost every geodesic γ the vector I(R̃(γ)) is a unit vector with respect to the
new Euclidean structure, the image f̃(γ) is a straight line with constant unit velocity.

Now we prove Proposition 1.

Proof. Since f̃ commutes with the group Γ of integral translations on M̃ and R
n, f̃

induces a map f : M → T n, where T n is a flat torus. The homomorphism of fundamental
groups induced by f is an isomorphism, which implies statement (3) of Proposition 1.
The map f is Lipschitz because so is f̃ .

Recall that M ′ denotes the complement of the (n − 2)-skeleton of M .
We show that f |M ′ → T n is a local isometry. Consider a convex neighborhood U ∈ M ′

and fix two points x, y ∈ U . For any neighborhoods Ux, Uy ⊂ U of x and y, let V (Ux, Uy)
be the set of initial velocity vectors of all shortest paths starting in Ux and ending in Uy.
Since for almost every geodesic γ : [a, b] → M the image f ◦ γ is a straight line with a
constant unit speed and µLV (Ux, Uy) > 0, there exist two points x′ ∈ Ux and y′ ∈ Uy

such that f preserves the distance between them. Since Ux and Uy are arbitrary and f
is continuous, f preserves the distance between x and y. Thus, f |U preserves distances.

Since M ′ and T n are n-dimensional manifolds, and f |M ′ preserves the distances, for
any x ∈ M ′ the image of some neighborhood of x is a neighborhood of f(x), and we see
that f is an open map. �

§4. f is an isometry

The following Lemma 8 is an obvious consequence of Proposition 1(1).

Lemma 8. f |M ′ preserves the lengths of curves.

Lemma 9. The map f |M ′ : M ′ → f(M ′) is bijective, and f : M → T n is surjective.
As a consequence (because f |M ′ is a local isometry), the map (f |M ′)−1 is well defined,
is continuous, and preserves the lengths of curves.

Proof. Recall that M is homotopy equivalent to an n-dimensional torus. Consequently,
the n-homology group of M is isomorphic to Z. We fix an isomorphism between Hn(T n)
and Z and choose a generator of Hn(M). The induced homomorphism f∗ : Hn(M) →
Hn(T n) = Z takes the generator of Hn(M) to some integer; this integer is called the
degree of f . We show that the degree of f is ±1. Since the universal covering space of
M is contractible, the induced homomorphism f∗ determines the homotopy type of f .
Proposition 1(3) shows that f∗ is an isomorphism; then f is a homotopy equivalence.
Thus, the degree of f is ±1.
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The choice of generators of the homology group fixes orientations of the manifolds
M ′ ⊂ M and T n. We define the degree of f at x ∈ M ′ to be equal to 1 if dxf preserves
the orientations of the tangent spaces at x, and to −1 if dxf reverses the orientations.
Suppose y ∈ T n is a regular point, i.e., the preimage f−1(y) = x1, . . . , xl is contained in
M ′. As in the case of Riemannian manifolds, it can be proved that the degree of f is the
sum of the degrees of f at the points x1, . . . , xl. Hence, f is surjective.

Since M is a pseudomanifold that is homotopy equivalent to an n-dimensional torus,
the space M ′ is connected. Indeed, assume the contrary; then the group Hn(M, Z2)
contains two nonzero elements. Since f |M ′ is a local isometry, it preserves the orientation
of tangent spaces everywhere, or it reverses these orientations. Consequently, the degree
of f is constant at the points x1, . . . , xl. Since the degree of f is 1, this means that
each regular point has a unique preimage. By the definition of a regular point, it follows
that all points having two or more preimages are contained in f−1(f(M \M ′)). We put
J = f−1(f(M \ M ′)). Observe that the dimension of J does not exceed n − 2.

Suppose that f |M ′ is not injective. Let y ∈ f(M ′) be a point with more than one
preimage in M ′, and let x1, x2 be two such preimages. Let Dr0(x1), Dr0(x2) be balls
centered at x1 and x2 and such that the restriction of f to these balls is an isometry.
Since the dimension of J is at most n−2, there exists a point x3 ∈ Dr0(x1) ∈ M \J . The
image of this point coincides with an image of some point contained in Dr0(x2), which
contradicts the fact that f is injective on M \ J (x3 ∈ M \ J). �

We complete the proof of Theorem 1 by the following statement.

Lemma 10. The map f : M → T n is an isometry.

Proof. We show that f is noncontracting and nonexpanding. Every path in M can be
approximated by a piecewise differentiable path of almost the same length. We can move
each of the corresponding pieces to the interior of an appropriate n-simplex, leaving the
endpoints fixed and almost length preserving.

The map f preserves the lengths of these pieces (see Lemma 8). Therefore, the map
is nonexpanding.

Now we show that f is noncontracting. Let x, y ∈ M be arbitrary points. Given
ε > 0, we let x′, y′ ∈ M ′ be points such that ρ(x, x′) < ε and ρ(y, y′) < ε. Since f is
nonexpanding, we have |(f(x), f(x′))| < ε and |(f(y), f(y′))| < ε, where |(·, ·)| denotes
the metric on the flat torus.

Since f is Lipschitz and surjective, the Hausdorff dimension of the set T n\f(M ′) does
not exceed n − 2. Therefore, the shortest path [f(x′), f(y′)] ∈ T n can be approximated
by a path in f(M ′) with almost the same length and the same endpoints. Let s : [a, b] →
f(M ′) be a path that joins f(x′) and f(y′) and such that the length of s differs from
|f(x′), f(y′)| by less than ε. Since (f |M ′)−1 preserves distances, the length of the path
s ◦ (f |M ′)−1 : [a, b] → M ′, which joins x′ and y′, differs from |f(x′), f(y′)| by less than ε.
Thus,

ρ(x, y) < ρ(x′, y′) + 2ε < |f(x′), f(y′)| + 3ε < |f(x), f(y)| + 5ε.

Therefore, f is noncontracting. �

References

[BB] W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ.
Math. No. 82 (1995), 169–209 (1996). MR1383216 (97i:53049)

[BI] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal.
4 (1994), no. 3, 259–269. MR1274115 (95h:53049)

[C] C. Croke, Volumes of balls in manifolds without conjugate points, Internat. J. Math. 3 (1992),
455–467. MR1168355 (93e:53048)

http://www.ams.org/mathscinet-getitem?mr=1383216
http://www.ams.org/mathscinet-getitem?mr=1383216
http://www.ams.org/mathscinet-getitem?mr=1274115
http://www.ams.org/mathscinet-getitem?mr=1274115
http://www.ams.org/mathscinet-getitem?mr=1168355
http://www.ams.org/mathscinet-getitem?mr=1168355


348 N. D. LEBEDEVA

[G1] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ.
Math. No. 53 (1981), 53–73. MR0623534 (83b:53041)

[G2] , Asymptotic invariants of infinite groups, Geometric Group Theory. Vol. 2 (Sussex, 1991),
London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–
295. MR1253544 (95m:20041)

[I] S. V. Ivanov, The geometry of periodic metrics, and volumes of limit Finsler manifolds, Abstract
of Thesis Prepared by Candidate, St. Petersburg, 1995.

[TG] J. Tits, Appendix to: “Groups of polynomial growth and expanding maps” by M. Gromov, Inst.

Hautes Études Sci. Publ. Math. No. 53 (1981), 74–78. MR0623535 (83b:53042)
[L1] N. D. Lebedeva, Exponential growth of spaces without conjugate points, Algebra i Analiz 15 (2003),

no. 1, 184–200; English transl., St. Petersburg Math. J. 15 (2004), no. 1, 127–137. MR1979721

[L2] , On the fundamental group of a compact space without conjugate points, PDMI Preprint
no. 05/2002, S.-Peterburg. Otdel. Mat. Inst. (POMI), St. Petersburg, 2002.

St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences,
Fontanka 27, St. Petersburg 191011, Russia

E-mail address: lebed@pdmi.ras.ru

Received 18/FEB/2003

Translated by THE AUTHOR

http://www.ams.org/mathscinet-getitem?mr=0623534
http://www.ams.org/mathscinet-getitem?mr=0623534
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.ams.org/mathscinet-getitem?mr=0623535
http://www.ams.org/mathscinet-getitem?mr=0623535
http://www.ams.org/mathscinet-getitem?mr=1979721

	1. Introduction
	2. Homotopy type of M
	3. Constructing a local isometry
	4. f is an isometry
	References

