ON SPACES OF POLYNOMIAL GROWTH WITH NO CONJUGATE POINTS

N. D. LEBEDEVA

Abstract

The following generalization of the Hopf conjecture is proved: if the fundamental group of an n-dimensional compact polyhedral space M without boundary and with no conjugate points has polynomial growth, then there exists a finite covering of M by a flat torus.

§1. Introduction

By an n-dimensional polyhedral space we mean a metric space M (with an inner metric) covered by n-simplexes; each simplex is endowed with a smooth Riemannian metric, and these metrics coincide on the common $(n-1)$-faces of the n-simplexes. The precise definition is given at the end of this section. In the definitions below, it is assumed that we deal with a fixed triangulation.

A polyhedral pseudomanifold is an n-dimensional polyhedral space in which the $(n-1)$ simplexes of the triangulation are adjacent to at most two n-simplexes. The boundary of a polyhedral space is the union of the $(n-1)$-simplexes of the triangulation that are adjacent to only one n-simplex. We say that M has no conjugate points if any two points in the universal covering space of M are connected by a unique geodesic. All polyhedral spaces considered in this paper are assumed to be connected.

Let M be a compact polyhedral space without boundary and with no conjugate points. It is well known that M is isometric to the quotient space \widetilde{M} / Γ, where \widetilde{M} is the universal covering space of M, and Γ is a subgroup of the group of isometries of \widetilde{M}; recall that Γ is isomorphic to $\pi_{1}(M)$.

Our aim in this paper is to prove the following two theorems.
Theorem 1. Let M be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the fundamental group $\pi_{1}(M)$ of M is nilpotent, then M is a flat torus.

Theorem 2. Let M be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the fundamental group $\pi_{1}(M)$ of M is of polynomial growth, then there exists a finite covering of M by a flat torus.

Theorem 2 can be derived from Theorem 1 . Indeed, let M satisfy the assumptions of Theorem 1. Then $\pi_{1}(M)$ is of polynomial growth. The well-known result by Gromov (see [G2]) says that $\pi_{1}(M)$ is virtually nilpotent, i.e., $\pi_{1}(M)$ contains a nilpotent subgroup G of finite index. Consequently, there exists a finite covering $\bar{M} \rightarrow M$ such that $\pi_{1}(\bar{M})=G$.

[^0]Since \bar{M} is a compact polyhedral space without boundary and with no conjugate points, \bar{M} is flat by Theorem 1. In the remaining part of the paper we prove Theorem 1. The proof is organized as follows.

In $\S 2$ we prove that M^{n} is a pseudomanifold and that it is homotopy equivalent to an n-dimensional torus.

In $\S 3$ we construct a map $f: M \rightarrow T^{n}$, where T^{n} is a flat torus. We show that f is a local isometry on the complement of the $(n-2)$-skeleton of M. This step of the proof is similar to a version of the proof of the Hopf conjecture (see [I]). For the first time, the Hopf conjecture was proved by D. Burago and S. Ivanov in BI.

In $\S 4$ we prove that the map $f: M \rightarrow T^{n}$ is an isometry. In contrast to the case of Riemannian manifolds considered in [I], this step is not trivial for Riemannian polyhedra.

Now we explain more precisely what we mean by polyhedral spaces.
An n-dimensional Riemannian simplex is an n-simplex in \mathbb{R}^{n} equipped with a smooth Riemannian metric (as usual, we assume that the metric is defined in a neighborhood of this simplex), as well as any metric space isometric to such a simplex.

An n-dimensional polyhedral space is a connected metric space that can be obtained by gluing together n-dimensional Riemannian simplexes along some isometries between their faces.

§2. Homotopy type of M

In the proof of Theorem 1 we use the following results obtained earlier (see L1 L2]).
Claim 1 (L1]). Let M be a compact locally simply connected space without conjugate points. Then every nilpotent subgroup of the fundamental group of M is Abelian and torsion free.

Claim 2 ($\overline{\mathrm{L} 2]) . ~ L e t ~} M$ be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the triangulation of M contains three n-simplexes with a common $(n-1)$-face, then the fundamental group $\pi_{1}(M)$ is of exponential growth.

Our aim in this section is to prove the following auxiliary statement.
Lemma 1. Let M be as in Theorem 1. Then M is a pseudomanifold that is homotopy equivalent to an n-dimensional torus.

Proof. Since the fundamental group of a compact metric space with intrinsic metric is finitely generated, from Claim 1 it follows that $\pi_{1}(M)=\mathbb{Z}^{m}$ for some m. Applying Claim 2, we see that at most two n-simplexes of M may have a common ($n-1$)-face, i.e., M is a pseudomanifold. Since the universal covering space of M is contractible, the fundamental group of M determines the homotopy type of M. Hence, M is homotopy equivalent to an m-torus T^{m}. It follows that $H_{k}(M, \cdot)=H_{k}\left(T^{m}, \cdot\right)$ for every k.

We prove that $m=n$, where n is the dimension of M.
Suppose that $n>m$. Since M is a pseudomanifold, we have $H_{n}\left(M, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. This contradicts the relation $H_{n}\left(T^{m}, \mathbb{Z}_{2}\right)=0$.

Suppose $n<m$; then $H_{m}(M, \mathbb{Z})=0$. This contradicts the relation $H_{m}\left(T^{m}, \mathbb{Z}\right)=\mathbb{Z}$. Thus, $\pi_{1}(M)=\mathbb{Z}^{n}$.

§3. Constructing a local isometry

We denote by M^{\prime} the complement of the $(n-2)$-skeleton of M; then M^{\prime} is an open dense subset of M. In this section we shall prove the following statement.

Proposition 1. Under the assumptions of Theorem 1, there exists a map $f: M \rightarrow T^{n}$, where T^{n} is a flat n-torus, with the following properties:
(1) $\left.f\right|_{M^{\prime}}$ is a local isometry on M^{\prime}, i.e., $\left.f\right|_{M^{\prime}}$ is an open map preserving distances;
(2) f is Lipschitz;
(3) f induces an isomorphism between the corresponding fundamental groups.

We start with several lemmas.
Let $S M$ denote the space of all unit tangent vectors of M. A canonical measure μ_{L} on the space $S M$ is defined in a standard way as the product of two measures: the normalized Riemannian volume on M and the normalized Riemannian volume on the unit ($n-1$)-sphere. This measure is called the Liouville measure.

Since for almost every unit vector $e \in S M$ there exists a unique generic geodesic γ with $\gamma^{\prime}(0)=e$ (see L1]), the geodesic flow transformation is well defined almost everywhere on $S M$, and it is known that the Liouville measure is invariant with respect to this transformation (see L1]).

We recall that M is isometric to the quotient space \widetilde{M} / Γ, where \widetilde{M} is the universal covering space of M and Γ is a deck transformation group isomorphic to $\pi_{1}(M)=\mathbb{Z}^{n}$ and acting by isometries on \widetilde{M}.

Consider the vector space $V=\Gamma \otimes \mathbb{R}$; it is isomorphic to \mathbb{R}^{n}. There exists a canonical immersion of $\Gamma=\mathbb{Z}^{n} \hookrightarrow V$, and its image is an integral lattice in $V=\mathbb{R}^{n}$. Below we shall denote elements of Γ and the corresponding points of the lattice by the same symbol. Fix a point $x_{0} \in \widetilde{M}$. The orbit of Γ is a lattice in \widetilde{M}; there is a one-to-one correspondence between the points of the lattice and the elements of Γ. For $k \in \Gamma$ and $x \in \widetilde{M}$, we denote by $x+k$ the image of x under the isometry k. When studying distances between remote points, it is convenient to approximate points of \widetilde{M} by elements of the lattice. We define a map $\bar{k}: \widetilde{M} \rightarrow \Gamma$ commuting with Γ. For this, we fix a bounded fundamental domain F containing the point x_{0}. For an arbitrary $x \in \widetilde{M}$, we put $\bar{k}(x)=k$, where k is a unique element of Γ such that $x \in F+k$.

Consider the function $\|\cdot\|: \Gamma \rightarrow[0, \infty)$ given by the formula

$$
\|k\|=\lim _{n \rightarrow \infty} \frac{\widetilde{\rho}\left(x_{0}, x_{0}+n k\right)}{n}
$$

where $\widetilde{\rho}$ is the lift of the metric ρ. The function $\|\cdot\|$ is well known to be a norm on Γ; therefore, it extends to a norm on V, called the stable norm. For a linear function $L: V \rightarrow \mathbb{R}$ we set $\|L\|=\max \{L(x)\|x\|=1\}$.

Lemma 2. Let $L: V \rightarrow \mathbb{R}$ be a linear function with $\|L\|=1$. There exists a function $\widetilde{B}_{L}: \widetilde{M} \rightarrow \mathbb{R}$ such that

1) \widetilde{B}_{L} is Lipschitz with Lipschitz constant 1 ;
2) $\widetilde{B}_{L}(x+k)=\widetilde{B}_{L}(x)+L(k)$ for every $x \in \widetilde{M}, k \in \Gamma$.

Proof. Indeed, let

$$
\widetilde{B}_{L}(x)=\inf _{k \in \Gamma}\left(L(k)+\rho\left(x, x_{0}+k\right)\right)
$$

We prove that the function \widetilde{B}_{L} is well defined. Since $\|L\|=1$, from the definition of the stable norm it follows that

$$
-\rho\left(x_{0}+k, x_{0}\right) \leq-\|k\| \leq L(k)
$$

whence

$$
L(k)+\rho\left(x, x_{0}+k\right) \geq-\rho\left(x_{0}+k, x_{0}\right)+\rho\left(x, x_{0}+k\right) \geq-\rho\left(x, x_{0}\right)
$$

The required properties of \widetilde{B}_{L} immediately follow from the definition.

For a linear function $L: V \rightarrow \mathbb{R}$, let \widetilde{B}_{L} denote the function constructed in Lemma 2. Since \widetilde{B}_{L} is Lipschitz, it has a gradient almost everywhere; this gradient will be denoted by \widetilde{v}_{L}.

For $\widetilde{v} \in \widetilde{S M}$, let $\widetilde{\gamma}: \mathbb{R} \rightarrow \widetilde{M}$ be a geodesic with $\gamma^{\prime}(0)=\widetilde{v}$. We define the direction at infinity $\widetilde{R}(\widetilde{v})=\widetilde{R}(\widetilde{\gamma}) \in V$ by

$$
\widetilde{R}(\widetilde{v})=\lim _{T \rightarrow \infty} \frac{\bar{k}(\widetilde{\gamma}(T))-\bar{k}(\widetilde{\gamma}(0))}{T}
$$

By definition, for $v \in S M$ we put $R(v)=\widetilde{R}(\widetilde{v})$, where \widetilde{v} is a lifting of v.
Since M has no conjugate points, it is clear that $\|R(v)\|=1$.
Lemma 3. The functions R and \widetilde{R} are defined almost everywhere on $S M$ and $\widetilde{S M}$, respectively.

Proof. Let $\phi: M \rightarrow V / \Gamma \simeq \mathbb{R}^{n} / \mathbb{Z}^{n}$ be a homotopy equivalence; we may assume that ϕ is simplicial. Since ϕ induces an isomorphism between fundamental groups, the lifting function $\widetilde{\phi}: \widetilde{M} \rightarrow V$ commutes with Γ.

Since the functions $\widetilde{\phi}$ and \bar{k} commute with Γ, we have $\|\widetilde{\phi}-\bar{k}\| \leq$ const. Thus, in the definition of \widetilde{R} we can replace \bar{k} by $\widetilde{\phi}$. Since the differential $d \widetilde{\phi}$ is defined almost everywhere on $T \widetilde{M}$ and is Γ-invariant, it is the lift of some measurable function ω : $T M \rightarrow V$. For a geodesic γ in M and its lifting $\widetilde{\gamma}$, we have

$$
\widetilde{\phi}(\widetilde{\gamma}(T))-\widetilde{\phi}(\widetilde{\gamma}(0))=\int_{0}^{T} d \widetilde{\phi}\left(\widetilde{\gamma}^{\prime}\right)=\int_{0}^{T} \omega\left(\gamma^{\prime}\right)
$$

Thus, $R(v)$ is equal to the average of ω along γ. The Birkhoff ergodic theorem shows that $R(v)$ is defined for almost all $v \in S M$.

Lemma 4. Let $L: V \rightarrow R$ be a linear function with $\|L\|=1$. Recall that \widetilde{v}_{L} denotes the gradient field of B_{L}. Then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle\gamma^{\prime}, \widetilde{v}_{L}\right\rangle=L(R(\gamma))
$$

if both sides are well defined.
Proof. Since $B_{L} \circ \gamma$ is Lipschitz, the Newton-Leibniz formula yields

$$
\int_{0}^{T}\left\langle\gamma^{\prime}, \widetilde{v}_{L}\right\rangle=\int_{0}^{T}\left(B_{L} \circ \gamma\right)^{\prime}=B_{L}(\gamma(T))-B_{L}(\gamma(0))
$$

Since the function $B_{L}(x)-L(\bar{k}(x))$ is bounded on the fundamental domain and periodic, it is bounded. This implies that $B_{L}(\gamma(T))-B_{L}(\gamma(0))$ differs from $L(\bar{k}(\gamma(T)))-L(\bar{k}(\gamma(0)))$ by a constant. So, we have

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle\gamma^{\prime}, \widetilde{v}_{L}\right\rangle=\lim _{T \rightarrow \infty} L\left(\frac{\bar{k}(\gamma(T))-\bar{k}(\gamma(0))}{T}\right)=L(R(\gamma))
$$

Let F denote the unit sphere of the norm $\|\cdot\|$, and let m be the measure on F that is the image of μ_{L} under $R: S M \rightarrow F$.

Lemma 5. If $L: V \rightarrow R$ is a linear function with $\|L\|=1$, then

$$
\int_{F} L^{2} d m \leq \frac{1}{n}
$$

Equality occurs if and only if $\left\langle\widetilde{v}_{L}, w\right\rangle=L(\widetilde{R}(w))$ for almost every $w \in S \widetilde{M}$.

Proof. Consider the average of $\left\langle v_{L}, \cdot\right\rangle$ along geodesics. By Lemma 3, we have

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle\gamma^{\prime}, v_{L}\right\rangle=L \circ R
$$

By the Schwartz inequality,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle\gamma^{\prime}, v_{L}\right\rangle^{2} \geq(L \circ R)^{2}
$$

Since R is constant on every trajectory of the geodesic flow, we have

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle v_{L}, w\right\rangle^{2}=(L \circ R)^{2}+\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(\left\langle v_{L}, \cdot\right\rangle-L \circ R\right)^{2}
$$

Integrating and using the Birkhoff ergodic theorem, we obtain

$$
\int_{S M}\left\langle v_{L}, \cdot\right\rangle^{2} d \mu_{L}=\int_{S M}(L \circ R)^{2} d \mu_{L}+\int_{S M}\left(\left\langle v_{L}, \cdot\right\rangle-L \circ R\right)^{2} d \mu_{L}
$$

From the inequality $\left|v_{L}\right|<1$ it follows that $\int_{S M}\left\langle v_{L}, \cdot\right\rangle^{2} d \mu_{L} \leq 1 / n$. Consequently,

$$
\int_{F} L^{2} d m=\int_{S M}(L \circ R)^{2} d \mu_{L} \leq \frac{1}{n}-\int_{S M}\left(\left\langle v_{L}, \cdot\right\rangle-L \circ R\right)^{2} d \mu_{L}
$$

The integral on the right is nonnegative, and it vanishes if and only if $\left\langle v_{L}, w\right\rangle=L(R(w))$ for almost every $w \in S M$. The lemma is proved.

We use the following known result (for its proof, see, e.g., BI]).
Lemma 6. Let $(V,\|\cdot\|)$ be an n-dimensional Banach space, let F be the unit sphere of the norm $\|\cdot\|$, and let F^{*} be the set of linear functions L such that $\|L\|=1$. Then there exists an ("inscribed") quadratic form $Q: V \rightarrow \mathbb{R}$ representable as a finite sum

$$
Q=\sum a_{i} L_{i}^{2}, \quad L_{i} \in F^{*}, \quad a_{i}>0, \quad \sum a_{i}=n
$$

and such that $Q(x) \geq\|x\|^{2}$ for every $x \in V$. In particular, Q is positive.
Remark 1. The unit ball of Q is the ellipsoid of maximal volume inscribed in F.
Let $Q=\sum a_{i} L_{i}^{2}$ be the corresponding (inscribed) quadratic form for the stable norm $\|\cdot\|$ associated with $\widetilde{\rho}$. We denote by B_{i} the functions constructed as in Lemma 2 for the linear functions L_{i}, and by \widetilde{v}_{i} their gradients.
Lemma 7. For all i, we have

$$
\begin{equation*}
\left\langle\widetilde{v}_{i}, w\right\rangle=L_{i}(R(w)) \tag{1}
\end{equation*}
$$

for almost every $w \in S \widetilde{M}$.
Proof. Applying Lemma 5 to L_{i}, we obtain

$$
\int_{F} Q d m=\sum a_{i} \int_{F} L_{i}^{2} d m \leq \frac{1}{n} \sum a_{i}=1 .
$$

But $\left.Q\right|_{F} \geq 1$ on F. Therefore, $\int_{F} Q d m=1$, so that $\int_{F} L_{i}^{2} d m=\frac{1}{n}$ for every i. By Lemma [5, it follows that $\left\langle\widetilde{v}_{i}, w\right\rangle=L_{i}(\widetilde{R}(w))$ for almost every $w \in S \widetilde{\frac{n}{M}}$.

The lemma just proved implies that (11) is true almost everywhere for almost every trajectory of the geodesic flow; this means that for almost every $w \in S \widetilde{M}$, if γ is a geodesic with $\gamma^{\prime}(0)=w$, then the function $\left\langle\widetilde{v}_{i}, \gamma^{\prime}\right\rangle=\left(B_{i} \circ \gamma\right)^{\prime}$ is defined almost everywhere. Moreover it is equal to the constant $L_{i}(R(\gamma))$. Since this function is Lipschitz, it is linear. Thus,

$$
\begin{equation*}
\left(B_{i} \circ \gamma\right)^{\prime} \equiv L_{i}(R(\gamma)), \quad t \in \mathbb{R} \tag{2}
\end{equation*}
$$

Since $\left.Q\right|_{F} \geq 1$, the relation $\int_{F} Q d m=1$ implies that m-almost everywhere on F we have $Q=1$. By the definition of m, this means that

$$
\begin{equation*}
Q(R(w))=1 \tag{3}
\end{equation*}
$$

for almost all $w \in S \widetilde{M}$. Since Q is nondegenerate, there is no loss of generality in assuming that L_{1}, \ldots, L_{n} are linearly independent.

Consider the map

$$
\widetilde{f}=\left(\widetilde{B}_{1}, \ldots, \widetilde{B}_{n}\right): \widetilde{M} \rightarrow \mathbb{R}^{n}
$$

We endow \mathbb{R}^{n} with the Euclidean structure corresponding to the quadratic form Q under the isomorphism

$$
I=\left(L_{1}, \ldots, L_{n}\right): V \rightarrow \mathbb{R}^{n}
$$

For almost every geodesic $\gamma: \mathbb{R} \rightarrow \widetilde{M}$ we obtain

$$
(\widetilde{f} \circ \gamma)^{\prime}=\left(L_{1}(\widetilde{R}(\gamma)), \ldots, L_{n}(\widetilde{R}(\gamma))\right)=I(\widetilde{R}(\gamma))
$$

Since for almost every geodesic γ the vector $I(\widetilde{R}(\gamma))$ is a unit vector with respect to the new Euclidean structure, the image $\widetilde{f}(\gamma)$ is a straight line with constant unit velocity.

Now we prove Proposition 1 .
Proof. Since \tilde{f} commutes with the group Γ of integral translations on \widetilde{M} and $\mathbb{R}^{n}, \widetilde{f}$ induces a map $f: M \rightarrow T^{n}$, where T^{n} is a flat torus. The homomorphism of fundamental groups induced by f is an isomorphism, which implies statement (3) of Proposition 1 The map f is Lipschitz because so is \widetilde{f}.

Recall that M^{\prime} denotes the complement of the $(n-2)$-skeleton of M.
We show that $\left.f\right|_{M^{\prime}} \rightarrow T^{n}$ is a local isometry. Consider a convex neighborhood $U \in M^{\prime}$ and fix two points $x, y \in U$. For any neighborhoods $U_{x}, U_{y} \subset U$ of x and y, let $V\left(U_{x}, U_{y}\right)$ be the set of initial velocity vectors of all shortest paths starting in U_{x} and ending in U_{y}. Since for almost every geodesic $\gamma:[a, b] \rightarrow M$ the image $f \circ \gamma$ is a straight line with a constant unit speed and $\mu_{L} V\left(U_{x}, U_{y}\right)>0$, there exist two points $x^{\prime} \in U_{x}$ and $y^{\prime} \in U_{y}$ such that f preserves the distance between them. Since U_{x} and U_{y} are arbitrary and f is continuous, f preserves the distance between x and y. Thus, $\left.f\right|_{U}$ preserves distances.

Since M^{\prime} and T^{n} are n-dimensional manifolds, and $\left.f\right|_{M^{\prime}}$ preserves the distances, for any $x \in M^{\prime}$ the image of some neighborhood of x is a neighborhood of $f(x)$, and we see that f is an open map.

§4. f IS AN ISOMETRY

The following Lemma 8 is an obvious consequence of Proposition[1).
Lemma 8. $\left.f\right|_{M^{\prime}}$ preserves the lengths of curves.
Lemma 9. The map $\left.f\right|_{M^{\prime}}: M^{\prime} \rightarrow f\left(M^{\prime}\right)$ is bijective, and $f: M \rightarrow T^{n}$ is surjective. As a consequence (because $\left.f\right|_{M^{\prime}}$ is a local isometry), the map $\left(\left.f\right|_{M^{\prime}}\right)^{-1}$ is well defined, is continuous, and preserves the lengths of curves.

Proof. Recall that M is homotopy equivalent to an n-dimensional torus. Consequently, the n-homology group of M is isomorphic to \mathbb{Z}. We fix an isomorphism between $H_{n}\left(T^{n}\right)$ and \mathbb{Z} and choose a generator of $H_{n}(M)$. The induced homomorphism $f_{*}: H_{n}(M) \rightarrow$ $H_{n}\left(T^{n}\right)=\mathbb{Z}$ takes the generator of $H_{n}(M)$ to some integer; this integer is called the degree of f. We show that the degree of f is ± 1. Since the universal covering space of M is contractible, the induced homomorphism f_{*} determines the homotopy type of f. Proposition $1(3)$ shows that f_{*} is an isomorphism; then f is a homotopy equivalence. Thus, the degree of f is ± 1.

The choice of generators of the homology group fixes orientations of the manifolds $M^{\prime} \subset M$ and T^{n}. We define the degree of f at $x \in M^{\prime}$ to be equal to 1 if $d_{x} f$ preserves the orientations of the tangent spaces at x, and to -1 if $d_{x} f$ reverses the orientations. Suppose $y \in T^{n}$ is a regular point, i.e., the preimage $f^{-1}(y)=x_{1}, \ldots, x_{l}$ is contained in M^{\prime}. As in the case of Riemannian manifolds, it can be proved that the degree of f is the sum of the degrees of f at the points x_{1}, \ldots, x_{l}. Hence, f is surjective.

Since M is a pseudomanifold that is homotopy equivalent to an n-dimensional torus, the space M^{\prime} is connected. Indeed, assume the contrary; then the group $H_{n}\left(M, \mathbb{Z}_{2}\right)$ contains two nonzero elements. Since $\left.f\right|_{M^{\prime}}$ is a local isometry, it preserves the orientation of tangent spaces everywhere, or it reverses these orientations. Consequently, the degree of f is constant at the points x_{1}, \ldots, x_{l}. Since the degree of f is 1 , this means that each regular point has a unique preimage. By the definition of a regular point, it follows that all points having two or more preimages are contained in $f^{-1}\left(f\left(M \backslash M^{\prime}\right)\right)$. We put $J=f^{-1}\left(f\left(M \backslash M^{\prime}\right)\right)$. Observe that the dimension of J does not exceed $n-2$.

Suppose that $\left.f\right|_{M^{\prime}}$ is not injective. Let $y \in f\left(M^{\prime}\right)$ be a point with more than one preimage in M^{\prime}, and let x_{1}, x_{2} be two such preimages. Let $D_{r_{0}}\left(x_{1}\right), D_{r_{0}}\left(x_{2}\right)$ be balls centered at x_{1} and x_{2} and such that the restriction of f to these balls is an isometry. Since the dimension of J is at most $n-2$, there exists a point $x_{3} \in D_{r_{0}}\left(x_{1}\right) \in M \backslash J$. The image of this point coincides with an image of some point contained in $D_{r_{0}}\left(x_{2}\right)$, which contradicts the fact that f is injective on $M \backslash J\left(x_{3} \in M \backslash J\right)$.

We complete the proof of Theorem 1 by the following statement.
Lemma 10. The map $f: M \rightarrow T^{n}$ is an isometry.
Proof. We show that f is noncontracting and nonexpanding. Every path in M can be approximated by a piecewise differentiable path of almost the same length. We can move each of the corresponding pieces to the interior of an appropriate n-simplex, leaving the endpoints fixed and almost length preserving.

The map f preserves the lengths of these pieces (see Lemma 8). Therefore, the map is nonexpanding.

Now we show that f is noncontracting. Let $x, y \in M$ be arbitrary points. Given $\varepsilon>0$, we let $x^{\prime}, y^{\prime} \in M^{\prime}$ be points such that $\rho\left(x, x^{\prime}\right)<\varepsilon$ and $\rho\left(y, y^{\prime}\right)<\varepsilon$. Since f is nonexpanding, we have $\left|\left(f(x), f\left(x^{\prime}\right)\right)\right|<\varepsilon$ and $\left|\left(f(y), f\left(y^{\prime}\right)\right)\right|<\varepsilon$, where $|(\cdot, \cdot)|$ denotes the metric on the flat torus.

Since f is Lipschitz and surjective, the Hausdorff dimension of the set $T^{n} \backslash f\left(M^{\prime}\right)$ does not exceed $n-2$. Therefore, the shortest path $\left[f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right] \in T^{n}$ can be approximated by a path in $f\left(M^{\prime}\right)$ with almost the same length and the same endpoints. Let $s:[a, b] \rightarrow$ $f\left(M^{\prime}\right)$ be a path that joins $f\left(x^{\prime}\right)$ and $f\left(y^{\prime}\right)$ and such that the length of s differs from $\left|f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right|$ by less than ε. Since $\left(\left.f\right|_{M^{\prime}}\right)^{-1}$ preserves distances, the length of the path $s \circ\left(\left.f\right|_{M^{\prime}}\right)^{-1}:[a, b] \rightarrow M^{\prime}$, which joins x^{\prime} and y^{\prime}, differs from $\left|f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right|$ by less than ε. Thus,

$$
\rho(x, y)<\rho\left(x^{\prime}, y^{\prime}\right)+2 \varepsilon<\left|f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right|+3 \varepsilon<|f(x), f(y)|+5 \varepsilon
$$

Therefore, f is noncontracting.

References

[BB] W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. No. 82 (1995), 169-209 (1996). MR 1383216 (97i:53049)
[BI] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal. 4 (1994), no. 3, 259-269. MF1274115 (95h:53049)
[C] C. Croke, Volumes of balls in manifolds without conjugate points, Internat. J. Math. 3 (1992), 455-467. MF 1168355 (93e:53048)
[G1] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. No. 53 (1981), 53-73. MR0623534 (83b:53041)
[G2] _, Asymptotic invariants of infinite groups, Geometric Group Theory. Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1295. MF 1253544 (95m:20041)
[I] S. V. Ivanov, The geometry of periodic metrics, and volumes of limit Finsler manifolds, Abstract of Thesis Prepared by Candidate, St. Petersburg, 1995.
[TG] J. Tits, Appendix to: "Groups of polynomial growth and expanding maps" by M. Gromov, Inst. Hautes Études Sci. Publ. Math. No. 53 (1981), 74-78. MF 0623535 (83b:53042)
[L1] N. D. Lebedeva, Exponential growth of spaces without conjugate points, Algebra i Analiz 15 (2003), no. 1, 184-200; English transl., St. Petersburg Math. J. 15 (2004), no. 1, 127-137. MR1979721
[L2] _, On the fundamental group of a compact space without conjugate points, PDMI Preprint no. 05/2002, S.-Peterburg. Otdel. Mat. Inst. (POMI), St. Petersburg, 2002.

St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191011, Russia

E-mail address: lebed@pdmi.ras.ru
Received 18/FEB/2003
Translated by THE AUTHOR

[^0]: 2000 Mathematics Subject Classification. Primary 57N16.
 Key words and phrases. n-dimensional polyhedral space, polyhedral pseudomanifold, fundamental group.

 Partially supported by RFBR (grant no. 02-01-00090), by CRDF (grant no. RM1-2381-ST-02), and by SS (grant no. 1914.2003.1).

