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ON SPACES OF POLYNOMIAL GROWTH
WITH NO CONJUGATE POINTS

N. D. LEBEDEVA

ABSTRACT. The following generalization of the Hopf conjecture is proved: if the fun-
damental group of an n-dimensional compact polyhedral space M without boundary
and with no conjugate points has polynomial growth, then there exists a finite cov-
ering of M by a flat torus.

§1. INTRODUCTION

By an n-dimensional polyhedral space we mean a metric space M (with an inner
metric) covered by n-simplexes; each simplex is endowed with a smooth Riemannian
metric, and these metrics coincide on the common (n — 1)-faces of the n-simplexes. The
precise definition is given at the end of this section. In the definitions below, it is assumed
that we deal with a fixed triangulation.

A polyhedral pseudomanifold is an n-dimensional polyhedral space in which the (n—1)-
simplexes of the triangulation are adjacent to at most two n-simplexes. The boundary
of a polyhedral space is the union of the (n — 1)-simplexes of the triangulation that are
adjacent to only one n-simplex. We say that M has no conjugate points if any two points
in the universal covering space of M are connected by a unique geodesic. All polyhedral
spaces considered in this paper are assumed to be connected.

Let M be a compact polyhedral space without boundaryAEmd with no  conjugate points.
It is well known that M is isometric to the quotient space M /T, where M is the universal
covering space of M, and T is a subgroup of the group of isometries of M ; recall that T
is isomorphic to 71 (M).

Our aim in this paper is to prove the following two theorems.

Theorem 1. Let M be an n-dimensional compact polyhedral space without boundary and
with no conjugate points. If the fundamental group m (M) of M is nilpotent, then M is
a flat torus.

Theorem 2. Let M be an n-dimensional compact polyhedral space without boundary and
with no conjugate points. If the fundamental group m (M) of M is of polynomial growth,
then there exists a finite covering of M by a flat torus.

Theorem 2 can be derived from Theorem 1. Indeed, let M satisfy the assumptions of
Theorem 1. Then m1 (M) is of polynomial growth. The well-known result by Gromov (see
[G2]) says that 71 (M) is virtually nilpotent, i.e., 1 (M) contains a nilpotent subgroup G
of finite index. Consequently, there exists a finite covering M — M such that 7, (M) = G.
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Since M is a compact polyhedral space without boundary and with no conjugate points,
M is flat by Theorem 1. In the remaining part of the paper we prove Theorem 1. The
proof is organized as follows.

In §2 we prove that M™ is a pseudomanifold and that it is homotopy equivalent to an
n-dimensional torus.

In §3 we construct a map f: M — T™, where T" is a flat torus. We show that f is a
local isometry on the complement of the (n — 2)-skeleton of M. This step of the proof is
similar to a version of the proof of the Hopf conjecture (see [I]). For the first time, the
Hopf conjecture was proved by D. Burago and S. Ivanov in [BI].

In §4 we prove that the map f : M — T™ is an isometry. In contrast to the case of
Riemannian manifolds considered in [I], this step is not trivial for Riemannian polyhedra.

Now we explain more precisely what we mean by polyhedral spaces.

An n-dimensional Riemannian simplex is an n-simplex in R™ equipped with a smooth
Riemannian metric (as usual, we assume that the metric is defined in a neighborhood of
this simplex), as well as any metric space isometric to such a simplex.

An n-dimensional polyhedral space is a connected metric space that can be obtained
by gluing together n-dimensional Riemannian simplexes along some isometries between
their faces.

§2. HOMOTOPY TYPE OF M
In the proof of Theorem 1 we use the following results obtained earlier (see [L1, L2]).

Claim 1 ([LI]). Let M be a compact locally simply connected space without conjugate
points. Then every nilpotent subgroup of the fundamental group of M is Abelian and
torsion free.

Claim 2 ([L2]). Let M be an n-dimensional compact polyhedral space without boundary
and with no conjugate points. If the triangulation of M contains three n-simplexes with
a common (n — 1)-face, then the fundamental group m (M) is of exponential growth.

Our aim in this section is to prove the following auxiliary statement.

Lemma 1. Let M be as in Theorem 1. Then M is a pseudomanifold that is homotopy
equivalent to an n-dimensional torus.

Proof. Since the fundamental group of a compact metric space with intrinsic metric is
finitely generated, from Claim 1 it follows that w1 (M) = Z™ for some m. Applying
Claim 2, we see that at most two n-simplexes of M may have a common (n — 1)-face,
i.e., M is a pseudomanifold. Since the universal covering space of M is contractible, the
fundamental group of M determines the homotopy type of M. Hence, M is homotopy
equivalent to an m-torus 7. It follows that Hy(M,-) = Hi(T™,-) for every k.

We prove that m = n, where n is the dimension of M.

Suppose that n > m. Since M is a pseudomanifold, we have H,,(M,Zs) = Zo. This
contradicts the relation H,,(T™,Z3) = 0.

Suppose n < m; then H,,(M,Z) = 0. This contradicts the relation H,,(T™,Z) = Z.
Thus, 7 (M) = Z™. O

§3. CONSTRUCTING A LOCAL ISOMETRY

We denote by M’ the complement of the (n — 2)-skeleton of M; then M’ is an open
dense subset of M. In this section we shall prove the following statement.

Proposition 1. Under the assumptions of Theorem 1, there exists a map f: M — T™,
where T™ is a flat n-torus, with the following properties:
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(1) flar is a local isometry on M, i.e., f|pr is an open map preserving distances;
(2) f is Lipschitz;
(3) f induces an isomorphism between the corresponding fundamental groups.

We start with several lemmas.

Let SM denote the space of all unit tangent vectors of M. A canonical measure py,
on the space SM is defined in a standard way as the product of two measures: the
normalized Riemannian volume on M and the normalized Riemannian volume on the
unit (n — 1)-sphere. This measure is called the Liouville measure.

Since for almost every unit vector e € SM there exists a unique generic geodesic v with
~'(0) = e (see [LI]), the geodesic flow transformation is well defined almost everywhere
on SM, and it is known that the Liouville measure is invariant with respect to this
transformation (see [L1]).

We recall that M is isometric to the quotient space M /T, where M is the universal
covering space of M and T' is a deck transformation group isomorphic to m (M) = Z"
and acting by isometries on M.

Consider the vector space V = I"® R; it is isomorphic to R™. There exists a canonical
immersion of I' = Z™ — V| and its image is an integral lattice in V" = R". Below we shall
denote elements of I' and the corresponding points of the lattice by the same symbol. Fix
a point xg € M. The orbit of I is a lattice in M there is a one-to-one correspondence
between the points of the lattice and the elements of I'. For k € " and « € M , we denote
by x + k the image of x under the isometry k. When studying distances between remote
points, it is convenient to approximate points of M by elements of the lattice. We define
amap k : M — I' commuting with I". For this, ‘we fix a bounded fundamental domain F'
containing the point xy. For an arbitrary z € M, we put E(m) = k, where k is a unique
element of I" such that z € F + k.

Consider the function || - ||: I' — [0, 00) given by the formula
plzo, xo + nk)
i) = tim 200702 1E)
where p is the lift of the metric p. The function || - || is well known to be a norm on

T'; therefore, it extends to a norm on V, called the stable norm. For a linear function
L:V — Rweset ||L|| = max{L(z)|||z| = 1}.

Lemma 2. Let L : V — R be a linear function with |L| = 1. There exists a function
By : M — R such that

1) By, is Lipschitz with Lipschitz constant 1;

2) Br(z+ k) = Br(z) + L(k) for everyx € M, k€T,
Proof. Indeed, let

Br(e) = inf (LK) + p(a, 70 + )

We prove that the function By, is well defined. Since ||L|| = 1, from the definition of the
stable norm it follows that

—p(@o + Kk, xo) < —[[k]| < L(k),

whence
L(k) + p(z, zo + k) > —p(x0 + k, 20) + p(z, m0 + k) = —p(2, 20).

The required properties of By immediately follow from the definition. a
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For a linear function L : V — R, let By, denote the function constructed in Lemma 2.
Since By, is Lipschitz, it has a gradient almost everywhere; this gradient will be denoted
by :JL~

For v € :5’7\2, let v: R — M be a geodesic with 7/(0) = ¥. We define the direction at
infinity R(?) = R(3) € V by

) — i FAT) ~EGO)

=1
Tl—I»Iéo T

By definition, for v € SM we put R(v) = R(¥), where ¥ is a lifting of v.
Since M has no conjugate points, it is clear that | R(v)|| = 1.

Lemma 3. The functions R and R are defined almost everywhere on SM and S’?\Z,
respectively.

Proof. Let ¢ : M — V/T' ~ R"/Z"™ be a homotopy equivalence; we may assume that ¢
is simplicial. Since ¢ induces an isomorphism between fundamental groups, the lifting
function ¢ M-V commutes with I'.

Since the functions ¢ and k commute with T, we have ||¢ — &|| < const. Thus, in
the definition of R we can replace k by ¢ Since the differential dd) is defined almost
everywhere on TM and is T- invariant, it is the lift of some measurable function w :
TM — V. For a geodesic v in M and its lifting 7, we have

- - T _ T
SG(T)) - 3(3(0)) = / 43(F) = / (7).

Thus, R(v) is equal to the average of w along . The Birkhoff ergodic theorem shows
that R(v) is defined for almost all v € SM. O

Lemma 4. Let L : V — R be a linear function with |L|| = 1. Recall that U1, denotes the
gradient field of Br,. Then

T—oo T
if both sides are well defined.

T
lim = / (', 71) = L(R(7)

Proof. Since By, oy is Lipschitz, the Newton—Leibniz formula yields

/ (' Tz) = / (BL o) = Bu(1(T)) - BL(~(0)).
0 0

Since the function By, (x) — L(k(x)) is bounded on the fundamental domain and periodic,
it is bounded. This implies that By, (v(T))— B (7(0)) differs from L(k(y(T)))—L(k(7(0)))
by a constant. So, we have

i % [0 - TlgnooL<k<v<T>>—k<v<o>>> _LRG). O

T

Let F denote the unit sphere of the norm || - ||, and let m be the measure on F' that
is the image of puy, under R: SM — F.

Lemma 5. If L:V — R is a linear function with ||L|| = 1, then

1
/demg—.
F n

Equality occurs if and only if (vr,w) = L(E(w)) for almost every w € SM.
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Proof. Consider the average of (vr,-) along geodesics. By Lemma 3, we have

T
lim —/ (y',vr) = Lo R.
0

By the Schwartz inequality,
1 /7
: - ! 2 > 2.
Jin 7 [ = e

Since R is constant on every trajectory of the geodesic flow, we have

1t 2 2 1t 2

lim — (vp,w)* = (Lo R)*+ lim — ({(vr,y — Lo R)*.

0 T—oo T 0

Integrating and using the Birkhoff ergodic theorem, we obtain
| = [ @oRPdu s [ (- Lo R du.
SMm SM SM

From the inequality |vz| < 1 it follows that fSM<vL, Y2dpyg, < 1/n. Consequently,

1
/ L*dm = (LoR)?dpr < — —/ ((vg,-) — Lo R)?dur.
F SM n SM
The integral on the right is nonnegative, and it vanishes if and only if (vy, w) = L(R(w))
for almost every w € SM. The lemma is proved. |
We use the following known result (for its proof, see, e.g., [BI]).

Lemma 6. Let (V,||-||) be an n-dimensional Banach space, let F' be the unit sphere of
the norm || - ||, and let F* be the set of linear functions L such that |L|| = 1. Then there
exists an ( “inscribed”) quadratic form @Q : V — R representable as a finite sum

Q:ZaiLf, LiéF*, a; >0, Zai:n,
and such that Q(x) > ||z||? for every x € V.. In particular, Q is positive.
Remark 1. The unit ball of @ is the ellipsoid of maximal volume inscribed in F.

Let @ = > a;L? be the corresponding (inscribed) quadratic form for the stable norm
I - || associated with p. We denote by B; the functions constructed as in Lemma 2 for
the linear functions L;, and by v; their gradients.

Lemma 7. For all i, we have
(1) (03, w) = Li(R(w))
for almost every w € SM.

Proof. Applying Lemma Blto L;, we obtain

1
/F‘Qdmzzai/FL?dmfﬁZGiZL

But Q|r > 1 on F. Therefore, [,,Qdm = 1, so that [, L?dm = L for every i. By
Lemma 5 it follows that (7;,w) = L;(R(w)) for almost every w € SM. O

The lemma just proved implies that () is true almost everywhere for almost every
trajectory of the geodesic flow; this means that for almost every w € S M , if v is a geodesic
with 4/(0) = w, then the function (v;,7') = (B; o)’ is defined almost everywhere.
Moreover it is equal to the constant L;(R(y)). Since this function is Lipschitz, it is
linear. Thus,

(2) (B;ov) = Li(R(3)), teR.
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Since Q|r > 1, the relation [ @ dm =1 implies that m-almost everywhere on F we
have @ = 1. By the definition of m, this means that

(3) Q(R(w)) =1
for almost all w € SM. Since @ is nondegenerate, there is no loss of generality in
assuming that Lq,..., L, are linearly independent.

Consider the map
f=(B1,...,B,) : M - R".
We endow R™ with the Euclidean structure corresponding to the quadratic form @ under

the isomorphism
I=(Ly,...,L,): V —>R"

For almost every geodesic v : R — M we obtain

(f o) = (Li(R(M)), - - Ln(R(7))) = I(R(v))-

Since for almost every geodesic v the vector I(R(7)) is a unit vector with respect to the
new Euclidean structure, the image f(7) is a straight line with constant unit velocity.
Now we prove Proposition [II.

Proof. Since f commutes with the group T' of integral translations on M and R™, f
induces amap f : M — T", where T" is a flat torus. The homomorphism of fundamental
groups induced by f is an isomorphism, which implies statement (3) of Proposition [
The map f is Lipschitz because so is f

Recall that M’ denotes the complement of the (n — 2)-skeleton of M.

We show that f|p — T™ is a local isometry. Consider a convex neighborhood U € M’
and fix two points z, y € U. For any neighborhoods Uy, U, C U of z and y, let V(U,, U,)
be the set of initial velocity vectors of all shortest paths starting in U, and ending in U,.
Since for almost every geodesic v : [a,b] — M the image f o~y is a straight line with a
constant unit speed and prV (Ug,Uy) > 0, there exist two points =’ € U, and y' € U,
such that f preserves the distance between them. Since U, and U, are arbitrary and f
is continuous, f preserves the distance between = and y. Thus, f|y preserves distances.

Since M’ and T™ are n-dimensional manifolds, and f|p; preserves the distances, for
any x € M’ the image of some neighborhood of z is a neighborhood of f(x), and we see
that f is an open map. O

§4. f IS AN ISOMETRY
The following Lemma 8 is an obvious consequence of Proposition [II(1).
Lemma 8. f|y preserves the lengths of curves.

Lemma 9. The map f|p : M — f(M') is bijective, and f : M — T™ is surjective.
As a consequence (because f|nr is a local isometry), the map (f|ar)~t is well defined,
is continuous, and preserves the lengths of curves.

Proof. Recall that M is homotopy equivalent to an n-dimensional torus. Consequently,
the n-homology group of M is isomorphic to Z. We fix an isomorphism between H,, (T")
and Z and choose a generator of H,,(M). The induced homomorphism f, : H,(M) —
H,(T™) = Z takes the generator of H, (M) to some integer; this integer is called the
degree of f. We show that the degree of f is +1. Since the universal covering space of
M is contractible, the induced homomorphism f. determines the homotopy type of f.
Proposition [[I(3) shows that f, is an isomorphism; then f is a homotopy equivalence.
Thus, the degree of f is +1.
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The choice of generators of the homology group fixes orientations of the manifolds
M’ C M and T™. We define the degree of f at x € M’ to be equal to 1 if d, f preserves
the orientations of the tangent spaces at x, and to —1 if d,f reverses the orientations.
Suppose y € T™ is a regular point, i.e., the preimage f~!(y) = x1,..., 7 is contained in
M’. As in the case of Riemannian manifolds, it can be proved that the degree of f is the
sum of the degrees of f at the points x1,...,2;. Hence, f is surjective.

Since M is a pseudomanifold that is homotopy equivalent to an n-dimensional torus,
the space M’ is connected. Indeed, assume the contrary; then the group H,(M,Zs)
contains two nonzero elements. Since f|ys is a local isometry, it preserves the orientation
of tangent spaces everywhere, or it reverses these orientations. Consequently, the degree
of f is constant at the points z1,...,x;. Since the degree of f is 1, this means that
each regular point has a unique preimage. By the definition of a regular point, it follows
that all points having two or more preimages are contained in f~1(f(M \ M')). We put
J = f71(f(M \ M’)). Observe that the dimension of J does not exceed n — 2.

Suppose that f|a; is not injective. Let y € f(M’) be a point with more than one
preimage in M’ and let x1, z2 be two such preimages. Let D, (1), D,,(z2) be balls
centered at x; and x2 and such that the restriction of f to these balls is an isometry.
Since the dimension of J is at most n — 2, there exists a point zg € D, (z1) € M\ J. The
image of this point coincides with an image of some point contained in D, (x2), which
contradicts the fact that f is injective on M \ J (x3 € M \ J). O

We complete the proof of Theorem 1 by the following statement.
Lemma 10. The map f: M — T" is an isometry.

Proof. We show that f is noncontracting and nonexpanding. Every path in M can be
approximated by a piecewise differentiable path of almost the same length. We can move
each of the corresponding pieces to the interior of an appropriate n-simplex, leaving the
endpoints fixed and almost length preserving.

The map f preserves the lengths of these pieces (see Lemma[§). Therefore, the map
is nonexpanding.

Now we show that f is noncontracting. Let x,y € M be arbitrary points. Given
e > 0, we let /',y € M’ be points such that p(z,2’) < € and p(y,y’) < e. Since f is
nonexpanding, we have |(f(z), f(2))] < € and |(f(y), f(¥'))| < &, where |(-,-)| denotes
the metric on the flat torus.

Since f is Lipschitz and surjective, the Hausdorfl dimension of the set T™\ f(M’) does
not exceed n — 2. Therefore, the shortest path [f(z), f(y')] € T™ can be approximated
by a path in f(M’) with almost the same length and the same endpoints. Let s : [a, b] —
f(M’) be a path that joins f(z') and f(y') and such that the length of s differs from
|f(2), f(v/)| by less than e. Since (f|a)~' preserves distances, the length of the path
so(flm)~t:Ja,b] — M’, which joins 2’ and ¥/, differs from |f(z), f(v)| by less than e.
Thus,

pla,y) < p(a',y') + 2 <|f(2), f(y')] + 3e < |f (), f(y)] + Be.
Therefore, f is noncontracting. O
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