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§1. Introduction

More than 10 years ago physicists gave a theoretic description of the so-called photonic
crystal, an optic analog of a semiconductor. In contrast to a semiconductor, the photonic
crystal is an artificial material, a composite. The dominant requirement for the photonic
crystal is that electromagnetic waves of a certain length cannot propagate in it. It was also
predicted that the photonic crystal is a material with high-contrast periodic structure [1].
In the mathematical sense, here we have a periodic Maxwell operator in the entire space
L2(Rd), and this operator must have gaps in its spectrum. Since the Maxwell operator is
quite difficult from the viewpoint of spectral theory, scalar second-order elliptic operators
(“acoustic approximations”) are often considered.

There are many mathematical publications on this subject, in which different methods
are applied depending on what specific geometric and physical model of the photonic
crystal is chosen. For a detailed statement of the problem and a review of mathematical
methods and models, see the paper [2] by Figotin and Kuchment and the papers [3, 4]
by Kuchment and Kunyansky.

1. We recall the description of the spectrum of an operator with periodic coefficients.
Let

A = − div(a∇) = −∇∗(a∇),

where the coefficient a = a(x) is measurable and periodic,

a(x + n) = a(x), n ∈ Zd,

and satisfies the following condition of boundedness and ellipticity:

(1.1) 0 < α ≤ a(x) ≤ α−1.

We consider a family of problems with quasiperiodic conditions on the boundary of
the periodicity cell � = [0, 1)d, namely,

− div(a∇u) = λu,

u(x) = eik·xv(x), v ∈ H1
per(�),
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where k ∈ Rd is a quasimomentum and H1
per(�) is the Sobolev space of periodic functions.

Then we have the following periodic problem for v(x):

A(k)v = λv, A(k) = −(∇ + ik)∗a(∇ + ik).

By definition, the function v ∈ H1
per(�) is a solution of this problem if the following

integral identity is satisfied:∫
�

a(∇v + ikv) · (∇ϕ̄ − ikϕ̄) dx = λ

∫
�

vϕ̄ dx, ϕ ∈ H1
per(�),

where the bar means complex conjugation. Putting ϕ = v, we obtain

(1.2)
∫

�
a|∇u|2 dx = λ

∫
�
|u|2 dx.

Each operator A(k) is selfadjoint in L2(�) and has a compact resolvent. We order the
eigenvalues of the operator A(k) in accordance with the minimax principle, i.e.,

0 ≤ E1(k) ≤ E2(k) ≤ · · · .

The band functions En(k) are continuous and 2π-periodic with respect to k ∈ Rd, and
the spectrum of A is the union of the segments (bands) that are the images of the band
functions

Sp A =
⋃

[αn, βn], αn = min
k

En, βn = max
k

En.

Successive segments [αn, βn] and [αn+1, βn+1] may overlap, but if they are disjoint, then
we have a gap in the spectrum.

The existence of gaps in the spectrum is of interest from a physical viewpoint; this is
related to wave propagation. Consider the wave equation

u′′
tt − Au = f0e

iωt, f0 ∈ L2(Rd),

the solution of which is

u(t) = u0e
iωt, u0 = −(A + ω2I)−1f0.

If ω2 is in a spectral gap, then u0 ∈ L2(Rd), and the wave is localized. In experiments,
the amplitude f0 is very small and the wave u(t) is also small and usually cannot be
observed (is perceived as identically zero). However, if the number ω2 belongs to the
spectrum, then the amplitude u0 is not localized and can take considerably large values
depending on the location of the point ω2 in SpA.

The presence of gaps in the spectrum is the main characteristic property of the “pho-
tonic crystal”. Recently, this subject has attracted considerable interest of physicists and
mathematicians.

In the present paper, we discuss a method for the study of spectral gaps. This method
is based on averaging theory and was suggested in the paper [5] without any association
with photonic crystals.

2. First, we restrict ourselves to the simplest geometric model studied in [5, 6]. In [6],
Hempel and Lienau considered the operator

At = − div(at(y)∇), t → ∞,

where the coefficient at has period 1 and is defined by

at(y) =

{
1 on the periodic disperse set F0,

t2 outside of F0

(see Figure 1, where the periodicity cell is shown by a dashed line).
They proved that, as t → ∞, the operator At has at least one gap in its spectrum;

this paper contains many other valuable observations.
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Figure 1.

Figure 2.

In [5], the present author considered the operator

(1.3) Aε = − div(aε(x)∇),

where the coefficient aε(x) has period ε and is defined as follows:

(1.4) aε(x) =

{
ε2 on F ε

0 (soft phase),
1 on Rd\F ε

0 (rigid phase),

where F ε
0 = εF0 = {εx, x ∈ F0} is a homothetic contraction of the disperse set F0

(Figure 2). The operator Aε corresponds to the double-porosity model.
It was proved that, as ε → 0, the operator Aε has gaps in the spectrum, and that the

number of gaps increases unboundedly as ε → 0.
It can easily be seen that the spectra of At and Aε coincide. Indeed, if λ ∈ Sp At and

− divy(at(y)∇yu) = λu(y),

then, using the change of variables y = ε−1x, we obtain

− div(aε(x)∇u(x)) = λu(x),

so that
Sp At = SpAε for t = ε−1.

This is the only common feature of the operators At and Aε; in all other respects they
differ considerably. For example, the operator At is bounded from below by the operator
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−� (because at ≥ 1). Therefore, the density of states is bounded as t → ∞; the
corresponding limit was found in [6], see also [7]. On the contrary, the operator Aε is
unbounded from below, and the density of states is unbounded as ε → 0. The methods
used in the two papers mentioned above are entirely different.

We prefer to operate with real function spaces and real solutions of elliptic equations;
only the Bloch eigenfunctions are regarded as complex solutions.

§2. Resolvent convergence

1. Many homogenization problems are of the form

(2.1) Aεuε + suε = f,

where s > 0, and the Aε are nonnegative selfadjoint operators in the Hilbert space H,
f ∈ H. The result itself of homogenization means the strong convergence uε → u and
the identity

Au + su = f,

where A is also a nonnegative selfadjoint operator, which is said to be a homogenized or
a limit operator. This situation corresponds to the so-called strong resolvent convergence

(Aε + s)−1f → (A + s)−1f

for all f ∈ H and all s > 0 (it suffices to have this for s = 1).
As an example, we can take the operator

Aε = − div
(
a
(x

ε

)
∇

)
, H = L2(Rd),

where the coefficient a(y) is periodic and measurable and satisfies condition (1.1). Then
homogenization theory gives the strong convergence

(Aε + 1)−1f → (A + 1)−1f, f ∈ L2(Rd), A = − div(ahom∇),

where ahom is a constant positive definite matrix.
Recently, Birman and Suslina ([8]; see also [18]) refined this result by proving the

convergence in norm and the estimate

‖(Aε + 1)−1 − (A + 1)−1‖ ≤ cε.

For the operator Aε with the coefficient aε defined by (1.4), nothing of this kind can
be stated. Since the coefficient aε is asymptotically degenerate, the family uε of solutions
of the resolvent equation

uε ∈ H1(Rd), − div(aε∇uε) + uε = f ∈ L2(Rd)

is not compact in L2(Rd) and even in L2(Ω), where Ω is a bounded region.
In this case, strong convergence is out of the question. The family uε is bounded in

L2(Rd), and we can try to find an equation satisfied by the weak limit limε→0 uε. How-
ever, this way is not efficient since weak convergence has many pathologies; in particular,
the limit equation can lose its resolvent character.

As was shown in [5], the sequence uε is compact in the sense of the so-called strong two-
scale convergence. The two-scale limit of the sequence of solutions uε is not a function
in L2(Rd), but a function u = u(x, y) of two variables periodic in y and belonging to
L2(Rd × �). In accordance with this, the limit operator is defined not in L2(Rd) but in
a wider Hilbert space H ⊂ L2(Rd × �).

2. We give the definition of two-scale convergence (see [9]). First, we recall the mean
value property of a periodic function.
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The mean value property. Let Φ(x) be a periodic function defined on Rd, and let
Φ ∈ L1

per(�) and 〈Φ〉 =
∫

� Φ dy. Then, for each ϕ ∈ C∞
0 (Rd) we have

lim
ε→0

∫
Rd

ϕ(x)Φ
(x

ε

)
dx = 〈Φ〉

∫
Rd

ϕ(x) dx.

Let Ω be an arbitrary region in Rd, e.g., Ω = Rd. We say that a sequence vε bounded
in L2(Ω) is weakly two-scale convergent to a function v ∈ L2(Ω × �), vε(x) 2

⇀ v(x, y), if

lim
ε→0

∫
Ω

vε(x)ϕ(x)b
(x

ε

)
dx =

∫
�

∫
Ω

v(x, y)ϕ(x)b(y) dxdy

for all ϕ ∈ C∞
0 (Ω) and all b ∈ C∞

per(�).

Example. If f ∈ C∞
0 (Ω) and Φ ∈ L2

per(�), then vε(x) = f(x)Φ(x
ε ) 2

⇀ f(x)Φ(y). This
follows from the mean value property.

We say that a sequence uε bounded in L2(Ω) is strongly two-scale convergent to a
function u ∈ L2(Ω × �), uε(x) 2−→ u(x, y), if

(2.2) lim
ε→0

∫
Ω

uε(x)vε(x) dx =
∫

�

∫
Ω

u(x, y)v(x, y) dxdy if vε(x) 2
⇀ v(x, y).

We list some properties of two-scale convergence:
(i) a sequence bounded in L2(Ω) is compact in the sense of weak two-scale convergence;
(ii) if vε(x) 2

⇀ v(x, y), then

(2.3) lim inf
ε→0

∫
Ω

|vε|2 dx ≥
∫

Ω

∫
�
|v|2 dxdy;

(iii) vε(x) 2−→ v(x, y) if and only if vε(x) 2
⇀ v(x, y) and

(2.4) lim
ε→0

∫
Ω

|vε|2 dx =
∫

Ω

∫
�
|v|2 dxdy;

(iv) if fε(x) → f(x) in L2(Ω), then fε(x) 2→ f(x);
(v) if f ∈ C∞

0 (Ω) and b ∈ L2
per(�), then f(x)b(x

ε ) 2−→ f(x)b(y);

(vi) for every f ∈ L2(Ω × �) there is a family fε ∈ C∞
0 (Ω) such that fε

2−→ f .
Now, we give the corresponding generalization of the strong resolvent convergence.
Let H be a subspace of L2(Rd × �), and let P : L2(Rd × �) → H be the orthogonal

projection.

Definition 2.1. If Aε and A are nonnegative selfadjoint operators in L2(Rd) and in H,
respectively, then the strong two-scale resolvent convergence Aε

2−→ A means that

(2.5) (Aε + 1)−1fε
2−→ (A + 1)−1Pf if fε

2−→ f , f ∈ L2(Rd × �).

To study the spectrum of the operator Aε for small ε, it is necessary to know the
spectrum of the limit operator A, together with some facts concerning the “convergence”
of the spectra of Aε to the spectrum of A.

The convergence of the spectra in the sense of Hausdorff is most desired. By definition,
this means that

(i) for all λ ∈ Sp A there are λε ∈ Sp Aε such that λε → λ;

(ii) if λε ∈ Sp Aε and λε → λ, then λ ∈ Sp A.

Proposition 2.2. Property (i) is always valid under the strong two-scale resolvent con-
vergence.
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Proof. We put Tε = (Aε + 1)−1 and T = (A + 1)−1.
If λ ∈ Sp A, then µ = (1 + λ)−1 ∈ Sp T , and, therefore, for each δ > 0 there is an

element f in H such that

‖f‖H = 1, ‖Tf − µf‖H ≤ δ

4
.

We take fε ∈ L2(Rd) so that fε
2−→ f , and, in particular, limε→0 ‖fε‖L2(Rd) = ‖f‖H (see

(2.4)). Then, by the resolvent convergence (2.5), we have

lim
ε→0

‖(Tε − µ)fε‖L2(Rd) = ‖(T − µ)f‖H ≤ δ

4
.

We obtain ‖(Tε − µ)fε‖L2(Rd) ≤ δ/2, ‖fε‖L2(Rd) ≥ 1/2 for sufficiently small ε. It is well
known that this implies that the interval (−δ+µ, µ+δ) contains a point of the spectrum
of Tε. We see that every interval centered at λ contains points of the spectrum of Aε if
ε is sufficiently small. The proposition is proved. �

Resolvent convergence implies the convergence of spectral projections. We consider
the spectral expansions of the operators Aε and A,

Aε =
∫ ∞

0

λ dEε(λ) in L2(Rd), A =
∫ ∞

0

λ dE(λ) in H.

Proposition 2.3. If λ is not an eigenvalue of the operator A, then

(2.6) Eε(λ)fε
2−→ E(λ)f whenever fε

2−→ f , f ∈ H.

We do not dwell on the proof of this statement, which, of course, implies the Haus-
dorff convergence property (i). Property (ii) is subtler; mostly, it does not occur under
resolvent convergence.

Now, we can describe our approach to the problem of gaps in spectra.
Let Aε be the operator of double porosity (1.3), (1.4).

Proposition 2.4. We have the two-scale resolvent convergence Aε
2−→ A.

This result was proved in [5] and is quite general. Here, it does not matter what the
soft phase is: it can be a dispersed set or a structure of three-dimensional lattice type.
It is only required that the rigid phase Rd\F0 be connected.

Proposition 2.5. The spectrum of the limit operator has infinitely many gaps.

We prove this for a dispersed F0. In the case of a structure of three-dimensional lattice
type, this is also true, but the description of gaps looks somewhat differently.

Proposition 2.6. If the soft phase is dispersed, then property (ii) of the Hausdorff
convergence of spectra is satisfied.

This is a key point, and the dispersity of the soft phase is essential here.
It remains to use the following quite obvious statement.

Proposition 2.7. Let Kε and K be closed sets on the real line, and suppose we have
the Hausdorff convergence Kε → K. If the limit set K has infinitely many gaps, then,
for sufficiently small ε, the set Kε has gaps close to gaps in K, and the number of gaps
grows unboundedly as ε → 0.

Hempel and Lienau proved also that, as t → ∞, the spectrum of At converges in
the sense of Hausdorff to a closed set that has at least one gap. However, they did not
identify this limit set with the spectrum of an operator.
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We make some remarks concerning resolvent convergence, which, however, will not be
used directly.

For our purposes, it suffices to have the strong convergence (2.5) only for f ∈ H,
and then the projection P can be dropped. However, in homogenization problems,
convergence with projection occurs, and it is important that this strong convergence
is equivalent to a certain special weak convergence of operators.

Proposition 2.8. Let Tε and T be bounded selfadjoint operators in L2(Rd) and
L2(Rd × �)), respectively, and let ‖Tε‖ ≤ 1 and ‖T‖ ≤ 1. Then the convergence

(2.7) Tεfε
2−→ Tf whenever fε

2−→ f

is equivalent to the convergence

(2.8) Tεgε
2
⇀ Tg whenever gε

2
⇀ g.

Proof. 1◦. Suppose (2.7) is valid. Since Tεgε is bounded in L2(Rd), we may assume that
Tεgε

2
⇀ z, and we must prove that z = Tg. We have∫

Rd

Tεgεfε dx →
∫

Rd

∫
�

z · f dxdy

because fε
2−→ f . On the other hand,∫

Rd

Tεgε · fε dx =
∫

Rε

gεTεfε dx →
∫

�

∫
Rd

g · Tf dxdy =
∫

�

∫
Rd

Tg · f dxdy

by (2.7). Consequently, z = Tg.
2◦. Suppose (2.8) is valid. Then∫

Rd

Tεfε · gε dx =
∫

Rd

fε · Tεgε dx →
∫

�

∫
Rd

f · Tg dxdy =
∫

�

∫
Rd

Tf · g dxdy.

Since the sequence gε with gε
2−→ g is arbitrary, we have Tεfε → Tf by the definition of

strong convergence (see (2.3)). The proposition is proved. �

Thus, the strong convergence of the resolvents (2.5) is equivalent to the convergence

(Aε + 1)−1fε
2
⇀ (A + 1)−1Pf whenever fε

2
⇀ f , f ∈ L2(Rd × �).

In homogenization theory, this “weak convergence” is proved first, and then the
“strong convergence” (2.5) is deduced from it.

It should be noted that the convergence (2.5) does not imply a similar convergence
for spectral projections, i.e., we cannot replace f by Pf in (2.6) and assume that f is
an arbitrary element of L2(Rd ×�). The same is true for the Trotter–Kato theorem: for
t ≥ 0 we have

e−tAεfε
2−→ e−tAf whenever fε

2−→ f , f ∈ H.

We cannot find an equivalent “weak” statement for this strong operator convergence.

§3. The limit operator

We consider the set V of functions of the form

(3.1)
u(x, y) = u1(x) + u0(x, y), u1 ∈ H1(Rd),

u0 ∈ L2(Rd, H1
per(�)), u0(x, ·)|Rd\F0

= 0.

For clarity, we restrict ourselves to the case where the soft phase F0 is dispersed. Let
B = F0 ∩ � be the soft insertion in the periodicity cell. We assume that the boundary
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of B is Lipschitz. Then the component u0(x, ·) is a function of class H1
0 (B), extended

by zero to �\B, and we have

V = H1(Rd) + L2(Rd, H1
0 (B)).

In the Hilbert space L2(Rd × �) = L2(Rd, L2(�)), we consider the subspace

H = L2(Rd) + L2(Rd, L2(B)),

which is closed because if f(x, y) = f1(x) + f0(x, y), where f1 ∈ L2(Rd) and f0 ∈
L2(Rd, L2(B)), then

(3.2)
∫

�

∫
Rd

|f |2 dxdy ≥ (1 − |B|1/2)
[∫

Rd

|f1|2 dx +
∫

B

∫
Rd

|f0|2 dxdy

]
.

It is also obvious that the set V is dense in H.
On the set V , we define the quadratic form

(3.3) Q(u, u) =
∫

Rd

ahom∇u1 · ∇ū1 dx +
∫

B

∫
Rd

∇yu0 · ∇yū0 dxdy,

where ahom is the homogenized matrix

ahomξ · ξ = inf
w∈C∞

per(�)

∫
�\B

|ξ + ∇w|2 dy, ξ ∈ R
d,

which is positive definite, because the rigid phase Rd\F0 is connected in Rd.
Inequality (3.2) implies that the form Q is closed. Therefore, this form determines a

nonnegative selfadjoint operator A in H. The equation Au = Pf , where f ∈ L2(Rd ×�)
and P : L2(Rd × �) → H is an orthogonal projection, means that the following integral
identity is valid:∫

Rd

ahom∇u1 · ∇ϕ1 dx +
∫

B

∫
Rd

∇yu0 · ∇yϕ0 dxdy =
∫

�

∫
Rd

fϕ dxdy

for every test function ϕ = ϕ1 + ϕ0 ∈ V . Putting ϕ0 = 0 in the above identity, and then
ϕ1 = 0, we obtain the following two relations:

(3.4)

{
− div(ahom∇u1) = 〈f〉 in R

d,

−�yu0 = f in R
d × �.

For the projection P : L2(Rd × �) → H, we have the relation

Pf = g(x, y) =

{
f(x, y) if y ∈ F0,∫

�\B
f(x, z) dz if y ∈ Rd\F0.

Obviously, if we replace f by Pf , we do not change equations (3.4). We represent these
equations in a shorter form:

(3.5)

{
A1u1 = 〈f〉 in L2(Rd) (space operator),
A0u0 = f in L2(Rd, L2(B)) (Bloch operator).

The “space operator” A1 = − div(ahom∇) is an elliptic second-order operator with con-
stant coefficients. Regarded as an operator in L2(Rd), it has an absolutely continuous
spectrum that fills the entire nonnegative axis. The Bloch operator A0 reduces to the
Laplace–Dirichlet operator −�y in L2(B) (we preserve the same notation A0 for this op-
erator). Below, we prove that the spectrum of A (including the gaps in it) is determined
by the Bloch operator A0.
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Figure 3.

We consider the following eigenvalue problem:

Au = λu, u = u1 + u0,{
A0u0 = λ(u1 + u0),
A1u1 = λ〈u1 + u0〉.

(3.6)

We note that if u0 is an eigenfunction of the Laplace–Dirichlet operator, A0u0 = λu0,
and 〈u0〉 = 0, then u(x, y) = u0(y) is an eigenfunction of A. Obviously, for l ∈ L2(Rd)
the function l(x)u0(y) is also an eigenfunction. These are purely Bloch eigenfunctions,
and, as shown below, they exhaust the point spectrum of A.

The Laplace–Dirichlet operator A0 has discrete spectrum. We split this spectrum into
two disjoint parts:

(3.7) SpA0 = {ω1, ω2, . . . } ∪ {ω′
1, ω

′
2, . . . }.

The second part consists of the eigenvalues for which all corresponding eigenfunctions
have zero mean. We consider the expansion

1 =
∞∑

n=1

cnϕn, cn = 〈ϕn〉 �= 0,

where the ϕn are the eigenfunctions of A0, A0ϕn = ωnϕn, normalized in L2(B). Then

(3.8) b = b(y, λ) =
∞∑

n=1

cnϕn(y)
ωn − λ

is a solution of the equation

(3.9) A0b = λb + 1, λ /∈ {ω1, ω2, . . .}.
We put

(3.10) β(λ) = λ(1 + λ〈b〉) = λ +
∞∑

n=1

c2
nλ2

ωn − λ
.

Lemma 3.1. All eigenfunctions of the operator A are among the purely Bloch eigen-
functions mentioned above.

Proof. Let u = u1 + u0 be an eigenfunction of A (see (3.6)). If u1 ≡ 0, then 〈u0〉 = 0.
Therefore, u = u0 is a purely Bloch eigenfunction. We prove that the relation u1 ≡ 0 is
always valid.
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Let u1 �≡ 0. We consider the orthogonal expansion

u0 =
∑

vn(x)ϕn(y) +
∑

v′n(x)ϕ′
n(y),

where the ϕn and ϕ′
n are the eigenfunctions of A0 corresponding to the eigenvalues in

{ω1, ω2, . . .} and in {ω′
1, ω

′
2, . . .}, respectively. By (3.6), we have

(A0 − λ)u0 = λu1,∑
(ωn − λ)vnϕn +

∑
(ω′

n − λ)v′nϕ′
n = λu1

∑
cnϕn.

It follows that λ /∈ {ω1, ω2, . . .}, because

(ωn − λ)vn = λu1cn �= 0,

and if λ = ω′
k, then

u0(x, y) = λu1(x)
∞∑

n=1

cnϕn(y)
ωn − λ

+ v′k(x)ϕ′
k(y).

Since 〈ϕ′
k〉 = 0, we have

λ〈u1 + u0〉 = β(λ)u1(x),

and (3.6) implies the relation A1u1 = β(λ)u1, from which it is clear that u1 ≡ 0, because
the operator A1 has no eigenfunctions in L2(Rd). The lemma is proved. �

The graph of β(λ) is shown in Figure 3. The function β strictly increases on the
intervals between the points 0, ω1, ω2, . . . .

Lemma 3.2. A point λ belongs to the resolvent set of A if β(λ) < 0 and λ /∈ Sp A0.

Proof. We must prove that the problem

(3.11)
{

A0u0 − λ(u1 + u0) = f,
A1u1 − λ〈u1 + u0〉 = 〈f〉

has a solution for every f ∈ H provided λ satisfies the assumptions of the lemma. Since
λ /∈ Sp A0, we can put

u0 = g + λu1b,

where g = (A0 − λ)−1f and b is a solution of (3.9). Hence,

(3.12) A1u1 − β(λ)u1 = 〈f〉 + λ〈g〉.
It remains to observe that, by the inequality β(λ) < 0, the operator A1 − β(λ)I is
invertible in L2(Rd) and equation (3.12) is solvable. Consequently, problem (3.11) has a
solution for every f ∈ H. The lemma is proved. �

Lemma 3.3. The segments on which β ≥ 0 belong to the spectrum of A.

Proof. Assuming the contrary, we find a point λ lying inside one of the segments indicated
and belonging to the resolvent set of A. Then problem (3.11) is solvable for every f ∈ H.
We consider this problem in the specific case where f = 〈f〉. It is easy to realize that
λ /∈ Sp A0. Therefore, (3.11) implies

u0 = (λu1 + f)b,

A1u1 − β(λ)u1 = f(1 + λ〈b〉).

Since (1 + λ〈b〉) = λ−1β(λ) > 0, we see that the equation A1u1 − β(λ)u1 = g has a
solution in L2(Rd) for every g ∈ L2(Rd), which is impossible because β(λ) > 0. The
lemma is proved. �
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We describe the zeros 0 = ν1 < ν2 < ν3 < · · · of β(λ) (see Figure 3) with the help of
the so-called electrostatic problem. On the set C1 + H1

0 (B), we consider the quadratic
form

Q(u, u) =
∫

B

∇u0 · ∇ū0 dy, u = t + u0, t ∈ C
1, u0 ∈ H1

0 (B),

and study the spectrum of the corresponding selfadjoint operator Γ in the Hilbert space
C1 + L2(B) regarded as a subspace of L2(�). By definition, the equation

Γu = λu, u = t + u0,

means that

(3.13)
∫

B

∇ϕ0 · ∇ϕ0 dy = λ

∫
�

(t + u0)(c + ϕ0) dy, c ∈ C
1, ϕ0 ∈ H1

0 (B).

For λ = 0, the eigenfunction u ≡ t is constant. For λ > 0, (3.13) implies that t = −〈u0〉
and

(3.14) −�u0 = λ(u0 − 〈u0〉) in B.

If 〈u0〉 = 0, then u = u0 is an eigenfunction of A0 with eigenvalue λ ∈ {ω′
1, ω

′
2, . . .}. This

trivial part of the spectrum of the electrostatic problem belongs also to the spectrum of
the Dirichlet problem. In the case where 〈u0〉 �= 0, we necessarily have λ /∈ {ω1, ω2, . . .}.
Indeed, if λ = ωn, then the equation −∆ϕn = ωnϕn and (3.14) imply∫

B

∇u0 · ∇ϕn dy = ωn

∫
B

(u0 − 〈u0〉)ϕn dy,∫
B

∇ϕn · ∇u0 dy = ωn

∫
B

ϕnu0 dy.

Therefore, ωn〈u0〉〈ϕn〉 = 0. Since ωn > 0 and 〈ϕn〉 �= 0, we have 〈u0〉 = 0.
Thus, λ /∈ {ω1, ω2, . . .}. Then equation (3.14) can easily be solved,

u0(y) = −λ〈u0〉b(y, λ),

and we see that
〈u0〉(1 + λ〈b〉) = 0 =⇒ β(λ) = 0.

Conversely, if β(λ) = 0, then the function u0 = −λb(y, λ) satisfies the equation

−∆u0 = λ(u0 − 1) in B,

and 〈u0〉 = 1, i.e., u0 − 1 is an eigenfunction of the operator Γ. Thus, we have proved
the following statement.

Lemma 3.4. The zeros of β(λ) are nontrivial eigenvalues of the electrostatic problem
(i.e., they are not eigenvalues of the Dirichlet problem).

Now, we can describe the spectrum of the operator A.
1. Some eigenvalues of the Laplace–Dirichlet operator A0 (namely, those for which the

corresponding eigenfunctions have zero mean) are eigenvalues (of infinite multiplicity) of
the operator A. The operator A does not have other eigenvalues. Thus, the point
spectrum of A contains the points ω′

1, ω
′
2, . . . (see (3.7)) and also all multiple eigenvalues

in {ω1, ω2, . . .}. It is well known (see [10]) that, for a “typical” region B, the spectrum of
the Laplace–Dirichlet operator is simple and the eigenfunctions have zero mean; therefore,
the set {ω′

1, ω
′
2, . . .} is empty. In this case, A has no eigenvalues.

2. Consider the restriction of A to the orthogonal complement of the set of all its
eigenfunctions. The spectrum of this restriction is the union of the segments on which
β ≥ 0, and the intervals between them are gaps. It can easily be proved that the
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spectrum is absolutely continuous inside the latter intervals, and the “eigenfunctions of
the continuous spectrum” look like this:

u(x, y, λ) = eip·x{1 + λb(y, λ)}, ahomp · p = β(λ).

3. The interval (ωi, νi+1) (i = 1, 2, . . .) is not necessarily a gap because it can contain
an eigenvalue among {ω′

1, ω
′
2, . . .}. Then this interval splits into several gaps. In any

case, the spectrum of A contains infinitely many gaps.
Similar results are valid in the case where the scalar conductivity coefficient aε(x) (see

(1.4)) is replaced by the matrix coefficient

aε(x) =

{
ε2a(x

ε ) on F ε
0 (soft phase),

a(x
ε ) on R

d \ F ε
0 (rigid phase),

where a(y) is a measurable periodic symmetric matrix satisfying the usual conditions of
boundedness and ellipticity,

αξ2 ≤ aξ · ξ ≤ α−1ξ2, α > 0.

The homogenized matrix ahom is defined by the equation

ahomξ · ξ = inf
w∈C∞

per(�)

∫
�\B

a(y)(ξ + ∇w) · (ξ + ∇w̄) dy,

and for the role of A0 we must take the operator − divy(a(y)∇y) corresponding to the
Dirichlet problem in the region B.

§4. Convergence of spectra

1. Here we prove the missing property (ii) of the Hausdorff convergence of spectra. Let
λε ∈ Sp Aε be such that λε → λ; we must prove that λ ∈ Sp A. Since we know that
Sp A0 ⊂ Sp A, we assume that λ /∈ Sp A0. We have

Aεuε = λεuε,

where the eigenfunction uε is quasiperiodic on the cell ε� and satisfies the normalization
condition

−
∫

ε�
|uε|2 dx =

1
εd

∫
ε�

|uε|2 dx = 1.

Then (see (1.2))

−
∫

ε�
aε|∇uε|2 dx = λε,

and for each cube Ω = [−t, t]d, t ≥ 1, we have

1
2
≤ −

∫
Ω

|uε|2 dx ≤ 2,(4.1)

−
∫

Ω

aε|∇uε|2 dx ≤ 2λε,

provided ε is sufficiently small.
Homogenization in double-porosity models was studied in the papers [10]–[13] and [5].

We need the following result.

Theorem 4.1. Let Ω be a closed Lipschitz region, and let uε ∈ H1(Ω) be a sequence
such that

1) lim supε→0

∫
Ω
(|uε|2 + aε|∇uε|2) dx < ∞;

2) − div(aε∇uε) = gε, gε is bounded in L2(Ω), gε(x) 2
⇀ g(x, y).
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Then (up to extraction of a subsequence) we have the two-scale convergence

uε(x) 2
⇀ u(x, y) = u1(x) + u0(x, y), u1 ∈ H1(Ω), u0 ∈ L2(Ω, H1

0 (B)),

and the limit function satisfies the integral identity∫
Ω

ahom∇u1 · ∇ϕ1 dx +
∫

Ω

∫
B

∇yu0 · ∇yϕ0 dxdy =
∫

Ω

∫
�

g(ϕ1 + ϕ0) dxdy

for all ϕ1 ∈ C∞
0 (Ω) and all ϕ0 ∈ L2(Ω, H1

0 (B)).

In a concise form, we can write{
A1u1 = − div(ahom∇u1) = 〈g〉 in Ω,

A0u0 = −∆yu0 = g in Ω × �.

Applying Theorem 4.1 to the sequence of eigenfunctions uε, we obtain the two-scale
convergence

uε(x) 2
⇀ u(x, y) = u1(x) + u0(x, y), u1 ∈ H1

loc(R
d), u0 ∈ L2

loc(R
d, H1

0 (B)),

and equations (3.6). Formally, the equation Au = λu is fulfilled. However, the function
u is not an element of L2(Rd × �), and, above all, it is unclear whether u �≡ 0.

The following statement plays a key role.

Lemma 4.2 (compactness lemma). Let λε → λ /∈ Sp A0. Then the sequence of eigen-
functions uε is compact in the sense of strong two-scale convergence in every bounded
region Ω ⊂ Rd.

Using this lemma, inequality (4.1), and property (2.4), we obtain –
∫
Ω×� |u|2 dxdy ≥

1/2. Then also u1 �= 0 because otherwise (3.6) implies λ ∈ Sp A0. Now, property (ii) of
the Hausdorff convergence can easily be obtained. Indeed, by (3.6), we have the following
equation for u1:

(4.2) − div(ahom∇u1) = β(λ)u1,

and if we assume that λ /∈ Sp A, then β(λ) < 0 by Lemma 3.3. Relation (4.1) and
property (2.3) of semicontinuity yield

−
∫

Ω

∫
�
|u|2 dxdy ≤ 2.

Now, an inequality of the form (3.2) (with Ω instead of Rd) leads to the estimate

−
∫

Ω

|u1|2 dx ≤ 2
1 − |B|1/2

,

which shows that the solution u1 is of “moderate” growth, i.e., it corresponds to a
“tempered distribution” (a continuous functional on the Schwartz space on Rd). Then
u1 ≡ 0, which becomes clear if we pass to the Fourier transform in (4.2) and recall that
β(λ) < 0.

2. To prove the compactness lemma, we need the following well-known result concerning
extension of functions (see [14, Chapter III]).

Proposition 4.3. Suppose B1 is a sufficiently smooth region such that B1 ⊂ �, B ⊂ B1,
and B1\B is connected. Then there is an extension of u ∈ H1(B1\B) up to a function
ũ ∈ H1(B1), and we have the estimates

(4.3)
∫

B

|∇ũ|2 dx ≤ C

∫
B1\B

|∇u|2 dx,

∫
B

|ũ|2 dx ≤ C

∫
B1\B

(|u|2 + |∇u|2) dx
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with a constant C independent of u. Moreover, we may assume that the function ũ is
harmonic in B.

Estimates (4.3) only improve under a homothety, and we can apply them to each
component of F ε

0 . As a result, we obtain an extension of uε|Rd\F ε
0

to Rd,

ũε ∈ H1
loc(R

d), −
∫

Ω

(|ũε|2 + |∇ũε|2) dx ≤ C1.

Without loss of generality, we may assume that

ũε ⇀ u1 in H1
loc(R

d).

Since ũε → u1 strongly in L2(Ω), we have ũε(x) 2→ u(x) (see property (iv) of two-scale
convergence in §2). Therefore, it remains to prove that the difference vε = uε − ũε is
compact in the sense of strong two-scale convergence in Ω. Assuming that ũε is harmonic
on each inclusion, we obtain

(4.4) vε ∈ H1
0 (F ε

0 ), −ε2�vε = λε(ũε + vε) in F ε
0 .

Consider the operator Tε = −ε2∆ corresponding to the Dirichlet problem in F ε
0 .

Since F ε
0 splits into separate components, the operator Tε also splits, and its spectrum

coincides with that of the operator A0 in L2(B). Since the points λε are separated away
from Sp A0 by a distance ρ0 > 0, we obtain ‖(Tε − λε)−1‖ ≤ 1

ρ0
, and for the solution of

the equation
Tεzε − λεzε = gε

we have the estimate

(4.5) ‖zε‖L2(Ω∩F ε
0 ) ≤

1
ρ0

‖gε‖L2(Ω∩F ε
0 ),

where Ω ∩ F ε
0 means the totality of inclusions entirely lying in Ω.

Below, we use the following obvious property of two-scale convergence.

Proposition 4.4. Suppose vε ∈ L2(Ω) and v ∈ L2(Ω × �). Assume that the following
condition is fulfilled: for every δ > 0 there exist elements zε ∈ L2(Ω) and z ∈ L2(Ω×�)
such that

zε
2−→ z, ‖v − z‖L2(Ω×�) ≤ δ, lim sup

ε→0
‖vε − zε‖L2(Ω) ≤ δ.

Then vε
2−→ v.

Proposition 4.5. Let vε be a solution of (4.4). Then

(4.6) vε(x) 2−→ λu1(x)b(y, λ) ≡ v(x, y),

where b is a solution of (3.9).

Proof. We use estimate (4.5) to simplify equation (4.4). Let f ∈ C∞
0 (Rd) be such that

‖ũε − f‖L2(Ω) ≤ δ for all ε. The existence of such a function follows from the strong
convergence ũε → u1 in L2(Ω). Then estimate (4.5) allows us to replace ũε by f . Next, we
consider the function fε(x) that coincides with f on Rd\F ε

1 and that, on each component
of F ε

0 , is equal to the mean value on this component. Then |f − fε| → 0 uniformly on Ω,
and we can replace f by fε. For the same reason, we can replace λε by λ. After these
simplifications, we obtain the equation

Tεzε − λzε = λfε.

However, in this case,
zε(x) = λfε(x)b(ε−1x, λ)
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Figure 4.

(see (3.9)), and the strong convergence zε(x) 2−→ z(x, y) = λf(x)b(y, λ) is obvious. As a
result, we have

lim sup
ε→0

‖vε − zε‖L2(Ω) ≤ Cδ,∫
Ω

∫
�
|v − z|2 dxdy ≤ λ2

∫
Ω

|u1 − f |2 dx ·
〈
b2

〉
≤ Cδ2,

and Proposition 4.4 gives (4.6). Thus, the compactness lemma is proved. �

§5. Other geometric models

We describe a simplest plane model in which the rigid phase is not a fixed periodic
set as before, but is a “fine” structure with relative area tending to zero.

In Figure 4, we have a square 1-periodic net Fh consisting of strips of width 2h > 0.
In the same figure, an infinitely thin (singular) net corresponding to the width h = 0 is
depicted.

On R2, we define a periodic function ρh(y) such that

2ρh(y) =

{
1 + 1

|�∩F h| on � ∩ Fh,

1 off Fh.

As h → 0, we have

ρhdy ⇀ dµ, dµ =
1
2
dy +

1
2
dm,

in the sense of weak convergence of measures, where dy is the planar Lebesgue measure
and dm is the periodic measure concentrated on the singular net and proportional to
the one-dimensional Lebesgue measure on this net,

∫
� dm = 1. It can be said that we

“reinforce” the plane with a thin net the mass of which is half the total mass. In the
limit as h → 0, the plane is reinforced with the singular net, which is also half the total
mass. The limit measure µ can be called the composite or junction measure.

Now, we assume that h(ε) → 0 and define an ε-periodic thin structure F ε and the
corresponding density ρε(x) by the formulas

F ε = εFh(ε), ρε(x) = ρh(ε)(ε−1x).

By construction,

2ρε(x) =

{
1 off F ε,

1 + 1
|�ε∩Fε| on �ε ∩ F ε,

where �ε = ε�. Obviously, we have
∫

ε� ρε dx = ε2, whence ρεdx ⇀ dx.
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Figure 5.

We define the permeability ratio as

aε(x) =

{
1 on F ε (rigid phase),
ε2 on R2\F ε = F ε

0 (soft phase)

(see Figure 5) and study the spectrum of the operator

Aε = − div(aερε∇)

in the space L2(Rd, ρεdx). The resolvent equation has the form

− div(aερε∇uε) + ρεuε = f, f ∈ L2(Rd, ρεdx).

First, we introduce an appropriate definition of the two-scale convergence. Let vε be
a bounded sequence in L2(Rd, ρεdx), i.e.,

lim sup
ε→0

∫
Rd

|vε|2ρε dx < ∞.

A function v ∈ X = L2(Rd × �, dx × dµ) = L2(Rd, L2(�, dµ)) is the weak two-scale
limit of vε, vε(x) 2

⇀ v(x, y) if

lim
ε→0

∫
Rd

vε(x)ϕ(x)b(
x

ε
)ρε(x) dx

=
∫

Rd

∫
�

v(x, y)ϕ(x)b(y) dxdµ(y), ϕ ∈ C∞
0 (Rd), b ∈ C∞

per(�).

In a similar way, we can define strong two-scale convergence. The definitions given in §2
correspond to the case where ρε ≡ 1 and dµ = dy. All properties listed there remain
valid also in the general case (see [15], where the general idea of two-scaled convergence
was presented). For example, the lower semicontinuity property (2.3) looks like this:

lim inf
ε→0

∫
Rd

|vε|2ρε dx ≥
∫

Rd

∫
�
|v|2 dxdµ.

Now, we make a remark concerning the space X to which the two-scale limits belong.
The space L2(Rd) is naturally identified with a subspace of X, and since 2dµ = dm + dy
and dm is singular with respect to the Lebesgue measure dy, we see that the space
L2(Rd, L2(�, dy)) can also be regarded as a subspace of X.

It can be shown that we have the strong two-scale convergence Aε
2→ A. The limit

operator A acts in the subspace H ⊂ X,

H = L2(Rd) + L2(Rd, L2(�, dy)),
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Figure 6.

which is closed because of an inequality of the form (3.2), namely, if f(x, y) = f1(x) +
f0(x, y), then

‖f‖2
X ≥

(
1 −

√
2

2

)[∫
Rd

|f1|2 dx +
∫

�

∫
Rd

|f0|2 dxdy

]
.

In this case, the homogenized matrix defined by

2ahomξ · ξ = inf
w∈C∞

per(�)

∫
�
|ξ + ∇w|2 dm

can be calculated explicitly: ahom = 1
4I. The quadratic form Q(u, u) = (Au, u) is given

on the set V = H1(Rd) + L2(Rd, H1
0 (�)) by the formula

Q(u, u) =
∫

Rd

ahom∇u1 · ∇ū1 dx +
∫

�

∫
Rd

∇yu0 · ∇yū0 dxdµ

=
1
4

∫
Rd

∇u1 · ∇ū1 dx +
1
2

∫
�

∫
Rd

∇yu0 · ∇yū0 dxdy,

and the relation Au = Pf , where f ∈ X, reduces to the following two relations:{
−1

4�u1 = 〈f〉 in Rd, 〈f〉 =
∫

� f dµ,

−�yu0 = f in Rd × �.

Now the operator A0 is the Laplace–Dirichlet operator in the unit square �. Thus, we
have a complete analogy with the case where the soft phase is dispersed, and the interior
of the square � plays the role of the inclusion B.

In the proof of the compactness lemma, we must use the following extension result.
Let Sh be the frame of width h shown in Figure 6. Then any function u ∈ H1(Sh) can
be extended up to a function ũ ∈ H1(�) satisfying the estimate∫

�
|∇ũ|2 dx ≤ C

h

∫
Sh

|∇u|2 dx,

∫
�
|∇ũ|2 dx ≤ C

h

∫
Sh

(|u|2 + |∇u|2) dx,

where the constant C is independent of u.
The same results are valid for the three-dimensional model where the thin periodic net

is replaced by a thin periodic box structure. The operator A0 (by which the spectrum
of A and gaps in it are constructed) is the Laplace–Dirichlet operator in the unit cube.

Other net double-porosity models were discussed in [16, 17].
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pp. 71–107. MR1882692 (2003f:35220)

[9] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), 1482–1518.

MR1185639 (93k:35022)
[10] J. Albert, Genericity of simple eigenvalues for elliptic PDE’s, Proc. Amer. Math. Soc. 48 (1975),

413–418. MR0385934 (52:6793)
[11] T. Arbogast, J. Douglas, and U. Hornung, Derivation of the double porosity model of single phase

flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), no. 4, 823–836. MR1052874
(91d:76074)

[12] U. Hornung (ed.), Homogenization and porous media, Interdisciplinary Appl. Math., vol. 6,
Springer-Verlag, New York, 1997. MR1434315 (98h:76128)

[13] G. V. Sandrakov, Averaging of nonstationary equations with contrast coefficients, Dokl. Akad. Nauk
355 (1997), no. 5, 605–608. (Russian) MR1600386 (99a:35018)
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