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THRESHOLD APPROXIMATIONS WITH CORRECTOR
FOR THE RESOLVENT OF A FACTORIZED SELFADJOINT

OPERATOR FAMILY

M. SH. BIRMAN AND T. A. SUSLINA

In fond memory of Ol′ga Aleksandrovna Ladyzhenskaya

Abstract. In a Hilbert space, a family of operators admitting a factorization A(t) =
X(t)∗X(t), where X(t) = X0 + tX1, t ∈ R, is considered. It is assumed that the
subspace N = Ker A(0) is finite-dimensional. For the resolvent (A(t) + ε2I)−1 with
small ε, an approximation in the operator norm is obtained on a fixed interval |t| ≤ t0.
This approximation involves the so-called “corrector”; the remainder term is of order
O(1). The results are aimed at applications to homogenization of periodic differential
operators in the small period limit. The paper develops and refines the results of
Chapter 1 of our paper in St. Petersburg Math. J. 15 (2004), 639–714.

Introduction

0.1. The present paper is devoted to further development of the operator-theoretic mate-
rial presented in Chapter 1 of [BSu]. In [BSu], this approach served as a basis for the study
of the homogenization effect for periodic differential operators (pDOs) in L2(Rd; Cn). Un-
der this approach, the homogenization effect can be studied consistently as a spectral
threshold effect near the bottom of the spectrum of a pDO. Namely, after partial diag-
onalization of a pDO, we arrive at a factorized operator family of the form (1.1) (see
below). Preliminarily, such families were studied in [BSu, Chapter 1] with the help of
abstract operator theory. More precisely, the resolvent

(∗) (A(t) + ε2I)−1, ε > 0,

was approximated in terms of the resolvent of the germ S (see Subsection 1.3 below). The
germ S is a positive operator acting in the finite-dimensional subspace N = KerA(0) of
dimension n ≥ 1. For ε > 0 and |t| ≤ t0, the difference of the resolvents was estimated (in
the operator norm) by Cε−1. The constants C and t0 were well controlled; in general,
the order ε−1 in this estimate is sharp. This statement, which is of its own interest,
automatically leads to a similar estimate for the norm of the difference of the resolvents
of two different families of the form (1.1) having the same germ S. Precisely this latter
estimate and its modifications were applied in [BSu] to homogenization problems.

Though these abstract results were aimed at applications to homogenization, formally
they are not related to it, pertaining to the spectral perturbation theory of selfadjoint
operator families in a Hilbert space.
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0.2. Perturbation theory in the spirit of [BSu, Chapter 1] can be developed further in
order to find more accurate finite-dimensional approximations of the resolvent (∗). Here-
with, we obtain a remainder estimate of order O(1) (instead of O(ε−1)), which is uniform
in ε and t (under the same conditions on the family A(t) as before). Besides refined finite-
dimensional approximations of the resolvent, we obtain accurate approximations for it
in terms of other operator families. Combined with the corresponding estimates of the
remainder terms, such approximations can be applied to homogenization problems for
pDOs.

The corresponding abstract considerations now become more involved. Therefore, the
authors decided to isolate them in the present paper. Applications to the homogenization
of pDOs will be considered elsewhere.

In applications to homogenization, the resulting refined approximation for the re-
solvent (∗) generates correction terms of the order of ε. In homogenization theory, a
correction term of the order of ε is called a corrector. We used this term in the title of
the present paper.

Formally speaking, the present paper can be read independently of [BSu, Chapter 1].
All necessary facts from that paper are repeated here, though without proofs. At the
same time, the general method of investigation is the same as in [BSu, Chapter 1], so
that being acquainted with [BSu] could facilitate reading.

0.3. The construction of the refined finite-dimensional approximation of the resolvent
(∗) involves more than the germ S. Besides S, we need two more operators of finite rank.
The first of these is the operator Z defined (together with an auxiliary operator R) in
Subsection 1.2; we have ZN ⊂ N⊥. The second is the operator N defined in (4.13);
we have NN ⊂ N. In a natural way, the operator N splits: N = N0 + N∗. In the
eigenbasis of the operator S, the matrix of N0 is diagonal. On the contrary, the matrix
of N∗ has zero diagonal (hence, N∗ = 0 for n = 1). The operator N is studied in detail
in Subsection 4.2.

The main result (Theorem 5.1) about finite-dimensional approximation of the resolvent
(∗) is given by (5.21), where Ξ (see (5.5)) is defined in terms of S, and the remainder term
J is uniformly bounded in the operator norm. Theorem 5.1 implies Theorem 5.5, where
a refined approximation for the resolvent (∗) is given in terms of the resolvent of another
operator family. The corresponding formula (5.28) also involves the operators Z and N .

Theorem 5.5 is convenient for applications to homogenization problems for pDOs. It
turns out that the terms in (5.28) that contain the factors t and t3 generate the corrector.
Note that the corrector traditional for homogenization theory corresponds to the term
tZ(Ã(t) + ε2I)−1 in (5.28). At the same time, to obtain the remainder estimate of the
order of ε2, we need to take into account all the terms distinguished in (5.28).

Theorems 5.1 and 5.5 are the main results of the paper. However, in the final §6 we
obtain some modifications and generalizations of these theorems, which are also useful
for applications to the homogenization of pDOs.

0.4. The paper consists of six sections. In §1, we list the necessary facts from [BSu,
Chapter 1]. In §§2–4 we obtain preliminary estimates and calculate the operators Z and
N . As in [BSu, Chapter 1], for estimating the remainder terms we use contour inte-
gration, while for calculations we use power series expansions given by spectral analytic
perturbation theory. §§5 and 6 contain the main results of the paper.

Though the triple enumeration was used in [BSu], all our references to that paper
concern only Chapter 1. Therefore, we omit the number of the chapter when citing.

Below, the absolute constants are denoted by β with various indices. The other
constants in estimates are denoted by c, C, C (also with indices).
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§1. Preliminaries

For the most part, the content of this section is borrowed from [BSu, Chapter 1].

1.1. Quadratic pencils. We denote by H and H∗ separable complex Hilbert spaces;
X0 : H → H∗ is a densely defined and closed operator; X1 : H → H∗ is a bounded
operator. Then the operator X(t) := X0 + tX1, t ∈ R, is closed on the domain
Dom X(t) = DomX0. Our main object is the family of selfadjoint positive operators

(1.1) A(t) := X(t)∗X(t), t ∈ R,

in H. We denote A(0) = X∗
0X0 =: A0. The operator (1.1) corresponds to the quadratic

form a(t)[u, u] = ‖X(t)u‖2
H∗

, u ∈ Dom X0. Next,

N := KerA0 = KerX0, N∗ := Ker X0X
∗
0 = Ker X∗

0 .

It is assumed that the point λ0 = 0 is an isolated point of the spectrum of A0 (the
distance from this point to the rest of the spectrum is denoted by d0), and

0 < n := dim N < ∞, n ≤ n∗ := dimN∗ ≤ ∞.

Let F (t, s) denote the spectral projection of A(t) for the interval [0, s]. In what follows,
we fix a number δ > 0 such that 8δ < d0. It turns out that

(1.2) F (t, δ) = F (t, 3δ), rank F (t, δ) = n, |t| ≤ t0 = t0(δ) = δ1/2‖X1‖−1

(see [BSu, (1.3)]). Let P be the orthogonal projection of H onto N, and let P∗ be the
orthogonal projection of H∗ onto N∗. Next, P⊥ = I − P , N⊥ = H 	 N, and so on.

1.2. The operators Z and R. Let D := Dom X0 ∩ N⊥, and let u ∈ H∗. We consider
the following equation for a function ψ ∈ D:

(1.3) (X0ψ, X0ζ)H∗ = (u, X0ζ)H∗ , ζ ∈ D
(cf. [BSu, (1.7)]). Equation (1.3) admits a unique solution ψ, and this solution satisfies
‖X0ψ‖H∗ ≤ ‖u‖H∗ . Now, suppose that

(1.4) ω ∈ N, u = −X1ω;

the corresponding solution of (1.3) is denoted by ψ(ω). We define a bounded operator
Z : H → H by the following relations:

(1.5) Zω = ψ(ω), ω ∈ N; Zx = 0, x ∈ N
⊥.

Clearly, rank Z ≤ n. To estimate the norm of Z, we put ζ = ψ(ω) in the formula

(1.6) (X0ψ(ω) + X1ω, X0ζ)H∗ = 0, ζ ∈ D.

Then

(1.7) (A0ψ(ω), ψ(ω))H = ‖X0ψ(ω)‖2
H∗ ≤ ‖X1‖2‖ω‖2

H.

Since 8δ‖ζ‖2
H ≤ (A0ζ, ζ)H, ζ ∈ D, relations (1.5) and (1.7) imply the inequality

(1.8) ‖Z‖H→H ≤ (8δ)−1/2‖X1‖H→H∗ =: C1.

Note that ZP = Z, PZ = 0.
Now, assuming that (1.4) and (1.6) are satisfied, we put

(1.9) ω∗ = X0ψ(ω) + X1ω.

We introduce a linear operator R (see [BSu, Subsection 1.2]) as follows:

(1.10) R : N → N∗, Rω = ω∗ ∈ N∗.

Another representation for R is given by

R = P∗X1|N.
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1.3. The operator S (the germ). The selfadjoint operator

S = R∗R : N → N

is called the spectral germ of the operator family (1.1) at t = 0 (cf. [BSu, Subsection 1.3]).
The germ also admits the following representations:

(1.11) S = PX∗
1P∗X1|N, (Sζ, ζ)H = ‖Rζ‖2

H∗ = ‖P∗X1ζ‖2
H∗ , ζ ∈ N.

The germ S is said to be nondegenerate if Ker S = {0}, or, equivalently, rank R = n.
Let Ã(t) = X̃(t)∗X̃(t) be another operator family in H of the form (1.1) subject to the
same conditions as A(t) (H̃∗ may be different from H∗). We say that the families A(t)
and Ã(t) are threshold equivalent if N = Ñ and S = S̃.

In accordance with the general analytic perturbation theory (see [K]), for |t| ≤ t0 there
exist real-analytic functions λl(t) and real-analytic H-valued functions ϕl(t) such that

(1.12) A(t)ϕl(t) = λl(t)ϕl(t), l = 1, . . . , n, |t| ≤ t0 = t0(δ),

and the functions ϕl(t), l = 1, . . . , n, form an orthonormal basis in F (t, δ)H. For suffi-
ciently small t∗ and |t| ≤ t∗ ≤ t0, we can write convergent power series expansions:

λl(t) = γlt
2 + µlt

3 + · · · , γl ≥ 0, µl ∈ R, l = 1, . . . , n,(1.13)

ϕl(t) = ωl + tϕ
(1)
l + t2ϕ

(2)
l + · · · , l = 1, . . . , n.(1.14)

The elements ωl = ϕl(0), l = 1, . . . , n, form an orthonormal basis in N. Substituting
(1.13) and (1.14) into (1.12) and comparing the coefficients of t and t2, we see that

ω̃l := ϕ
(1)
l − ψ(ωl) = ϕ

(1)
l − Zωl ∈ N, l = 1, . . . , n,(1.15)

Sωl = γlωl, l = 1, . . . , n.(1.16)

Relations (1.16) are equivalent to

(1.17) SP =
n∑

l=1

γl(·, ωl)Hωl.

From (1.17) it follows that the germ S does not depend on a particular factorization of
the form (1.1) for A(t). At the same time, representation (1.11) shows that S does not
depend on the choice of the basis (1.14) (which may be nonunique). If all the eigenvalues
γl in (1.16) are simple, then the elements ωl in (1.14) are defined in terms of the germ
S uniquely (up to phase factors). If there are multiple eigenvalues among γl, then the
knowledge of S is not sufficient for determining the elements ωl.

In connection with the expansions (1.13) and (1.14), we note the following. Differen-
tiating the relations (ϕk(t), ϕl(t))H = δkl and putting t = 0, we obtain

(ϕ(1)
k , ωl)H + (ωk, ϕ

(1)
l )H = 0, k, l = 1, . . . , n.

Combining this with (1.15) and the condition ψ(ωk) ∈ N⊥, we see that

(1.18) (ω̃k, ωl)H + (ωk, ω̃l)H = 0, k, l = 1, . . . , n.

§2. Approximation of the projection F (t, δ)

2.1. Notation. The contour Γ. Sometimes, we use the brief notation F (t) = F (t, δ).
We denote by Rz(t) the resolvent (A(t) − zI)−1 of the operator A(t) and by Rz(0) the
resolvent of A0. The operator-valued function F (t) is real-analytic for |t| ≤ t0. If |t| ≤ t∗,
this function admits a power series expansion

(2.1) F (t) = P + tF1 + · · ·
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convergent in the operator norm. Now, for us it suffices to estimate the difference

F2(t) := F (t) − P − tF1, |t| ≤ t0(δ) = δ1/2‖X1‖−1,

and to give an explicit expression for the operator F1. It is convenient to obtain the
required estimate by integrating the difference of the resolvents over an appropriate
contour, while for calculating F1 it is more convenient to use the expansions (1.14).

Let Γ ⊂ C be the contour that envelops the interval [0, δ] equidistantly at the distance
δ. By (1.2), the distance from Γ to the spectrum of A(t) is at least δ, whence

‖Rz(t)‖ ≤ δ−1, z ∈ Γ, |t| ≤ t0(δ).

We shall use the following elementary identity:

(2.2) F (t) − P =
1

2πi

∫
Γ

(Rz(0) − Rz(t)) dz, |t| ≤ t0(δ).

Note that the usual resolvent identity for the difference of resolvents is not applicable
under our assumptions, because, in general, Dom A(t) depends on t. However, for the
forms a(t) we have Dom a(t) = Dom X(t) = Dom X0. This allows us to use a certain
analog of the resolvent identity (cf. [BSu, (2.13)] and Subsection 3.1 below). However,
so far it suffices to use a “finished” result of [BSu].

2.2. The estimate for the norm of F2(t). The following result was obtained in [BSu,
§3, Theorem 3.1]. Now we reproduce this result in detail.

Theorem 2.1. Let z ∈ Γ, and let |t| ≤ t0(δ). Then

(2.3) Rz(0) − Rz(t) = tI0
1 + t2I+

2 + Ψ0(t),

where Ψ0(t) satisfies the estimate

(2.4) ‖Ψ0(t)‖ ≤ β(0)|t|3δ−5/2‖X1‖3,

and the bounded operators I0
1 and I+

2 do not depend on t. For the terms I0
1 and I+

2 we
have

I0
1 = Ωz(0)T (1)

δ Rz(0),(2.5)

I+
2 = Ωz(0)T (2)

δ Rz(0) − Ωz(0)T (1)
δ Ωz(0)T (2)

δ Rz(0).(2.6)

Here

(2.7) Ωz(t) := I + (z + 2δ)Rz(t),

and we have

(2.8) ‖Ωz(t)‖ ≤ 5, z ∈ Γ, |t| ≤ t0(δ).

The definition of the operators T
(1)
δ and T

(2)
δ is more complicated. On Dom X0 we

introduce the metric form ‖X0u‖2
H∗

+ 2δ‖u‖2
H, u ∈ Dom X0. The Hilbert space Dom X0

with this metric form is denoted by d. The operators T
(1)
δ and T

(2)
δ are selfadjoint

continuous operators in d generated by the forms 2 Re(X0u, X1u)H∗ and ‖X1u‖2
H∗

, u ∈ d,
respectively. The norms of T

(1)
δ and T

(2)
δ in d satisfy

(2.9) ‖T (1)
δ ‖d→d ≤ (2δ)−1/2‖X1‖, ‖T (2)

δ ‖d→d ≤ (2δ)−1‖X1‖2.

For estimating F2(t), we need a rough version of Theorem 2.1: for I+
2 it suffices

to have only an estimate. This estimate follows from the representation (2.6) by an
automatic application of the results of [BSu, Subsections 2.2 and 3.2]. We shall not
enter into the details here. It is easy to reconstruct the details on the basis of §3, where
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more complicated cases will be discussed. It is easily seen that ‖I+
2 ‖ ≤ 75δ−2‖X1‖2.

Combining this with (2.4), we obtain

‖t2I+
2 + Ψ0(t)‖ ≤ 75δ−2‖X1‖2t2 + β(0)δ−5/2‖X1‖3|t|3

≤ β(1)δ−2‖X1‖2t2, |t| ≤ t0(δ).

Thus, instead of (2.3) and (2.4) we obtain the following representation:

Rz(0) − Rz(t) = tI0
1 + Ψ1(t), ‖Ψ1(t)‖ ≤ β(1)δ−2‖X1‖2t2,

for |t| ≤ t0(δ). Now (2.2) directly implies the relations

F (t) = P + tF1 + F2(t), ‖F2(t)‖ ≤ β(2)δ−1‖X1‖2t2, |t| ≤ t0(δ),(2.10)

2πiF1 =
∫

Γ

I0
1 dz.(2.11)

2.3. Calculation of the operator F1. This can be done on the basis of (2.5) and
(2.11), but we prefer to use the power series expansions (2.1) and (1.14). We put

(2.12) ψl = ψ(ωl) = Zωl, l = 1, . . . , n.

Then, by (1.14) and (1.15),

F (t) =
n∑

l=1

(·, ϕl(t))Hϕl(t)

=
n∑

l=1

(·, ωl)Hωl + t
n∑

l=1

(
(·, ϕ(1)

l )Hωl + (·, ωl)Hϕ
(1)
l

)
+ O(t2)(2.13)

= P + t
n∑

l=1

(
(·, ψl)Hωl + (·, ωl)Hψl

)
+ tY + O(t2),

where Y :=
∑n

l=1

(
(·, ω̃l)Hωl + (·, ωl)Hω̃l

)
. Clearly, Y |N⊥ = 0. Relation (1.18) implies

that (Y ωj , ωk) = 0, j, k = 1, . . . , n, whence Y |N = 0. Thus, Y = 0, and from (2.1) and
(2.13) we deduce that

(2.14) F1 =
n∑

l=1

(
(·, ψl)Hωl + (·, ωl)Hψl

)
.

Formula (2.14) can be rewritten in an invariant form. Indeed,

n∑
l=1

(u, ωl)Hψl = Z
n∑

l=1

(u, ωl)Hωl = ZPu, u ∈ H.

Thus, (2.14) is equivalent to the relation

(2.15) F1 = ZP + PZ∗.

We arrive at the following theorem.

Theorem 2.2. In the representation (2.10), the operator F1 is defined by (2.15).

Note that Z = F1P . It follows that Z (together with F1 and P ) is determined directly
by the family A(t) and does not depend on the factorization (1.1).
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§3. Refined approximation for the difference

of the resolvents on the contour Γ

3.1. The resolvent identity. We write the resolvent identity, using the notation of
Subsection 2.2. Initially, this identity looks like the following (see [BSu, (3.11)]):

(3.1) I := Rz(0) − Rz(t) = Ωz(0)Tδ(t)Rz(t),

where

(3.2) Tδ(t) = tT
(1)
δ + t2T

(2)
δ .

We need to iterate identity (3.1) in order to separate three terms from I (but not two
terms, as in (2.3)). We are not interested in the separated terms themselves. Our goal is
to estimate the remainder term. Therefore, below we shall use the symbol “∼” (together
with “=”), omitting the terms of the first three orders with coefficients independent of
t. Iterating (3.1), we obtain

(3.3)

I = Ωz(0)Tδ(t)Rz(0) − Ωz(0)Tδ(t)I ∼ −Ωz(0)Tδ(t)Ωz(0)Tδ(t)Rz(t)

= −t2Ωz(0)T (1)
δ Ωz(0)T (1)

δ Rz(t)

− t3Ωz(0)
(
T

(2)
δ Ωz(0)T (1)

δ + T
(1)
δ Ωz(0)T (2)

δ

)
Rz(t) + t4Θ1(t),

(3.4) Θ1(t) = −Ωz(0)T (2)
δ Ωz(0)T (2)

δ Rz(t).

Now we perform yet another iteration in the terms with t2 and t3 on the right-hand side
of (3.3), obtaining

(3.5)
I ∼ t2Ωz(0)T (1)

δ Ωz(0)T (1)
δ Ωz(0)Tδ(t)Rz(t) + t3Θ3(t) + t4Θ1(t)

= t3Ωz(0)T (1)
δ Ωz(0)T (1)

δ Ωz(0)T (1)
δ Rz(t) + t4Θ2(t) + t3Θ3(t) + t4Θ1(t),

Θ2(t) = Ωz(0)T (1)
δ Ωz(0)T (1)

δ Ωz(0)T (2)
δ Rz(t),(3.6)

Θ3(t) = Ωz(0)
(
T

(2)
δ Ωz(0)T (1)

δ + T
(1)
δ Ωz(0)T (2)

δ

)
Ωz(0)Tδ(t)Rz(t).(3.7)

Finally, we iterate the first term on the right in (3.5) once again. This yields

I ∼ t3(Θ3(t) + Θ4(t)) + t4(Θ1(t) + Θ2(t)),(3.8)

Θ4(t) = −Ωz(0)T (1)
δ Ωz(0)T (1)

δ Ωz(0)T (1)
δ Ωz(0)Tδ(t)Rz(t).(3.9)

3.2. Estimates for Θj(t), j = 1, 2, 3, 4, on the contour Γ. Below we always assume
that z ∈ Γ and |t| ≤ t0(δ) = δ1/2‖X1‖−1. We lean upon estimates (2.8) and (2.9). Note
also that (2.9) and the inequality |t| ≤ t0(δ) imply the following estimate for the operator
(3.2):

(3.10) ‖Tδ(t)‖d→d ≤ 2−1(
√

2 + 1)|t|δ−1/2‖X1‖.

Also, we need the following auxiliary inequalities. Let L, L1, and L2 be continuous
operators in d. Then

‖LRz(0)‖H→H ≤ β(3)δ−1‖L‖d→d,(3.11)

‖L1Ωz(0)L2Rz(t)‖H→H ≤ β(4)δ−1‖L1‖d→d‖L2‖d→d,(3.12)

which follows directly from [BSu, (2.16), (2.17)] if we put A = A(0), B = A(t), γ = 2δ,
α =

√
2, and use (2.8) and the inequality |z + 2δ| ≤ 4δ on Γ.
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Theorem 3.1. If z ∈ Γ and |t| ≤ t0(δ), then the norms of the operators (3.4), (3.6),
(3.7), and (3.9) in H satisfy the estimates

‖Θ1(t)‖ ≤ β1δ
−3‖X1‖4, ‖Θ2(t)‖ ≤ β2δ

−3‖X1‖4,

‖Θ3(t)‖ ≤ β3|t|δ−3‖X1‖4, ‖Θ4(t)‖ ≤ β4|t|δ−3‖X1‖4.

Proof. All four inequalities are proved in a similar way. We prove the last of them,
which requires more effort. By (2.8), the left factor in (3.9) can be ignored. By (2.7),
the question reduces to estimating the operator

Y1(t) + (z + 2δ)Y2Y3(t),(3.13)

Y1(t) = T
(1)
δ Ωz(0)(T (1)

δ )2Ωz(0)Tδ(t)Rz(t),(3.14)

Y2 = T
(1)
δ Ωz(0)T (1)

δ Rz(0), Y3(t) = T
(1)
δ Ωz(0)Tδ(t)Rz(t).(3.15)

We estimate Y1(t). Using (2.7) once again, we get

(3.16) Y1(t) = (T (1)
δ )3Ωz(0)Tδ(t)Rz(t) + (z + 2δ)T (1)

δ Rz(0)(T (1)
δ )2Ωz(0)Tδ(t)Rz(t).

The first summand in (3.16) is estimated with the help of (3.12), and the second with
the help of (3.11) and (3.12). Also, we use estimates (2.9) and (3.10). Both summands
give similar contributions, and for the operator (3.14) we obtain

‖Y1(t)‖ ≤ β(5)|t|δ−3‖X1‖4.

Each of the two operators (3.15) is of the form (3.12), which implies that the second
summand in (3.13) is also dominated by β(6)|t|δ−3‖X1‖4. The required estimate for
‖Θ4(t)‖ is proved. �

3.3. Representation for the difference of the resolvents. Such a representation
follows directly from (3.8) and Theorem 3.1.

Theorem 3.2. If z ∈ Γ and |t| ≤ t0(δ), then

Rz(0) − Rz(t) = tI0
1 + t2I+

2 + t3I3 + Ψ∗(t),

(3.17) ‖Ψ∗(t)‖ ≤ β∗t
4δ−3‖X1‖4,

and the operators I0
1 , I+

2 , and I3 are continuous in H and do not depend on t.

§4. Approximation for the operator-valued function A(t)F (t)

4.1. Application of Theorem 3.2. Using Theorem 3.2 and the elementary formula

(4.1) A(t)F (t) =
1

2πi

∫
Γ

z(Rz(0) − Rz(t)) dz,

we obtain the following statement.

Theorem 4.1. For |t| ≤ t0(δ), we have

(4.2) A(t)F (t) = t2SP + t3K + Ψ(t)

and

(4.3) ‖Ψ(t)‖ ≤ βt4δ−1‖X1‖4,

where the operator K is continuous in H and does not depend on t.

Note that, in accordance with [BSu], when calculating the integral (4.1), for the op-
erators I0

1 and I+
2 in (3.17) we obtain O and SP , respectively. We must calculate the

operator K. For this, below we use power series expansions.
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4.2. Calculation of the operator K. By (1.12)–(1.15) and (2.12), for sufficiently
small t∗ > 0 and |t| ≤ t∗, we have

A(t)F (t) =
n∑

l=1

λl(t)(·, ϕl(t))Hϕl(t)

=
n∑

l=1

(γlt
2 + µlt

3)(·, ωl + t(ψl + ω̃l))H(ωl + t(ψl + ω̃l)) + O(t4)

= t2SP + t3K + O(t4).

This implies that the operator K in (4.2) admits the following representation:

K = K0 + N0 + N∗ = K0 + N,

K0 =
n∑

l=1

γl((·, ψl)Hωl + (·, ωl)Hψl),

(4.4)
N0 =

n∑
l=1

µl(·, ωl)Hωl,

N∗ =
n∑

l=1

γl((·, ω̃l)Hωl + (·, ωl)Hω̃l).

Our next goal is to find an invariant representation for K. This is easy to do for K0: by
(2.12) and (1.17), we have

n∑
l=1

γl(·, ωl)Hψl = Z
n∑

l=1

γl(·, ωl)Hωl = ZSP,

whence

(4.5) K0 = ZSP + SPZ∗.

Now we calculate the matrix entries of the operator N in the basis {ωl}n
1 . Direct

inspection yields

(4.6) (N∗ωj , ωk)H = γk(ωj , ω̃k)H + γj(ω̃j , ωk)H, j, k = 1, . . . , n.

In particular, by (1.18),

(N∗ωk, ωk)H = 0, k = 1, . . . , n.

Next,

(4.7) (N0ωj , ωk)H = δjkµk, j, k = 1, . . . , n.

Finally, combining (4.6) and (4.7) with (1.18), we obtain

(Nωj , ωk)H = δjkµk + γk(ωj , ω̃k)H + γj(ω̃j , ωk)H

(4.8) = µkδjk − γj(ωj , ω̃k)H − γk(ω̃j , ωk)H, j, k = 1, . . . , n.

4.3. Calculation of the operator N . The calculation of N is based on the relation

(4.9) (A(t)ϕj(t), ϕk(t))H = δjkλj(t), j, k = 1, . . . , n.

We write the left-hand side of (4.9) as

(4.10) ((X0 + tX1)ϕj(t), (X0 + tX1)ϕk(t))H∗ .

Using expansion (1.14) and recalling (1.9), (1.10), and (1.15), we obtain

(X0 + tX1)ϕl(t) = t(Rωl + tX1ϕ
(1)
l + tX0ϕ

(2)
l + · · · ).
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We substitute this in (4.10) (with l = j, k) and look at the total coefficient of t3. Since
X∗

0R = 0, the terms with ϕ
(2)
l disappear; next, we have ϕ

(1)
l = ψl + ω̃l. Thus, the

coefficient of t3 on the left-hand side of (4.9) is equal to

∆jk := (Rωj , X1(ψk + ω̃k))H∗ + (X1(ψj + ω̃j), Rωk)H∗ .

Using (2.12) and the identity X∗
0R = 0, we rewrite this coefficient as

∆jk = (Rωj , X1Zωk)H∗ + (X1Zωj , Rωk)H∗

+ (Rωj , X0ψ(ω̃k) + X1ω̃k)H∗ + (X0ψ(ω̃j) + X1ω̃j , Rωk)H∗(4.11)

= (Rωj , X1Zωk)H∗ + (X1Zωj , Rωk)H∗ + (Rωj , Rω̃k)H∗ + (Rω̃j , Rωk)H∗ .

Since R∗R = S and Sωl = γlωl, the last two summands on the right in (4.11) reduce to
γj(ωj , ω̃k)H + γk(ω̃j , ωk)H, or, by (4.8), to µkδjk − (Nωj , ωk)H. Thus, the coefficient of
t3 on the left-hand side of (4.9) is

∆jk = (Z∗X∗
1RPωj , ωk)H + ((RP )∗X1Zωj , ωk)H + µkδjk − (Nωj , ωk)H,

while the coefficient on the right-hand side is obviously equal to µkδjk. So,

(4.12) (Nωj , ωk)H = (Z∗X∗
1RPωj , ωk)H + ((RP )∗X1Zωj , ωk)H, j, k = 1, . . . , n,

which is equivalent to

(4.13) N = Z∗X∗
1RP + (RP )∗X1Z.

Indeed, the operators on both sides of (4.13) take N to N and are equal to zero on N⊥.
Therefore, (4.12) implies (4.13).

4.4. The final result. Combining Theorem 4.1 with relations (4.4), (4.5), and (4.13),
we arrive at the following theorem.

Theorem 4.2. Under the conditions of Theorem 4.1, the operator K is given by (4.4),
where K0 and N are defined by (4.5) and (4.13).

Remark 4.3. a) The operator N takes N to N. On the contrary, we have K0N ⊂ N⊥.
Indeed, by (4.5),

(4.14) PK0P = 0.

b) In the basis {ωl}n
1 the operator N0 is diagonal, and the matrix of N∗ has zero

diagonal. In particular, N∗ = 0 for n = 1.
c) If Z = 0, then, by (2.15), (4.5), and (4.13), we have F1 = 0 in (2.10) and K =

K0 + N = 0 in (4.2).

In conclusion, we supplement (1.8) with the following elementary estimates:

‖R‖ ≤ ‖X1‖, ‖S‖ = ‖R‖2 ≤ ‖X1‖2,

‖F1‖ ≤ (2δ)−1/2‖X1‖, ‖K0‖ ≤ (2δ)−1/2‖X1‖3,(4.15)

‖N‖ ≤ (2δ)−1/2‖X1‖3, ‖K‖ ≤ 2(2δ)−1/2‖X1‖3.(4.16)

§5. Approximation of the resolvent (A(t) + ε2I)−1
for small ε

Here we obtain approximations for the resolvent R−ε2(t) as ε → 0 in terms of the
germ S, the operator Z, and other asymptotic characteristics of the family A(t) at t = 0.
The approximating operators have finite rank and depend on two parameters t and ε.
The corresponding error estimates are uniform for |t| ≤ t0(δ) and ε > 0.



THRESHOLD APPROXIMATIONS 755

5.1. The resolvent identity for A(t) and t2SP . The following identity can be checked
easily:

G := F (t)(A(t) + ε2I)−1P = F (t)(t2SP + ε2I)−1P

(5.1) − F (t)(A(t) + ε2I)−1(A(t)F (t)− t2SP )(t2SP + ε2I)−1P.

(This relation was used in [BSu, Subsection 5.2].) In what follows, it is always assumed
that |t| ≤ t0(δ) = δ1/2‖X1‖−1, ε > 0. Moreover, we assume that

(5.2) A(t) ≥ c∗t
2I, |t| ≤ t0(δ),

for some constant c∗ > 0 (cf. [BSu, (5.1)]). Consequently (see [BSu, (5.4), (5.5)]),

‖(A(t) + ε2I)−1F (t)‖ ≤ (c∗t2 + ε2)−1, |t| ≤ t0(δ),(5.3)

‖(t2SP + ε2I)−1P‖ ≤ (c∗t2 + ε2)−1.(5.4)

By (4.2), we have A(t)F (t)−t2SP = t3K+Ψ(t), where the operator K is defined by (4.4),
(4.5), and (4.13), and the operator-valued function Ψ(t) satisfies (4.3). Temporarily, we
introduce the notation

(5.5) Ξ := (t2SP + ε2I)−1P, J1 := −F (t)(A(t) + ε2I)−1Ψ(t)Ξ.

Then (5.1) takes the form

(5.6) G = F (t)Ξ − t3F (t)(A(t) + ε2I)−1KΞ + J1.

The following estimate is borrowed from [BSu, (5.9)]:

‖F (t)(A(t) + ε2I)−1 − Ξ‖ ≤ C0|t|(c∗t2 + ε2)−1,(5.7)

C0 = β5(t0(δ))−1 + β6c
−1
∗ δ(t0(δ))−3.(5.8)

Then we can rewrite (5.6) as

(5.9) G = F (t)Ξ − t3ΞKΞ + J1 + J2,

where

(5.10) J2 = −t3(F (t)(A(t) + ε2I)−1 − Ξ)KΞ.

By (4.4) and (4.14), we can replace K with N in (5.9), where the operator N is defined
by (4.13). Thus,

(5.11) G = F (t)Ξ − t3ΞNΞ + J1 + J2.

5.2. Further transformations and estimates. First, we estimate the operators J1

and J2 defined by (5.5) and (5.10). From (4.3), (5.3), and (5.4) we deduce that

(5.12) ‖J1‖ ≤ βt4(c∗t2 + ε2)−2δ−1‖X1‖4 ≤ βc−2
∗ δ−1‖X1‖4 =: C1.

Next, in a similar way, (4.16), (5.4), and (5.7) imply the inequality

(5.13) ‖J2‖ ≤
√

2C0c
−2
∗ δ−1/2‖X1‖3 =: C2;

here C0 is defined by (5.8).
Now we approximate F (t) on the right-hand side of (5.11) and estimate the error. By

(2.10), we have F (t)Ξ = Ξ + tF1Ξ + J3, where F1 is the operator defined by (2.15), and
J3 = F2(t)Ξ satisfies the estimate

(5.14) ‖J3‖ ≤ β(2)t2(c∗t2 + ε2)−1δ−1‖X1‖2 ≤ β(2)c−1
∗ δ−1‖X1‖2 =: C3.

Next, F1Ξ = ZΞ + PZ∗PΞ = ZΞ, so that (5.11) takes the form

(5.15) G = Ξ + tZΞ − t3ΞNΞ + J1 + J2 + J3.



756 M. SH. BIRMAN AND T. A. SUSLINA

Our next goal is to estimate the discrepancy resulting from the replacement of the
operator G = F (t)(A(t)+ε2I)−1P by the operator G = F (t)(A(t)+ε2I)−1. Using (2.10)
once again, we get

(5.16) G − G = F (t)(A(t) + ε2I)−1(F (t) − P ) = tF (t)(A(t) + ε2I)−1F1 + J ′
3.

By (2.10) and (5.3), the operator J ′
3 = F (t)(A(t)+ε2I)−1F2(t) admits the same estimate

as J3:

(5.17) ‖J ′
3‖ ≤ C3.

We transform the first term on the right in (5.16) as follows:

tF (t)(A(t) + ε2I)−1F1 = tΞF1 + J4,

where, by (4.15) and (5.7), the operator J4 satisfies the estimate

(5.18) ‖J4‖ ≤ C0t
2(c∗t2 + ε2)−1(2δ)−1/2‖X1‖ ≤ C0c

−1
∗ (2δ)−1/2‖X1‖ =: C4.

Next, we have ΞF1 = Ξ(PZ)P + ΞPZ∗ = ΞZ∗ by (2.15). As a result, the operator
G = F (t)(A(t) + ε2I)−1 can be written as

G = G + tΞZ∗ + J ′
3 + J4.

Combining this with (5.15), we obtain

(5.19) (A(t) + ε2I)−1F (t) = Ξ + t(ZΞ + ΞZ∗) − t3ΞNΞ + J1 + J2 + J3 + J ′
3 + J4.

5.3. Threshold approximation. Our main result about approximation of the resol-
vent R−ε2(t) near the spectral threshold λ = 0 is deduced from (5.19): it suffices to note
that, by (1.2), the operator (A(t) + ε2I)−1F (t)⊥ =: J5 satisfies the estimate

(5.20) ‖J5‖ ≤ (3δ)−1, |t| ≤ t0(δ).

Thus, we arrive at the following theorem.

Theorem 5.1. For |t| ≤ t0(δ) = δ1/2‖X1‖−1 and ε > 0, we have

(5.21) (A(t) + ε2I)−1 = Ξ + t(ZΞ + ΞZ∗) − t3ΞNΞ + J .

Here Ξ = Ξ(t, ε) = (t2SP + ε2I)−1P ; the operators Z and N are defined by (1.5) and
(4.13), respectively. The operator-valued function J = J1 + J2 + J3 + J ′

3 + J4 + J5 is
uniformly bounded :

(5.22) ‖J ‖ ≤ C1 + C2 + 2C3 + C4 + (3δ)−1 =: C,

where the constants C1, C2, C3, and C4 are defined by (5.12), (5.13), (5.14), and (5.18),
respectively.

It may happen that Z = 0, and then also N = 0. In such cases the following theorem
is useful.

Theorem 5.2. Under the assumptions of Theorem 5.1, suppose in addition that Z = 0.
Then relations (5.21) and (5.22) turn into the estimate

(5.23) ‖(A(t) + ε2I)−1 − (t2SP + ε2I)−1P‖ ≤ C.

Remark 5.3. a) For small ε > 0, Theorem 5.1 provides a much sharper approximation
for the resolvent than the estimate

(5.24) ‖(A(t) + ε2I)−1 − Ξ‖ ≤ C0(2c
1/2
∗ ε)−1 + (3δ)−1,

which follows from (5.7) and (5.20).
b) If Z = 0, the order of the estimate (5.23) (for small ε > 0) is better than that of

the universal estimate (5.24).



THRESHOLD APPROXIMATIONS 757

5.4. Comparison of the resolvents of two operator families. Let Ã(t) be another
operator family of the form (1.1), and let Ã(t) be threshold equivalent to the family A(t).
All the objects corresponding to this family will be marked by “˜”. Note that Ñ = N,
S̃ = S, and Ξ̃ = Ξ. We suppose that Ã(t) satisfies the condition of the form (5.2).
Furthermore, suppose that for Ã(t) we have

(5.25) Z̃ = 0.

(In homogenization problems the family Ã(t) is related to the effective differential op-
erator. The latter is an operator with constant coefficients, so that condition (5.25) is
surely satisfied.) Then, by Theorem 5.2,

(5.26) ‖(Ã(t) + ε2I)−1 − Ξ‖ ≤ C̃, |t| ≤ t̃ 0(δ̃) = δ̃1/2‖X̃1‖−1.

The following theorem is a consequence of (5.23) and (5.26).

Theorem 5.4. Suppose that A(t) and Ã(t) are threshold equivalent and that both families
satisfy the conditions of Theorem 5.2. Then

‖(A(t) + ε2I)−1 − (Ã(t) + ε2I)−1‖ ≤ C + C̃

whenever

(5.27) |t| ≤ t0min := min{t0(δ), t̃ 0(δ̃)}.

For a family A(t) of general type, the operator Ξ in (5.21) can be replaced by
(Ã(t) + ε2I)−1, and the corresponding error term can be estimated with the help of
(5.26). For this, we only need to take inequalities (1.8), (4.16), (5.3), (5.4), (5.22), and
(5.27) into account. Thus, the following statement is true.

Theorem 5.5. Suppose that A(t) and Ã(t) are threshold equivalent and that condition
(5.25) is satisfied. Then

(A(t) + ε2I)−1 = (Ã(t) + ε2I)−1 + t
(
Z(Ã(t) + ε2I)−1 + (Ã(t) + ε2I)−1Z∗)

(5.28) − t3(Ã(t) + ε2I)−1N(Ã(t) + ε2I)−1 + J∗, |t| ≤ t0min,

and
‖J∗‖ ≤ C + C̃(1 + 2−1/2 + 2−1/2(c−1

∗ + c̃−1
∗ )‖X1‖2) =: C∗.

§6. Approximation of the generalized resolvent

6.1. Preliminaries. We borrow some preliminary information from [BSu, Subsections
1.5 and 5.3]. Along with H, we consider another Hilbert space Ĥ and a family X̂(t) =
X̂0 + tX̂1 : Ĥ → H∗ of the same type as X(t); the space H∗ remains the same. Let
M : H → Ĥ be an isomorphism such that

(6.1) M Dom X0 = Dom X̂0, X(t) = X̂(t)M ;

then X0 = X̂0M and X1 = X̂1M . We introduce the selfadjoint family

(6.2) Â(t) = X̂(t)∗X̂(t)

in Ĥ. Then, obviously,

(6.3) A(t) = M∗Â(t)M.
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In what follows, all the objects corresponding to the family Â(t) are marked by “̂”.
Observe that

N̂ = MN, n̂ = n,

(6.4) N̂∗ = N∗, n̂∗ = n∗, P̂∗ = P∗,

R = R̂M |N, rank R = rank R̂,(6.5)

S = PM∗ŜM |N, Ŝ = P̂ (M∗)−1SM−1|
bN

(6.6)

(see [BSu, Subsection 1.5]). We introduce the following notation:

(6.7) Q := (MM∗)−1 = (M∗)−1M−1 : Ĥ → Ĥ.

The operator Q is positive and continuous together with Q−1. If an operator Q with such
properties is given initially (along with Â(t)), then Q admits a (nonunique) representation
of the form (6.7). Then we can reconstruct the families X(t) and A(t) by formulas (6.1)
and (6.3).

Inequality (5.2) implies that for Â(t) we have

(6.8) Â(t) ≥ ĉ∗t
2I, ĉ∗ = c∗‖M‖−2, |t| ≤ t0.

By definition, the generalized resolvent (or Q-resolvent) for the family Â(t) is the
following selfadjoint operator in Ĥ:

(6.9) (Â(t) + ε2Q)−1, ε > 0.

From (6.3) and (6.7) it follows that

(6.10) (Â(t) + ε2Q)−1 = M(A(t) + ε2I)−1M∗

(see [BSu, (5.13)]). Next, let Q
bN

be the block of the operator Q in the subspace N̂:

(6.11) Q
bN

= P̂Q|
bN

: N̂ → N̂.

By (5.2), the germ S is nondegenerate, whence, by (6.6), the germ Ŝ is also nondegener-
ate. Then the operator

(t2Ŝ + ε2Q
bN
)−1 : N̂ → N̂

makes sense, and (see [BSu, (5.18)]) we have

(6.12) MΞM∗ = M(t2SP + ε2I)−1PM∗ = (t2Ŝ + ε2Q
bN
)−1P̂ =: Ξ̂Q.

6.2. Approximation for the Q-resolvent of Â(t). Relations (5.21) and (6.10) imply
the following representation for the operator (6.9):

(6.13)
(Â(t) + ε2Q)−1 = MΞM∗ + tM(ZΞ + ΞZ∗)M∗

− t3MΞNΞM∗ + MJM∗, |t| ≤ t0.

Using (6.12), we can rewrite (6.13) as

(Â(t) + ε2Q)−1 = Ξ̂Q + t
(
MZM−1P̂ Ξ̂Q + Ξ̂QP̂ (M∗)−1Z∗M∗)

(6.14) − t3Ξ̂QP̂ (M∗)−1NM−1P̂ Ξ̂Q + MJM∗.

Lemma 6.1. Let ẐQ be the operator in Ĥ that takes û ∈ Ĥ to a unique solution ψ̂Q ∈ Ĥ

of the equation

(6.15) X̂∗
0 (X̂0ψ̂Q + X̂1ω̂) = 0, Qψ̂Q ⊥ N̂,

where ω̂ = P̂ û ∈ N̂. Then

(6.16) MZM−1P̂ = ẐQ.
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Proof. The proof reduces to an elementary recalculation in equation (1.3), which defines
the operator Z under the condition (1.4) (see (1.5)). We only need to take (6.1), (6.4),
and (6.7) into account. �

Observe that (6.16) and (1.8) imply the estimate

(6.17) ‖ẐQ‖ ≤ (8δ)−1/2‖X1‖‖M‖‖M−1‖.

In order to transform the representation (6.14), we also need the following lemma.

Lemma 6.2. The following identity is true:

(6.18) P̂ (M∗)−1NM−1P̂ = Ẑ∗
QX̂∗

1 R̂P̂ + (R̂P̂ )∗X̂1ẐQ =: N̂Q.

Proof. By (4.13), (6.1), and (6.16), we have

P̂ (M∗)−1NM−1P̂ = Ẑ∗
Q(M∗)−1X∗

1 (RP )M−1P̂ + P̂ (M∗)−1(RP )∗X1M
−1ẐQ

(6.19) = Ẑ∗
QX̂∗

1 (RP )M−1P̂ + P̂ (M∗)−1(RP )∗X̂1ẐQ.

Next, by (6.5), RP = R̂MP , and by (6.4), RPM−1P̂ = R̂MM−1P̂ = R̂P̂ . Substituting
this in (6.19), we arrive at (6.18). �

For the operator N̂Q inequality (6.17) implies the estimate

(6.20) ‖N̂Q‖ ≤ (2δ)−1/2‖X1‖‖M‖‖M−1‖‖X̂1‖2.

Substituting (6.16) and (6.18) in (6.14), we obtain the following statement.

Theorem 6.3. For the operator (6.9) we have

(6.21) (Â(t) + ε2Q)−1 = Ξ̂Q + t(ẐQΞ̂Q + Ξ̂QẐ∗
Q) − t3Ξ̂QN̂QΞ̂Q + JM .

Here the operator Ξ̂Q is defined by (6.11) and (6.12), ẐQ is the operator introduced
in Lemma 6.1 (see equation (6.15)), and the operator N̂Q is given by the right-hand side
of (6.18). The operator JM := MJM∗ satisfies the estimate

(6.22) ‖JM‖ ≤ C‖M‖2, |t| ≤ t0,

where the constant C is defined by (5.22).

Remark 6.4. The representation (6.21) is written in terms of the family Â(t) defined by
(6.2). Only the constants C and t0 in (6.22) are defined in terms of the family A(t). They
can also be recalculated in terms of Â, though, in general, with some loss. For instance,
a possible value of ĉ∗ is given in (6.8), and we can take t̂ 0 = t0‖M‖−1‖M−1‖−1. We
shall not discuss this in detail here.

Theorem 6.5. Under the conditions of Theorem 6.3, suppose that

ẐQ = 0

(which is equivalent to the condition Z = 0). Then relations (6.21) and (6.22) imply the
estimate

‖(Â(t) + ε2Q)−1 − (t2Ŝ + ε2Q
bN
)−1P̂‖ ≤ C‖M‖2, |t| ≤ t0.
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6.3. Another approximation for the Q-resolvent (6.9). Now, let Â+(t) be another
family of the form (6.2), acting in Ĥ, and let Q+ be a bounded positive definite operator
in Ĥ. We put M+ = (Q+)−1/2 and introduce the operator family

A+(t) = M+Â+(t)M+.

Suppose that A+(t) satisfies the analog of condition (5.2) with constant c
(+)
∗ for |t| ≤ t0+.

In accordance with (6.8), we put

ĉ
(+)
∗ = c

(+)
∗ ‖M+‖−2.

Moreover, we assume that the following condition is satisfied.

Condition 6.6. 1) The families Â(t) and Â+(t) are threshold equivalent. 2) The blocks
of the operators Q and Q+ in N̂ = N̂+ coincide. 3) The operator Z+ corresponding to
the family A+(t) is equal to zero: Z+ = 0 (and then also Ẑ+,Q+ = 0).

We mention the following simple estimates:

‖(Â+(t) + ε2Q+)−1‖ ≤ (ĉ(+)
∗ )−1t−2, |t| ≤ t0+,(6.23)

‖(t2Ŝ + ε2Q
bN
)−1P̂‖ ≤ (ĉ(+)

∗ )−1t−2.(6.24)

Theorem 6.5 applies to the family Â+(t). Thus, using the notation (6.12), we have

(Â+(t) + ε2Q+)−1 = Ξ̂Q + JM+ ,(6.25)

‖JM+‖ ≤ C+‖M+‖2 = C+‖Q−1
+ ‖, |t| ≤ t0+.(6.26)

Here C+ is the constant of the form (5.22) corresponding to the family A+(t). Relation
(6.25) allows us to eliminate Ξ̂Q in (6.21). As a result, we obtain

(Â(t) + ε2Q)−1 = (Â+(t) + ε2Q+)−1

+ tẐQ(Â+(t) + ε2Q+)−1 + t(Â+(t) + ε2Q+)−1Ẑ∗
Q(6.27)

− t3(Â+(t) + ε2Q+)−1N̂Q(Â+(t) + ε2Q+)−1 + J̌ .

Here

J̌ = JM − JM+ − t(ẐQJM+ + JM+Ẑ∗
Q)

(6.28) + t3(Â+(t)+ε2Q+)−1N̂QJM+ +t3JM+N̂Q(t2Ŝ+ε2Q
bN
)−1P̂ ,

|t| ≤ t0min := min{t0, t0+}.(6.29)

The operator J̌ is estimated with the help of (6.17), (6.20), (6.23), (6.24), and (6.29).
We should also recall (6.22) and (6.26). This leads to the estimate

(6.30)
‖J̌ ‖ ≤ C‖M‖2

+ C+‖Q−1
+ ‖

(
1 + 2−1/2‖M‖‖M−1‖(1 + 2(ĉ(+)

∗ )−1‖X̂1‖2)
)
, |t| ≤ t0min.

As a result, we arrive at the following statement.

Theorem 6.7. Let A(t), Â(t), and Â+(t) be the families defined above. Suppose that
(6.3) and Condition 6.6 are satisfied. Then the representation (6.27) and estimate (6.30)
are valid.
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6.4. Representation of the resolvent (A(t) + ε2I)−1. A representation for the re-
solvent (A(t) + ε2I)−1 follows immediately from Theorem 6.7 and identity (6.10).

Theorem 6.8. Under the conditions of Theorem 6.7, we have

(A(t) + ε2I)−1 = M−1
(
R̂+(t, ε) + t(ẐQR̂+(t, ε) + R̂+(t, ε)Ẑ∗

Q)

(6.31) −t3R̂+(t, ε)N̂QR̂+(t, ε) + J̌
)
(M∗)−1,

where

R̂+(t, ε) = (Â+(t) + ε2Q+)−1,

and the operator-valued function (6.28) is estimated in (6.30).

6.5. Approximation of the generalized resolvent of the family A(t). In conclu-
sion, we carry Theorem 6.8 over to the case of the generalized resolvent

(6.32) (A(t) + ε2
Q)−1,

where Q : H → H is a continuous positive definite operator. We may assume that the
operator Q is written in the form

(6.33) Q = (MM
∗)−1,

where M : H → H is an operator bounded together with its inverse (for instance, we can
put M = Q−1/2). Suppose that the family Â(t) and the operator M are as in Subsection
6.1; in particular, we assume (6.3). Then, by (6.33),

(A(t) + ε2
Q)−1 = M−1(Â(t) + ε2Q∇)−1(M∗)−1,

where

Q∇ =
(
M∇(M∇)∗

)−1
, M∇ := MM.

Now, suppose that the family Â+(t) and the operator Q∇
+ satisfy the conditions of

Subsection 6.3 (and, in particular, Condition 6.6) with Q replaced by Q∇ and Q+ replaced
by Q∇

+ . Then (6.27) is true with Q replaced by Q∇ and Q+ replaced by Q∇
+ . However, the

remainder term will change, and we change its notation. Moreover, we denote A∇(t) :=
(M∇)∗Â(t)M∇ and A∇

+(t) := M∇
+ Â+(t)M∇

+ , where M∇
+ = (Q∇

+)−1. Let t∇ play the role
of t0 for A∇(t), and let t∇+ play the role of t0 for A∇

+(t). As a result, we arrive at the
following statement.

Theorem 6.9. Under the above assumptions, the Q-resolvent (6.32) admits the repre-
sentation

(A(t) + ε2
Q)−1 = M−1

(
R̂∇

+(t, ε) + t(ẐQ∇R̂∇
+(t, ε) + R̂∇

+(t, ε)Ẑ∗
Q∇)

(6.34) − t3R̂∇
+(t, ε)N̂Q∇R̂∇

+(t, ε)
)
(M∗)−1 + J∇,

where R̂∇
+(t, ε) := (Â+(t)+ε2Q∇

+)−1, and the norm of the operator-valued function J∇ =
J∇(t, ε) is uniformly bounded for |t| ≤ min{t∇, t∇+}, ε > 0.

An explicit estimate for ‖J∇‖ can be obtained in the same way as for (6.30), but we
shall not dwell on this.

If Q = I, then (6.34) coincides with (6.31).
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