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ON EDGE-REGULAR GRAPHS WITH k > 3b; — 3

I. N. BELOUSOV AND A. A. MAKHNEV

ABSTRACT. An undirected graph on v vertices in which the degrees of all vertices
are equal to k and each edge belongs to exactly A triangles is said to be edge-regular
with parameters (v, k, \). It is proved that an edge-regular graph with parameters
(v, k, A) such that k > 3b; — 3 either has diameter 2 and coincides with the graph
P(2) on 20 vertices or with the graph M (19) on 19 vertices; or has at most 2k + 4
vertices; or has diameter at least 3 and is a trivalent graph without triangles, or the
line graph of a quadrivalent graph without triangles, or a locally hexagonal graph;
or has diameter 3 and satisfies |I's(u)| < 1 for each vertex w.

INTRODUCTION

We consider undirected graphs without loops and multiple edges. If a and b are
vertices of a graph I', then we denote by d(a,b) the distance between a and b and by
T';i(a) the subgraph of I induced by the set of vertices that are at a distance of ¢ from a
in I". The subgraph I'1(a) is called a neighborhood of a and is denoted by [a]. We denote
by a' the subgraph that is the unit ball centered at a.

A graph T is said to be regular of degree k if [a] contains exactly k vertices for each
vertex a in I'. A graph T is edge-regular with parameters (v, k,A) if T’ has v vertices and
is regular of degree k, and each edge of I' lies in A triangles. We say that a graph I’
is amply regular with parameters (v, k, A\, u) if T' is edge-regular with the corresponding
parameters, and the subgraph [a]N[b] contains p vertices whenever d(a,b) = 2. An amply
regular graph of diameter 2 is said to be strongly regular.

We denote by K., . m, the complete n-partite graph with partite sets of orders
Mmi,...,My. If my =---=m, =m, then the corresponding graph is denoted by K, xm.
The graph K 3 is called the 3-claw. A triangle graph T(m) is a graph whose vertices
are the unordered pairs of elements of X, |X| = m, and two pairs {a,b} and {c,d}
are adjacent if and only if they have an element in common. A graph on a set X x Y
of vertices is called an (m x n)-lattice if |X| = m, |Y| = n, and two vertices (x1, 1)
and (z2,y2) are adjacent if and only if 1 = x5 or y; = y2. The vertices of the graph
M (19) are the elements of the field Fig. Two vertices are adjacent if their difference is a
nonzero cube in Fig. This is a locally hexagonal graph of diameter 2. The graph P(m)
with v = 5m?, k = 4m — 2, and b; = 2m — 1 is obtained by replacing the vertices of the
pentagon with pairwise disjoint (m x m)-lattices (the graph P(3) is depicted below). A
Taylor graph is an amply regular graph I' of diameter 3 in which I' = v U w™ for any
two vertices u and w with d(u,w) = 3. The Schléafli graph is a unique strongly regular
graph with parameters (27, 16, 10, 8). We denote by 7 (k) the class of regular graphs of
degree k without triangles, and by £(k) the class of line graphs for the graphs in 7 (k).
The number of vertices in a subgraph A will be denoted by |A].
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The graph P(3).

Suppose the distance between two vertices u and w in an edge-regular graph I" is equal
to 2. We say that the pair (u,w) is good if u(u,w) = k — 2b; + 1, and almost good if
w(u, w) =k — 2b; + 2. By Lemma 1.1, the u-subgraph corresponding to a good pair is a
clique.

If the distance between u and w in T is ¢, then we denote by b;(u,w) (respectively,
¢i(u,w)) the number of vertices in the intersection of I';y(u) (respectively, I';_1(u))
with [w]. We note that, in an edge-regular graph with parameters (v, k, \), the value of
b1 (u, w) does not depend on the choice of an edge {u,w} and is equal to k — A — 1. For
edge-regular graphs with k& > f(b1) and some specific functions f, it is possible to obtain
an estimate v < g(k) (or to describe the graphs for which this estimate fails). Thus, in [T,
Lemma 1.4.2], it was proved that if I' is a connected incomplete edge-regular graph with
parameters (v, k, A) such that & > 3b;, then the diameter of I" is 2 and v < 2k — 2. In
fact, it was proved that v < k—2-+3b; +3/(b1 +1). To sharpen the upper bound for the
number of vertices, we need to describe the graphs with small values of b; (see Lemmas
1.2 and 1.3 below) and the graphs saturated by good pairs of vertices. In a corollary in
[2], it was proved that if T" is a connected edge-regular graph with parameters (v, k, A)
where k > 3b; — 2, then either I' is a polygon, or the icosahedron graph, or I' € &, or I is
a graph of diameter 2 with at most 2k vertices, or the pentagon, or a (3 x 3)-lattice, or the
triangle graph T'(7). The next step is the study of edge-regular graphs with k > 3b; — 3.
The graphs of diameter 2 with k& > 3b; — 3 were studied in [3].

Theorem. Let I' be a connected edge-regular graph with parameters (v, k,\), let by =
k—MX—1, and let k > 3b; — 3. Then one of the following statements is true:

(1) the diameter T is at most 2, and either the number v of vertices does not exceed
2k + 4, or T' coincides with the graph P(2), or T' coincides with the locally hexagonal
graph on 17 or 19 wvertices;

(2) the diameter of T is at least 3, and either I' € T(3)UE(B)UE(4), or T is a locally
hexagonal graph,;

(3) the graph T has diameter 3 and |T's(u)| < 1 for each vertez u.
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Example. Let ®, be the graph in which the vertices are the 4-cycles of the symmetry
group S, and two vertices a and b are adjacent if ab is a 5-cycle. Then &, is a 6-
extension of the Johnson graph J(n,4) and ®5 is an edge-regular graph of diameter 3
with parameters (30, 12, 6) such that k = 3b; — 3 and every vertex in [(1432)] forms a
good pair with the vertex (1234) (if an edge-regular graph with & > 3b; — 1 is neither
a polygon nor an icosahedron graph, then at most 2 vertices in I's(u) form good pairs
with u; see [5]).

We do not know examples of graphs with k£ > 3b; — 3 that have vertices v and v such
that |T's(u)] = 1 and |T's(w)| = 0.

Corollary. Let I' be a connected amply regular graph of diameter greater than 2 with
parameters (v, k, A\, u), where k > 3by — 3. Then one of the following statements is true:

MHTe&M) andp=b—2=1;

2)TeTB)UEB) andp=0b—1=1;

(3) w= b1 and T is either an n-gon with n > 6, or a complete bipartite graph K, 4 with
the maximal matching removed, or the icosahedron graph, or the Johnson graph J(6,3),
or the locally Taylor graph T(6) on 32 vertices, or a locally Schlifli graph on 56 vertices.

The authors thank the referee for remarks that helped to improve the initial version
of the present paper.

§1. AUXILIARY RESULTS

Lemma 1.1. Let T’ be an edge-regular graph with parameters (v,k,\), and let by =
k — X — 1. If the distance between vertices u and w in I is 2, then:

(1) the degree of each vertex in a p-subgraph of T' is at least k — 2by;

(2) a vertex d has degree « in the graph [u] N [w] if and only if [d] has o — (k — 2by)
vertices outside ut U w™;

(3) if u(u,w) = k — 2by + 1, then the subgraph [u] N [w] is a clique and [d] C ut Uw*
for each vertex d € [u] N [w];

(4) if T — (ut Uwt) has a unique vertex z, then u(u,z) = p(w, z).

Proof. Let d € [u] N [w]. Then |[d] — [u]| = |[d] — [w]| = b1. Therefore, at least k — 2b;
vertices of [d] belong to [u] N [w]. Statement (1) is proved.

Let d € [u] N [w], and let the degree of d in this u-subgraph be equal to a. Then
k = a+2b; —|[d] — (ut Uw?t)|. Therefore, [d] contains a — (k — 2b1) vertices outside
ut Uwt. Statement (2) is proved.

Statement (3) follows from (1) and (2).

Let {z} =T — (ut Uw'). Since the number of edges between [u] — [w] and [w] — [u]
is equal to by |[u] — [w]| — p(u, 2), we obtain p(u, z) = p(w, z). The lemma is proved. O

Lemma 1.2. Let ' be a connected edge-regular graph with parameters (v, k,A), and let
by = 2. Then either T' € T(3) UE(3), or T is one of the following graphs:

(1) the complete multipartite graph K,xs;

(2) the (3 x 3)-lattice graph, or the triangle graph T(5), or the Petersen graph;

(3) the icosahedron graph.

Proof. This is Proposition 1 in [4]. O

Lemma 1.3. Let I" be a connected edge-regular graph with parameters (v, k, A) and with
by = 3. Then either T' € T(4) UE(4), or T is one of the following graphs:

(1) a locally hexagonal graph (including the Paley graph with parameters (13,6,2,3)
and the Shrikhande graph);

(2) the complete multipartite graph K,xa4;

(3) the triangle graph T(6), or the Clebsch graph.
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Proof. This is Proposition 2 in [4]. O

Lemma 1.4. Let ' be an edge-regular graph, and let p(u,w) = k—2by +1 and pu(u, z) =
k — 2b1 + 2 for some vertices w and z in T'a(uw). Then |[u] N [w] N [7]| < 2.

Proof. This statement follows from Lemmas 4 and 5 in [5]. O

Let w, z € T'a(u). We say that a triple (u, w, z) of vertices is good if p(u, w)+p(u, z) <
2k — 4b1 + 3, and almost good if p(u,w) + pu(u, z) = 2k — 4by + 4. We have considered the
case of a good triple in Lemma 1.4. The case of an almost good triple will be treated in
Lemma 1.5.

Lemma 1.5. Let T be an edge-regular graph with k > 3by — 3, let u(u,w) + u(u, z) =
2k — 4by + 4 for two vertices w and z of T'y(u), let A = [u] N [w] N [z], and let § = |A].
Then one of the following statements is true:

(1) the vertices w and z are not adjacent and § < 1;

(2) A contains two nonadjacent vertices and § < 2;

(3) the vertices w and z are adjacent, A is a clique, and if § > 1, then either

(i) the subgraph A contains a unique vertex d adjacent to a vertez outside u-U[w]U|[z],
d =2, and, for e € A(d), the subgraph [d] U [e] contains A and [d] N [e] is contained in
fu,0, 23 U ([u] N (] U [21)) U (f] (1 [2] — [u]), or

(ii) the subgraph A contains no vertices adjacent to a vertex outside u™ U [w] U [z],
and, for any two adjacent vertices d,e € A(d), the subgraph [d] N [e] contains X — 1+~
vertices of {u,w, z} U ([u] N ([w] U [2])) U (Jw] N [z] — [u]), where v =|A — ([d] U [e])].

Proof. If the vertices w and z are not adjacent, or A contains two nonadjacent vertices,
or a subgraph of A contains a vertex adjacent to a vertex outside u U [w] U [2], then
the lemma follows from Theorem 1 in [6]. Therefore, we may assume that the vertices w
and z are adjacent and A is a clique that does not contain vertices adjacent to a vertex
outside ut U [w] U [2].

We say that a vertex d of [u] N [w] N [z] has type (j) if [d] contains j vertices of
([w] = [u]U[2)) U([z] = [u]U[w]). Obviously, 0 < j < 2. If u(u, w) # p(u, z), then, without
loss of generality, we may assume that p(u,w) =k —2b; + 1 and u(u, z) = k — 2b; + 3.

We prove that, for any two vertices d, e € A(d), the subgraph [d]N[e] contains A—1+~
vertices of {u,w, z} U ([u] N (Jw]U[z])) U ([w]N[z] — [u]), where v = |A — ([d] U [e])|. This
follows from analysis of all possible cases. We consider two cases in detail.

Suppose p(u, w) =k —2b; +1 and p(u, z) = k —2b; + 3, and let d and e be vertices of
type (1). Then [d] N [e] contains u,w, z, k — 2by — 1 vertices of [u] N [w], k —2by +1—§
vertices of [u]N[z] —[w], and at least 2b; —6 — (k—by — 1 — 0 —y) vertices of [w]N[z] — [u].
Altogether, we have k — by — 2 4 y vertices.

Suppose pu(u,w) = p(u, z) = k — 2by + 2, the vertex d is of type (1) (for definiteness,
let [d] contain a vertex of [w] — [u] U [z]), and e is of type (2). Then [d] N [e] contains
u,w, z, k — 2b; — 1 vertices of [u] N [w], k — 2by + 2 — § vertices of [u] N [z] — [w], and
at least 2by — 7 — (k — by — 1 — & — ) vertices of [w] N [z] — [u]. Altogether, we have
k — b1 — 2 4~ vertices. The lemma is proved. (I

§2. REDUCTION TO GRAPHS OF DIAMETER 3

In this section, I' is an edge-regular graph with k& = 3b; — 3. If the diameter of I is 2,
then the conclusion of the theorem is valid by the results of [3].

Proposition 1. Let I be a connected edge-reqular graph of diameter greater than 3 and
with parameters (v, k,\). If k = 3by —3, thenT' € T(3)UE(4), or T is a locally hexagonal
graph.
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In this section, we assume that the diameter of I' is at most 4. For each geodesic
3-path abcd, the subgraph [b] N [d] lies in [b] — [a], and therefore, u(b,d) < b;. We fix a
geodesic 4-path vwzyz and put A = 2+ — (ut U 2+). If by < 3, then the conclusion of
the proposition is valid by Lemmas 1.2 and 1.3. Thus, we may assume that b; > 4.

Lemma 2.1. The sum p(u,x) + p(xz, z) does not exceed 2by — 3.

Proof. Let pu(u,x) = by. Then 2t Nd+ = 2t — [u] for every vertex d € [z]N[z]. If d and y
are distinct vertices of [¥] N [z], then d*+ Ny = AU ([z] N [z]), which contradicts the fact
that the vertex z is adjacent to d and y. Hence, p(z,z) =1 and b; < 3, a contradiction.

Let p(u,x) = p(x,2z) = by — 1. Then |A| = by, and for each vertex w € [u] N [z] there
is a unique vertex of ([u]N[z]) UA that does not lie in w*. The number of edges between
A —{z} and ([u]N[z]) U ([x] N[2]) is at least 2(by — 1)(by — 2). Therefore, each vertex in
A —{z} is adjacent to exactly 2b; —4 vertices in ([u] N [z]) U ([x] N[2]), and the subgraph
A(z) is a (b — 1)-coclique. Furthermore, the above-mentioned number of edges is equal
to 2(by — 1)(by — 2), and the subgraphs [u] N [z] and [z] N [z] are cliques. For any two
vertices w,w’ € [u] N [z], the subgraph [w] N [w'] contains u, by — 3 vertices of [u] N [z],
and exactly by — 2 vertices of A.

Let d be a vertex of [w] N [y] distinct from z. Since |[u] N [z] N [d]| = b — 2 and
each vertex of [u] N [z] N [d] is adjacent to exactly by — 2 vertices of A — {z}, we have
w(u,d) = p(d,z) = by — 1. Since by = 4, we see that [d] N [z] contains at least 2 vertices
of [u]. By symmetry, [d] N[z] contains at least 2 vertices of [z], which contradicts Lemma
1.5. ]

Lemma 2.2. pu(u,z) = p(x,z) = by — 2.

Proof. We assume that p(u,z) = by —2 and p(x, z) = by — 1. Then |A| = b; + 1, and for
each vertex w € [u]N[x] there is a unique vertex of A that does not lie in [w]. Therefore,
A — {z} contains two vertices d and e that are adjacent to all vertices of [u] N [z].
Lemma 1.4 shows that u(u,d) > by and p(u,e) > b;. By Lemma 2.1, d,e € T's(z). Now,
for each vertex y of [z] N [z], the subgraph [z] N [y] contains by — 2 vertices of [z] N [2]
and the same number of vertices of A. Therefore, [z] N [z] is a clique, and, for distinct
v,y € [z] N [z], the subgraph [y] N [y'] contains z, by — 3 vertices of [z] N [z], and b; — 1
vertices of A, a contradiction. The lemma is proved. |

Now, we complete the proof of Proposition 1. By Lemmas 1.1 and 2.2, we have
w(u,d) = pu(d,z) = by — 2 for every vertex d of [w] N [y]. In particular, [w] — u’ and
[y]— 2z liein d*+. Next, |A| = by +2, and the number of edges between ([u]N[z])U([z]N[2])
and A — {z} is equal to 2(b; — 2)(by — 1). On the other hand, each vertex of A — {z}
is adjacent to at most two vertices of ([u] N [z]) U ([z] N [2]) by Lemma 1.4. Therefore,
2(by —2)(by — 1) <2(by + 1) and by < 3, a contradiction. Proposition 1 is proved.

§3. GRAPHS OF DIAMETER 3

Suppose I' is a graph of diameter 3 that provides a counterexample to the theorem.
Then k£ = 3b; — 3 and A = 2b; — 4. By Lemma 1.1, the degree of each vertex in a
p-subgraph of T is at least by — 3. If by = 2, then I' € 7(3) by Lemma 1.2. If b; = 3,
then, by Lemma 1.3, the neighborhoods of vertices in I' are either hexagons or consist
of two isolated triangles. In any case, we obtain a contradiction with the choice of T.
Therefore, b; > 4.

Proposition 2. Let I' be a connected edge-reqular graph of diameter 3 and with param-
eters (v, k,A). If k =3by — 3 and by > 4, then |T's(u)| > 1 for every vertex u.
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Let the conditions of Proposition 2 be fulfilled. We fix a geodesic 3-path wwzy. In
Lemmas 3.1-3.11, we prove that by(u,z) = 1. We have [y] NT'3(w) C I'a(u) (see Lemmas
3.2-3.4). For a € T'y(u) and A(a) = [a] N T's(u), the subgraph A(a) is a clique in
I'z(w) (see Lemma 3.5). Suppose that [z] contains two vertices y and z of I's(u). Then
p(u,x) < by (see Lemma 3.1), [y] — 2+ C T'a(u) (see Lemma 3.6), and each vertex d of
[u] N T2 (y) is adjacent to a vertex of [y] N [z] (see Lemma 3.7). Finally, each vertex of
[u] N Ty (y) is adjacent to at most one vertex of [y] — 21 (see Lemmas 3.8-3.10).

Lemma 3.1. If [z] contains a vertex z of T's(u) — {y}, then p(u,z) < b;.

Proof. Assuming that [z] contains a vertex z of I's(u) — {y} and u(u,x) = by, we show
that

() zt Nyt =2tnzt =yt nzt

Observe that [z]N[u] contains by vertices outside y-Uzt. Therefore, z-Ny* = ztNzt,
the vertices y and z are adjacent, and - Ny =y Nz, Statement (1) is proved. Now
we prove the following:

(2) if a € [w] N [y] — {z} and p(u,a) = by, then the vertices  and z are not adjacent
to a.

Let a € [w] N [y] — {z} and p(u,a) = b;. If a is adjacent to z, then, by statement (1),
we have a Nyt = at Nzt =yt Nzt whence a is adjacent to z, a contradiction. Thus,
the vertices x and z are not adjacent to a. Statement (2) is proved. Next, we show that

(3) if d is a vertex of [w] N [y] adjacent to x, then {w} = [u] N [d] N [x].

Let d be a vertex of [w] N [y] adjacent to z. If u(u,d) = by — 2, then the triple u, z,d
is almost good. Since [d] N [z] contains the vertices y and z, which are not adjacent to
any vertex of [u] N [z] N [d], we see that {w} = [u] N [d] N [z] by Lemma 1.5.

Let pu(u,d) = by — 1. Then [d] — y* contains b; — 1 vertices of [u] and a unique vertex
c outside [u]. By symmetry, [d] — z* contains b; — 1 vertices of [u] and a unique vertex e
outside [u]. If e = ¢, then dt Nyt = dt Nzt =yt Nzt which contradicts the fact that
w € [d]N[x]. Thus, e # ¢, and y* N 2+ contains A + 1 vertices of d*. Therefore, z+ Nd*
contains A+ 1 vertices outside [u] and a unique vertex w of [u]. Statement (3) is proved.
The next statement to be verified is

(4) the subgraph [u] N [z] is a clique.

Suppose the degree of w in the graph [u] N [z] is equal to b; — 3. Then [w] —ut C z,
and, by statement (1), we have [w] N [y] = [w] N [z] = [w] — ut.

We assume that the subgraph [w] N [y] contains two nonadjacent vertices d and d' and
put § = |[u] N [d] N[d']]. Then u(u,d) = p(u,d’) = by — 1, and, by Lemma 1.5, we obtain
§ < 2. If § =1, then [u] N [w] contains b; — 2 vertices in each of the subgraphs [d] and
[d], and, by statement (3), does not intersect [z]. This contradicts the fact that b; < 3
in this case. If § = 2, then [u] N [w] contains a vertex of [d] N [d'] and b; — 3 vertices in
each of the subgraphs [d] — [d'] and [d'] — [d] of [x]. Hence, by = 4. This contradicts the
fact that [w]N[w’] contains u, d, d’, and one vertex of each of [u]N[d] and [u]N[d’]. Thus,
the subgraph [w] N [y] is a by-clique.

Let d,d’ € [w] N [y] — {z}, and let p(u,d) = p(u,d’) = by — 1. Since [d] N [d’] contains
the vertices y and z outside [w]U[w’], where w and w’ are distinct vertices of [u]N[d]N[d'],
Lemma 1.5 implies that [u] N [d] N [d'] = {w} for every two vertices d and d' of [u] N [y].

If by > 5, then the degree of w in [u] is at least 4(b; — 3), a contradiction. Thus,
by = 4 = )\, which is impossible because the graph [d] N [x] contains w,y, z, and two
vertices of [w] N [y].

Assume that the degree of w in the graph [u] N [z] is by — 2. Then [u] N [z] — w
contains a single vertex ¢, and the degree of z in the graphs [w]N[y] and [t]N[y] is by — 2.
Since [z] contains the vertices y and z outside w' U t, we see that the degree of = in
the graph [w] N [t] is at least by — 1, and [w] N [¢] contains a vertex d of I'y(u) N [z]. Since

1
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[z] — y+ = [u] N [z], statement (1) shows that the vertex d is adjacent to y and z, and
wu(u,d) < by by statement (2). Since [u] N [d] contains the nonadjacent vertices w and
t, we obtain p(u,d) = by — 1, and [u] N [d] N [z] contains the vertices w and t. This
contradicts (3). Thus, the degree of each vertex w of the graph [u] N [x] is by — 1, so that
[u] N [z] is a clique. Statement (4) is proved. Finally, we prove the following statement:

(5) p(u,d) = by — 2 whenever w € [u] N [z] and d € [w] N [z] N [y].

If p(u,d) = by — 1 for a vertex d € [w]N[z]N[y], then, by statement (3), the subgraph
[z] — d* contains by — 1 vertices of [u] and a vertex of [y] N [z]. Since [w] N [u] contains
by — 1 vertices of [x] and by —3 vertices of [d], we see that [u]N[d] contains a unique vertex
w’ that does not belong to w. Since y Nz lies in 2, the triple w, y, z is almost good,
d is adjacent to a vertex w’ outside [w] Uy® U zt, and b; = 4 by Lemma 1.5. Since [d]
contains the vertices y and z outside w> U (w’)*, the degree of d in the graph [w]N[w'] is
equal to 3, and [w'] contains a vertex r of [w] N ([y] —[z]) and a vertex s of [w] N ([z] — [y]).
The graph [d] contains the vertex w outside y* Uz U (w’)*. Therefore, the degree of d
in the graphs [y] N [w'] and [z] N [w'] is equal to 3, and [w’] contains a vertex ¢ adjacent
to d,y, and z. We have u(w’,y) = p(w’,z) = by — 1, and d is adjacent to the vertex
w outside (w')* U [y] U [z] and [d] N [t] = {w',z,y,2}. Therefore, the vertices r and s
are not adjacent to t, and ¢ is adjacent to a vertex t' of [z] N [2] — dt. Using Lemma
1.4, we obtain p(t,w) > 3, and [t] N [w] contains a vertex of [u] N [z]. By Lemma 1.1,
the subgraph [z] contains a vertex outside ¢+ U w", which contradicts the fact that this
vertex is in [y] N [2] = {d, z,t,t'}. Statement (5) is proved.

Now, we complete the proof of the lemma. By statement (5) and Lemma 1.4, we have
{w} = [u] N [d] N [e] for all vertices d,e € [w] N [x] N [y]. If by > 5, then [w] N [x] N [y]
contains at least two vertices and 2(by — 3) + by — 1 < 2b; — 4, a contradiction. Thus,
by = 4, and, for each vertex w € [u] N [z], we have a unique vertex of [w] N [z] adjacent
to . Since z is adjacent to three vertices of [y] N [z], we see that there is a vertex d of
[z] N [y] N [2] adjacent to two vertices w and w’ of [u] N [z]. But this is impossible because
[w] N [w'] contains u, z, d, and 2 vertices of [u] N [z]. The lemma is proved. O

In Lemmas 3.2-3.3, we assume that [y] contains a vertex z of I's(u) N I's(w). For
a € [w]N[y], let B, = a+ —([u]U[2]). Weput & = %,. Let b € ([u]NT2(2))U([z]NT2(u)),
and let [b] contain ¢ vertices of I'a(z) NT'2(u). We say that the vertex b is strong if i = 2,
and weak if i = 1.

Lemma 3.2. Suppose [u]N[x] contains a vertex adjacent to the vertices of [x]N[z]. Then
the following statements are valid:

(1) if p(u, x) = by, then |X| = 2by — 2 — u(x, 2), - — [u] = z+ Ny, and each vertex
of [z] N [2] — {y} is adjacent to a vertex of [u] N [x];

(2) if a € [z] N [z] NT2(u) and the degree of a in the graph [x] N [z] is equal to by — 3,
then p(u,z) = by, and the subgraph [u] N [a] is a clique;

(3) if e is a strong vertex of [x] N [y] N [z] and the degree of e in [x]N[z] is by — 3, then
w(x,z) =by —2;

(4) each vertez of [x] N [z] NTa(u) is adjacent to y.

Proof. We assume that some vertex of [u] N [z] is adjacent to a vertex of [z] N [z]. Let
p(u,z) = by. Then [z] N [u] contains by vertices outside - N yL. Therefore, - — [u] =
rt Nyt Next, |2| = 2b; —2—p(x, 2) and x+ Ny = ZU([z]N[2]) for y € [z]NT3(u). If
vertex a of ([#]N[z]) —{y} is not adjacent to a vertex of [u]N[z], then 2t Nat = 2+ —[u],
¥ C [a], and a* Nyt = X U ([z] N [z]). This contradicts the fact that z is adjacent to a
and y. Statement (1) is proved.

Suppose a € [x] N [z] NT'2(u) and the degree of a in [x] N [z] is by — 3. By Lemma 1.1,
the subgraph [a] — z* lies in #*. In particular, [u] N [a] C [x]. If pu(u,a) = by — 2, then
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w(u,x) = by by Lemma 1.4. Now, assume that p(u,z) < by. Then u(u,a) = p(u,x) =
by — 1 and [u] N [a] = [u] N [z]. This contradicts the fact that any vertex w of [u] N [z] i
not adjacent to a. Thus, u(u,x) = by.

If the subgraph [u] N [a] is not a clique, then a is a weak vertex, and [u] N [a] =
[u] N [z] — {w} contains two nonadjacent vertices d and d’. Since [a] contains the vertex
d’ outside d*+ U 21, the degree of a in the graph [d] N [z] is by — 2, u(d, 2) = by — 1, and
[d] N [x] contains by — 2 vertices of each of [u] and [z]. This contradicts the fact that a*
contains only by — 3 vertices of [z] N [z] — {y}. Statement (2) is proved.

Let e € [z] N [z], and let e be adjacent to a vertex a’ of T'a(u) NTy(2) — {x}. If the
degree of e in the graph [z]N[z] is by — 3, then [e] — 2~ C 2t and p(u, ) = by by Lemma
1.4. If p(w, z) > by — 2, then the subgraph [z] N [2] — e’ contains a vertex e’. First, we
assume that e’ € I's(u). By Lemma 1.1, the subgraph [u] N [¢/] does not intersect [e].
If ¢ is a weak vertex, then [¢/] N [z] contains at most b; — 2 vertices of [z] and at most
by — 2 vertices of [u]; but 2(by —2) < b; — 1, a contradiction. Thus, the vertex e’ is
strong and [¢'] N [z] contains a vertex x” of 3, by — 2 vertices of [z], and by — 3 vertices
of [u]. Therefore, 2b; —5 < by — 1, by = 4, and p(u,z) = p(z, z) = 4. Hence, |E| = 2
and 2’ = 2”. Since the degree of x in [¢/] N [w] is at least 2, we have ' € [w]. Similarly,
the degree of 2’ in [e] N [w] is at least 2. Consequently, [e] N [u] N [2'] contains d, and the
subgraph [z] N [2'] contains d, w, e, and e’. Therefore, the vertex z’ is not adjacent to y.
However, [z] — ((z')* Uyt) contains a vertex of each of [¢] N [2] and [¢/] N [2], and the
degree of x in the graph [2'] N [y] is at least 3, which is impossible because |[z] N [z]| > 5
in this case.

Thus, [2]N[z] — et = {y}, u(x,z) = by — 1, and |Z| = by — 1. This contradicts the fact
that [x] N [y] contains b; — 2 vertices of ¥ and at most by — 3 vertices of [z]. Statement
(3) is proved.

Suppose a belongs to [z] N [2] NT'2(u) and is not adjacent to y. Then u(x,z) > by — 1.
If the degree of a in the graph [z] N [z] is equal to by — 3, then the vertex a is weak by
(3), and the subgraph [u] N[a] is a (by — 1)-clique by (2). In particular, p(u,z) = b;. We
note that [z] — (wt Uyt) contains a, so that the degree of = in the graph [w] N [y] is at
least by — 2, |X| = by — 1 = p(z, 2), and [w] N [y] contains X. This contradicts the fact
that [z] N [y] contains b; — 2 vertices of 3 and at most by — 3 vertices of [z] N [z]. Thus,
the degree of a in the graph [x] N [2] is equal to by — 2, and p(z, z) = by.

If the vertex a is weak, then, by (2), the subgraph [u] N [a] is a (b; — 1)-clique and
[[u]N[a]N[z]| = b1 — 2. As above, |X| = by — 1 = p(x, 2) and [w]N[y] contains . Hence,
[z] N [w] contains by — 2 vertices in ¥ and in [u] N [z]; it follows that [u] N [z] is a clique.
If d and d' are vertices in [u] N [a] N [z], then [d] N [d'] contains a,u, w, z, by — 4 vertices
of [u] N [a] N [z], and a vertex of [u] N [a] — [z]; in particular, we have b; > 4. If some
vertex of [u] N[a] N [x] is adjacent to a vertex outside u~ U [a] U [z], then, by Lemma 1.5,
we obtain b; — 2 = 2, a contradiction. Therefore, each vertex of [u] N [a] N [z] is adjacent
to a unique vertex of each of subgraphs [z] — (at U [u]) and [a] — (z* U [u]). However,
[z] — (et U [u]) = X(z) U {y}, so that each vertex of [u] N [a] N [z] is strong. Next, the
degree of a in the graph [2] N (U e pujnpanp[d]) is at least 3(by — 3) and by = 5. We put
{d1,da,d3} = [u]N[a] N [z] and {x1, 22,23} = X(z); the vertices are numbered so that d;
is adjacent to x;. The vertex d; is adjacent to a unique vertex e; of ([a] N [z]) — [u], and
{e1,e2,e3} UX(x) = [x] N [y]. Since [e1] N [z] contains a,d;, y, and, possibly, also es, e3
and at most one vertex of X(z), we see that eq, es, 1 € [e1] and [d1] N [y] = {e1, z, z1}-

We put {dy,d},d{} = [u] N ]e1]. Then [di] N [w] contains u,x, x1,ds,ds, and a vertex
of [u] N[e1], say, d{. The subgraph [x] N [z1] contains w,y, d;, e1, and the vertices z; and
ro; in particular, ¥ is a 4-clique. We note that [z;] — y* lies in di- and u(u,z1) > 4,

wn
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whence [z1] N [u] = {w,d,d},d!}. Replacing the triple x,a,y by x1,d},w, we obtain a
contradiction with the fact that the degree of dj in the graph [u] N [z] is 2 = b; — 3.

If a is a strong vertex, then [a] contains two vertices x and z’ of T'z(u) N T'2(2),
u(u,a) = by — 2, and the degree of x in the graph [w] N [a] is at least by — 2. Therefore,
a single vertex b of [a] — (z1 U z%) lies either in [u] or in T'y(u) N Tz(z). In the latter
case, we have |[u] N [a] N [z]| = by — 2 and p(u,z) = by — 1, which contradicts Lemma
1.4. Thus, b € [u] N[a] and 2’ € [w] N [z], and by = 4 by Lemma 1.4. Since [z] contains
a vertex a outside w U y*, the degree of = in the graph [w] N [y] is at least 2, and %
contains at least three vertices of [w] N [y].

We put {d,b} = [u] N [a]. If the degree of d in the graph [u] N [z] is equal to 1, then
[d] —ut C 2t Nat. In the case where the vertex d is weak, we obtain a clique [d] N [z] =
{a,e, €'}, where [e] N [¢/] contains a,d, x, z, and either 2’ or a vertex of [u] N[d] — {w, d'},
a contradiction. Thus, the vertex d is strong and, using (3), we obtain u(u,x) = 2 and
Y = [w] —ut. Let [z]N[2] = {a,e,¢€,y}, where e is adjacent to d. If e is not adjacent
to y, then ¥ C [y], the vertex e is strong, and [z] N [2'] contains d,w,a,e, and y, a
contradiction. Thus, e is adjacent to y, |X N [y]| = 3, and [z] N [e] contains a,d,y, and a
vertex of {e’/,2'}. By Lemma 1.4, the vertex e is not adjacent to b. If e is adjacent to €/,
then e is weak and [u]N[e] = {d, ¢, ¢'}. In this case, [d]N[2'] contains a, w, x, and a vertex
of {c,c'}, say, c¢. Since ¢ is not adjacent to z and has degree 2 in the graph [u] N [e],
we conclude that ¢ is weak and [¢] N [z] contains three vertices of (et N [z]) — {a,y}.
This contradicts the fact that, in this case, [e] N [¢] contains a,c,z,y, and z. Thus,
e € 2] —[¢], ] N[2'] = {a,d,e,w}, 2’ is not adjacent to y, and [d] N [y] = {e,z}. By
Lemma 1.4, we have pu(z’, 2) = 4. Observe that [d] —u® C 2N (2')*, whence the degree
of d in the graph [u] N [z/] is 1 and b, ¢ ¢ [2']. Hence, u(b, z) = u(c, z) = 4, and Lemma
3.1 shows that the vertices b and ¢ are not adjacent to w.

Now, p(e,w) = pla,w) = 3 and [e] N [w] = [a] N [w] = {d,z,2'}. Since {d,z,z'} is
a clique, we see that, by Lemma 1.5, the subgraph [a] — el contains the vertices b, ¢,
and f, and the graph [e] — a’ contains the vertices ¢,y, and g adjacent to d,z, and 2/,
respectively. We put {r, s} = ([w] N [z]) — {d,x}. Then [2'] N [r] contains the vertices w
and s of [u] and the vertices f and g outside u'. By symmetry, [z] N [s] contains f and
g. This contradicts the fact that, in this case, [r] N [s] contains u,w, z’, f, and g.

Thus, the degree of d in [u] N [z] is equal to 2, and [d] — u contains the vertices
a and e of [z] N [z] and the vertex e’ of [z] — [x]. Therefore, the vertex d is weak and
[d] N [y] = {z,e}. By Lemma 1.4, the vertex b is not adjacent to e, the triple u,z, e is
almost good, and [u] N [x] N [e] contains exactly two vertices d and d’. We note that z’ is
adjacent to b, otherwise b is adjacent to e’ and [a] N [2/] contains = and three vertices of
[a]N[z] —{e}; in particular, 2’ is adjacent to e’. This contradicts the fact that p(u,e’) =3
and [u] N [a] C [€].

We put [a] N [z] N [z] = {e, f} and assume that f is adjacent to /. Then [z] N [f]
contains a,2’,y, and d’. However, if f is adjacent to d’, then [e] N [f] contains a,d’, z, v,
and z. Therefore, the vertices e and f are not adjacent. Since the degrees of the vertices
e and f in the graph [d'] N [z] are equal to 1, we see that the subgraphs [u] N [e] and
[u] N [f] are contained in (d’')*. Now, [d'] contains a vertex w outside [e] U [f], so that
[u] N [e] N [f] contains the adjacent vertices d’ and d”. Hence, the triple u, e, f is almost
good, [u] N [e] N [f] contains exactly two vertices d’ and d”, and [e] N [f] contains two
vertices y and z none of which is adjacent to d or d’. This contradicts Lemma 1.5.

Thus, the vertices 2’ and d’ are not adjacent to f and [z] N [f] contains a,e,y, and
a vertex a of ¥. Furthermore, [x] N [2] contains a,w,y, and the vertex z”. Finally,
[x] N [d'] contains d, e, w, and z”, which is impossible because [z] N [z"] = {d’,2’, w, f,y}.
The lemma is proved. O
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Lemma 3.3. The subgraph [u] N [x] contains no vertices adjacent to vertices of [x] N [z],
and p(u, ) < by.

Proof. We assume that some vertex of [u] N [z] is adjacent to a vertex of [x] N [z]. We
prove that

(a) p(x,z) > by — 2.

Suppose p(x,z) = by — 2. Statement (3) of Lemma 3.2 implies that p(u,z) = b;. By
Lemma 3.1, we obtain ¥ C T's(u). If e and ¢’ are vertices of [z] N [z] — {y}, then the
subgraphs [u] N [e] and [u] N [¢'] are contained in [z], and they do not intersect because
otherwise, for d in [u] N [e] N [¢/], the subgraph [z] N [d] contains two vertices e and e’ of
[2], and p(d, z) < by. This contradicts Lemma 1.4. Then 1+ 2(b; —2) < by and by < 3,
a contradiction. Thus, [z] N [z] = {e,y}, by =4, and ¥ C [y].

If the vertex e is weak, then e is adjacent to no vertex of X(z) and p(u,e) = 3. By
statement (2) of Lemma 3.2, the subgraph [u] N [e] is a clique, and statement (4) of the
same lemma shows that the subgraph [u] N [e] lies in [w]. Therefore, for any two vertices
d,d € [u] N [e], the subgraph [d] N [d'] contains e,u,w,z, and a vertex of [u] N [e], a
contradiction.

Thus, the vertex e is strong, e is adjacent to a vertex z’ of X(z), and u(u,e) = 2. We
have p(2’,z) = 4 by Lemma 1.4. The subgraph [e] N [z] contains y, z’, and two vertices
d and d' of [u] N [e]. Applying statement (4) of Lemma 3.2 to the path zyzwu, we see
that the vertices d and d’ are adjacent to w and [d] N [d'] = {u,w,x,e}. By Lemma 1.4,
we have p(w, e) = p(u,x) = 4; in particular, w is adjacent to x’. If the vertices d and d’
are not adjacent to z’, then the degree of e in each of the subgraphs [d] N [z] and [d'] N [#]
is equal to 2. Since |[e] N [z] — {y}| = 3, the triple z,d, d’ is almost good, [d] N [d'] N [#]
contains at least 2 vertices, and [d] N [d'] contains two vertices u and w not adjacent
to vertices of [d] N [d'] N [z]. This contradicts Lemma 1.5. Thus, we may assume that
' € [d] — [d'], so that [z] N [z] = {d, e, w,y}.

Let ¢ € [u]N[z] — {w,d,d’}. If ¢ is not adjacent to w, then the degree of ¢ in the graph
[u]N[x] is 1 and [¢] —ut = 3, which contradicts the fact that the vertex z’ is not adjacent
to c¢. Thus, cis adjacent to w and [w]N[z] = {¢,d,d’,2'}. In particular, [w]N[y] = {z, z'}.
Now, for {r,s} = X — {x,2'}, the subgraph [r] N [z] contains ¢,d’,y, and the vertex s.
By symmetry, [s] N [z] contains ¢, d’, y, and the vertex r. This is impossible because d’ is
adjacent to three vertices of X. Statement (a) is proved. Now, we show that

(b) [u] N [x] contains no weak vertices.

Let d be a weak vertex of [u] N [z]. We prove that the subgraph [d] N [z] N [z] consists
of strong vertices, the degree of d in the graph [u] N [z] is equal to by — 1, p(u,z) = by,
and b; = 4.

If the subgraph [d] N [x] N [2] contains a weak vertex e, then, by statement (3) of
Lemma 3.2 and statement (a) above, the degree of e in the graph [d] N [z] is equal to
by — 2. By symmetry, the degree of d in the graph [u] N [e] is equal to b; — 2. Therefore,
[d] N [e] contains x, by — 2 vertices of [u], and b; — 2 vertices of [z], a contradiction. Thus,
[d] N [z] N [2] consists of strong vertices.

The subgraph [z] N[d] contains at most by — 1 vertices of [u] and at least by — 3 vertices
of [z]. If [z] N [d] contains by — 2 vertices of [z], then the degree of d in the graph [u] is at
least 3(by — 3) + 1 provided b; > 5, a contradiction. If by = 4, then the degree of each of
the vertices e, €’ € [d] N [z] N [z] in the graph [d] N [z] is equal to 2, and [e] N [¢/] contains
d,z,y, z, and the third vertex of [d] N [z]. Thus, the degree of d in [u] N [z] is b — 1, and
w(u, ) = by.

Suppose [z] N [d] contains b; — 3 vertices of [z] and by — 1 vertices of [u]. If by > 6,
then the degree of d in [u] is at least 3(b; —3) + 1, a contradiction. If b; = 5, then we put
[d] N [z] = {e,€e',a,a'}, where e and e’ are adjacent to . Then [e] N [z] contains d,y, a
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vertex a’ of X, one vertex of [d] N [z], and two vertices of ([d] N [u]) U ([z] N [z] — {y}). We
have [e] N [e'] = {d,z,a,ad’,y,z}. If p(u,a) < 5, then [u] N [d] contains w, two vertices of
[e], and two of [¢’]. By Lemma 1.4, the degree of d in [u]N[a] is at most 1, a contradiction.
Thus, u(u,a) = p(u,a’) =5, and, by Lemma 3.1, the vertices a and @’ are not adjacent
to y. Now, [e] — y* contains a,a’, and three vertices of [u]. Therefore, [y] N [2] contains
e, €', two vertices adjacent to e, and two vertices adjacent to €’, which implies that a
vertex of [z] N [z] —{e, €/, y} is adjacent to y and to one of the vertices e and €', say, to e.
In this case, [u]N[e] — [z] contains f, and if f is not adjacent to w, then u(e,w) < 5, and
[u] N [w] N [e] contains d and x, which contradicts Lemma 1.4. Thus, u(e,w) = 5, [w]N[d]
contains u, f,x, and three vertices of [u] N [x]. The vertices f and w are adjacent by
Lemma 3.1. We obtain u(f,z) < 5. If u(x, z) = 5, then [u]N[e'] — [z] contains a vertex f
adjacent to w, which contradicts the fact that, in this case, [d] N [w] contains u, f, f', x,
and three vertices of [u] N [z]. Thus, u(x, z) = 4, and [z]N[e’] contains two vertices of [z],
a vertex of ¥(x), and three vertices of [u]. We put [u]N[e’] = {d, g,¢'}. Then both triples
z,d,g and z,d, g" are almost good, and [d] N [g] N [¢’] contains two vertices u and w that
are adjacent to none of the vertices {€’, a,a’}. Applying Lemma 1.5 to the above triples,
we see that [g] N [¢'] contains both vertices of [¢] N [z] — {a,a’,e,y}. This contradicts
Lemma 1.5 applied to the almost good triple z,¢,¢’.

Finally, if by = 4, then the subgraph [d]N[z] contains a vertex e of [x] and two vertices,
a and o/, outside [z]. Then either p(u,a) =4, or [d] N [a] contains e, a’, and two vertices
of [u] — ({w}Ue]). If p(u,a) and u(u,a’) do not exceed 3, then [a] N [a’] contains d, e, z,
and two vertices of ([u] N [d]) — ({w} U [e]), a contradiction. Thus, we may assume that
[a] contains [u] N [e], and, in particular, p(u,a) = 4. We put [u] N [e] = {d,d'}. If d’ and
x are adjacent, then [d] N [d] contains u,w,z, a, and e, a contradiction. Thus, d’ is not
adjacent to x, and [a] N [z] contains d, e, and a vertex f of [u] not adjacent to e. Since [f]
contains the vertex u, which lies outside a- U z*, we see that [a] N [z] contains a vertex
g of [z] N [z] — [e] adjacent to f, u(x,2z) =4, and |X| = 2. Now [z] N [2’] contains e, w, y,
and yet another strong vertex s. If s € [z], then the vertex r of [x] N [z] — {y, e, s} is
weak, which is impossible because [u] N [r] N [z] contains a strong vertex. If s € [u], then
[z] N [u] contains two weak vertices lying in [e], a contradiction. Statement (b) is proved.

Now, we complete the proof of the lemma. Let a vertex d of [u] N [z] be adjacent to
a vertex e of [x] N [z] and to a vertex a’ of I'a(u) NTy(z). Since |([d] N [2]) — [z]| < 2, we
see that [z] N [d] contains at least by — 4 vertices of [z]. If [d] N [x] N [z] contains three
vertices, then the degree of d in [u] is at least 3(b; —3) + 1, and by = 4. This contradicts
the fact that, in this case, [d] — u' contains five vertices. Suppose [d] N [¥] N [2] contains
two vertices e and e’. Then [z] N [2/] contains d,e,e’,w, and y, and by > 5. If by = 6,
then, by Lemma 1.1, the subgraph [d] contains five vertices of [u] N [z] and two vertices
in each of [u] N [e] — [x] and [u] N [¢/] — [z]. This contradicts the fact that A = 8.

Thus, b; = 5. If each of the subgraphs [e] N [z] N [u] and [¢/] N [z] N [u] contains one
vertex, then [d] N[u] contains three vertices of [x] and two vertices of each of [u] N [e] — []
and [u] N [¢'] — [x]. This contradicts the fact that A\ = 6. Thus, we may assume that
[u] N [e] N [z] contains two vertices d and d’. By Lemma 1.4, the vertices d’ and e’ are
not adjacent. Therefore, [¢/] contains two vertices outside z+ U 2+, whence u(x,z) =5
and [z] N [z] C (¢')*. By symmetry, [d’'] contains two vertices outside (x')+ Uu', whence
w(u,z') =5 and [u] N [2'] C (d')*. In this case [x] N [2/] contains d,d’, e, €', y,w, and a
vertex of [u] N [z], a contradiction.

Thus, [d]N[z]N[z] contains a unique vertex e; in particular, by < 5. If b = 5, then, as
above, [e] contains two vertices outside - Uz, so that u(z, 2) = 5 and [z]N[z] C e*. By
symmetry, [d] contains two vertices outside u~Uz", whence u(u, r) = 5 and [u]N[z] C d*.
Similarly, p(u,2’) = 5, [u] N [2'] C d*, and p(a’,2) = 5, [z'] N [z] C et. In this case,
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[e]N[z] contains two vertices in each of [z]N[a'], [z] —[2'], and [2'] —[z]. This is impossible
because [d] N [z] contains three vertices of [z].

Thus, by =4, [z]N[z'] = {d, e, w,y}, and the degree of d in each of the graphs [u] N [z]
and [u] N [z] is equal to 3. We put [d]N[z] = {e, €'} and [u]N[e] = {d,d'}. Since [d]N[€/]
contains e and three vertices d’, f, and g of [d] N [u], the vertices f and g are adjacent to
w. This contradicts the fact that [d] N [w] contains u, f, g, x, and . O

Lemma 3.4. For every geodesic 3-path uwzy, the subgraph [y] NTs(w) lies in Ta(u).

Proof. We assume that [y] contains a vertex z of I's(u) N I's(w). By Lemma 3.3, both
w(u, z) and p(x, z) are less than by.

Now, suppose that p(u,xz) = by — 2. Then |X]| is either by + 1 or b; + 2. Let w and
e be distinct vertices of [u] N [x]. Then [e] — u™ contains b; vertices of ¥. Therefore,
[w] N [e] contains at least by — 2 vertices of ¥.. However, for f € [w]N[e]NX(z), we obtain
a path uwfy'z, the subgraph [f] contains two vertices of [u] N [z], and p(u, f) < by, a
contradiction.

Thus, we have u(u,z) = pu(z, z) = by — 1 for each vertex = € [w] N [y], and |X| = b;.
Therefore, for any a € [u] N [z], there is a unique vertex of ([u] N [z]) UL that does not
lie in a*. By symmetry, |¥ — y*| < 1. If [u] N [z] contains two nonadjacent vertices a
and b, then [u] N [x] C [d] for some vertex d € X(z) N [y]. By Lemma 1.5, we obtain
[[u] N [z] N [d]| = 2, which contradicts the fact that by > 4. Thus, each vertex of [u] N [z]
is not adjacent to the only vertex of ¥; in particular, the subgraph [u] N [z] is a clique.
If two distinct vertices a and b of [u] N [z] are not adjacent to one and the same vertex e
of 3, then [a] N [b] contains u,x, by — 3 vertices of [u] N [z], and by — 2 vertices of ¥(x),
a contradiction. Thus, every vertex of ¥(x) is adjacent to by — 2 vertices of each of the
graphs [u] N [z] and [z] N [2]. In particular, the subgraph X (z) is a (by — 1)-coclique.

If by > 4, then X(x) contains two vertices d and e of [w] N [y, u(u,d) = p(u,e) =
by — 1, and |[u] N [d] N [e]| = by — 3, which contradicts Lemma 1.5. Thus, b; = 4. For
d € X(z) N [w] N [y], the subgraph [u] N [d] N [z] contains two vertices a and w, and
[d) N [z] — [u] contains two vertices of [z] N[z] that do not lie in [a] U [w]. This contradicts
Lemma 1.5. The lemma is proved. O

For a € T's(u), we put A(a) = [a] NT5(u).
Lemma 3.5. The subgraph A(x) is a clique in T'y(w).

Proof. By Lemma 3.4, we have A(z) C I'y(w). Let y and z be two nonadjacent vertices
of A(x). By Lemma 1.1, u(w,y) and p(w, 2) do not exceed by —1. Next, [x] —y* contains
z and at most by — 1 vertices of [u].

If u(w,y) = by, then [w] — ut = [w] N [y], and [w] N [2] lies in [y]. Assume that
w(w,z) = by — 1. Let d € (Jw] N [y]) — [z]. By Lemma 1.1, the subgraph [w] N [z] is a
clique, and the subgraph [z] lies in {y} Uw® Uzt for each vertex = of [w] N [2]. We
observe that if d is adjacent to a vertex e of [w] N [z], then [e] — z* contains d,y, and
by — 2 vertices of [u]. Suppose d is adjacent to i vertices of [w]N[z]. If by > 5, then i > 2,
and the degree of w in [u] is at least 2(by — 3) + (b — 2), a contradiction. Thus, by = 4
and i = 1, because otherwise, for vertices e, e’ € [w] N [z] adjacent to d, the subgraph
[e] N [€] contains d,w,y, z, and a vertex of [w] N [z] — [d]. We put {e,a,a’'} = [w] N [7],
where only e is adjacent to d. Again by Lemma 1.1, the degree of w is 2 both in [u] N [a]
and in [u] N [a], and [a] N [a] contains e, y, z, and two vertices of [u], a contradiction.

Thus, if p(w,y) = by, then [w] N [y] = [w] N [z]. Now, we assume that [w] N [y]
contains two nonadjacent vertices e and e¢’. Then the degree of w is equal to by — 2 in
each of the graphs [u] N [e] and [u] N [€'], and [u] N [e] N [¢] = {w} by Lemma 1.5. Let
a € [wlN[y] —{e, €'}. Then either [u]N[e], or [u]N[e’] contains a vertex d of [w]N [a]. For
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definiteness, let d € [e]. It follows that [a] N [e] contains two vertices y and z that do not
lie in [w]U[d]. This contradicts Lemma 1.5. Thus, [w]N[y] is a clique. If |[u]N[a]N[b]| > 2
for distinct vertices a and b of the graph [w] N [y], then [a] N [e] contains two vertices y
and z that do not belong to the union of neighborhoods of two vertices in [u] N [a] N [b],
which contradicts Lemma 1.5. Thus, 4(b; — 2) < 2b; — 4, a contradiction.

Therefore, we have p(w,y) = p(w,z) = by — 1 for every vertex w € [u] N [z]. In
particular, this implies that the subgraph [u] N [z] is a clique. Indeed, otherwise [u] N [x]
contains nonadjacent vertices w and w’, the vertex z is adjacent to two vertices w’
and z outside w' U y*, and p(w,y) = by by Lemma 1.1. By Lemma 1.5, we obtain
[w]N[y] N [z] = {z}, and [w] N [z] contains 2b; — 4 vertices of [y] U [z], which contradicts
the fact that p(u,z) = 1. The lemma is proved. O

In Lemmas 3.6-3.8 below, we assume that A(z) contains distinct vertices y and z. By
Lemma 3.5, the subgraph A(z) is a clique. Therefore, the vertices y and z are adjacent.
By Lemma 3.1, we have u(u, ) < by.

Lemma 3.6. The following is true:
(1) ift € [y] N [z] NTa(u) and t is adjacent to exactly j vertices of [y] — z*, then t is
not adjacent to ezactly j vertices of ([y] N [2]) — {t}, j <2, and [t] N ([y] — 2+) C Ta(u);
(2) for any adjacent vertices p and q of I's(u), we have [u] NT2(p) = [u] NT2(q);
(3) ] - = € Ta(u).

Proof. Observe that [t] N [y] contains z, j vertices of [y] — 21, and 2b; — 5 — j vertices of
[y]N[z]. Therefore, t is not adjacent to exactly j vertices of [y]N[z]. Since j+pu(t, u) < by,
we have j < 2. By Lemma 3.5 (applied to ¢ in the role of z), we obtain [t] N ([y] — 21) C
I'y(u). Statement (1) is proved.

Suppose [u]NTa(p) # [u]NT2(g). We may assume that T's(p) NT3(g) contains a vertex
d nonadjacent to u. Then u € [d] NT'3(p), and Lemma 3.4 shows that u € T'5(q), a
contradiction. Statement (2) is proved.

Now, assume that r € ([y] —z%) —Ta(u). Then [r]N[z] lies in T'3(u), because otherwise,
for a € [r] N [z] N Ta(u), the subgraph A(a) is not a clique, which contradicts Lemma
3.5. By statement (2), we have [u] N Ta(r) = [u] NT2(0) = [u] NTy(z) for every vertex
o € [r]N[z]. If d € [u] NT(r), then each of the graphs [d] N [z] and [d] N [r] contains at
least by — 2 vertices. Hence, by = 4 and p(d, z) = u(d,r) = 2. We put {e, f} = [d] N [2]
and {g,h} = [d]N[r]. By Lemma 1.4, either [d]N[y] = {e, f, g, h}, or we may assume that
[d] N [y] = {e, g}. Furthermore, we have ([y] — 2) NT'3(u) = {r}, because otherwise, if a
vertex r’ of this subgraph is different from r, then [d] N [r] = [d] N [r'], which contradicts
Lemma 1.4. By symmetry, ([y] —r+) NT3(u) = {z}.

We prove that [y]Ny(u) C [r]U[z]. Assume the contrary. Then, for a € ([y]NT2(u))—
([rJU[2]) and b € [u] N [a], we have b € T'y(r) NT'2(z) by statement (2). This contradicts
the inclusion [b] — ut C [r] U [z]. Now, by Lemma 1.1, the degree of y in the graph
[r] N [2] is equal to 1. If ¢ is a vertex of [r] N [z] adjacent to y, then we can take this
vertex in place of y, and {y,y’} is a connected component of the subgraph [r] N [z]. The
subgraph [y] N [y'] contains r, z, and two vertices of T'a(w). Similarly, [r] N [y] contains 3’
and three vertices of I'y(u). Thus, each of the vertices y and 3’ is adjacent to six vertices
of I'y(u). Therefore, I'a(u) contains ten vertices, each being adjacent to at least two
vertices of {r,y,y’, z}. We note that [r] — y* does not intersect I's(u); indeed, otherwise
s € ([r] —y*)NT3(u), the degree of the vertex r in [y]N[s] is equal to 1, and s is adjacent
to 3. Since ([y/] — 1) NT3(u) = {r}, we see that s is adjacent to 7, a contradiction.

Let e € [r] — ([y] U [¥']). Then e € T'a(u), and, for d € [u] N [e], the subgraph [d] N [r]
contains a vertex s adjacent to y and 3/, and we have u(d,y) = p(d,y’) = 2. Also, [s] —d*+
contains a vertex of [y] N [y’] N [r]. Therefore, both vertices of [y] N [¢'] N Ta(u) lie in [r].
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On the other hand, if e’ € [z] — ([y] U [¢']) and d’ € [u] N [¢/], then the subgraph [d'] N [2]
contains a vertex s’ adjacent to y and 3’, a contradiction. O

Lemma 3.7. Every vertex d of [u] NT'a(y) is adjacent to a vertex of [y] N [z].

Proof. We assume that a vertex d of [u] NT'2(y) is adjacent to no vertex of [y] N[z]. Then
each of the subgraphs [d] N [y] and [d] N [z] contains at least by — 2 vertices. It follows
that by = 4 and p(d,y) = p(d, z) = 2. We put {e, f} = [d] N [z], {g,h} = [d] N [y], and
{s1,...,84} = [d] N [u]. By Lemma 1.1, a neighborhood of each vertex of {e, f} lies in
d+uzt.

Suppose that g and h are not adjacent to e. Then [d]N[e] contains f and three vertices
of {s1,...,84}. In particular, u(e,u) = 4, and we may assume that e is adjacent to s, s,
and s3. Since d is adjacent to the vertex e outside ut U g+, the degree of d in the graph
[u] N [g] is at least 2 by Lemma 1.1. We note that each vertex s;, ¢ = 1,2, 3, is adjacent
to at most one vertex of {g,h} (otherwise, [s;] N [d] contains u,e, g, h, and two vertices
of [u] N le]). If each vertex s;, i = 1,2,3, is adjacent to g or to h (for definiteness, let
s1, 82 € [g] and s3 € [h]), then the degree of s; in the graph [e] N [u] — {d} is at least 1.
Therefore, some vertex s; has degree 2 in the graph {s1,...,s3}. This contradicts the
fact that the subgraph [d] N [s;] contains u,e, two vertices of [e] N [u], and a vertex of
{g,h}. Thus, one of the vertices {s1,...,s3} does not belong to [g] U [h].

If f is not adjacent to g, then, repeating the argument for g as e, we see that [g]
contains {s1, 2,84}, s3 is not adjacent to h, and s4 is not adjacent to f. However, in
this case [d] N [h] contains f, g, s4, and a vertex of {s1,s2}, a contradiction. Thus, if e is
not adjacent to g and to h, then [f] contains g and h. Since [d] N [g] contains f, h, and
two vertices of {s1,...,s4}, and [d] N [h] contains two vertices of {s1,...,s4}, we may
assume that g is adjacent to s; and to s4 and h is adjacent to sy and to s4. Observe
that [u] N [g] N [h] contains two vertices d and sy such that d is adjacent to e outside
ut U[g]U[h]. By Lemma 1.5, the subgraph [d] U [s4] contains [g] N [h], which contradicts
the fact that the vertex y of [g] N [h] does not belong to [d] U [s4].

Thus, every vertex of {e, f} is adjacent to a vertex of {g, h}. We assume that g, h € [e].
There is no loss of generality in assuming that f is adjacent to g. Then [d] — u™ lies in
et Ngt. Therefore, u(u,e) = u(u,g) = 2, and the subgraph [e] N [g] contains d, f, h, and
either a vertex t of [y] N [z] or a vertex s;. In the latter case, we obtain a contradiction
with Lemma 1.4.

Thus, the subgraph [e] N [g] contains a vertex t of [y] N [z]. For definiteness, assume
that e is adjacent to s; and g is adjacent to so. If s1 is adjacent to f, then the degrees
of e and f in the graph [g] N [2] are at least 2 (because s; ¢ g+ U z1). However, the
vertices e and f are not adjacent to the vertex y of [g] N [z]. Therefore, [e] N[f] contains
d, g, s1,z, and a vertex of [g] N [z], a contradiction. Thus, s; is not adjacent to f and, by
symmetry, so is not adjacent to h.

If s, is adjacent to h, then, by Lemma 1.4, we have p(u, h) = 4. Since [h] — y* C d*,
we see that [d] N [h] contains e, g, s1, $3, and s4, a contradiction. Thus, s; is not adjacent
to h and sy is not adjacent to f. The subgraph [s;] — u! contains three vertices p, p/,
and t of [e] — {f, g, h, z}. By symmetry, [so] —ut = {q,q,t}. Furthermore, [t] contains a
vertex of [s1]N[y] and a vertex of [sa] N [z]. This allows us to assume that p, g € [t]. Since
[t] N [e] = {g,p, 51,2}, the degree of ¢ in the graph [s1] N [y] is equal to 1. However, [s1]
contains a vertex off ut Ut+. Therefore, the subgraph [u] N [t] is a 3-clique {s1,s2,7}.
Since [p] N [t] = {e, s1,y, 2} and [g] N [t] = {e, s2,y, 2}, the graph [r] N [¢] contains only s;
and so, a contradiction.

Thus, we may assume that e € [g] — [h], f € [h] —[g], and |[o]N[u]| = 3 for every vertex
o of {e, f,g,h}. Suppose that the vertex s; is adjacent to three vertices of {e, f, g, h};
say, s is adjacent to e, f, and g. Then the vertices ss, s3, sS4, and h are not adjacent to
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s1. This contradicts the fact that the degree of s; in the graph [u] N [g] is at least 2.

Thus, every vertex s; is adjacent to exactly two vertices of {e, f, g, h}, and {s1,...,s4}
is a quadrangle. This is impossible because [d] N [s1] contains u, two vertices among
{s1,...,54}, and two among {e, f, g, h}. a
Lemma 3.8. Suppose a vertex d of [u] N Ta(y) is adjacent to « vertices gi,...,Ja of

[y] — z+. Then o < 2, and the following is true if a = 2:
(1) each vertex t of [d] N [y] N [z] is adjacent to a vertex of {g1,g2};
(2) each of the vertices g1 and g is not adjacent to at most one vertex of [d]N[y]N[z];
(3) at most one vertex of [d] N [y] N [z] does not belong to [g1] N [ga]-

Proof. Since u(d, z) < by — «, we have o < 2. Let a = 2. Then d, z is a good pair. By
Lemma 3.7, the vertex d is adjacent to a vertex ¢ of [y] N [z].

If u(d,y) < by, then, by Lemma 1.4, we obtain {t} = [d] N [y] N [z], whence u(d,y) +
b1 — 3 < b;. In particular, by < 5, and b; < 4 if d,y is an almost good pair. In this
case, all statement of the lemma are true. Thus, we may assume that p(d,y) = by and
[d N [2] C [yl

If t is not adjacent to the vertices of {g1, g2}, then [t] contains b; — 3 vertices of [d] N [y]
and by — 1 vertices of [d] — y (and the latter vertices lie in [u]). Now, [u] N [t] contains
d and by — 1 vertices of [d] — [y]. This contradicts Lemma 3.1. Statement (1) is proved.

Suppose ¢ is not adjacent to g;. Let [d] N [z] contain a vertex e distinct from ¢ and not
adjacent to g1. Then [go] contains the vertices ¢t and e of [d] N [z], so that u(gs,z) > by.
By Lemma 3.1, the triple (u, t, e) is almost good, and [¢t] N [e] contains two vertices y and
z not adjacent to the vertices of [u] N [t]N[e]. By Lemma 1.5, we have [u]N[t]N[e] = {d}.
Observe that [t] U [e] contains [d] — ({u} U [y]). If by > 4, then [d] N [2] contains a third
vertex f. We may assume that [f] N [e] contains at least (b; — 3)/2 vertices of [d] N [u],
and b; < 3 by Lemma 1.4, a contradiction. Thus, by = 4, and [d] N [g1] contains g» and
three vertices of [u]. In particular, p(u,g1) = 4. Now we restore [y]. This subgraph
contains the K 1 9-subgraph {t,e, g2, 2} and two vertices of [y] — ([d] U [2]) belonging
to Xo({t, e, g2, z}). It follows that [y] — {t, e, g2, 2} contains the K ; 3-subgraph (which,
possibly, is not induced). However, [g1] N [gz] contains d, y, at most one vertex of [d] N [u],
and a vertex of [y]. Therefore, Xo({t,e, g2, z}) contains a 4-clique K, and the vertex go
of [y] — K is adjacent to two vertices of K. But [y] — ({g2} U K) is a 4-clique L, and
[t] N [e] contains d,y, z, g2, and one more vertex of L, a contradiction. Statement (2) is
proved.

Now, we assume that (3) fails. Then [d]N[y]N[z] contains vertices ¢ and e not adjacent
to g1 and go, respectively. As above, [t] N [e] contains a unique vertex d of [u], and every
vertex of [d] N [u] is adjacent to ¢ or to e.

Suppose [d] N [y] N [z] contains a vertex f distinct from ¢ and e. Then f is adjacent to
g1 and g2, and |[u] N [f]| = by — 2 = 1, a contradiction.

Thus, [d] N[y] N[z] = {t,e} and b; = 4. Suppose that the vertices g; and g are not
adjacent. Then the degree of g; in the graph [d] N [y] is equal to by — 3, and [g1] N [g2]
contains a vertex r of [d]N[u]. There is no loss of generality in assuming that r is adjacent
to t; then [d] N [r] contains u,t, g1, g2, and a vertex of [u] N [¢g1], a contradiction. Thus,
the vertices g1 and go are adjacent. If [g1] N [g2] contains a vertex r of [d] N [u] (for
definiteness, let r be adjacent to t), then [d] N [r] contains u,t, g1, g2, and a vertex of
[u] N [t], a contradiction. Thus, [g1] N [¢g2] does not intersect [d] N [u].

Let {r,s} = [d] N [u] N [t], and let f and h be vertices of ([y] N [2]) — [d] and [z] — y*,
respectively, adjacent to t. If r is adjacent to gi, then [d] contains the K3 s3-subgraph
{e,g2,7;t,g1,7"}. Then the degree of r in the graph [¢] N [u] is equal to 2, and [d] N [r]
contains u, t, s, g1, and 7/, a contradiction. Thus, {r,s} = [d] N [u] N [g2] and [t] N [g2] =
{d,r,s,y}. If the vertices r and s are not adjacent, then the degree of r in the graph
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[t] N [u] is equal to 1 and [r] N [t] contains two vertices of [z] — [g2]. By Lemma 1.1,
the degree of r in the graph [u] N [g2] is equal to 3, which contradicts the fact that r is
not adjacent to s. Thus, the vertices r and s are adjacent and [r] N [s] = {d, u,t, g2}
Now, at least one of the vertices r or s (for definiteness, let it be r) is not adjacent to
f, the degree of t in the graph [r] N [y] is equal to 1, and r is adjacent to h. Hence,
[t]N[s] = {d,r f,g2}. Since [t] is a regular graph of degree 4, the vertex h is adjacent to
f and to e.

Let 0 and h be vertices of ([y] N [2]) — [d] and [z] — y=, respectively, adjacent to e. As
above, h is adjacent to o and p(o,u) = 3. It follows that there is a vertex p of [z] — y*
adjacent to no vertex of [y] N [z]. This contradicts the fact that, in this case, the vertex
z is isolated in [p] N [y]. O

Lemma 3.9. Suppose a vertex d of [u] NT'a(y) is adjacent to two vertices g1 and go of
[y] — 2. Then every vertex of [d] N [y] N [2] is adjacent to both g and go.

Proof. By assumption, the pair d, z is good. Suppose that [d] N [y] N [z] contains a unique
vertex ¢ outside [g1] N [g2]. Without loss of generality, we may assume that ¢ is not
adjacent to g;.

Let p(d,y) = b1. By Lemma 3.8, every vertex of [d] N [y] N [z] — {t} is adjacent to ¢
and g and forms a good pair with u. Furthermore, the pair u, ¢ is almost good, and the
degree of d in the graph [u] is at least (b; — 2) + (b; — 3)%. Hence, b% — 5b; +7 < 2b; — 4
and by = 4. We put [d] N [z] = {e,t}. Then [e] N [y] = {g1, g2, t, 2}. If the vertices g; and
g2 are not adjacent, then the degree of g1 in the graph [d] N [y] is equal to b — 3 = 1.
Therefore, [g1]N[e] N [z] = {y}, which is impossible because e is adjacent to the vertex gs
lying outside gi- U z*. Thus, the vertices g; and g, are adjacent. Then [e] N [2] contains
two vertices h and h’ outside y. On the other hand, [e] N [g1] contains the vertices
d, go,y and at most one vertex of {h,h'}. For definiteness, let g; be not adjacent to h.
Since [e] N [g2] = {d,g1,t,y} and [e] N [t] = {d, g2,9, 2}, we see that [e] — h* contains
d, g1, 92,t, and y, a contradiction.

Let p(d,y) = by — 1. By Lemma 1.4, we have [d] N [y] N [z] = {¢t} and by = 4. Let
[d] N [z] = {e,t}. If e is adjacent to g1 and g2, then u,e is a good pair. The graph
[d] N [t] — {e, g1, g2, t} contains two vertices belonging to [u]. Therefore, u,t is an almost
good pair. Finally, [d]N[g1] contains two vertices of [u], and u, g1 is an almost good pair.
This contradicts the fact that, by Lemma 1.4, the degree of d in the graph [u] is equal
to 5. If g1 and go are not adjacent to e, then [d] N [e] N [g1] contains at least two vertices
lying in [u]. First, suppose that [d] N [e] N [g1] = {r, s}. Then [u] N [e] = {d,r,s,e'} and
[u] N [g1] = {d,r,s,¢7}. By Lemma 1.1, the degrees of r and s in the graphs [u] N [e]
and [u] N [g1] are at least 2. If the vertices r and s are not adjacent, then [d] N [r]
contains u, e, €', g1, and ¢{, a contradiction. Thus, the vertices r and s are adjacent and
[d] N [g2] = {t, €, g1, g7}, which contradicts the fact that, in this case, the degree of €’ in
the graph [u] N [e] is at least 2 by Lemma 1.1. Now, let [d] N [e] N [g1] = {¢,7, s}. Then
[u]N[e] ={d,q,7, s} = [u]N]g1]. By Lemma 1.1, the degrees of the vertices ¢, r, and s in
the graph [u] N [e] — {d} are at least 1. This contradicts the fact that none of the vertices
q,r, or s has degree 5 in the graph [d].

Let e € [g2] — [91], and let [e] N [u] = {d,r,s}. Without loss of generality, we may
assume that the vertex g; is adjacent to r. By Lemma 1.1 applied to the graph [u] N [e],
the vertex r is adjacent to s. Similarly, [u] N [t] is a triangle containing d and yet another
vertex t' adjacent to g; and distinct from r. If the vertices ¢ and s are adjacent, then
[d]N[s] = {e,r,t,u}, which is impossible because s* contains [u] N [¢t]. Thus, the vertices
t and s are not adjacent. If g7 is not adjacent to s, then [d] N [r] contains e, g1, s, u, and
a vertex of [u] N [g1], a contradiction. We have [d] N [g1] = {g2,7,s,t'}, so that g1 is
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not adjacent to a vertex of [u] N [t] — {¢',d}. Thus, t’ is adjacent to the vertex ¢ outside
gi Uut. By Lemma 1.1, the vertex ¢ must be adjacent to r or to s, a contradiction.

Let e € [g1] — [g2]- Since u, g1,¢ is an almost good triple and the vertices ¢ and g; are
not adjacent, we have [u]N[t]N]g1] = {d} by Lemma 1.5. If both vertices of [u]N[g1]—{d}
are not adjacent to e, then, by Lemma 1.1, the degree of g1 in the graph [e] N [y] is equal
to 3, which contradicts the fact that [e] N [t] contains three vertices of [u] and at least
two vertices of zt.

We put {ri,ro} = [d] N [u] N [t], {s1,52} = [d] N [u] O][g1], {01, 00} = [y} N [] N [1],
and {f} = [y] N [z] — t1. Assume that the vertex e is adjacent to s; and s3. Then
[t] N [e] = {d,o01,09,2}, and the degree of ¢ in the graph [r;] N [y] is equal to 2. If ry is
not adjacent to go, then 01,09 € [r1] by Lemma 1.1, and 75 is adjacent to some vertex o;.
Since [0;] N [t] contains e, r1, 79, y, and z, we arrive at a contradiction. Thus, if the vertex
e is adjacent to both s; and so, then go is adjacent to both r; and r. In this case, the
vertices r1 and ro are adjacent, because otherwise the degree of ¢ in the graph [r;]N[y] is
at least 3 and again |[o;] N [t]| = 5. Thus, we may assume that r; is adjacent to o;. Since
[t] C ri Uog, we see that o is not adjacent to 0. Therefore, [0;] N [u] contains r; and
two vertices of ([u] — d*) N [r;]. Furthermore, [0;] — y* contains e and three vertices of
[u]. Similarly, [0;] — 21 contains three vertices of [u]. Thus, [0;] N [y] contains f,, z, and
a vertex h; of [y] — z%ot. Now, [r;] N [0;] contains ¢, two vertices of [u], and a vertex of
{hi, f}. However, f & [ri] N [rz], so that some vertex r; is adjacent to h;. Replacing the
triple (d, g1, g2) by (7, hi, g2), we obtain a contradiction with statement (3) of Lemma
3.8.

Without loss of generality, we may assume that the vertex e is adjacent to r1, s1, and
o1. Then p(ri,y) = 3, and [r1] N [d] contains e, ¢, u, and at most one vertex of {ra, s1}.
First, suppose that the vertices r; and 75 are not adjacent. Then [r;] C ut Ut+. Since
the degree of ¢ in the graph [r1] N [y] is equal to 2, we see that [r;] contains two vertices
of {g2,01,02}. Since the degree of ¢ in the graph [r2] N [y] is equal to 3, the graph [rs]
contains the vertices gs, 01, and 02. On the other hand, [r1] contains [d] N [z]. By Lemma
1.4, we have p(rq, z) =4, and r; is adjacent to 0y and os. This contradicts the fact that
[01] N [t] contains e, r1,72,y, and z.

Thus, 1 € [re] — [s1], and the degree of 1 in the graph [e] N [u] is equal to 1. Since
[t] € r{ Uy™, the degree of ¢ in the graph [r;] N [y] is equal to 1. On the other hand,
[r1] contains [d] N [z]. By Lemma 1.4, we obtain pu(ry,z) = 4, and 71 is not adjacent to
go. If 7y is adjacent to a vertex h of [2] — ({e} Uy™), then, replacing the triple (d, g1, g2)
with (1, h, e) and applying Lemma 3.8, we conclude that oy € [r1] N [h]. This case was
analyzed in the second paragraph of the proof of the lemma.

Thus, [r1] N [2] = {e, f,01,t}. Since the degree of s; in the graph [u] N [e] is equal to
1, we have [s1] — ut C el. If ry is adjacent to o1, then we obtain a contradiction with
the fact that [o1] N [¢] contains e, 71,72, y, and z. Therefore, [t] N [r2] = {d, g2, 02,71}, and
[f] N [u] contains three vertices of r{-. The subgraph [u] N [01] contains a unique vertex
r1 of [d]. Furthermore, the degree of e in the graph [¢g1] N [2] is at least 2 ([e] contains
the vertex r; outside gi- U z1). Since the degrees of the vertices g; and e in the graphs
[d)N[y] and [d] N [z] (respectively) are equal to 1, we see that [g1] N[e] N[z] lies in [y] and
therefore, contains f and o;. On the other hand, [01] contains the vertex r1 and a vertex
of [u] —d*. Thus, the degree of o; in the graph [g1] N [2] is at least 3, and, in particular,
o1 is adjacent to f. This contradicts the fact that [f] N [o1] contains e, g1,71,y, and z.
The lemma is proved. O

Lemma 3.10. Every vertex of [u] NT2(y) is adjacent to at most one vertex of [y] — z=.

Proof. Suppose that a vertex d of [u] N Ty(y) is adjacent to two vertices g; and go of
[y]—z*. Then u(d,z) = b;—2, and [t] C dtUz" for t € [d]N[z]. First, we consider the case



534 I. N. BELOUSOV AND A. A. MAKHNEV

where [d] contains the vertices ey, ..., ep, —2 of [y] N [z]. By Lemma 3.9, each vertex e; is
adjacent to g1 and g2, and p(u, e;) = by —2. For i # j, the subgraphs [u]N[e;] and [u]N]e;]
contain a unique vertex d in common. Therefore, (b — 3)(b; — 2) < 2b; — 4 and by <5.
If by = 5, then [d] N [z] = {e1,e2,e3} is a triangle, and [e1] N [e2] = {es,91,92.d,y, 2}.
Since e; € [g1] N [g2], Lemma 1.1 shows that the subgraph [e;] contains two vertices of
[2] — ([d] Uyt). This is impossible, because [z] contains seven vertices of y and six
vertices outside y*. If by = 4, then [e;] N [e2] = {g1, 92, d, y, 2}, a contradiction.

Thus, [d] contains a vertex h of [z] — y*. Then the pair d, z is good and the pair
d,y is almost good. By Lemma 1.4, we obtain |[d] N [y] N [z]| < 1. Hence, by = 4 and
[d N[yl N[z] = {e}. By Lemma 3.9, the vertex e is adjacent to g; and go, whence
w(u,e) = 2. We put [e] N [y] N [z] = {o}. Let r and s be vertices of [u] N [e] — {d} and
[e] N [z] = {h,o0,y}, respectively.

Suppose that the vertices g; and go are not adjacent. Then gi- C d+ Uy=L. If g; and
g2 are adjacent to h, then [g;] N [d] contains two vertices of [u]. Therefore, the pairs u, g1
and u, g2 are almost good, and [u] N [g1] N [g2] = {d} by Lemma 1.5. On the other hand,
[h] N [u] contains a vertex p of [d] adjacent to g;, so that {p,d} C [u] N [h] N [g;]. This
contradicts Lemma 1.4. If h € [g1] — [g2], then the degree of e in the graph [go] N [2] is
at least 2 ([e] contains the vertex g; outside g5 U z1). In this case, we have o € [g1].
Applying Lemma 1.4 to the triples u, g1, go and u, g1, h, we see that r is adjacent neither
to g1 nor to h. Therefore, [e] N [g1] contains d, h,y, and o. Since the degree of e in the
graph [r] N [z] is at least 2 ([e] contains g1 ), we see that r is adjacent to o and s. This
contradicts the fact that [e] N [o] contains g1, g2, 7,y, and z. If g; and g2 are not adjacent
to h, then [d] N [z] contains three vertices of [u] for = € {g1, g2, h}. Therefore, [u] N [d]
contains the vertex r adjacent to g1, g2, and h. By Lemma 1.1, the degree of r in the
graph [u] N [h] is at least 3 and [h] N [r] C dt. This contradicts the fact that [d] N [r]
contains u, g1, g2, h, and two more vertices.

Thus, the vertices g; and g, are adjacent. We prove that r € [g1]U[g2]. Assuming the
contrary, we have [e]N[r] = {d, h, 0, s}. Replacing d with r, we obtain [r]N[y]N[z] = {e, o},
which contradicts the statement obtained in the first paragraph of the proof. We may
assume that r € [g1].

If h is adjacent to 7, then [d] N [r] N [z] = {e, h}. Since the pair d, z is good, we have
u(r, z) = 4 by Lemma 1.4. In this case, we have |[r] N ([y] U [2])| = 5, which contradicts
the fact that |[r] — u™| = 4. Thus, h is not adjacent to r. Now, [e] contains the vertex
h outside 7+ Uy, and the degree of e in the graph [r] N [y] is at least 2. If the degree
of e in [r] N [y] is at least 3, then [r] contains two vertices of each of the graphs [y] — 2+
and [y] N [z]. Again, this contradicts the statement proved in the first paragraph of the
proof. Thus, [e] N [r] contains d, g1, exactly one vertex of {gs,0}, and s.

Assume that o € [r] N [h]. Then [o] contains the vertex h outside 7+ Uy*, the degree
of o in the graph [r] N [y] is at least 2, and o is adjacent to ¢g;. In this case, [e] N [g1]
contains d, ga2,0,r, and y, a contradiction. Thus, o ¢ [r] N [h]. Again, [e] contains the
vertex y outside r+Uh™*, and the degree of e in the graph [r]N[h] is at least 2. Therefore,
[e] N [r] N [h] = {d, s} (we recall that [e] N [g1] = {d, g2, 7, ¥}).

If s is adjacent to g2, then r and h are not adjacent to g, because [e]N[g2] = {d, g1, s, ¥y}
It follows that [e] N [r] = {d, g1,s,0} and [e] N [h] = {d, s, 0,2}, which is incompatible
with o ¢ [r] N [h]. Thus, s is not adjacent to g2, whence [e] N [s] = {h, 0,7, z}.

First, assume that r is adjacent to go. Then [u]N[g1]N[d] = {r,p1} and [u]N[g2]N][d] =
{7“, pZ} Herea p1 7& P2 since [gl}m[QZ] = {dv S y} In this case, [d} 7h’J_ - {gla 92,7, 'LL}, S0
that p1,ps, q € [h], where g € [d] — (e U {u,p1,p2}). Therefore, [d] N [g] = {h,p1,p2,u},
and the graph [d] is constructed. But now the vertices p; and py are not adjacent,
[h] contains the vertices e and z outside pi- U py, and the degree of h in the graph
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[p1] N [p2] is at least 3. Therefore, [p1] N [p2] N [h] contains d, ¢, and a vertex of [z] — d*.
Thus, p; and ps are nonadjacent vertices forming good or almost good pairs with z, and
I[p1] N [p2] N [2]| > 2. This contradicts Lemma 1.5.

Consequently, r is not adjacent to go. Therefore, r is adjacent to o, and o is not
adjacent to h. The subgraph [r] N [z] = {e, 0, s} is a triangle, and [r] N [s] contains e, o,
and two vertices of [r] N [u]. Similarly, [r] N [o] contains e, s, and two vertices of [r] N [u].
Since the vertex d of [r] N [u] does not belong to [o] U [s], we see that [o] N [s] contains a
vertex ¢ of [r] N [u]. If ¢ is adjacent to g1, then the degree of ¢ in the graph [o] N [u] is
at least 2. On the other hand, [r] N [t] = {¢1,0,s,u}, and the degree of o in the graph
[r] N [y] is equal to 1. Therefore, [0] N [u] C [0] — y* C r*, which contradicts the fact
that [o] N [u] N [¢] lies in {r}. Thus, ¢ is not adjacent to g;. By the construction of r, the
subgraph [o] N [g1] contains a unique vertex p of [r] N [u]. Now, [0] contains the vertex s
outside pt Uyt (because [o] N [s] = {e,p, 7, z}), and the degree of o in the graph [p] N [y]
is at least 2. However, g; € [p| — [0], whence p(p,y) = 4. If |[p] N [y] N [z]] = 2, then,
replacing d with p, we obtain a contradiction with the statement established in the first
paragraph of the proof. Thus, |[p] N [y] N [2]| = 3. Since [0] — r~ C y* and the degree
of 0 in [r] N [2] is 2, we conclude that [o] — (r U z1) contains a vertex ¢ (of [y]). Also,
[e] N[g1] = {d, g2, 7, y}. Therefore, p is not adjacent to e. This contradicts the fact that
[o] N [y] contains e, g, z, and two vertices of [p] N [y] N [z]. The lemma is proved. O

Lemma 3.11. For any two vertices u and x at a distance of 2 in the graph I, we have
bo(u,x) < 1.

Proof. By Lemma 3.10, each vertex of [u] N 'y(y) is adjacent to at most one vertex of
[y] — z+. It follows that the number of edges between [u] N T2(y) and [y] — 2+ is at
least by(b; — 2) and at most 3b; — 3. Then b3 — 5b; +3 < 0 and b; = 4. We put
{g1,---,94} = [y] — 2% and {hy,... , hy} = [z] — y*. Either each vertex g, is adjacent to
exactly two vertices of [u] and some vertex ¢ of [u] is not adjacent to any of the vertices
{g91,-..,94}, or each vertex gi,...,gs is adjacent to exactly two vertices of [u] and g4 is
adjacent to exactly three vertices of [u].

We assume that, in the first case, the vertex ¢ belongs to I'a(y). If the vertex e of
[y] N [2] is adjacent to the vertex g; of [y] — z*, then the degree of e in the graph [t] N [y]
is equal to 2, and [e] N [y] contains g;, z, and two vertices of [t] N [y].

If the degrees of two distinct vertices e; and eg of [t]N[y] in the graph [t]N[y] are equal
to 1, then [e;] C t+ Uyt. Consequently, e; is not adjacent to a vertex of [y] — z*, and
[e1] N [e2] contains ¢, y, z, and two vertices of [y] N[z], a contradiction. If u(t,y) = 2, then
[[t] N ([z] = [¥])] <1 by Lemma 3.10, but this contradicts Lemma 1.4. If u(¢,y) = 3, then
the subgraph [t]N[y] = {e1, e2, es} is a clique. In this case, [e;]N[e;] = {¢,y, 2, e6—;—; } and
precisely one vertex w of [t] — (ut Uy™) is adjacent to at most one vertex of {ey, €2, e3}.
There is no loss of generality in assuming that e; and ey are not adjacent to w. Then
w(u,e1) = p(u,e2) = 3 and the degree of ¢ in the graph [u] N [e;], ¢ = 1,2, is equal to 2.
By Lemma 1.5, we have [u] N [t] C [e1] U [e2]. However, [u] N [e3] contains a vertex of [t]
lying in [e;], and |[u] N [e;] N [es]| > 2, which contradicts Lemma 1.5.

Thus, p(t,y) = 4. If the subgraph [t] N [y] contains a vertex e of degree 1, then [e] N [y]
contains z, a vertex of [t] N [y], and two vertices of [y] — z*, which contradicts Lemma
1.1. If the subgraph [t] N [y] contains two vertices d and e of degree 3, then [d] N [¢]
contains t,y, z, and two vertices of [y] N [z]. Thus, [¢] N [y] is a quadrangle. Therefore,
the subgraph [y] — z+ = {g1,...,g4} is a clique. Furthermore, each vertex e of [y] N [z]
is adjacent to exactly two vertices of [t] N [u], and each vertex w of [t] N [u] is adjacent
to gi, hj, and two vertices of [y] N [z]. On the other hand, each vertex g; is adjacent to
exactly one vertex of [y] N [2]. This contradicts the fact that [w] — u® C [g;].
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Thus, t € T's(y) NT3(z). Hence, [u] N [g;] = {di,w;}, where d; € [u] —t+, w; €
[t] N [u], i = 1,...,4. By symmetry, we have [z] N [d;] = {hi,e;}, where e; € [y] N [7],
i =1,...,4, and, by Lemma 1.4, the vertex g; is adjacent to e; and h;. Since [w;] C
ut U giJ-, we see that w; is adjacent to a unique vertex r; of [t] —u’. Now, the subgraph
{t,u,y, 2, gi,€i, hiydi,w;,r; | ¢ = 1,...,4} is a connected 28-vertex component of the
graph I'. But this is impossible because, in this case, for any two adjacent vertices e;, e,
the subgraph [e;] N [e;] coincides with {y, z}.

Thus, each of the vertices g1, g2, g3 is adjacent to exactly two vertices of [u], and g4
is adjacent to three vertices p1,ps, and ps of [u]. By symmetry, each of the vertices
h1, ha, hs is adjacent to exactly two vertices of [u], and hy is adjacent to three vertices of
[u]. If p; is adjacent to a vertex h; for i < 3, then [p1] C u' U hi. In particular, h; is a
unique vertex of {hy,...,hs} adjacent to g4. Then py,ps € [h4], and the vertices g4 and
h4 are adjacent by Lemma 1.5, a contradiction.

So, p1,p2,p3 € [ha]; Lemma 1.5 shows that the vertices g4 and hy are adjacent. Since
[u] N [h1] contains two vertices adjacent to only one vertex of {g1, g2, 93}, we see that
[[h1] N {91, 92, g3} = 2; in particular, [h;] C [u] U [y] U[7] for i € {1,...,4}. The number
of edges between [u] and T'2(u) is equal to 36, and at most 30 of these edges are incident
to vertices of [y] U [z]. However, if r is a vertex of I's(u) — ([y] U [2]), then, by Lemma
1.4, the subgraph [u] N [r] lies in [g4]. We obtain |[u] N [g4] N [r]] > 2, which contradicts
Lemma 1.8. The lemma is proved. O

Lemma 3.12. For every vertex u, we have |I's(u)] < 1.

Proof. Let y and z be distinct vertices of I's(u), and let uwzy be a geodesic 3-path. By
Lemma 3.11, the subgraph [y] NT'3(u) does not intersect [z]. We assume that the vertices
y and z are adjacent. We have z € I's(w) by Lemma 3.4. Furthermore, [y] N [z] contains
2b; — 4 vertices of I's(u). By Lemma 3.11, |[w]| = 3b; — 3 > (b1 — 2)(2b; — 2). Hence,
b1 < 3, a contradiction.

If the distance between the vertices y and z is 2, then [y] N [z] contains at least by — 2
vertices of I's(u). This contradicts the fact proved in the preceding paragraph. Thus, the
distance between the vertices y and z is equal to 3, and kb; > 2k(b; —2). Consequently,
by =4, I'y(u) = [y] U [z], and p(u,r) = 2 for every vertex r of I's(u). Since the subgraph
[w] —ut lies in 2+, the graph [#] N ([u]U[2]) is a 4-clique. If  and 2’ are distinct vertices
of [w] N [y], then [w] — ut is a 4-clique, and [z] N [2'] contains y and four vertices of
[w] N [y], a contradiction. The lemma and Proposition 2 are proved. O

The theorem follows from [2] [3] and Propositions 1 and 2. We prove the corollary.
Let ' be a connected amply regular graph of diameter exceeding 2 and with parameters
(v, k,\, ), and let k > 3by — 3. Then by — 2 < pu < by.

Lemma 3.13. If u=b; — 2, then T € £(4).

Proof. Let u = by — 2. Then any two vertices the distance between which is equal to
2 form a good pair. Therefore, ' is a Terwilliger graph without 3-claws. By [7], either
w =1, or T is the icosahedron graph (and p = b1). In the case where u=0; —2 =1, we
obtain by =3 and I' € £(4). O

Lemma 3.14. If u = by, then T is either an n-gon with n > 6, or the complete bipartite
graph K4 4 with a mazimal matching removed, or the icosahedron graph, or the Johnson
graph J(6,3), or the locally Taylor graph T(6) on 32 vertices, or the locally Schiafli graph
on 56 vertices.

Proof. Let u = by. By [Il Theorem 1.5.5], the graph T is either a polygon or a Taylor
graph. In the latter case, either A = 0 and I' is a complete bipartite graph Kji1 p41
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with a maximal matching removed, or a neighborhood of each vertex of I is a strongly
regular graph with parameters (v’, k', \', /) and k' = 2u/. If A =0, then k = b; + 1, and
the condition k > 3b; — 3 implies that by < 2 (if by = 1, the graph T is a hexagon).

Now, let v/ = kK’ = A = 2¢/. Then b; = 2(K' — X —1). Since k > 3b; — 3, we
have p/ > by — 2. If 4/ = by — 1, then the subgraph [a] is a strongly regular graph with
parameters (v',2b; — 2,3b;/2 — 3,b; — 1). In the half case, we obtain b = 2, and T' is
the icosahedron graph. If (A — p/)? 4+ 4(k’ — 1) is a square, then by = 2s and s(s +4) is
a square, a contradiction.

If / = by — 2, then the subgraph [a] is a strongly regular graph with parameters
(v',2by — 4,3b1/2 — 5,b1 — 2). In the half case, we obtain b; = 2, the graph [a] is the
(3 x 3)-lattice, and T is the Johnson graph J(6,3). If (X' — u/)? + 4(k' — 1) is a square,
then n’ = by /2—1, and the nonprincipal eigenvalues of the graph [a] are equal to by /2 —2
and —2. If by = 6, the graph [a] is the triangular graph T'(6), and T is the Taylor graph
on 32 vertices.

Since a Seidel graph with g > 6 is either the Clebsch graph or a Schlafli graph and,
for b = 8, the graph [a] must have the parameters (21, 12, 7, 6), we see that T is the
locally Taylor Schlafli graph on 56 vertices. O

Lemma 3.15. If p=b; — 1, then u=1and ' € T(3) UE(3).

Proof. Let = by — 1. First, we assume that kK = 3by — 3. Then p = k — 2b; + 2. The
following statement was proved in [g].

Corollary. Let T' be an amply regular graph with parameters (v, k, A\, p), and let u =
k —2by + 2. Then I is either a Seidel graph or a trivalent graph without triangles of
diameter exceeding 2, and with p = 1.

Let k > 3b; — 2. In [2] it was proved that if " is a connected edge-regular graph with
parameters (v, k, \), and if k > 3b; — 2, then either T is a polygon, or I is the icosahedron
graph, or I' € £(3), or I is a graph of diameter 2. The lemma is proved. (Il

The corollary follows from Lemmas 3.13-3.15.
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